
2-Color Rado’s Theorem Over The Reals:
A Case Where it Does Not Hold
Exposition by William Gasarch

1 Pre Introduction

The following is well known.

Theorem 1.1 For all COL: R2 → [2] there exists 2 points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Definition 1.2

1. `2 is 2 points in the plane an inch apart.

2. `3 is three colinear points p1, p2, p3 where d(p1, p2) = d(p2, p3) = 1.

3. You can define `k.

4. Given COL: R2 → [2], a RED `k is an `k where all the points in it are RED. Similar for a
BLUE `k.

Notation 1.3 Let n, a, b ≥ 2. Rn → (`a, `b) means that, for all COL: Rn → [2], either there is a
RED `a or a BLUE `b.

Many results are known about when Rn → (`a, `b) and when Rn 6→ (`a, `b). We do not summarize
them here. (When this document becomes part of a larger document we will.)

Conlon & Wu [2] showed that there exists m (around 1050) such that

(∀n)[Rn 6→ (`3, `m)].

Implicit in their proof was a result in (what we call) Rado’s theorem over the reals. They did
not present it that way, nor did they isolate it from the rest of the proof. They also only proved
the case that they needed.

In this document we present a generalization of that result and propose some new questions
inspired by it.

2 Introduction

Recall Rado’s Theorem:

Theorem 2.1 Let a1, . . . , an ∈ Z. The following are equivalent.

• For all finite colorings of N+ there exists a mono solution to
∑n

i=1 aixi = 0.

• There exists I ⊆ {1, . . . , n}, I 6= ∅, such that
∑

i∈I ai = 0.
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Rado’s Theorem is not the end of the story. For example, the following questions are not
resolved by Rado’s Theorem:

1. True or False: Every 2-coloring of N+ has a mono solution to x+ y − 4z = 0.

2. True or False: Every 2-coloring of N+ has either a RED solution to x + y − 4z = 0 or a
BLUE solution to x+ y − 5z = 0.

3. Characterize the set of pairs of sets of equations (E1, E2) such that for every 2-coloring of N+

either there is a RED solution to E1 or a BLUE solution to E2.

4. True or False: Every 2-coloring of R+ has a mono solution to x+ y − 4z = 0.

5. True or False: Every 2-coloring of R+ has either a RED solution to x+y−4z = 0 or a BLUE
solution to x+ y − 5z = 0.

6. Characterize the set of pairs of sets of equations (E1, E2) such that for every 2-coloring of R+

either there is a RED solution to E1 or a BLUE solution to E2.

We suspect that questions 1,2,4,5 are not to hard.
In this document we given a condition on sets of equations E1 (which will be just one linear

equation) and E2 (which will be a set of many linear equations) such that there is a 2-coloring of
R+ with no RED solution to A and no BLUE solution to B.

We will first need two lemmas that are interesting in their own right.

3 Theorems About Intersection

What does

f(x) = x2 + πx+ e (mod 13)

mean? More concretely, what is

f(10) = 100 + 10π + e (mod 13)?

We define it similar to mod13 over Z: subtract multiples of 13 until the result is in [0, 13). For
example f(10) ∼ 134.1325, so f(10) mod 13 ∼ 4.1324.

Definition 3.1 Let f : R → R. Let q ∈ N. Then f (mod q) : R → [0, q) is the function that, on
input x, returns the element of

{f(x) + kq : k ∈ Z}

that is in [0, q).

Note 3.2 Let f ∈ R[x]. Let q be a prime. All ≡ are mod q. We wonder when the following is true:

(1) a ≡ b =⇒ f(a) ≡ f(b).
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1. If a, b ∈ Z and f ∈ Z[x] then (1) is TRUE.

