# BILL, RECORD LECTURE!!!!

#### BILL RECORD LECTURE!!!



Euclidean Ramsey Theory Chromatic Number of the Plane

# Exposition by William Gasarch

April 29, 2025

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- イロト イロト イヨト イヨト ヨー のへぐ

Examples of Ramsey Theory:



Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a 3\text{-homog set}].$ 

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-}AP].$ 

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-AP}].$ 

3)  $(\exists n) [\forall \text{COL}: [n] \times [n] \rightarrow [2] \quad \exists \text{ mono square}].$ 

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-AP}].$ 

3)  $(\exists n)[\forall \text{COL}: [n] \times [n] \rightarrow [2] \quad \exists \text{ mono square}].$ 

Note that

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-AP}].$ 

3)  $(\exists n)[\forall \text{COL}: [n] \times [n] \rightarrow [2] \quad \exists \text{ mono square}].$ 

Note that

A) The objects we are coloring are **discrete**.

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-AP}].$ 

3)  $(\exists n)[\forall \text{COL}: [n] \times [n] \rightarrow [2] \quad \exists \text{ mono square}].$ 

Note that

A) The objects we are coloring are **discrete**.

In Euclidean Ramsey Theory we will be coloring the Plane or  $\mathbb{R}^d$ .

ション ふぼう メリン メリン しょうくしゃ

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-AP}].$ 

3)  $(\exists n)[\forall \text{COL}: [n] \times [n] \rightarrow [2] \quad \exists \text{ mono square}].$ 

Note that

A) The objects we are coloring are **discrete**.

In Euclidean Ramsey Theory we will be coloring the Plane or  $\mathbb{R}^d$ .

B) We do not care about the geometric size. For example, the Square can be any size.

Examples of Ramsey Theory: 1)  $(\forall k)(\exists n)[\forall \text{COL}: {[n] \choose 2} \rightarrow [2] \quad \exists a \text{ 3-homog set}].$ 

2)  $(\forall k)(\exists n)[\forall \text{COL}: [n] \rightarrow [2] \quad \exists \text{ a mono } k\text{-AP}].$ 

3)  $(\exists n)[\forall \text{COL}: [n] \times [n] \rightarrow [2] \quad \exists \text{ mono square}].$ 

Note that

A) The objects we are coloring are **discrete**.

In Euclidean Ramsey Theory we will be coloring the Plane or  $\mathbb{R}^d$ .

B) We do not care about the geometric size. For example, the Square can be any size.

In Euclidean Ramsey Theory we will be seek an object of a certain size, for example the unit square.

#### **Thm** $\forall$ COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

・ロト・日本・モト・モト・モー うへぐ

#### **Thm** $\forall$ COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

Discuss Try to proof it, what are your thoughts.



**Thm**  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [2] \exists 2$  points, same color, 1 inch apart.

**Discuss** Try to proof it, what are your thoughts.

Proof on the next page.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 目 ● の Q @

Look at an equilateral triangle in the plane

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Look at an equilateral triangle in the plane

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで



Look at an equilateral triangle in the plane

3 vertices and 2 colors. So 2 of the vertices are the same color.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 目 ● の Q @





Vertices 1 and 2 are an inch apart.

Consider the graph G = (V, E) where

・ロト・日本・ヨト・ヨト・日・ つへぐ

Consider the graph G = (V, E) where  $V = \mathbb{R}^2$ 

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Consider the graph G = (V, E) where  $V = \mathbb{R}^2$  $E = \{(x, y) : d(x, y) = 1\}.$ 

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Consider the graph G = (V, E) where  $V = \mathbb{R}^2$   $E = \{(x, y) : d(x, y) = 1\}.$ Def  $\chi$  is the chromatic number of this graph.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Consider the graph G = (V, E) where  $V = \mathbb{R}^2$   $E = \{(x, y) : d(x, y) = 1\}.$ Def  $\chi$  is the chromatic number of this graph.

The Theorem **Thm**  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [2] \exists 2$  points, same color, 1 inch apart. Can be rephrased as

ション ふぼう メリン メリン しょうくしゃ

Consider the graph G = (V, E) where  $V = \mathbb{R}^2$   $E = \{(x, y) : d(x, y) = 1\}.$ Def  $\chi$  is the chromatic number of this graph.

The Theorem Thm  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [2] \exists 2$  points, same color, 1 inch apart. Can be rephrased as Thm  $\chi \geq 3$ .

Consider the graph G = (V, E) where  $V = \mathbb{R}^2$   $E = \{(x, y) : d(x, y) = 1\}.$ Def  $\chi$  is the chromatic number of this graph.

The Theorem Thm  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [2] \exists 2$  points, same color, 1 inch apart. Can be rephrased as Thm  $\chi \geq 3$ . We investigate what  $\chi$  can be

We investigate what  $\chi$  can be.

