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Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
2

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
2

)
is constant. (From now on homog.)
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Infinite And Finite Ramsey Thm

Infinite Ramsey Thm

Thm For all COL :
(N
2

)
→ [2] there exists an infinite homog set.

Finite Ramsey Thm
Thm For all k there exists n = R(k) such that for all
COL :

([n]
2

)
→ [2] there exists a homog set of size k .

We have already proven the Infinite Ramsey Thm.

We will prove The Finite Ramsey from The Infinite Ramsey.
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Proof of the
Finite Ramsey Thm

From
The Infinite Ramsey Thm



First Step of The Proof

Thm For all k there exists n = R(k) such that for all
COL :

([n]
2

)
→ [2] there exists a homog set of size k .

Assume, by way of contradiction, that

(∃k)(∀n)(∃COL :
([n]

2

)
→ [2] with no homog set of size k).

Say k = 182. There is a coloring of
([10100]

2

)
with no homog set of

size 182. That seems unlikely.
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Lots of Colorings of Finite Graphs

(∃k)(∀n)(∃COL :
([n]

2

)
→ [2] with no homog set of size k).

The following exist

COL0 :
([k]
2

)
→ [2] with no homog set of size k .

COL1 :
([k+1]

2

)
→ [2] with no homog set of size k.

COL2 :
([k+2]

2

)
→ [2] with no homog set of size k.

...
...

...

COLL :
([k+L]

2

)
→ [2] with no homog set of size k .

...
...

...

We use COL0,COL1, . . . to form
COL :

(N
2

)
→ [2].

We will use the inf Ramsey Theory to get a contradiction.
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Forming COL

Let e1, e2, e3, . . . be a list of every element of
(N
2

)
.

We will color e1, then e2, etc.
Let e1 = (1, 2). How should we color e1? Discuss.
Answer on the next slide
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Forming COL(1, 2)

COL0 colors (1, 2) R

COL1 colors (1, 2) B

COL2 colors (1, 2) B

COL3 colors (1, 2) R

...
... (No pattern implied)

In this list either R or B occurs infinitely often.

COL(e1) = R if |{y : COLy (e1) = R}| =∞, B OW.

What about e2? Discuss. Answer on Next Slide.
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Forming COL(e2)

You might think:

COL(e2) = R if |{y : COLy (e2) = R}| =∞, B OW.

No! (you probably guessed that from my You might think)

Some COLi ’s disagree on COL(e1). What will we do to them?
KILL ALL COLORINGS THAT DISAGREE!
COL(e2) = R if
|{y : COLy (e2) = R ∧ COLy (e1) = COL(e1)}| =∞, B OW.

We do the full COL on the next slide.
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Forming COL

I1 = N (Is will be the COLy still alive. It will be ∞.)

COL(e1) = R if |{y ∈ I1 : COLy (e1) = R}| =∞, B OW.

I2 = {y ∈ I1 : COLy (e1) = COL(e1)}
COL(e2) = R if |{y ∈ I2 : COLy (e2) = R}| =∞, B OW.

Assume COL(e1), . . ., COL(es), Is+1 are defined.

COL(es+1) = R if |{y ∈ Is+1 : COLy (es+1) = R}| =∞, B OW.

Is+2 = {y ∈ Is+1 : COLy (es+1) = COL(es+1)}
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Using COL To Get a Contradiction

We have defined COL :
(N
2

)
→ [2].

By The Infinite Ramsey Thm there exists infinite homog set

H = {x1 < x2 < x3 < x4 < · · · }

Look at COL restricted to
({x1,...,xk}

2

)
.

By the construction there is an L (actually infinitely many L) such
that COL and COLL agree on

({x1,...,xk}
2

)
.

Hence there is a homog set of size k for COLL.
This is a contradiction since COLL has no homog sets of size k .
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Comments On The Proof

Thm For all k there exists n = R(k) such that for all
COL :

([n]
2

)
→ [2] there exists a homog set of size k .

BILL: So we have proven that, for all k , there is an n = R(k).

STUDENT: Great! what is R(10)?

BILL: We showed R(10) exists by showing there is SOME n such
that for all COL :

([n]
2

)
→ [2] there is a homog set of size k .

STUDENT: Surely the proof gives an upper bound on R(10)!

BILL: The proof is nonconstructive. And don’t call me Shirley.

STUDENT: Dagnabbit! I want a bound on R(10)!

BILL: You want a bound on R(10) factorial?

STUDENT: No you muffinhead, I want a bound on R(10) and I
feel strongly about it!

BILL: Then you shall have it! Later in the course.
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