2. If a, b ∈ Z and f ∈ R[x] then (1) is FALSE. Let q = 13, a = 10, b = 23, f(x) = 0.5x.

f(10) mod 13 = 5 mod 13 = 5

f(23) mod 13 = 11.5 mod 13 = 11.5

3. If a, b ∈ R and f ∈ Z[x] then (1) is FALSE. Let q = 13, a = 13 + 1
13 , b = 130 + 1

13 , and
f(x) = x2

f(13 + 1
13) = 132 + 2 + 1

169 ≡ 2 + 1
169 ∼ 2.005617

f(130 + 1
13) = 1302 + 20 + 1

169 ≡ 7 + 1
169 ∼ 7.005617

4. If a, b ∈ R and f ∈ R[x] then (1) is FALSE. Either the second or third example on this list
suffices.

Consider again
f(x) = x2 + πx+ e (mod 13)

Let m ∈ N (we are thinking of m large). Each element of

X = {f(1), f(2), . . . , f(m)}

is in one of [0, 1), [1, 2), . . ., [12, 13). We wonder how the elements of X are distributed in those
intervals. For example, how many of the intervals [0, 1), [1, 2), . . . , [12, 13) intersect X.

More generally, Let

1. α, β ∈ R

2. q be a prime.

3. f(x) = x2 + αx+ β (mod q).

4. m ∈ N. We think of m has large.

5. X = {f(1), f(2), . . . , f(m)}.

Every element of X is in in one of [0, 1), [1, 2), . . ., [q − 1, q). We wonder how many of the
intervals [0, 1), [1, 2), . . . , [q − 1, q) intersect X. Is it possible that most of the elements of X are in
just a few intervals? In the appendix we have some empirical results on this question. The next
lemmas answers the question for quadratics over Z, Q, and R. The answer is NO.

Theorem 3.3 Let α ∈ Z, q a prime, and m ≥ q.

1. Let f(x) = x2 + αx (mod q).

Let
X = {f(1), f(2), . . . , f(m)}.

Then at q+1
2 of the intervals [0, 1), [1, 2), . . ., [q − 1, q) intersect with X. (Since a ∈ Z in

reality f(x) ∈ {0, 1, . . . , q − 1}. We use intervals to be consistent with the versions over Q
and R.)
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2. Let β ∈ R. Let p(x) = x2 + αx+ β.

Let f(x) = p(x) (mod q), and

X = {f(1), f(2), . . . , f(m)}.

Then q+1
2 of the intervals [0, 1), [1, 2), . . ., [q − 1, q) intersect with X. (Part 2 follows from

Part 1.)

Proof:
We show that f is a ≤ 2-to-1 map.
Assume i 6= j. All ≡ are mod q.

f(i) = f(j)

i2 + αi ≡ j2 + αj

i2 − j2 ≡ αj − αi

(i− j)(i+ j) ≡ α(j − i)

Since i 6= j we can divide by i− j.

(i+ j) ≡ −α

j ≡ −i− α.

For all j except the case where j ≡ −j − α (j ≡ −α/2) there is an i 6= j such that f(i) = f(j).
Hence

|X| = |{f(1), . . . , f(q − 1)}| = q + 1

2
.

Theorem 3.4 Let r, s ∈ Z such that gcd(r, s) = 1, q a prime such that s 6≡ 0 (mod q), and m ≥ sq.

1. Let f(x) = x2 + r
sx (mod q).

Let
X = {f(1), f(2), . . . , f(m)}.

Then at least q/2 of the intervals [0, 1), [1, 2), . . ., [q − 1, q) intersect with X.
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2. Let β ∈ R. Let p(x) = x2 + r
sx+ β.

Let f(x) = p(x) (mod q), and

X = {f(1), f(2), . . . , f(m)}.

Then at least q/2 of the intervals [0, 1), [1, 2), . . ., [q− 1, q) intersect with X. (Part 2 follows
from Part 1.)

Proof:
We show that f is ≤ 2-to-1 when restricted to

X1 = {f(s), f(2s), f(3s), . . . f(qs)}.

Assume i 6= j. All ≡ are mod q.

f(is) = f(js)

(is)2 +
r

s
is ≡ (js)2 +

r

s
js

i2s2 + ir ≡ j2s2 + jr

(i2 − j2)s2 ≡ (j − i)r

(i− j)(i+ j)s2 ≡ (j − i)r

Since i 6= j we can divide by i− j.