Vote

<ロト (個) (目) (目) (日) (の)</p>

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow$  [3]  $\exists$  2 points, same color, 1 inch apart. (So  $\chi \ge 4$ )

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [3] \exists 2$  points, same color, 1 inch apart. (So  $\chi \ge 4$ ) 2)  $\exists$  COL:  $\mathbb{R}^2 \rightarrow [3]$  no 2 points, same color, 1 inch apart. (So  $\chi = 3$ .)

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [3] \exists 2$  points, same color, 1 inch apart. (So  $\chi \ge 4$ ) 2)  $\exists$  COL:  $\mathbb{R}^2 \rightarrow [3]$  no 2 points, same color, 1 inch apart. (So  $\chi = 3$ .)

3) Unknown to Science!

#### Vote

 ∀ COL: ℝ<sup>2</sup> → [3] ∃ 2 points, same color, 1 inch apart. (So χ ≥ 4)
∃ COL: ℝ<sup>2</sup> → [3] no 2 points, same color, 1 inch apart. (So χ = 3.)
Unknown to Science!

Ánswer on next slide

# **Thm** $\forall$ COL: $\mathbb{R}^2 \rightarrow [3] \exists 2$ points, same color, 1 inch apart. (So $\chi \geq 4$ .)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 目 ● の Q @
Assume  $\operatorname{COL}$  is a proper 3-coloring of the plane.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles:

Assume COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @



Assume COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles:



 $\operatorname{COL}(1) = \mathbb{R}$ , so  $\operatorname{COL}(2) \neq \mathbb{R}$  and  $\operatorname{COL}(3) \neq \mathbb{R}$ .

Assume COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles:



 $\operatorname{COL}(1) = \mathbb{R}$ , so  $\operatorname{COL}(2) \neq \mathbb{R}$  and  $\operatorname{COL}(3) \neq \mathbb{R}$ .  $\operatorname{COL}(2) \neq \operatorname{COL}(3)$  so  $\operatorname{COL}(2) = \mathbb{B}$  and  $\operatorname{COL}(3) = \mathbb{G}$ .

Assume COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles:



 $\operatorname{COL}(1) = \mathbb{R}$ , so  $\operatorname{COL}(2) \neq \mathbb{R}$  and  $\operatorname{COL}(3) \neq \mathbb{R}$ .  $\operatorname{COL}(2) \neq \operatorname{COL}(3)$  so  $\operatorname{COL}(2) = \mathbb{B}$  and  $\operatorname{COL}(3) = \mathbb{G}$ .



Assume COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles:



 $\operatorname{COL}(1) = \mathbb{R}$ , so  $\operatorname{COL}(2) \neq \mathbb{R}$  and  $\operatorname{COL}(3) \neq \mathbb{R}$ .  $\operatorname{COL}(2) \neq \operatorname{COL}(3)$  so  $\operatorname{COL}(2) = \mathbb{B}$  and  $\operatorname{COL}(3) = \mathbb{G}$ .



▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 目 ● の Q @







Distance from 1 to 4 is  $\sqrt{3}$ .





Distance from 1 to 4 is  $\sqrt{3}$ .

**Upshot 1** If p, q are  $\sqrt{3}$  apart then COL(p) = COL(q).



Distance from 1 to 4 is  $\sqrt{3}$ .

**Upshot 1** If p, q are  $\sqrt{3}$  apart then COL(p) = COL(q). **Upshot 2** If  $COL(p) = \mathbb{R}$  then circle of radius  $\sqrt{3}$  around p is  $\mathbb{R}$ .







Look at a chord of the circle of length 1.





(日本本語本本語本本語本 語)のQQ



・ロト・西ト・西ト・西ト・日・シック

**Recall** The proof that  $\chi \ge 2$  is to restrict the coloring to a 3-point set, the equilateral triangle.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

**Recall** The proof that  $\chi \ge 2$  is to restrict the coloring to a 3-point set, the equilateral triangle.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Is there a finite subset of the plane that shows  $\chi \ge 3$ ?

**Recall** The proof that  $\chi \ge 2$  is to restrict the coloring to a 3-point set, the equilateral triangle.

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Is there a finite subset of the plane that shows  $\chi \ge 3$ ? Yes.

**Recall** The proof that  $\chi \ge 2$  is to restrict the coloring to a 3-point set, the equilateral triangle.

Is there a finite subset of the plane that shows  $\chi \ge 3$ ? Yes. We point to the Wikipedia page of The Moser Spindle.

**Recall** The proof that  $\chi \ge 2$  is to restrict the coloring to a 3-point set, the equilateral triangle.

Is there a finite subset of the plane that shows  $\chi \ge 3$ ? Yes. We point to the Wikipedia page of **The Moser Spindle**. It is a 7-vertex graph drawn in the plane with all sides of length 1. It is an easy exercise to show that this graph is not 3-colorable.

