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A Variant of R(3) = 6

Recall Let G = (V ,E ) = K6.

(*) for all COL : E → [2], ∃ mono 4.

Question Is there some other graph G such that (*) holds.

Stupid Question Any graph that has K6 as a subgraph works.

Better Questions
Is there a graph G w/o a K6-subgraph such that (*) holds?

Is there a graph G w/o a K5-subgraph such that (*) holds?

Is there a graph G w/o a K4-subgraph such that (*) holds?
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Terminology

Def Let G = (V ,E ) be a graph. RAM(G ) means that
For all COL : E → [2] there exists a 3-homog set.
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Is there a graph G such that RAM(G ) and K6 is NOT a
subgraph.

Vote
Yes
No
Unknown to Science!

Answer on the next slide.
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Let G = (V ,E ) be the graph

V = {1, 2, 3, 4, 5, 6, 7, 8}
E =

(V
2

)
− {(4, 5), (5, 6), (6, 7), (7, 8), (8, 4)}
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What We Need To Prove

G does not have K6 as a subgraph.
This may be a HW.

RAM(G ) (∀ COL : [E ]→ [2] ∃ mono 4.)
We will show this.

Assume that ∃ COL : E → [2] has no mono 4s.
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We assume COL(1, 2) = B, COL(1, 3) = COL(2, 3) = R.
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We show that, for all 4 ≤ i ≤ 8, COL(3, i) = B.
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COL(3, i) = B

Assume, BWOC, COL(3, 6) = R.
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If COL(2, 6) = R then 2− 3− 6 is R4. So COL(2, 6) = B.
If COL(1, 6) = R then 1− 3− 6 is R4. So COL(1, 6) = B.
So 1− 2− 6 is a B4.
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Claim At most 2 of (1, x) are R. Assume 3 are R.
Can assume COL(1, 4) = R.
If COL(1, 6) = R then 1− 4− 6 is 4.
If COL(1, 7) = R then 1− 4− 7 is 4.
Since 3 are R COL(1, 5) = COL(1, 8) = R. So 1− 5− 8 is 4.
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Awful for a slide talk.
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Best understood by reading it yourself.

My slides are the best source to read this.

Upshot We will skip this; however, you can read my slides if you
are curious.
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Plan: View Ind Sets As Vertices of K5
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COL(i , j) is the color between the supernodes containing i , j .
Within a supernode there are no edges.
Easy to see there are no mono 4s.
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This is the coloring guided by the K5-supernode coloring.
There are no Mono 4s.
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General Theorem

Thm Let G = (V ,E ). If V can be partitioned into 5 ind. sets
then ∃ COL : E → [2] with no mono 4.

Left to the reader, though easy given the example.

This thm generalize easily:

Thm Let G = (V ,E ). If V can be partitioned into R(k)− 1 ind.
sets then ∃ COL : E → [2] with no mono Kk .
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Every Graph on 8 Vertices. . .

Thm Let G be a graph on 7 vertices that does not have a K6

subgraph. Then

a) V can be partitioned into 5 ind. sets.
b) (Using Theorem) ∃ COL : E → [2] with no mono 4s.

V = {1, 2, 3, 4, 5, 6, 7}.
2, 3, 4, 5, 6, 7: Since NOT K6 can assume {6, 7} is Ind Set.
Case 1 ∃i , j ∈ {1, 2, 3, 4, 5}, {i , j} is Ind Set. Can assume
{i , j} = {4, 5}.
Use {4, 5}, {6, 7}, {1}, {2}, {3}.
Case 2 ∀i , j ∈ {1, 2, 3, 4, 5}, {i , j} ∈ E .
So {1, 2, 3, 4, 5} is a K5. cont on next slide.
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Every Graph on 8 Vertices. . . (cont)
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We know that {6, 7} are an Ind Set.
No assumption about how vertices 6,7 conntect to 1,2,3,4,5.
Those will be our cases.
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We know that {6, 7} are an Ind Set.
No assumption about how vertices 6,7 conntect to 1,2,3,4,5.
Those will be our cases.



Case 2a: ∃i ,{i , 6},{i , 7} both Ind Sets
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Case 2a ∃i ∈ {1, 2, 3, 4, 5} with {i , 6} and {i , 7} Both Ind Sets.
Then {i , 6, 7} is an Ind Set. Assume i = 1.
Use {1, 6, 7}, {2}, {3}, {4}, {5}.
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Case 2a ∃i ∈ {1, 2, 3, 4, 5} with {i , 6} and {i , 7} Both Ind Sets.
Then {i , 6, 7} is an Ind Set. Assume i = 1.
Use {1, 6, 7}, {2}, {3}, {4}, {5}.
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Case 2a ∃i ∈ {1, 2, 3, 4, 5} with {i , 6} and {i , 7} Both Ind Sets.

