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Lower Bounds on
W (3, c)

Exposition by William Gasarch



VDW’s Theorem

Theorem (VDW) For all k , c there exists W = W (k , c) such that,
for all c-colorings of [W ], there exists a, d such that

a, a + d , . . . , a + (k − 1)d are the same color.

I Proof gave gross upper bounds on W (k , c). Not Prim. Rec.

I Shelah has an alternative proof that gives Prim Rec bounds
that some would still call gross. Proof is elementary.

I Gowers proved

W (k, c) ≤ 22
c2

2k+9

Proof uses very hard math.
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The Only Known VDW Numbers

k 2 colors 3 colors 4 colors

3 9 27 76

4 35 293 > 1048

5 178 > 2173 > 17705

6 1132 > 11191 > 91331

I W (3, 2) = 9 can be done by hand.

I Rest were by clever computer searches but might be easier
now.

I W (6, 2) = 1132: was Michal Kouril’s PhD thesis. Very clever.

I I’ve asked Kouril when we will get W (7, 2). He said never.

I Idea Use ML to find VDW numbers.
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Recap

Upper bounds are Ginormous!

Actual numbers are small!

Want lower bounds to see how close they are to upper bounds.
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Lower Bounds on W (3, c)

The Usual Approach

Given c , find V such that there is a c-coloring of [V ] with no
mono 3-AP’s.
Try to make V as big as possible. Then W (3, c) > V .

We won’t be doing that.
We do it backwards.

Our Approach
Given V , find c such that there is a c-coloring of [V ] with no
mono 3-AP’s.
Try to make c as small as possible.
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3-free Sets

Definition A ⊆ [V ] is 3-free if there are no 3-AP’s in A. Note
that if [V ] is colored and has no 3-AP’s then every color is 3-free.

Idea Find a large subset of [V ] with no 3-AP’s. Color it RED!
Okay. . .Now what?

Shifting A If A ⊆ [V ] and t ∈ [V ] then

A + t = {x + t (mod V ) : x ∈ A}

A + t is a shift of A.
t is called the shift.
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The Ideal World is Almost True!

Ideal World 3-free A ⊆ [V ] can be shifted around so that none of
the shifts overlap. This would be V

|A| shifts and hence there is a
V
|A| -coloring with no mono 3-AP’s.

Real World Let A ⊆ [V ] be a 3-free set. We want to take a
(small) number of shifts to cover [V ] There will be some overlap.

We may need to do pick the shifts very carefully! We may need to
use Gowers-Style math (in which case I would just tell you the
answer, not prove it). Or We may not have to.
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We Use Randomness

We take c random shifts where we determine c later.
What is Prob that some element of [V ] was NOT covered?

Let x ∈ [V ] and t be a random shift.

Pr(x ∈ A + t) = |A|
V .

Pr(x /∈ A + t) = 1− |A|V ∼ e−|A|/V

Pr(x /∈ A + t1 ∪ · · · ∪ A + tc) ≤∼ e−|A|c/V .
Pr(∃x /∈ A + t1 ∪ · · · ∪ A + tc) ≤∼ Ve−|A|c/V .

We choose c so that this is < 1. c = V ln(V )
|A|

Note V ln(V )
|A| is close to the ideal of V

|A| .
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Recap

We have shown the following.
Theorem Let V ∈ N and let A ⊆ [V ] be a 3-free set. Let

c = V ln(V )
|A| . Then there is a c-coloring of [V ] with no mono

3-APs. Hence W (3, c) > V .

So, we’re done!

Not so Fast We need to find 3-free sets.
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3-Free Set

Exposition by William Gasarch



3-Free Set Facts

I If A is not 3-free then there exists a, a + d , a + 2d ∈ A.

I If A is not 3-free then there exists x , y , z ∈ A such that
x + z = 2y .

I Notation The size of the largest 3-free set of [V ] is denoted
sz(V ).



sz(V ) ≥ V 0.63

View [V ] as numbers in base 3.

