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There Is a 2-Coloring Of the Plane Without
a mono Red 3-Stick or a mono Blue

Big-Stick

Exposition by William Gasarch-U of MD



Credit Where Credit is Due

The main result in these slides is due to Conlon and Wu (2022).



Recall the Notation R2 → (`a, `b)

Notation Let a, b ≥ 2. R2 → (`n, `m) means

For all COL : R2 → [2] there exists Red `n or Blue `m.

Last lecture we proved R2 → (`2, `3).

What about R2 → (`3, `b) with b ≥ 3.

The following are known:

R2 → (`3, `3) (Currier-Moore-Yip, 2024). Won’t do here.

R2 6→ (`3, `1050) (Conlon-Wu, 2022). Will do here.
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Main Theorem



Full Statement

Thm There exists COL : Rn → [2] such that

there is no a R `3, and

there is no B `m where m will be determined later.

m will be around 1050.

The proof for Rn and R2 are identical.

Open Find an easier proof of R2 case.
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Algebraic Implications of `3. No Coloring Involved

Let ~0 be (0, , . . . , 0).
Let ~a1, ~a2, ~a3 be an `3.

Let
x1 = d(~0, ~a1),
x2 = d(~0, ~a2),
x3 = d(~0, ~a3)
And we know
1 = d(~a1, ~a2),
1 = d(~a2, ~a3),
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Bottom Triangle:

Law of cosines: x21 = x22 + 1− 2x2 cos(θ1).

Top Triangle:

Law of cosines: x23 = x22 + 1− 2x2 cos(θ2).
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Algebra and Trigonometry

θ2 = π − θ2. Hence cos(θ2) = − cos(θ1).

Law of cosines: x21 = x22 + 1− 2x2 cos(θ1).

Law of cosines: x23 = x22 + 1− 2x2 cos(θ2) = x22 + 1 + 2x2 cos(θ1).

Add to get

x21 + x23 = 2x22 + 2.
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First Plan On How to Avoid R `3

First Plan

1) Find COL′ : R→ [2] such that there is no R solution to

x21 + x23 = 2x22 + 2.

2) Define COL : R2 → [2] by COL(~a) = COL′(d(~0, ~a)).

Easy COL has R `3 =⇒ COL′ has R sol to x21 + x23 = 2x22 + 2.
Hence COL does not have a R `3.

This plan works but there is an even easier one.

The fact that x1, x2, x3 are squared is not important.
Can get rid of squares.
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We will define COL′ : R→ [2] such that there is no R solution to

y1 + y3 = 2y2 + 2.

Will then define COL(~a) = COL′(d(~0, ~a))

We will also have a condition on COL′ that will make
COL(~a) = COL′(d(~0, ~a)) not have any B `m
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By using the prior reasoning about `3, applied to all `3’s, we get
For all 2 ≤ i ≤ m − 1,

x2i−1 + x2i+1 = 2x2i + 2.
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We Color Mod q

We have not determined m yet. We will later.

However we will require that m = q3 where q is prime.
We will define COL′′ : Zq → [2].
We will then define COL′ : R→ [2] by

COL′(y) = COL′′(byc (mod q)).
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Final Plan

We need COL′′ : Zq → [2] such that

1) No R solution to

y1 + y3 = 2y2 + 2.

2) No B solution to
for all 2 ≤ i ≤ m − 1

yi−1 + yi+1 = 2yi + 2.

The next slide recaps where we are and says why COL′′ helps us.
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COL′′ and COL′ and COL

Assume COL′′ : Zq → [2]:

1) COL′′ has no R solution (in Zq) to y1 + y3 = 2y2 + 2.
2) COL′′ has no B solution (in Zq) to

For all 2 ≤ i ≤ m − 1, yi−1 + yi+1 = 2yi + 2

Let COL′ : Z→ [2] be COL′′(byc (mod q)). Can show
1) COL′ has no R solution (in Z) to y1 + y3 = 2y2 + 2.
2) Has no B solution (in Z) to

For all 2 ≤ i ≤ m − 1, yi−1 + yi+1 = 2yi + 2

Let COL : R2 → [2] be COL(~a) = COL′(d(0, ~a)). Did show
1) COL has no R `3 (in R2).
2) COL has no B `m (in R2).
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That’s Bullshit Man: Performed by Soren and Bill

Bill is playing a slightly dumber version of Bill.
Soren is a smarter version of Soren.

