R" — (£2,€2dn), R" 7L> (ﬁg,gd/n)
Exposition by William Gasarch, Chaewoon Kyoung, Kelin Zhu

1 Introduction
In this paper we present the following theorems:

1. (Szlam [5]) There exists d such that R” — ({2, ¢54n). (He proved a more general theorem. See
his paper for details.)

2. (Conlon & Fox [1]) There exists a constant d’ such that R™ 4 ({2, y0,). We will just prove
the n = 2 case in this paper. (They proved a more general theorem. See their paper for
details.)

2 There exists d Such That R" — ({3, (o)

Notation 2.1 Let G, = (V. E) be the graph with V' = R" and E = {(z,y): d(z,y) = 1}. Let ¢(n)
be the chromatic number of G,,.

It is well known that 5 < ¢(2) < 7.
The following are known:

Theorem 2.2
1. (Larman and Rogers [3]) c(n) < (3 + o(1))"
2. (Raigorodskii [4]) c(n) < (1.239... + o(1))"
3. (Frankl and Wilson [2]) c(n) > (1+ o(1))(1.2)".

We give the proof by Frankl and Wilson and then use the result to obtain R™ — ({2, l9an).
KELIN-LOOK AT THE OTHER PAPERS AND SEE IF THEY ARE WORTH INCLUDING
AS WELL.

2.1 Set System Lemma that Frankl and Wilson Used

Theorem 2.3 Let k,n,s € N. Let p be a prime. Let ug, ..., us be distinct element of {0, ...,p—1}.
Assume k = pg (mod p). Let Fy,...,Fp € ([Z]) be such that:

Vi<i<j<s)3pe{pm,. ..,us})|FiNF;j|=p (mod p).

Then L < (’;)



Proof:

KELIN: DURING THE PROOF (PAGE 361) THEY HAVE THE FOLLOWING:

Let us choose 0 < a; < p for 0 < i < 50 [ THINK so SHOULD BE S, BUT PLEASE CHECK]
in such a way that for every integer x we have

f[(x — i) = ZS:C% <f) (mod p).

i=1 i=1
THIS DOES NOT LOOK POSSIBLE. THE LEFT HAND SIDE HAS CONSTANT TERM

Hipe2 - fhs.
THE RIGHT HAND SIDE HAS CONSTANT TERM 0.

It is quite possible that none of the u are 0.

MY FIRST THOUGHT WAS: MAYBE THERE IS A TYPO AND THEY MEANT TO BEGIN
THE SUMS AND PRODUCTS AT 0. THIS DOES NOT WORK SINCE THEN THE LHS HAS
HIGHER DEGREE THAN THE RHS.

|

The following theorem is obtained by a modification of Theorem 2.3.
KELIN- WE'LL PROVE THEOREM 2.4 ONCE WE FIGURE OUT THEOREM 2.3.

Theorem 2.4 Let k,n € N. Let q be a prime power.
1. Let FY,...,F € ([Z]) be such that:
(VI<i<j<s)BENEI£k (modg).
Then L < (qﬁl).
2. If Iy, ... ’F(q[f]1)+1 € ([z]) then there exists 1 <i < j < (q[f]l) + 1 with |F; N Fj| = k (mod q).
(This is the contrapositive of Part 1.)

3. If Fl""’F(q[f]l)Jrl € (26[1”_]1) then there exists 1 < i < j < (q[ﬁ]l) + 1 with |F; N Fj| =q—1.
(This is Part 2 with k = 2q — 1 coupled with the observation that if |F; N F;| = 2¢—1 (mod q)
then |F; N Fj| = q¢ — 1 since otherwise F; = Fj.)

2.2 The Chromatic Number of R"

Theorem 2.5
1. For all n,

n
c(n) > max (712‘]7_1)
q prime power (q_l) +1

KELIN: WRITE A PROGRAM THAT COMPUTES ¢ FOR 10 < n < 100. PRE-COMPUT
THE BINOMIAL COEFFICIENTS WITH THE RECURRENCE. DO SOME CURVE FIT-
TING TO FIND d SUCH THAT ¢ ~ 29,

2. There exists d such that, for all n, c(n) > 29"



Proof:
1) Let S C R™ be all of the vectors such that

e n — 2g — 1 of the components are 0.

