BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

All 2-Coloring Of the Plane have a Red 2-Stick or Blue 3-stick

Exposition by William Gasarch-U of MD

Credit Where Credit is Due

The main result in these slides is due to Szlam (1999).

In the prior lecture we proved

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

1) ℓ_2 is 2 points in the plane an inch apart.

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

- 1) ℓ_2 is 2 points in the plane an inch apart.
- 2) ℓ_3 is three colinear points $\textit{p}_1,\textit{p}_2,\textit{p}_3$ where

$$d(p_1, p_2) = d(p_2, p_3) = 1.$$

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

- 1) ℓ_2 is 2 points in the plane an inch apart.
- 2) ℓ_3 is three colinear points p_1, p_2, p_3 where

$$d(p_1, p_2) = d(p_2, p_3) = 1.$$

3) You can define ℓ_k .

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

- 1) ℓ_2 is 2 points in the plane an inch apart.
- 2) ℓ_3 is three colinear points p_1, p_2, p_3 where

$$d(p_1, p_2) = d(p_2, p_3) = 1.$$

- 3) You can define ℓ_k .
- 4) Given a COL: $\mathbb{R}^2 \to [2]$ a Red ℓ_k is an ℓ_k where all the points in it are Red. Similar for a Blue ℓ_k

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

- 1) ℓ_2 is 2 points in the plane an inch apart.
- 2) ℓ_3 is three colinear points p_1, p_2, p_3 where

$$d(p_1, p_2) = d(p_2, p_3) = 1.$$

- 3) You can define ℓ_k .
- 4) Given a COL: $\mathbb{R}^2 \to [2]$ a Red ℓ_k is an ℓ_k where all the points in it are Red. Similar for a Blue ℓ_k

And now the restatement

In the prior lecture we proved

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists 2$ points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Def

- 1) ℓ_2 is 2 points in the plane an inch apart.
- 2) ℓ_3 is three colinear points p_1, p_2, p_3 where

$$d(p_1, p_2) = d(p_2, p_3) = 1.$$

- 3) You can define ℓ_k .
- 4) Given a COL: $\mathbb{R}^2 \to [2]$ a Red ℓ_k is an ℓ_k where all the points in it are Red. Similar for a Blue ℓ_k

And now the restatement

Thm $\forall \text{ COL} \colon \mathbb{R}^2 \to [2] \exists \text{ either a } \mathsf{Red} \ \ell_2 \text{ or a } \mathsf{Blue} \ \ell_2.$

Is the following true:

Is the following true:

 $\forall \ \mathrm{COL} \colon \mathbb{R}^2 \to [2] \ \exists \ \mathrm{either} \ \mathsf{a} \ \mathsf{Red} \ \ell_2 \ \mathsf{or} \ \mathsf{a} \ \mathsf{Blue} \ \ell_3.$

Is the following true:

 $\forall \ \mathrm{COL} \colon \mathbb{R}^2 \to [2] \ \exists \ \mathsf{either} \ \mathsf{a} \ \ \ \ \ \ \mathsf{Red} \ \ell_2 \ \mathsf{or} \ \mathsf{a} \ \ \mathsf{Blue} \ \ell_3.$

Vote

Is the following true:

 $\forall \ \mathrm{COL} \colon \mathbb{R}^2 \to [2] \ \exists \ \mathrm{either} \ \mathsf{a} \ \mathsf{Red} \ \ell_2 \ \mathsf{or} \ \mathsf{a} \ \mathsf{Blue} \ \ell_3.$

Vote

Y,N, Unknown to Science!

Is the following true:

 $\forall \ \mathrm{COL} \colon \mathbb{R}^2 \to [2] \ \exists \ \mathrm{either} \ \mathrm{a} \ \mathsf{Red} \ \ell_2 \ \mathrm{or} \ \mathrm{a} \ \mathsf{Blue} \ \ell_3.$

Vote

Y,N, Unknown to Science!

Answer on next slide

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 .

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
Let COL: \mathbb{R}^2 \to [2].
```

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
Let COL: \mathbb{R}^2 \to [2].
Case 1 There exists a Blue \ell_3.
```

Thm \forall COL: $\mathbb{R}^2 \to [2] \exists$ either a Red ℓ_2 or a Blue ℓ_3 . Let COL: $\mathbb{R}^2 \to [2]$. Case 1 There exists a Blue ℓ_3 . Then done.

