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Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.
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The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n = . NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.
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First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.
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Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!
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Construction of x1,H1, c1, x2,H2, c2

We now have

x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.
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Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.
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The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?
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Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.
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How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).

|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.
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The TOW Function

We want n such that

lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?
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What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.
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