1
e 2q — 1 of the components are ok
Let F': § — (25"_]1) by viewing each vector in S as a bit vector though with Ner instead of 1.

Claim Let u,v € S. If |F(u)NF(v)| = f then d(u,v) = 2—%. Hence d(u,v) = 1iff |[F(u)NF(v)| =

q— 1.
Proof of Claim: Assume |F(u) N F(v)| = f then:

_1
V2q®
1

e There are 2¢ — 1 — f coordinates where u has % and v has 0.

e There are f coordinates where u and v both have

e There are 2¢ — 1 — f coordinates where v has i and v has 0.

e There are n — 4q + f + 2 coordinates where u and v are both 0.

Hence d(u,v) =2 x (2g—1— f) x 5. = =L =2 2L,
End of Proof of Claim

Restrict COL to S. Since |S| = (2q"_1) and there are c colors, some color must occur >
(an_l) Jc = (qfl) + 1 times. Let S’ be the subset of S that has that color. Since S’ C (2[[1"_]1) and

|S'| > (qfl) + 1, by Theorem 2.4.3, there exists two elements of S with intersection of size ¢ — 1.
Let those two elements be F(u) and F(v). Since |F(u) N F(v)| = ¢ — 1, by the Claim, d(u,v) = 1.

2) We obtain an approximation to the optimal value of c.

KELIN- THE PAPER TAKES ¢ TO BE (1+0(1))252n I WANT TO KNOW HOW HE GETS
A PRIME POWER LIKE THAT. PLEASE EXPAND ON THAT. |

2.3 There exists d Such That R" — ({3, {9an))
Theorem 2.6 (Szlam [5]) There exists d such that R™ — (L2, lyan).

Proof:  We will need the following notation: I is the vector (1,0,...,0) in R™.
Let COL: R™ — [2].

Case 1 There is a BLUE /,,,. Done

Case 2 There is no BLUE /,,. We form a coloring COL: R™ — [m] as follows:
Given point p € R™ look at

p—l—f,p—l—Qi...,p—i—mf.

Since there is no BLUE /,,,, there exists i such that COL(p+11) is RED. Color p with the least
such 4.

By Theorem 2.5 there exists points u,v € R"™ and 1 < ¢ < m such that d(u,v) = 1 and u,v are
the same color. Hence u + il and v 4 41 are both RED. Since d(u,v) = 1, d(u + il,v +il) = 1.
Hence u + 41 and v + i1 form a RED ¢5. |



2.4 While We’re Here, Constructive Ramsey Lower Bounds

KELIN- BEFORE ADDING THIS SECTION TO THE MONOGRAPH I WILL GIVE IT MORE
CONTEXT.

Frankl and Wilson also used Theorem 2.4 to obtain a constructive lower bound on the Ramsey
number R(k).

Theorem 2.7

1. Let n € N. Let p be a prime (though we will also use that its a prime power).

KELIN- THE PAPER USES q A PRIME POWER, BUT LATER SETS IT TO p WHICH
I ASSUME IS A PRIME. SO I JUST SET IT TO A PRIME IN THE FIRST PLACE.

Let G = (V, E) be defined as follows.
o Vs {F C[n]: |F| =p®—1}. Note that |[V| = ;" ).
e E is (F,F') such that |[F N F'| £ —1 (mod p).

Then G contains no (pfl)-clique or (pﬁl) -ind. set.

2. R(k) > 9(1+o(1)log” k/4loglogk yith o constructive proof. (Note that this use of k is different
than the use of k in Theorem 2.3, 2.4, and the first part of this theorem.)

Proof:
la) Let Fi,..., F, be a complete subgraph of G. By the definition of G,

o [y,....F; € (pgn_ll).

o (V1<i<j<L)[F;nF;|#—-1 (mod p).

By Theorem 2.4, with ¢ = p and k = p®> — 1, we obtain L < (pﬁl).
1b) Let Fy,..., Fr be an independent set in G.

By the definition of G,

o Fi,...,FL € (pgn_]l)
e Vi<i<j<L)|[FiNnFjj=—-1=p—1 (mod p).