(i+ j)s2 ≡ −r (mod q)

(i+ j) ≡ − r

s2

i = −j +
r

s2
.

Hence, for every i, there is at most one j 6= i such that f(si) = f(sj) (there will be no such i if
i ≡ −j − r

s2
).

Therefore

|X| ≤ |{f(s), . . . , f(sq)}| ≤ q

2
.
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Theorem 3.5 Let α ∈ R, q a prime, and m ≥ q3.

1. Let p(x) = x2 + αx.

Let f(x) = p(x) (mod q), and

X = {f(1), f(2), . . . , f(m)}.

Then at least q/6 of the intervals [0, 1), [1, 2), . . ., [q − 1, q) intersect with X.

2. Let β ∈ R. Let p(x) = x2 + αx+ β.

Let f(x) = p(x) (mod q), and

X = {f(1), f(2), . . . , f(m)}.

Then at least q/6 of the intervals [0, 1), [1, 2), . . ., [q − 1, q) intersect with X. (Part 2 is the
same proof as Part 1 just a bit messier.)

Proof: Consider

α mod q, 2α mod q, . . . , q2α mod q.

Map each one to which interval [0, 1), . . ., [q − 1, q) that it is in. Some interval has ≥ q of these
values. Two of those values are ≤ 1/q apart. So there exists i, j such that

|iα (mod q)− jα (mod q)| ≤ 1

q
.

Hence there exists k with |k| ≤ q2 such that |kα (mod q)| ≤ 1
q . We will assume k > 0. the case

where k < 0 is similar. There are two case depending on if k ≡ 0 (mod q) or not.
Case 1: k 6≡ 0 (mod q).

We consider f1(x) = x2 (mod q). Let

X1 = {f1(1), f1(2), . . . , f1(q)} = {12 mod q, 22 mod q, . . . , q2 mod q}

By Theorem 3.3, X1 intersects q+1
2 intervals.

We now look at f on multiples of k.

Y1 = {f1(k), f1(2k), . . . , f1(qk)} = {k2, (2k)2, . . . , (qk)2}

(Notice that since k ≤ q2, qk ≤ q3 ≤ m. Hence qk is in the range of f that we care about. That
is why we need the premise m ≥ q3.)

Since k 6≡ 0 (mod q), {k, 2k, . . . , qk} = {1, 2, . . . , q}. Hence X1 = Y1.
We have shown that

{f1(k), f1(2k), . . . , f1(qk)}.

hits (q + 1)/2 intervals. We need to show that Z = {f(1), f(2), . . . , f(q3)} hits ≥ q/6 intervals.
We show that {f(1), . . . , f(q3)} hits≥ q/6 intervals by just looking at the subset {f(k), f(2k), . . . , f(qk)}.
{f(k), f(2k), . . . , f(qk)}:
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f(k) = f1(k) + kα. Key: Recall kα (mod q) ≤ 1
q ≤ 1.

f(2k) = f1(2k) + 2kα. Key: Recall 2kα (mod q) ≤ 2
q ≤ 1.

...
...

f(qk) = f1(2k) + qkα. Key: Recall qkα (mod q) ≤ q
q ≤ 1.

Recap The set Y1 = {f1(k), . . . , f1(qk)} hits (q + 1)/2 intervals of length 1.
Z1 = {f(k), . . . , f(qk)} can be viewed as taking every element in Y1 and adding or subtracting

≤ 1 to it. It is easy to show that Z1 hits ≥ q/6 intervals.

Case 2: k ≡ 0 (mod q).
Recall that |kα mod q| ≤ 1

q Since k ≡ 0 (mod q), there exists s ∈ Z such that k = sq. Since

k ≤ q2, s ≤ q.
Hence
|sqα mod q| ≤ 1

q .

Hence sqα is within 1
q of an integer multiple of q. Let r ∈ Z and 0 ≤ ε ≤ 1

q be such that

sqα = rq + ε

α =
r

s
+
ε

q

Let ε′ = ε
q so

α =
r

s
+ ε′ where ε′ < 1

q2
.