BILL: We need to find a coloring. This requires hard math.

SOREN: That’s bullshit man!

BILL: (ignoring Soren) We need topological algebraic topology.

SOREN: That’s bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! He’s right!

SOREN: About picking randomly or about you being a moron?

BILL: Both. Now back to Math.

SOREN: Math is bullshit man!

BILL: A catchphrase should be used exactly twice.

SOREN: That’s bullshit man!
The End
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Pick a Coloring Randomly

We will pick COL : Zq → [2] randomly.

We will not color each element R or B with equal probability.

We want R to be far rarer than B.

We pick
Prob of a R to be p = q−3/4

Prob of a B to be 1− p
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Lemmas and a Theorem of
Independent Interest



Consider p(x) ∈ R[x] (mod q)

What does p(x) = x2 + πx + e (mod 13) mean?

What is p(10) = 100 + 10π + e (mod 13)?
subtract multiples of 13 until this is in [0, 13).

Lets say p(10) = 134.1325 (thats not true but its a good approx).
134.1324 (mod 13) = 4.1324.

So it makes sense to consider p(x) (mod q) where p(x) ∈ R[x ].
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How Concentrated Are The Elements In the Image?

Set Up Let p(x) ∈ R[x ]. Let q be a prime. Let m ≥ q.

Let f (x) = p(x) (mod q). Each element of

{f (1), f (2), . . . , f (m)}

is in one of [0, 1), [1, 2), . . ., [q − 1, q).

Informal Question How many interval are hit?

Formal Question Given p(x), q, m, give a lower bound on how
many intervals are hit.

Meta Question We consider this question for the (`3, `b) result.
Is it interesting in its own right? I leave that to the reader.
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The Lemma

Lemma Let p(x) = x2 + αx + β where α, β ∈ R.

Let q be a prime.

Let f (x) = p(x) (mod q).

Let m ≥ q3.

Let X = {f (1), f (2), . . . , f (m)}.

Then

X hits at least q/6 of the intervals [0, 1), [1, 2), . . ., [q − 1, q).
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Proof of Lemma: Two Cases

Consider α (mod q), 2α (mod q), . . ., q2α (mod q).

Map each one to which interval [0, 1), . . ., [q − 1, q) that it is in.

Some intervals has ≥ q of these values.

Two of those values are ≤ 1/q apart.

So there exists i , j such that |iα (mod q)− jα (mod q)| ≤ 1
q .

Upshot There exists k ≤ q2 such that |kα (mod q)| ≤ 1
q .

We will consider two cases:

Case 1 k 6≡ 0 (mod q).

Case 2 k ≡ 0 (mod q).
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Case 1: k 6≡ 0 (mod q)

Recap There is a k 6≡ 0 (mod q) such that |kα mod q| ≤ 1
q .

Plan
1) Show x2 + β (mod q) hits ≥ (q + 1)/2 intervals.
2) Show that adding αx has a small effect since
|kα (mod q)| ≤ 1

q .

We consider several sets and see how many intervals they hit.

SQq = {12 (mod q), 22 (mod q), . . . , q2 (mod q)}.
q is a prime so squaring is 2-to-1. Hence |SQq| = (q + 1)/2.
Since every element in SQq is an integer, hits (q + 1)/2 intervals.
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Case 1: k 6≡ 0 (mod q) (cont)

We consider f1(x) = x2 + β (mod q).

X = {f1(1), f1(2), . . . , f1(q)} = {12 + β, 22 + β, . . . , q2 + β}

Since X is the squares all shifted by β, |X1| = (q + 1)/2.

Y = {f1(k), f1(2k), . . . , f1(qk)} = {k2+β, (2k)2+β, . . . , (qk)2+β}

Since k 6≡ 0 (mod q), {k , 2k, . . . , qk} = {1, 2, . . . , q}. Hence
X = Y .
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Why m = q3?