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
Let COL: \mathbb{R}^2 \to [2].
Case 1 There exists a Blue \ell_3. Then done.
Case 2 There is no Blue \ell_3.
```

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
Let COL: \mathbb{R}^2 \to [2].
Case 1 There exists a Blue \ell_3. Then done.
Case 2 There is no Blue \ell_3.
Hence for all points (x,y) \in \mathbb{R}^2,
```

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
Let COL: \mathbb{R}^2 \to [2].
Case 1 There exists a Blue \ell_3. Then done.
Case 2 There is no Blue \ell_3.
Hence for all points (x,y) \in \mathbb{R}^2, at least one of (x,y), (x,y+1), (x,y+2) is R.
```

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
 Let COL: \mathbb{R}^2 \to [2].
 Case 1 There exists a Blue \ell_3. Then done.
 Case 2 There is no Blue \ell_3.
 Hence for all points (x,y) \in \mathbb{R}^2, at least one of (x,y), (x,y+1), (x,y+2) is R.
 We define COL': \mathbb{R}^2 \to [3] as follows:
```

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
 Let COL: \mathbb{R}^2 \to [2].
 Case 1 There exists a Blue \ell_3. Then done.
 Case 2 There is no Blue \ell_3.
 Hence for all points (x,y) \in \mathbb{R}^2, at least one of (x,y), (x,y+1), (x,y+2) is R.
 We define COL': \mathbb{R}^2 \to [3] as follows:
 \mathrm{COL}'(x,y) is the least i \in \{0,1,2\} such that \mathrm{COL}(x,y+i) = \mathbb{R}.
```