By Theorem 2.3, with k =p? — 1, up =p — 1, 11 = p — 1, we obtain L < (g)

KELIN: THE ABOVE LINE DOES NOT WORK SINCE pp = 1. THE PAPER DOES NOT
USE THEOREM 1. THE PAPER INSTEAD REFERS TO EQUATION (2) WHICH IS FROM
A RESULT BY RAY-CHADHUIRI AND WILSON. BUT THEY LATER SAY, RIGHT AFTER
THEOREM 1 Clearly Theorem 1 generalizes (2). HENCE I THOUGHT I COULD AVOID USING
RAY-CHAD... .

ALSO, (3) SEEMS WAY TO GOOD A BOUND TO GET- FAR MORE THAN WE NEED. I
SUSPECT MY TWO CONFUSIONS ARE RELATED AND WHEN YOU FIGURE OUT ONE,
YOU WILL FIGURE OUT THE OTHER.

2) Setting n = p® we obtain the result.
KELIN- WORK THIS OUT. 1



3 Lemmas Needed To Show there exists d, R" /4 ({2, (o)

We will be 2-coloring the m x m square and then use that to form a periodic coloring of R2. Hence
we think of coloring the m x m square with the two horizontal sides identified and the new vertical
sides identified. We denote this T2. (The T is for Taurus.)

BILL- THE PAPER USES m x m. I WILL LATER SAY WHY I USE m x m.

KELIN: WE NEED A PICTURE FOR AN EXAMPLE. YOU CAN DO A COLOR PICTURE
OF A colored square.

We need several lemmas.

Definition 3.1 Let t € RT. Let P C T2,
1. P is t-separated if, for all p,q € P, d(p,q) > t.

2. P is mazimally t-separated (1) if P is t-separated and (2) for all » ¢ P, P U {r} is not
t-separated.

Lemma 3.2 Lett € RT and m € N.

1. There exists P C T2 that is mazimally t-seperated.
2. If P C T2 is mazximally t-seperated then |P| < W
3. If P C T2 is mazimally %-seperated then |P| < (1.7Tm)?. This follows from Part 2.

Proof:
1) A greedy algorithm forms a maximally ¢-seperated set.
BILL: How fast is this? Can we get a faster algorithm?
2) Let p € P. Then there is no element of P inside the circle centered at p of radius ¢. This circle
has area mt?. The set T2 has area m?. Hence

P x 2 <m?, so0 |P| < A2

Lemma 3.3 Lett € Rt. Let S C R? be t-seperated. Let p € R?. Let s > 0. The number of points
of S within s of P is at most (2s/t + 1)2.

Proof: Let T be the set of points within ¢ of p. For every ¢ € T" we look at the circle centered
at ¢ of radius ¢/2 (we can’t use radius t since then the circles would not be disjoint). These circles
have no other points of 7" in them and are disjoint. These circles have area m(#/2)?. The union of
these circles is contained in the circle around j of radius s + /2 which has area 7(s +t/2)%. Hence
IT| x 7t2/4 < (s +t/2)?
IT| x (t/2)* < (s +t/2)?

T < (5542)° = 25/t + 1% |

Definition 3.4 Assume S C R? or S C T3". If p € S then V}, is the set of points of R? or 73" that
are closer (or tied) to p then to any other point of S. The Voronoi Diagram of S is the set of all
the V,’s.



BILL- DO EXAMPLES
1. A NORMAL EXAMPLE

2. AN EXAMPLE WHERE THE VORONOI CELL IS A POLYGON WITH LOTS OF SIDES.
I THINK IF THE SET OF POINTS IS A p AND m POINTS ON THE CIRCLE OF RADIUS
1 AROUND z THEN V,, would be a m-sided convex polygon.

Note 3.5 There exists S C R™ and an s € S such that V,, is a convex |S|-gon. See BILL-WILL
NEED FIGURE NUMBER.

Lemma 3.6 Let S C R? be a maximal t-separated set. We form the Voronoi diagram of S. The
Voronoi cells are {Vp}pes.

1. If x € V), then d(z,p) < t.
2. If p,p’ € V,, then d(p,p’) < 2t. (This follows from Part 1.)
3. If p,p’ € S and V},, V,,. share a boundary then d(p,p’) < 2t.

