
No Monochromatic Right Triangles under CH

Proof Presentation with Gen’s Notes



Theorem

Theorem:
If the Continuum Hypothesis (CH) holds, then there exists a
coloring COL : R2 → [ω] such that there is no monochromatic
right triangle.

Goal: Assign countably many colors to R2 such that no right
triangle has all points the same color.



Proof Strategy

▶ Assume CH holds: then R2 has a well-ordering of type ω1.
▶ Build a transfinite sequence of countable sets:

▶ Hα: countable sets of points
▶ Eα: associated lines and circles

▶ Define a coloring function f and a constraint function φ to
control color choices on geometric structures.

▶ Ensure geometric constraints prevent right-angled
monochromatic triangles.

We’ll build up the plane and coloring incrementally using
transfinite recursion.
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Constructing Hα and Eα

Define Hα,Eα by recursion:

1. Hα ⊂ Hβ, Eα ⊂ Eβ for α < β

2. For limit λ: Hλ =
⋃

α<λHα, same for Eλ

3.
⋃

α<ω1
Hα = R2



Constructing Hα and Eα cont...

4. If x , y ∈ Hα are distinct then their connecting line as well as
their Thales circle 1 is in Eα.

5. If x , y , z ∈ Hα are not collinear, then the circle containing
them is in Eα.

6. The elements of the intersection of any two distinct members
of Eα are in Hα.

7. The center of every circle in Eα is in Hα.

8. If x ∈ C ∈ Eα, x ∈ Hα for a circle C , then the antipodal of x
on C is also in Hα.

9. If L ∈ Eα is a line, x ∈ Hα ∩ L, then the line perpendicular to
L ar x is also in Eα.

1Thales’ theorem states that if A,B, and C are distinct points on a circle
where the line between A and C is a diameter, then the angle ∠ABC is right.
In the context of our proof, I think the Thales circle is referring to the circle
whose diameter is the line connecting x and y ,
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Constructing f and φ
Skolem function φ and coloring function f :

φ :
⋃

Eα → [ω]ω, f :
⋃

Hα → ω

Constraints:

10. |ω − φ(C )| ≤ 2.

11. If f (x) = f (y) = i on C , then x , y not antipodal.

12. If i /∈ φ(C ), then ≤ 2 points on C have color i .

13. If i /∈ φ(L), then ≤ 1 point on L has color i .

14. If x ∈ L1 ∩ L2, then f (x) /∈ φ(L1) ∩ φ(L2). This prevents x
from being the shared vertex in two potentially problematic
configurations by limiting repeated colors on structures where
triangles could emerge.

15. New points x , y ∈ Hα+1 − Hα: f (x) ̸= f (y).

16. If x ∈ e ∈ Eα, x /∈ Hα, then f (x) ∈ φ(e).

φ acts like a Skolem function to constrain valid colorings for
geometric objects.
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No Monochromatic Right Triangles

Suppose x , y , z form a right triangle and all share color i :

▶ By Thales, x and z are antipodal on some circle C .

▶ Then by (11), i /∈ φ(C ).

▶ By (12), ≤ 2 points on C can be colored i .

▶ Contradiction: we assumed x , y , z all colored i .

Key idea: no circle (like a Thales circle) can contain 3
same-colored points under the rules.
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Ensuring Conditions Hold

Can we always color new points to satisfy conditions? Yes,
because:

▶ Every new x ∈ Hα+1 − Hα lies on only one new e ∈ Eα.

▶ So we can pick f (x) ∈ φ(e) (16).

▶ ω colors to choose from ⇒ only finitely many forbidden at
each step.

▶ Sequence of color choices avoids conflicts by induction. 2

“Skolem-type closure” = inductively picking from ω-many options
to satisfy local constraints.

2The “inductive selection” means pick f (x0), f (x1), . . . one-by-one from
available options in φ(gi ) avoiding past choices.
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New Lines

Let L ∈ Eα+1 − Eα be a new line. For each line gi ∈ Eα

perpendicular to L:

xi = L ∩ gi , xi ∈ Hα+1 − Hα

Then:

▶ f (xi ) ∈ φ(gi ) ∩ φ(L) by (14) and (16).