```
Thm \forall COL: \mathbb{R}^2 \to [2] \exists either a Red \ell_2 or a Blue \ell_3.
Let COL: \mathbb{R}^2 \to [2].
Case 1 There exists a Blue \ell_3. Then done.
Case 2 There is no Blue \ell_3.
```

Hence for all points $(x,y) \in \mathbb{R}^2$, at least one of (x,y), (x,y+1), (x,y+2) is **R**.

We define $\mathrm{COL}' \colon \mathbb{R}^2 \to [3]$ as follows:

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$.

This is well defined because of the case we are in.

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$.

 $\mathrm{COL}'(x,y)$ is the least $i \in \{0,1,2\}$ such that $\mathrm{COL}(x,y+i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1,y_1), (x_2,y_2)$ such that

 $\mathrm{COL}'(x,y)$ is the least $i \in \{0,1,2\}$ such that $\mathrm{COL}(x,y+i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1,y_1), (x_2,y_2)$ such that 1) $d((x_1,y_1),(x_2,y_2)) = 1$, and

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that $COL(x, y + i) = \mathbb{R}$. Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that 1) $d((x_1, y_1), (x_2, y_2)) = 1$, and 2) $COL'(x_1, y_1) = COL'(x_2, y_2) = i$.

 ${
m COL}'(x,y)$ is the least $i \in \{0,1,2\}$ such that ${
m COL}(x,y+i) = {
m \bf R}$. Chrom number of plane is ≤ 3 , so $\exists \ (x_1,y_1), \ (x_2,y_2)$ such that 1) $d((x_1,y_1),(x_2,y_2)) = 1$, and 2) ${
m COL}'(x_1,y_1) = {
m COL}'(x_2,y_2) = i$. Hence ${
m COL}(x_1,y_1+i) = {
m \bf R}$ and ${
m COL}(x_2,y_2+i) = {
m \bf R}$

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that COL(x, y + i) = \mathbb{R} . Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that 1) $d((x_1, y_1), (x_2, y_2)) = 1$, and 2) COL'(x₁, y₁) = COL'(x₂, y₂) = i. Hence COL(x₁, y₁ + i) = \mathbb{R} and COL(x₂, y₂ + i) = \mathbb{R} Since $d((x_1, y_1), (x_2, y_2)) = 1$, $d((x_1, y_1 + i), (x_2, y_2 + i)) = 1$,

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that COL(x, y + i) = \mathbb{R} . Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that 1) $d((x_1, y_1), (x_2, y_2)) = 1$, and 2) COL'(x₁, y₁) = COL'(x₂, y₂) = i. Hence COL(x₁, y₁ + i) = \mathbb{R} and COL(x₂, y₂ + i) = \mathbb{R} Since $d((x_1, y_1), (x_2, y_2)) = 1$, $d((x_1, y_1 + i), (x_2, y_2 + i)) = 1$, So $(x_1, y_1 + 1)$ and $(x_2, y_2 + 1)$ are a \mathbb{R} ed ℓ_2 .

Use That Chromatic Number of Plane is ≤ 3

COL'(x, y) is the least $i \in \{0, 1, 2\}$ such that COL(x, y + i) = \mathbb{R} . Chrom number of plane is ≤ 3 , so $\exists (x_1, y_1), (x_2, y_2)$ such that 1) $d((x_1, y_1), (x_2, y_2)) = 1$, and 2) COL'(x₁, y₁) = COL'(x₂, y₂) = i. Hence COL(x₁, y₁ + i) = \mathbb{R} and COL(x₂, y₂ + i) = \mathbb{R} Since $d((x_1, y_1), (x_2, y_2)) = 1$, $d((x_1, y_1 + i), (x_2, y_2 + i)) = 1$, So $(x_1, y_1 + 1)$ and $(x_2, y_2 + 1)$ are a \mathbb{R} ed ℓ_2 . Done!

Can Prove Result About (ℓ_2, ℓ_4)

Using that the Chromatic Number of the Plane (χ) is \leq 4 one can easily prove the following:

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_4 .

Can Prove Result About (ℓ_2, ℓ_4)

Using that the Chromatic Number of the Plane (χ) is \leq 4 one can easily prove the following:

Thm \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ either a Red ℓ_2 or a Blue ℓ_4 .

Juhasz prove the above theorem without using $\chi \leq 4$. In fact, he prove the theorem in 1979, 39 years before $\chi \leq 4$ was proven.

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means $\forall \text{COL} \colon \mathbb{R}^2 \to [2] \exists \text{Red } \ell_n \text{ or Blue } \ell_m$.

Notation Let $a,b \geq 2$. $\mathbb{R}^2 \to (\ell_n,\ell_m)$ means $\forall \mathrm{COL} \colon \mathbb{R}^2 \to [2] \exists \operatorname{Red} \ell_n \text{ or Blue } \ell_m$. We proved $\mathbb{R}^2 \to (\ell_2,\ell_3)$.

Notation Let $a,b\geq 2$. $\mathbb{R}^2\to (\ell_n,\ell_m)$ means $orall \mathrm{COL}\colon \mathbb{R}^2\to [2]$ \exists Red ℓ_n or Blue ℓ_m . We proved $\mathbb{R}^2\to (\ell_2,\ell_3)$. We will soon present statements about $\mathbb{R}^2\to (\ell_2,\ell_n)$

The next two slides have statements about what is known.

The next two slides have statements about what is known. If you know of any paper that should be on the list but is not, let me know.

The next two slides have statements about what is known.

If you know of any paper that should be on the list but is not, let me know.

All of the papers referred to are on this website: https://www.cs.umd.edu/~gasarch/TOPICS/ERT/ert.html

The next two slides have statements about what is known.

If you know of any paper that should be on the list but is not, let me know.

All of the papers referred to are on this website: https://www.cs.umd.edu/~gasarch/TOPICS/ERT/ert.html

Author and Year	Result	About \mathbb{R}^2
Positive Results		

$$\mathbb{R}^2 o (\ell_2,\ell_n)$$