We have shown that

{f1(k), f1(2k), . . . , f1(qk)}.

hits (q + 1)/2 intervals. Note that qk ≤ q3 = m. This is why we
needed m = q3 in the hypothesis.

We need to show that Z = {f (1), f (2), . . . , f (q3)}
hits ≥ q/6 intervals.

We will do this on the next slide.
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Finishing Up Case 1

{f1(k), f1(2k), . . . , f1(qk)} hits (q + 1)/2 intervals.

We show that {f (1), . . . , f (q3)} hits ≥ q/6 intervals by just
looking at the subset {f (k), f (2k), . . . , f (qk)}.
{f (k), f (2k), . . . , f (qk)}:
f (k) = f1(k) + kα. Key Recall kα (mod q)| ≤ 1

q ≤ 1.

f (2k) = f1(2k) + 2kα. Key Recall 2kα (mod q)| ≤ 2
q ≤ 1.

...
...

f (qk) = f1(2k) + qkα. Key Recall qkα (mod q)| ≤ q
q ≤ 1.

Recap The set Y = {f1(k), . . . , f1(qk)} hits (q + 1)/2 intervals of
length 1.
Z = {f (k), . . . , f (qk)} can be viewed as taking every element in Y
and adding or subtracting ≤ 1 to it. It is easy to show that Z hits
≥ q/6 intervals.
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We show that {f (1), . . . , f (q3)} hits ≥ q/6 intervals by just
looking at the subset {f (k), f (2k), . . . , f (qk)}.
{f (k), f (2k), . . . , f (qk)}:
f (k) = f1(k) + kα. Key Recall kα (mod q)| ≤ 1

q ≤ 1.

f (2k) = f1(2k) + 2kα. Key Recall 2kα (mod q)| ≤ 2
q ≤ 1.

...
...

f (qk) = f1(2k) + qkα. Key Recall qkα (mod q)| ≤ q
q ≤ 1.

Recap The set Y = {f1(k), . . . , f1(qk)} hits (q + 1)/2 intervals of
length 1.
Z = {f (k), . . . , f (qk)} can be viewed as taking every element in Y
and adding or subtracting ≤ 1 to it. It is easy to show that Z hits
≥ q/6 intervals.



Case 2: k ≡ 0 (mod q)

OMITTED FOR NOW.



Another Lemma Of
Independent Interest



The Sign Function and Other Notation

Def if a ∈ R then

sign(a) =


−1 if a < 0

0 if a = 0

1 if a > 0

(1)

Notation If η ∈ {−1, 0, 1}∗ then η(i) is the ith character in η.
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The Sign Pattern of a Polynomial: Intuitively

p1(x , y) = x + 2y − 3 p2(x , y) = −2x + 3y − 7
p3(x , y) = 4x − y

We care about (sign(p1(x , y)), sign(p2(x , y)), sign(p3(x , y))).

(x , y) (p1(x , y), p2(x , y), p3(x , y)) sign pattern

(0, 0) (−3,−7, 0) (−,−, 0)
(10, 0) (7,−27, 40) (+,−,+)
(0, 10) (17, 23,−10) (+,+,−)
(1, 1) (0,−6, 3) (0,−,+)

(5, 10) (22, 13, 30) (+,+,+)

There are 33 = 27 sign patterns. (p1, p2, p3) has at least 5.
I doubt it has anywhere near 27.
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The Sign Pattern of a Polynomial: Formally

Def Let p1, . . . , pM ∈ R[x , y ].
Let X = (p1, . . . , pM).
η ∈ {−, 0,+}M is a sign pattern for X if
there exists a1, a2 ∈ R such that for all 1 ≤ i ≤ M

sign(pi (a1, a2)) = η(i).

Note Obvious bound on number of sign patterns: 3M

Question Is there a better bound? Yes!
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Lemma About Sign Patterns

Lemma Let M ∈ N. Let p1, . . . , pM ∈ Z[x , y ].

The number of sign patterns is ≤ 25M2.
Proof Omitted. (It is difficult.)

Lemma is a corollary of a more general theorem by
Olenik-Petrovsky-Thom-Milnor.
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Big Theorem

Do on Whiteboard.