A = {w ∈ [V ] : Base 3 rep of w only has 0’s and 1’s}

3-Free Assume x , y , z ∈ A and x + z = 2y .
Key Since base 3 rep of x , y , z has only 0’s and 1’s, adding them
is carry free.
x = xL · · · x0
z = zL · · · z0
y = yL · · · y0
If x + z = 2y then, for all i , xi + zi = 2yi .
If yi = 0 the then xi = zi = 0
If yi = 1 the then xi = zi = 1.
So x = z .

Size of A [V ] in base 3 takes log3(V ) digits. So

|A| ∼ 2log3(V ) ∼ V log3(2) = V 0.63
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sz(V ) ≥ V 0.68

View [V ] as numbers in base 5.
(Attempt- it won’t work)

A = {w ∈ [V ] : Base 5 rep of w only has 0’s, 1’s, 2’s}

|A| ∼ V log5(3) ∼ |V |0.68.

3-Free Assume x , y , z ∈ A and x + z = 2y .
Key Since base 5 rep of x , y , z has only 0’s, 1’s, 2’s adding them is
carry free.
x = xL · · · x0
z = zL · · · z0
y = yL · · · y0
If x + z = 2y then, for all i , xi + zi = 2yi .
If yi = 0 the then xi = zi = 0.
If yi = 1 the then xi = zi = 1. . NO- could have xi = 0 and zi = 2.

Shucky Darns! Need to add one more condition.
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The Real Set A
A is the set of all w ∈ [V ] such that

I Base 5 rep of w only has 0’s, 1’s, 2’s.

I Base 5 rep of w exactly 1/3 of the digits are 0.

3-free
x = xL · · · x0
z = zL · · · z0
y = yL · · · y0

If x + z = 2y then, for all i , xi + zi = 2yi .

FIRST look at the L/3 places where yi = 0. Then xi = zi = 0.
Key For all other places xi 6= 0, zi 6= 0.

SECOND look at the places where yi = 1. xi + zi = 2 and xi 6= 0,
yi 6= 0 Hence xi = zi = 1.

THIRD look at the places where yi = 2. xi + zi = 4, so
xi = zi = 2.

So x = y = z .
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What is |A|?

Choose L/3 of the digits to be 0.
( L
L/3

)
∼ LL/3

For the remainder use 1’s or 2’s, so 22L/3

Leave it to the reader to work it out.
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sz(V ) ≥ V 1− 1√
lg V

Let r be such that 2r(r+1)/2 − 1 ≤ V ≤ 2(r+1)(r+2)/2 − 1.
Note that r ∼

√
2 lg(V ).

Write the numbers in [V ] in base 2.

Break the numbers into r blocks of bits.

The first (rightmost) block is one 1 long.

The second block is 2 bits long.

The rth block is r bits long.

We denote the ith block as Bi , a number.
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An Example!

991746118991 in binary is

1110011011101000101011001101010101001111

We write it as:

000001110; 01101110; 1000101; 011001; 10101; 0101; 001; 11; 1

B1 = 1
B2 = 3
B3 = 1
B4 = 5
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The Set A

A is the set of all BrBr−1 · · ·B1 such that:

1. For 1 ≤ i ≤ r − 2 the leftmost bit of Bi is 0. This leads to
carry-free addition.

2.
∑r−2

i=1 B
2
i = BrBr−1 (The BrBr−1 is concatenation.)

We leave it to the reader to prove that |A| is as big as we said (this
is easy) and that the set is 3-free (This requires some thought.)



Back to W (3, c)

Recall that we prove:
Thm Let V ∈ N and let A ⊆ [V ] be a 3-free set. Then there is a
V ln(V )
|A| -coloring of [V ] with no mono 3-APs. Hence

W (3, V ln(V )
|A| ) ≥ V .

Recall that we sketched:
Thm There exists a 3-free subset of [V ] of size ≥ V

1− 1√
lg V

Combine these two to get:

Thm Let V ∈ N. Then there is a V
1√
lg V ln(V )-coloring of [V ] with

no mono 3-APs. Hence

W (3,V
1√
lg V ln(V )) ≥ V .
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