?

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$

$$\mathbb{R}^2 o (\ell_2,\ell_n)$$
?

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X = 3]$ $\mathbb{R}^2 \to (\ell_2, X)$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 \to (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2,\ell_6)$	NONE

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2,\ell_6)$	NONE
Negative Results		
· · · · · · · · · · · · · · · · · · ·		

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2,\ell_6)$	NONE
Negative Results		
Csizmadia-Togh 1994	$\exists X \subseteq \mathbb{R}^2, X = 8$	
	$\mathbb{R}^2 \not\to (\ell_2, X)$	NONE

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2,\ell_6)$	NONE
Negative Results		
Csizmadia-Togh 1994	$\exists X \subseteq \mathbb{R}^2, X = 8$	
	$\mathbb{R}^2 eq (\ell_2, X)$	NONE
Conlon-Fox, 2018	$(\forall n \geq 2)$	
	$\mathbb{R}^n ot \rightarrow (\ell_2, \ell_{10^{50}})$	$\mathbb{R}^2 eq (\ell_2, \ell_{10^{50}})$

Author and Year	Result	About \mathbb{R}^2
Positive Results		
Szlam, 1999	$(\forall X)[X =3]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_3)$
Juhasz, 1979	$(\forall X)[X =4]$	
	$\mathbb{R}^2 o (\ell_2, X)$	$\mathbb{R}^2 o (\ell_2,\ell_4)$
	Congruence. See Paper.	
Tsaturian, 2017	$\mathbb{R}^2 o (\ell_2,\ell_5)$	$\mathbb{R}^2 o (\ell_2,\ell_5)$
Arman-Tsaturian, 2017	$\mathbb{R}^3 o (\ell_2,\ell_6)$	NONE
Negative Results		
Csizmadia-Togh 1994	$\exists X \subseteq \mathbb{R}^2, X = 8$	
	$\mathbb{R}^2 eq (\ell_2, X)$	NONE
Conlon-Fox, 2018	$(\forall n \geq 2)$	
	$\mathbb{R}^n \not\to (\ell_2,\ell_{10^{50}})$	$\mathbb{R}^2 eq (\ell_2, \ell_{10^{50}})$

Open Narrow the gap between $\mathbb{R}^2 o (\ell_2,\ell_5)$ and $\mathbb{R}^2
ot \to (\ell_2,\ell_{10^{50}})$.

$$\mathbb{R}^2 o (\ell_3,\ell_n)$$
?

n=2 case.

Author and Year	Result
Positive Results	

$$\mathbb{R}^2 o (\ell_3,\ell_n)$$
?

n=2 case.

Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 \to (\ell_3,\ell_3)$
Negative Results	

$$\mathbb{R}^2 o (\ell_3,\ell_n)$$
?

 $\underline{n}=2$ case.

Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n eq (\ell_3, \ell_{10^{50}})$

$$\mathbb{R}^2 o (\ell_3,\ell_n)$$
?

n=2 case.

<u> </u>	
Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n \not\to (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\begin{array}{ c } \mathbb{R}^n \not\to (\ell_3, \ell_{10^{50}}) \\ \mathbb{R}^n \not\to (\ell_3, \ell_{1177}) \end{array}$
1	

$$\mathbb{R}^2 o (\ell_3,\ell_n)$$
?

n=2 case.

Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n \not\to (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n ot \rightarrow (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

$$\mathbb{R}^2 o (\ell_3,\ell_n)$$
?

$\underline{n} = 2$ case.	
Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n \not\to (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n ot \rightarrow (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n \not\to (\ell_3,\ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

Open Problems

$$\mathbb{R}^2 o (\ell_3, \ell_n)$$
?

n=2 case.

Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n \not\to (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n ot \rightarrow (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n eq (\ell_5, \ell_{10})$

Open Problems

Narrow the gap between $\mathbb{R}^2 \to (\ell_3, \ell_3)$ and $\mathbb{R}^2 \not\to (\ell_3, \ell_{20})$.

$$\mathbb{R}^2 o (\ell_3, \ell_n)$$
?

n=2 case.

Author and Year	Result
Positive Results	
Currier-Moore-Yip, 2024	$\mathbb{R}^2 o (\ell_3,\ell_3)$
Negative Results	
Conlon-Wu, 2022	$\mathbb{R}^n \not\to (\ell_3, \ell_{10^{50}})$
Fuhrer-Toth, 2024	$\mathbb{R}^n ot \rightarrow (\ell_3, \ell_{1177})$
Currier-Moore-Yip, 2024	$\mathbb{R}^n eq (\ell_3, \ell_{20})$
	$\mathbb{R}^n eq (\ell_4, \ell_{18})$
	$\mathbb{R}^n \not\to (\ell_5, \ell_{10})$

Open Problems

Narrow the gap between $\mathbb{R}^2 \to (\ell_3, \ell_3)$ and $\mathbb{R}^2 \not\to (\ell_3, \ell_{20})$.

The results of Fuhrer-Togh and Currie-Moore-Yip are messy. For some reasonable values of n find nice proofs that $\mathbb{R}^2 \not\to (\ell_3, \ell_n)$.

One More Result

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 \not \to (\ell_6, \ell_6)$

One More Result

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 \not \to (\ell_6, \ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

One More Result

Author and Year	Result
Negative Results	
Erdos et al. See Below	$\mathbb{R}_2 \not \to (\ell_6,\ell_6)$

Erdös, Graham, Montgomery, Rothchild, Spencer, Strauss.

The title of the paper is **Euclidean Ramsey Theorems I (1973)** and was (obviously) an early paper on Euclidean Ramsey Theory.

 $\ell_{\mathbf{2}}$

 ℓ_2 Known $\mathbb{R}^2 o (\ell_2, \ell_5)$