▶ Since we define f (xi ) inductively, we can always avoid
previous values.

▶ φ(L) must remain infinite (still ∈ [ω]ω).



New Lines

Let L ∈ Eα+1 − Eα be a new line. For each line gi ∈ Eα

perpendicular to L:

xi = L ∩ gi , xi ∈ Hα+1 − Hα

Then:

▶ f (xi ) ∈ φ(gi ) ∩ φ(L) by (14) and (16).

▶ Since we define f (xi ) inductively, we can always avoid
previous values.

▶ φ(L) must remain infinite (still ∈ [ω]ω).



New Lines

Let L ∈ Eα+1 − Eα be a new line. For each line gi ∈ Eα

perpendicular to L:

xi = L ∩ gi , xi ∈ Hα+1 − Hα

Then:

▶ f (xi ) ∈ φ(gi ) ∩ φ(L) by (14) and (16).

▶ Since we define f (xi ) inductively, we can always avoid
previous values.

▶ φ(L) must remain infinite (still ∈ [ω]ω).



New Lines

Let L ∈ Eα+1 − Eα be a new line. For each line gi ∈ Eα

perpendicular to L:

xi = L ∩ gi , xi ∈ Hα+1 − Hα

Then:

▶ f (xi ) ∈ φ(gi ) ∩ φ(L) by (14) and (16).

▶ Since we define f (xi ) inductively, we can always avoid
previous values.

▶ φ(L) must remain infinite (still ∈ [ω]ω).



Handling New Circles in Eα+1 − Eα

Let α < ω1 and suppose φ, f are already defined on Hα,Eα. Let

C ∈ Eα+1 − Eα

be a new circle containing six points:

x1, y1, x2, y2, x3, y3 with f (xt) = f (yt) for t = 1, 2, 3

▶ By (15), at most one point in each same-colored pair can be
from Hα+1 − Hα.

▶ So at least 3 of the 6 points must lie in Hα (new distinct
points can’t share a color).

▶ Thus, C is determined by 3 points in Hα ⇒ C ∈ Eα by (5).
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Handling New Circles in Eα+1 − Eα cont...

Now we define φ(C ) to enforce:

▶ By (10) ω − φ(C ) has size ≤ 2.

▶ And by (11) no two antipodal points are both colored
i ∈ φ(C ).

For (12):

▶ Any new circle C ∈ Eα+1 − Eα intersects Hα in at most 2
points (by Condition 5).

▶ If both are colored i , we ensure that no new point in C gets
color i .

▶ This way, no more than 2 points on C have the same color
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▶ This way, no more than 2 points on C have the same color



Why the Coloring Step Always Works
This part of the proof makes sure the coloring step can always be
completed while obeying conditions 10–16. The constraints are
“local” in nature, and we have ω-many colors to choose from.

Key Insight from Condition 6:
▶ Every new point x ∈ Hα+1 − Hα lies on exactly one e ∈ Eα.
▶ If x lay on more than one such e, then x would already be in

Hα.

Implication:
▶ To satisfy condition 16, we color x using a value from φ(e).
▶ φ(e) ⊂ [ω]ω gives us infinitely many valid color choices.

Coloring in an ω-sequence:
▶ Enumerate the new points as (x0, x1, x2, . . . )
▶ At each step n, condition 15 forbids only finitely many colors.
▶ So infinitely many colors from φ(en) remain available for

f (xn).

This recursive coloring approach ensures every step completes
without conflict.
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Summary and Key Takeaways

▶ CH allows us to well-order R2 in type ω1

▶ Build up the plane through transfinite recursion with
geometric closure

▶ Define coloring f and constraint φ to avoid monochromatic
right triangles

▶ Coloring choices remain infinite at each step due to
constraints being local

▶ Result: R2 → ω coloring with no monochromatic right triangle

The power of CH lets us build complicated global structures by
managing local rules.