We can assume r, s have no common factors.
We consider f2(x) = x2 + r

sx mod q.
Let

Y2 = {f2(s), f2(2s), . . . , f2(qs)}
(Note that qs ≤ q2.)
By Theorem 3.4 Y2 hits at least q/2 intervals. We show that
|Z2| = |{f(s), f(2s), . . . , f(qs)}| ≤.

f(s) = s2 + αs = s2 + r
ss+ ε′s = f2(s) + ε′s. Key: ε′s ≤ s

q2
.

f(2s) = (2s)2 + 2αk = (2s)2 + 2 rss+ 2ε′s = f2(2s) + 2ε′s. Key: 2ε′s ≤ 2s
q2

.

...
...

f(qs) = (qs)2 + sαk = (qs)2 + s rsk + qε′s = f2(sk) + qε′s. Key: qε′s ≤ qs
q2

= s
q < 1.

By the above Key’s, for all i, |f(is)− f2(is)| ≤< 1.

Recap The set Y2 = {f2(s), f2(2s), . . . , f2(qs)} hits q/2 intervals of length 1.
Z2 = {f(s), f(2s), . . . , f(qk)} can be viewed as taking every element in Y2 and adding or

subtracting ≤ 1 to it. It is easy to show that Z2 hits ≥ q/6 intervals.
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4 Theorems About Sign Patterns

Notation 4.1

1. If a ∈ R then

sign(a) =


− if a < 0

0 if a = 0

+ if a > 0

(1)

2. If η ∈ {−, 0,+}∗ then η(i) is the ith character in η.

We will soon define sign-changes but first do an example.

Example 4.2 Let
p1(x, y) = x+ 2y − 3
p2(x, y) = −2x+ 3y − 7
p3(x, y) = 4x− y
We care about (sign(p1(x, y)), sign(p2(x, y)), sign(p3(x, y))). We look at this sequence for some

values of (x, y).

(x, y) (p1(x, y), p2(x, y), p3(x, y)) sign pattern

(5, 0) (2,−17, 20) (+,+,−)
(1, 4) (6, 3, 0) (+,+, 0)
(5, 6) (14, 1, 14) (+,+,+)

(−5, 0) (−8, 3,−20) (−,+,−)
(−3, 3) (0, 8,−15) (0,+,−)

(0, 73) (53 , 0,−
7
3) (+, 0,−)

(0, 2) (1,−1,−2) (+,−,−)
(12 , 2) (32 ,−2, 0) (+,−, 0)
(4, 5) (11, 0, 11) (+, 0,+)
(5, 5) (12,−2, 15) (+,−,+)

(−5,−1) (−10, 0,−19) (−, 0,−)
(−5,−5) (−18,−12,−15) (−,−,−)

(0, 32) (0,−5
2 ,−

3
2) (0,−,−)

(0, 0) (−3,−7, 0) (−,−, 0)
(5,−5) (−8,−32, 25) (−,−,+)

(5,−1) (0,−20, 21) (0,−,+)
(−5

7 ,
13
7 ) (0, 0,−33

7 ) (0, 0,−)
( 7
10 ,

14
5 ) (3310 , 0, 0) (+, 0, 0)

(13 ,
4
3) (0,−11

3 , 0) (0,−, 0)

There are potentially 33 = 27 sign patterns. (p1, p2, p3) has at least 19. We show that there are
exactly 19 and then prove a generalization.
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Definition 4.3 Let p1, . . . , pM ∈ R[x1, . . . , xN ]. Let

X = (p1, . . . , pM ).

η ∈ {−, 0,+}M is a sign pattern for X if there exists a1, . . . , aN ∈ R such that for all 1 ≤ i ≤M

sign(pi(a1, . . . , aN )) = η(i).

Theorem 4.4 Let p1(x, y), p2(x, y), p3(x, y) be 3 linear expressions with 2 variables. Then, there
are at most 19 sign patterns.