```
 \begin{array}{l} \ell_2 \\ \textbf{Known} \ \mathbb{R}^2 \rightarrow (\ell_2,\ell_5) \\ \textbf{Known} \ \mathbb{R}^2 \not\rightarrow (\ell_2,\ell_{10^{50}}) \end{array}
```

```
\ell_2
Known \mathbb{R}^2 	o (\ell_2,\ell_5)
Known \mathbb{R}^2 	o (\ell_2,\ell_{10^{50}})
Open Narrow the Gap.
```

```
\ell_2
Known \mathbb{R}^2 	o (\ell_2,\ell_5)
Known \mathbb{R}^2 
eq (\ell_2,\ell_{10^{50}})
Open Narrow the Gap.
```

 ℓ_3

```
\ell_2
Known \mathbb{R}^2 	o (\ell_2, \ell_5)
Known \mathbb{R}^2 	o (\ell_2, \ell_{10^{50}})
Open Narrow the Gap.
```

$$\ell_3$$
Known $\mathbb{R}^2 o (\ell_3,\ell_3)$

```
\ell_2
Known \mathbb{R}^2 	o (\ell_2, \ell_5)
Known \mathbb{R}^2 
eq (\ell_2, \ell_{10^{50}})
Open Narrow the Gap.
```

$$\ell_3$$
Known $\mathbb{R}^2 o (\ell_3, \ell_3)$
Known $\mathbb{R}^2 o (\ell_3, \ell_{20})$

```
\ell_2
Known \mathbb{R}^2 	o (\ell_2, \ell_5)
Known \mathbb{R}^2 
eq (\ell_2, \ell_{10^{50}})
Open Narrow the Gap.
```

 ℓ_3 Known $\mathbb{R}^2 \to (\ell_3, \ell_3)$ Known $\mathbb{R}^2 \not\to (\ell_3, \ell_{20})$ Open Narrow the Gap.

 ℓ_4

 ℓ_4 Known (not) Do not know any $a \geq 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$

 ℓ_4 Known (not) Do not know any $a \geq 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$

 ℓ_4 Known (not) Do not know any $a \ge 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap.

 ℓ_4 Known (not) Do not know any $a \ge 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap.
Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

