

1 Our Starting Point

We start with a theorem that is easy; however, it is the starting point for our line of research.

Theorem 1.1 . For all COL: $R^2 \rightarrow [2]$ there exists 2 points, same color, 1 inch apart.

Proof:

Look at an equilateral triangle in the plane with side length 1.

Since there are 3 vertices and 2 colors, 2 of the vertices are the same color. these two points are the same color and 1 inch apart.

There are two directions (actually many more) to investigate as variants of Theorem 1.1.

- 1. What if we use more colors?
- 2. What if we want three monochromatic colinear points p, q, r such that d(p, q) = d(q, r) = 1?

The second question, with more parameters, is the theme of this book. We will consider the first question as well since it will hel us with the second question.

2 The Chromatic Number of the Plane

Consider the graph G = (V, E) where

$$\begin{array}{ll} V = & \mathsf{R}^2 \\ E = & \{(x,y) \colon d(x,y) = 1\} \end{array}$$

Notation 2.1 χ is the chromatic number of this graph.

Theorem 1.1 can be rephrased as

Theorem 2.2 $\chi \geq 3$.

We investigate what χ can be.

Theorem 2.3 $\chi \geq 4$.

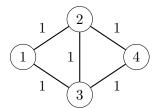


Figure 1: A Graph Gadget For 3-Coloring the Plane

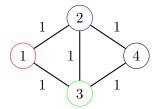


Figure 2: Coloring of Graph Gadget for 3-coloring

Proof:

Assume, by way of contradiction, that COL is a proper 3-coloring of the plane. Glue together two unit equilateral triangles to form the configuration in Figure 1

We can assume that COL(1) = RED. Since COL is a proper 3-coloring

$$COL(2) \neq RED$$
 and $COL(3) \neq RED$.

Since d(2,3) = 1, $COL(2) \neq COL(3)$. Hence we can assume COL(2) = BLUE and COL(3) = GREEN. Figure 2 shows all that we know at this point.

Since COL(2) = BLUE, COL(3) = GREEN, d(2,4) = 3(3,4) = 1, we have COL(4) = RED. Figure 3 shows all that we know at this point.

Note that $d(1,4) = \sqrt{3}$. Hence

- If p, q are $\sqrt{3}$ apart then COL(p) = COL(q).
- If COL(p) = RED then circle of radius $\sqrt{3}$ around p is RED.

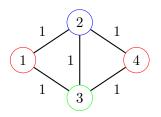


Figure 3: Coloring of Graph Gadget for 3-coloring: All Four Points