Then {i , 6, 7} is an Ind Set. Assume i = 1.
Use {1, 6, 7}, {2}, {3}, {4}, {5}.
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Case 2a ∃i ∈ {1, 2, 3, 4, 5} with {i , 6} and {i , 7} Both Ind Sets.
Then {i , 6, 7} is an Ind Set. Assume i = 1.
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Case 2a ∃i ∈ {1, 2, 3, 4, 5} with {i , 6} and {i , 7} Both Ind Sets.
Then {i , 6, 7} is an Ind Set. Assume i = 1.
Use {1, 6, 7}, {2}, {3}, {4}, {5}.



Case 2b: ∃i , j ,{i , 6},{j , 7} Both Ind Set
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Case 2b ∃i , j ∈ {1, 2, 3, 4, 5} with {i , 6} and {j , 7} both Ind Sets.
Assume i = 1 and j = 2.
Use {1, 6}, {2, 7}, {3}, {4}, {5}.
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Case 2b ∃i , j ∈ {1, 2, 3, 4, 5} with {i , 6} and {j , 7} both Ind Sets.
Assume i = 1 and j = 2.
Use {1, 6}, {2, 7}, {3}, {4}, {5}.
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Case 2b ∃i , j ∈ {1, 2, 3, 4, 5} with {i , 6} and {j , 7} both Ind Sets.

Assume i = 1 and j = 2.
Use {1, 6}, {2, 7}, {3}, {4}, {5}.
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Case 2b ∃i , j ∈ {1, 2, 3, 4, 5} with {i , 6} and {j , 7} both Ind Sets.
Assume i = 1 and j = 2.

Use {1, 6}, {2, 7}, {3}, {4}, {5}.
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Case 2b ∃i , j ∈ {1, 2, 3, 4, 5} with {i , 6} and {j , 7} both Ind Sets.
Assume i = 1 and j = 2.
Use {1, 6}, {2, 7}, {3}, {4}, {5}.



Case 2c: Negation of Cases 2a, 2b
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
(2) ∀i , j ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {j , 7} ∈ E .

(The next step does not use the premise.)
∃i , {i , 6} is an ind set else 1, 2, 3, 4, 5, 6 is a K6. Assume i = 1.

By (1) {1, 7} ∈ E . By (2) {2, 7}, . . . , {6, 7} ∈ E .
So 1, 2, 3, 4, 5, 7 is a K6. Contradiction. Case 2c can’t happen.
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Case 2c Negation of Case 2a and 2b.
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Case 2c Negation of Case 2a and 2b.

(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
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So 1, 2, 3, 4, 5, 7 is a K6. Contradiction. Case 2c can’t happen.
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
(2) ∀i , j ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {j , 7} ∈ E .
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
(2) ∀i , j ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {j , 7} ∈ E .

(The next step does not use the premise.)
∃i , {i , 6} is an ind set else 1, 2, 3, 4, 5, 6 is a K6. Assume i = 1.

By (1) {1, 7} ∈ E . By (2) {2, 7}, . . . , {6, 7} ∈ E .
So 1, 2, 3, 4, 5, 7 is a K6. Contradiction. Case 2c can’t happen.
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
(2) ∀i , j ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {j , 7} ∈ E .

(The next step does not use the premise.)
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
(2) ∀i , j ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {j , 7} ∈ E .

(The next step does not use the premise.)
∃i , {i , 6} is an ind set else 1, 2, 3, 4, 5, 6 is a K6. Assume i = 1.

By (1) {1, 7} ∈ E . By (2) {2, 7}, . . . , {6, 7} ∈ E .

So 1, 2, 3, 4, 5, 7 is a K6. Contradiction. Case 2c can’t happen.
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Case 2c Negation of Case 2a and 2b.
(1) ∀i ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {i , 7} ∈ E .
(2) ∀i , j ∈ {1, 2, 3, 4, 5}, {i , 6} ∈ E or {j , 7} ∈ E .

(The next step does not use the premise.)
∃i , {i , 6} is an ind set else 1, 2, 3, 4, 5, 6 is a K6. Assume i = 1.

By (1) {1, 7} ∈ E . By (2) {2, 7}, . . . , {6, 7} ∈ E .
So 1, 2, 3, 4, 5, 7 is a K6. Contradiction. Case 2c can’t happen.



Upshot: Matching Upper and Lower Bounds

(Graham) There is a graph G such that
RAM(G ) (∀ COL : [E ]→ [2] ∃ mono 4.)
K6 is not a subgraph of G .
G has 8 vertices.

(Lin) There is no graph G such that
RAM(G ): (∀ COL : [E ]→ [2] ∃ mono 4.)
K6 is not a subgraph of G .
G has ≤ 7 vertices.
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