```
\ell_4 Known (not) Do not know any a \geq 4 with \mathbb{R}^2 \to (\ell_4, \ell_a) Known \mathbb{R}^2 \not\to (\ell_4, \ell_{18}) Open Narrow the Gap. Might be \mathbb{R}^2 \not\to (\ell_4, \ell_4) so there is no such a.
```

 ℓ_4 Known (not) Do not know any $a \ge 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap.
Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

 $\ell_{f 5}$ Known (not) Do not know any $a\geq 5$ with $\mathbb{R}^2 o (\ell_5,\ell_a)$

 ℓ_4 Known (not) Do not know any $a \ge 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap.
Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

Known (not) Do not know any $a \geq 5$ with $\mathbb{R}^2 \to (\ell_5, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_5, \ell_{10})$

 ℓ_4 Known (not) Do not know any $a \geq 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

 ℓ_5 Known (not) Do not know any $a \geq 5$ with $\mathbb{R}^2 \to (\ell_5, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_5, \ell_{10})$ Open Narrow the Gap.

 ℓ_4 Known (not) Do not know any $a \geq 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

 ℓ_5 Known (not) Do not know any $a \geq 5$ with $\mathbb{R}^2 \to (\ell_5, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_5, \ell_{10})$ Open Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_5, \ell_5)$ so there is no such a.

Known (not) Do not know any $a \ge 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

Known (not) Do not know any $a \ge 5$ with $\mathbb{R}^2 \to (\ell_5, \ell_a)$ **Known** $\mathbb{R}^2 \not\to (\ell_5, \ell_{10})$ **Open** Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_5, \ell_5)$ so there is no such a.

 $\ell_{\mathbf{6}}$

 ℓ_4 Known (not) Do not know any $a \ge 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap.
Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a. ℓ_5 Known (not) Do not know any a > 5 with $\mathbb{R}^2 \to (\ell_5, \ell_4)$

Known (not) Do not know any $a \ge 5$ with $\mathbb{R}^2 \to (\ell_5, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_5, \ell_{10})$ Open Narrow the Gap.

Might be $\mathbb{R}^2 \not\to (\ell_5, \ell_5)$ so there is no such a.

 ℓ_6 Known $\mathbb{R}^2
eq (\ell_6, \ell_6)$.

 ℓ_4 Known (not) Do not know any $a \geq 4$ with $\mathbb{R}^2 \to (\ell_4, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_4, \ell_{18})$ Open Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_4, \ell_4)$ so there is no such a.

 ℓ_5 Known (not) Do not know any $a \geq 5$ with $\mathbb{R}^2 \to (\ell_5, \ell_a)$ Known $\mathbb{R}^2 \not\to (\ell_5, \ell_{10})$ Open Narrow the Gap. Might be $\mathbb{R}^2 \not\to (\ell_5, \ell_5)$ so there is no such a.

 ℓ_6 Known $\mathbb{R}^2 \not \to (\ell_6, \ell_6)$.
No Open Problem.

The papers with large numbers have nice proof since they just use numbers that work.

The papers with large numbers have nice proof since they just use numbers that work.

Some of the papers with small numbers are messy and rather particular.

The papers with large numbers have nice proof since they just use numbers that work.

Some of the papers with small numbers are messy and rather particular.

 $\mathbb{R}^2 o (\ell_3,\ell_3)$ is one of them

The papers with large numbers have nice proof since they just use numbers that work.

Some of the papers with small numbers are messy and rather particular.

 $\mathbb{R}^2 o (\ell_3,\ell_3)$ is one of them

Open Get nicer proofs.

The papers with large numbers have nice proof since they just use numbers that work.

Some of the papers with small numbers are messy and rather particular.

 $\mathbb{R}^2 o (\ell_3,\ell_3)$ is one of them

Open Get nicer proofs.

Open In some cases get nicer proofs of weaker results.

I emailed these slides to Conlon and Fox to ask

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent? (NO.)}$ What does the good money say is true of the open problems?

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent? (NO.)}$ What does the good money say is true of the open problems? Fox's answer surprised me:

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF My Opinion This would be both awesome and awful.

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.

Awesome Natural Problems Ind of ZF. Cool!

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.

Awesome Natural Problems Ind of ZF. Cool!

Awful I went answers! Dagnabbit!

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.

Awesome Natural Problems Ind of ZF. Cool!

Awful I went answers! Dagnabbit!

Caveat If we assume choice these questions have answers.

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.

Awesome Natural Problems Ind of ZF. Cool!

Awful I went answers! Dagnabbit!

Caveat If we assume choice these questions have answers.

What Does Ind of ZF Mean? Proof will be hard and unlike known papers all of which are in ZF.

I emailed these slides to Conlon and Fox to ask Any results on $\mathbb{R}^n \to \text{or } \mathbb{R}^n \not\to \text{absent?}$ (NO.)

What does the good money say is true of the open problems?

Fox's answer surprised me:

Some of these problems may be independent of ZF

My Opinion This would be both awesome and awful.

Awesome Natural Problems Ind of ZF. Cool!

Awful I went answers! Dagnabbit!

Caveat If we assume choice these questions have answers.

What Does Ind of ZF Mean? Proof will be hard and unlike known papers all of which are in ZF.

Conjectures? None.