Proof: For i ∈ {1, 2, 3} draw the a line pi(x, y) = 0. Then, the 3 expressions will form 3 lines.
For any point on the plane, the location of the point with respect to the line determines the sign.
If a point is on the line, the sign is 0. If it is on one side of the line, the sign is either positive or
negative, and if the point is on the other side of the line, the sign will be flipped. Therefore, each
region divided by the lines will represent a sign pattern with no 0, each line segment will represent
a sign pattern with one 0, and the point where lines intersect will represent a sign pattern with at
least 2 0s.

We want to obtain the maximum number of regions, line segments, and intersections. Now, start
with a single line. There are 2 regions, 1 line segment, and 0 intersections. To obtain the maximum
number of components, the second line should intersect the existing line, dividing 2 regions and 1
line segment. It also creates 2 new segments by dividing its own and an intersection. In an optimal
situation, with 2 lines there are 4 regions, 4 line segments, and 1 intersection. Finally, by adding
another line that intersects the 2 existing lines, it divides 3 regions and 2 line segments, and creates
3 line segments and 2 intersections. There are 7 regions, 9 line segments, and 3 intersections that
can be created with 3 lines. In total, there are 19 components, each indicating a sign pattern.

We will generalize Theorem 4.4 to n linear functions. We will then further generalize to n
polynomials.

We need a lemma about lines in the plane before we can obtain a lemma about sign changes.

Lemma 4.5 Let n ≥ 1.

1. There is a way to place n lines in the plane so that there are n2+n+2
2 regions, n2 line segments,

and n2−n
2 intersections, which are in total 2n2 + 1 components.

2. For all sets of n lines in the plane there are ≤ n2+n+2
2 regions, ≤ n2 line segments, and

≤ n2−n
2 intersections, which are in total ≤ 2n2 + 1 components.

Proof: We prove part 2. Part 1 is similar. We prove this by induction on n.
Base case: n=1 With one line, there are 12+1+2

2 = 2 regions, 12 = 1 line segment, and 12− 1 = 0
intersection.
Induction Hypothesis (IH) For any set of n lines in the plane there are ≤ n2+n+2

2 regions, ≤ n2

line segments, and ≤ n2−n
2 intersections.

Induction Step Assume there is a set of n + 1 lines in the plane. View these are n lines plus
another line L. By the IH the n lines form ≤ n2+n+2

2 regions, ≤ n2 line segments, and ≤ n2−n
2

intersections.
We look at how many new regions, line segments, and intersections can be created.
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1. We show that at most n+1 new regions are formed, so the total number of regions is at most
n2+n+2

2 + n+ 1 = (n+1)2+(n+1)+2
2 ,

Let L1 be the first line that L hits. The L may have already divided an region in two. For
every line that is encountered by L a new region is created. The case that maximizes the
number of regions is when L hits all of the lines. That creates n regions. Upon leaving the
last line it may create another region.

2. By a proof similar to the one for regions, one can show that at most n+ 1 new line segments
are formed, so the total number of line segments is at most n2 + n+ n+ 1 = (n+ 1)2.

3. Line L intersects at most n lines, so there are most n new intersections. Hence the number

of intersections is at most n2−n
2 + n = (n+1)2−(n+1)

2 .

Theorem 4.6 Let p1(x, y), . . . , pn(x, y) ∈ R[x, y] be linear. Then there are at most 2n2 + 1 sign
patterns.

Proof: For i ∈ {1, . . . , n} draw the a line pi(x, y) = 0. Then, the n expressions will form n
lines. As in the proof of Theorem 4.4 the number of sign patterns is bounded above bu the sum
of the number of regions, line segments, and intersections. By Lemma 4.5 this sum is bounded by
2n2 + 1.

We will present a known generalize of Theorem 4.6.
Let p1, . . . , pM ∈ R[x1, . . . , xN ]. An obvious bound on the number of sign patterns is 3M

The following lemma, due to Oleinik-Petrovsky-Thom-Milnor (see the the book by Basu-Pollack-
Roy [1]), shows that, if N �M , there are far less than 3M sign patterns. We omit the proof.