4. Vp is convex polygon with < 25 sides.

Proof:
1) Assume, by way of contradiction, that there is an x € V}, and d(x,p) > t. Since z € V), d(z,p)
is the smallest distance from x to a point of S. Hence « is greater than ¢ away from any point in
S. Since S is maximal, z € S which is a contradiction.
3) Draw a line from p to p’. It will hit a point x that is on both the boundary of V, and the
boundary of V,,. By Part 1

d(p,p') =d(p,z) + d(x,p') <t+t =2t
4) V}, is a convex polygon. Map each side of V,, to the p’ such that V},, and V,y share that side. Using
Part 2 we get that the number of sides is bounded above by the number of points of p’ € S such
that d(p,p’) < 2t. By Lemma 3.3 the number of such points is < ((2 x 2t)/t + 1) =52 =25. 1

BILL- I DO NOT THINK I NEED THE LEMMA BELOW FOR THE THEOREM. THEY
NEED TO USE A SET OF SIZE m/5 THAT HAS POINTS 5 APART. WE WILL JUST NEED
THAT /¢,, DOES NOT HIT TWO ANALOGOUS VORONOI CELLS FROM DIFF TILES. THIS
WILL BE ACCOMPLISHED BY MAKING THE TILES m x m SINCE THE MAX DISTANCE
BETWEEN POINTS OF /4, IS m — 1. THE PAPER DOES MORE COMPLICATED THINGS

Lemma 3.7 Let K be a 1-seperated set. Let s > 1. There is a set K' C K that is s-separated such
that |K'| > |K|/(2s + 1)2.



4 There exists d', R" A ({3, loan)
Theorem 4.1 There exists d' such that R? /£ (b2, Loarn)-

Proof: Let P be a maximal %-separated subset of T5"". We create the Voronoi diagram of P.

Let @ C P be formed by, for each p € P, choose it with probability x (we will determine x
later).

Let S C @ be the set of points s € @ such that, for all s’ € Q, d(s,s’) > 5/3.

Recall that we have a Voronoi diagram formed by the points in P. Let the Voronoi cells that
have a point of S in them be denoted V1,...,Vg.

We will color each V;, including boundary, RED. We will color every other point in 75" BLUE.
We will then use this to periodically color R?. We view this as tiling the plane with m x m tiles
and coloring all the tiles the same.

We will show that if you take a nine tiles arrange 3 x 3 then there is no RED ¢» or BLUE ¢,
with a point in the middle tile. This will suffice.

No RED /5 This part does not use probability.
Let ¢, ¢ both be RED.
Case 1: ¢,¢ are in the same Voronoi cell. By Lemma 3.6.2 d(q,q’) < 1/3.
Case 2: ¢, ¢ are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers
p,p’. Then

1 5

1
d(p,p) < d(p.q) +d(g,q) +d(d,p) < g +1+ 5 =2

But by definition of S, d(p,p’) > %

Case 3: ¢,q are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have
centers p,p’. Since d(p,p’) =m, d(q,q') >m —1 > 1.

Case 4: ¢, q are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was
on a Taurus this is identical to Case 2.

No BLUE /¢,

Let L = (qi,...,qm) be an £,,. We bound the probability that L is BLUE.

Let {pi};nz/al be such that, for 0 <i <m' —1, ¢; € V,,,. We need to bound the probability that
Vp, is BLUE. Not so fast! We need to show that all of the V,, are distinct.

Let ¢,¢' € {qo,-..,qm'—1}. Let {p,p’} be such that ¢ € V,, and ¢’ € V},.
Case 1 ¢, ¢ are in the same tile and in the same Voronoi cell. This cannot happen since d(¢,q’) > 1
and by Lemma 3.6.2 the diameter of these cells is 2/3.
Case 2 ¢, ¢ are in the different tiles but in analogous Voronoi cells. Two points in analogous cells
are at least m — % apart. Since d(q,q") < m —1, ¢,q’ cannot be in different tiles but in analogous
Voronoi cells.

The probability that L is BLUE is the prob that V,,, V,, ..., V,, are all BLUE.

Let p € P. We determine a lower bound on the probability that V), is RED. Recall that V), is
RED iff p € S.

BILL TO BILL- I NEED TO FINISH THIS. IT REQUIRES THAT LEMMA ABOUT SIGN
PATTERNS. |
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