**Recall** The proof that  $\chi \ge 2$  is to restrict the coloring to a 3-point set, the equilateral triangle.

Is there a finite subset of the plane that shows  $\chi \ge 3$ ? Yes. We point to the Wikipedia page of **The Moser Spindle**. It is a 7-vertex graph drawn in the plane with all sides of length 1. It is an easy exercise to show that this graph is not 3-colorable. https://en.wikipedia.org/wiki/Moser\_spindle

# **Recap 2-Coloring and 3-Coloring the Plane**

### **Recap 2-Coloring and 3-Coloring the Plane**



▶ There is a 3-point subset of the plane that is NOT 2-colorable.



### Recap 2-Coloring and 3-Coloring the Plane

- There is a 3-point subset of the plane that is NOT 2-colorable.
- ▶ There is a 7-point subset of the plane that is NOT 3-colorable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Vote

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow$  [4]  $\exists$  2 points, same color, 1 inch apart. (So  $\chi \ge 5$ .)

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

#### Vote

 ∀ COL: ℝ<sup>2</sup> → [4] ∃ 2 points, same color, 1 inch apart. (So χ ≥ 5.)
∃ COL: ℝ<sup>2</sup> → [4] no 2 points, same color, 1 inch apart. (So χ = 4.)

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [4] \exists 2$  points, same color, 1 inch apart. (So  $\chi \geq 5$ .) 2)  $\exists$  COL:  $\mathbb{R}^2 \rightarrow [4]$  no 2 points, same color, 1 inch apart. (So  $\chi = 4$ .)

3) Unknown to Science!

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [4] \exists 2$  points, same color, 1 inch apart. (So  $\chi \geq 5$ .) 2)  $\exists$  COL:  $\mathbb{R}^2 \rightarrow [4]$  no 2 points, same color, 1 inch apart. (So  $\chi = 4$ .)

3) Unknown to Science!

Answer on next slide

**Thm** (Aubrey de Grey, 2018)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [4] \exists 2$  points, same color, 1 inch apart. (So  $\chi \geq 5$ .)

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

**Thm** (Aubrey de Grey, 2018)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [4] \exists 2$  points, same color, 1 inch apart. (So  $\chi \ge 5$ .) de Grey did this with a construction of a 1581-vertex unit-distance graph that is not 4-colorable.

**Thm** (Aubrey de Grey, 2018)  $\forall \text{ COL} \colon \mathbb{R}^2 \to [4] \exists 2 \text{ points, same color, 1 inch apart.}$  (So  $\chi \geq 5$ .) de Grey did this with a construction of a 1581-vertex unit-distance graph that is not 4-colorable.

As of 2021 this was gotten down to a 509-vertex graph.

**Thm** (Aubrey de Grey, 2018)  $\forall \text{ COL}: \mathbb{R}^2 \rightarrow [4] \exists 2 \text{ points, same color, 1 inch apart.}$ (So  $\chi \geq 5$ .) de Grey did this with a construction of a 1581-vertex unit-distance graph that is not 4-colorable.

As of 2021 this was gotten down to a 509-vertex graph.

So we know that  $\chi \geq 5$ .
Vote

▲□▶▲□▶▲目▶▲目▶ 目 のへで

#### Vote

# 1) $\forall$ COL: $\mathbb{R}^2 \rightarrow [5] \exists 2$ points, same color, 1 inch apart. (So $\chi \ge 6$ .)

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

#### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [5] \exists 2$  points, same color, 1 inch apart. (So  $\chi \ge 6$ .) 2)  $\exists$  COL:  $\mathbb{R}^2 \rightarrow [5]$  no 2 points, same color, 1 inch apart. (So  $\chi = 5$ .)

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

### Vote

1)  $\forall$  COL:  $\mathbb{R}^2 \rightarrow [5] \exists 2$  points, same color, 1 inch apart. (So  $\chi \ge 6$ .) 2)  $\exists$  COL:  $\mathbb{R}^2 \rightarrow [5]$  no 2 points, same color, 1 inch apart. (So  $\chi = 5$ .)

3) Unknown to Science!

The status of



The status of  $\forall \operatorname{COL} \colon \mathbb{R}^2 \to [5] \exists 2 \text{ points, same color, } 1 \text{ inch apart.}$ 

(ロト (個) (E) (E) (E) (E) のへの

The status of  $\forall \text{ COL} \colon \mathbb{R}^2 \to [5] \exists 2 \text{ points, same color, } 1 \text{ inch apart.}$  is **Unknown to Science!** 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

## Upper bound on $\chi$

Thm  $\chi \leq 7$ .



## Upper bound on $\chi$

Thm  $\chi \leq 7$ . There is a 7-coloring of the plane, so  $5 \leq \chi \leq 7$ .

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

## Upper bound on $\chi$

Thm  $\chi \leq 7$ . There is a 7-coloring of the plane, so  $5 \leq \chi \leq 7$ . Here is the 7-coloring: https://thatsmaths.com/2022/03/24/ the-chromatic-number-of-the-plane/