
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Finite Ramsey Theorem
For 3-Hypergraph

Exposition by William Gasarch

February 13, 2025

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.

2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.

3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.

H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either

(a) every {x1, . . . , xa} ∈
(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.

The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n = . NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.

The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n = . NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.

The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n = . NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.

The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n =

. NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.

The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n = . NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.

The Finite Hypergraph Ramsey Theorem

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k .

a = 1: ∀ 2-colorings of [2k − 1] some color appears k times. The
set of all x with that color is a homog set of size k .

a = 2: This is the finite Ramsey Thm for Graphs, which gave
n = 22k−1. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.
We will show n = . NO! We will do the proof with n and later see
how large we need n to make the proof work.

We do an example of the first few steps of the construction.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.

COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.

COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.

COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.

COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.

...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this?

Discuss.

First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.
...
COL(1, n − 1, n) = R.

What to make of this? Discuss.

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.

If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construct a Coloring of
(

[n]
2

)
We are given COL :

([n]
3

)
→ [2].

Let

COL′ :

(
[n]− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

By a = 2 case get a homog (relative to COL′) set H1.
Key |H1| ≥ Ω(log2(n)).

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!

Construction of x1,H1, c1, x2,H2, c2

We now have

x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of x1,H1, c1, x2,H2, c2

We now have x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

x2 is the least element of H1.

COL′ :
(H1−{x1}

2

)
→ [2] is defined by COL′(y , z) = COL′(x2, y , z)

H2 is the homog set. Key |H2| ≥ Ω(log2(|H1|)).

c2 is the color of the homog set.

Next Slide is General Case.

Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.

Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.

Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.

Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.

Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.

Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the homog set from COL′. Key |Hs+1| ≥ Ω(log(|Hs |)).

cs+1 is the color of Hs+1.

Iterate this process 2k − 1 times.

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).

(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).

(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).

...
...

...
...

What do you think our next step is?

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?

The Coloring of the Nodes

x1 x2 x3 x4 x5 · · · x2k−1

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!

DONE!- NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!-

NOT QUITE- how big does n have to be? Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be?

Discuss.

Some Color Appears k times

x1 x2 x3 x4 x5 · · · x2k−1

Some color appears k times, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · · yk

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!- NOT QUITE- how big does n have to be? Discuss.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).

|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).

|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).
|H2| ≥ lg lg(n).

...
...

|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...

|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this?

Yes- Next Slide.

How Big Does n Have to Be?

We will assume |Hs+1| ≥ lg(|Hs |).
|H1| ≥ lg(n).
|H2| ≥ lg lg(n).
...

...
|H2k−1| ≥ lg(2k−1)(n).

We need
lg(2k−1)(n) ≥ 1.

Is there even a notation for this? Yes- Next Slide.

The TOW Function

We want n such that

lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.

Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.

k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.

k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.

lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:

TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2

TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).

The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

The TOW Function

We want n such that lg(2k−1)(n) ≥ 1.
Lets do some examples.
k = 1: Need lg n ≥ 1, so n ≥ 2.
k = 2: Need lg lg lg n ≥ 1.
lg lg n ≤ 2
lg n ≤ 22

n ≥ 22
2
.

k = 3: Need n ≥ 22
22

.

TOW(k) is defined as follows:
TOW(1) = 2
TOW(k) = 2TOW(k−1).
The definition with a tower of 2’s is hard to typeset.

SO, we need n ≥ TOW(2k − 1).

Upshot R(k) ≤ TOW(2k − 1).

Question Better Bounds?

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey

1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving

Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once,

R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey

2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging

Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once,

R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey

3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.

Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once,

R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤

WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

What About 4-Hypergraph Ramsey Theory?

Review

1-ary Ramsey R1(k) = 2k − 1.

2-ary Ramsey 1-ary 2k − 1 times, each time halving
Then 1-ary once, R2(k) ≤ 22k−1.

3-ary Ramsey 2-ary 2k − 1 times, each time logging
Then 1-ary once, R3(k) ≤ inverse of log(2k−1) so TOWER.

4-ary Ramsey 3-ary 2k − 1 times, each time log∗.
Then 1-ary once, R4(k) ≤ WE LACK THE WORDS

Next Slide Packet gives the Words We Need.

Spoiler Alert

The name of the bound on R4(k) is WOWER

Beyond that the functions have no name.

How Big Does n Have to Be?

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k . Our proof yields n ≤ TOW2(2k − 1).

Normally I would Vote now, but I need the terminology to state
the bounds for a-hypergraph Ramsey Bounds.

How Big Does n Have to Be?

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k . Our proof yields n ≤ TOW2(2k − 1).

Normally I would Vote now, but I need the terminology to state
the bounds for a-hypergraph Ramsey Bounds.

How Big Does n Have to Be?

Thm (∀a)(∀k)(∃n) such that (∀COL :
([n]
a

)
→ [2]) there exists an

homog set of size k . Our proof yields n ≤ TOW2(2k − 1).

Normally I would Vote now, but I need the terminology to state
the bounds for a-hypergraph Ramsey Bounds.