CHAEWOON-KELIN-Want WRITE UP THE PROOF OF THIS. LATER.

Lemma 4.7

1. Let D,M,N ∈ N. Let p1, . . . , pM ∈ R[x1, . . . , xN ]. Assume that all of the pi’s are of degree

≤ D. The number of sign patterns for (p1, . . . , pN ) is at most
(
50DM
N

)N
.

2. Let M ∈ N. Let p1, . . . , pM ∈ R[x, y]. Assume that all of the pi’s are of degree ≤ 1 (so linear).
The number of sign patterns for (p1, . . . , pN ) is at most 625M2. (This follows from Part 1).

5 An Interesting 2-Coloring of R

Definition 5.1 Let r, b be such that 0 ≤ r, b ≤ 1 and r+b = 1. We will form two colorings, COL′r,b
and COLr,b though we will never use the subscripts—they are understood.

COL′ : Zq → [2] is defined as follows: For all x ∈ Zq:

• Pr(COL′(x) = RED) = r.

• Pr(COL′(x) = BLUE) = b.
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Let COL: R→ [2] be defined as follows:

COL(z) = COL′(bzc mod q).

Example 5.2 We take q = 5. Let COL′ be defined as follows:
COL′(0) = RED
COL′(1) = BLUE
COL′(2) = BLUE
COL′(3) = RED
COL′(4) = RED
See Figure 1 for what COL looks like
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...

...
...
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-5 -4 -3 -2 -1

0 1 2 3 4

5 6 7 8 9
...

...
...

...
...

...

Figure 1: COL from COL′

Lemma 5.3 Let 0 ≤ b, r ≤ 1, b+ r = 1. Let q be a prime. Let COL′ : Zq → [2] and COL: R→ [2]
be as defined in Definition 5.1 (We will not be using how COL′ was formed. We will only use that
COL is formed from COL′.) Assume there is a COL-RED solution to y1 + y3 = 2y2 + 2. Then
there is a COL′-RED solution to either

• n1 + n3 = 2n2 + 1, or

• n1 + n3 = 2n2 + 2, or

• n1 + n3 = 2n2 + 3.

Proof:
Assume there is a COL-RED solution to y1+y3 = 2y2+2. Let n1, n2, n3 ∈ Z and 0 ≤ ε1, ε2, ε3 < 1

be such that
y1 = n1 + ε1,
y2 = n2 + ε2,
y3 = n3 + ε3.
COL(yi) = COL′(ni), so the ni’s are all RED.
Then

n1 + ε1 + n3 + ε3 = 2n2 + 2ε2 + 2

n1 + n3 = 2n2 + 2ε2 − ε1 − ε3 + 2

Since n1, n2, n3 ∈ Z, 2ε2 − ε1 − ε3 + 2 ∈ Z.
2ε2 − ε1 − ε3 + 2 ∈ {1, 2, 3}. Hence n1, n2, n3 is a COL′-RED solution to

• n1 + n3 = 2n2 + 1, or

• n1 + n3 = 2n2 + 2, or

• n1 + n3 = 2n2 + 3.
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Lemma 5.4 Let 0 ≤ b, r ≤ 1, b + r = 1. Let q be a prime. Let COL′ : Zq → [2] as defined in
Definition 5.1 (We will not be using how COL′ was formed. We will only use using that COL is
formed from COL′.) Assume there is no COL′-RED solution to any of

• y1 + y3 = 2y2 + a

where a ∈ N≥2
Then there is no COL-RED solution to at least one of

• n1 + n3 = n2 + b

where b ∈ [a]

Proof:
Assume there is a COL-RED solution to y1+y3 = 2y2+a. Let n1, n2, n3 ∈ Z and 0 ≤ ε1, ε2, ε3 < 1

be such that
y1 = n1 + ε1,
y2 = n2 + ε2,
y3 = n3 + ε3.
COL(yi) = COL′(ni), so the ni’s are all RED.
Then

n1 + ε1 + n3 + ε3 = 2n2 + 2ε2 + a

n1 + n3 = 2n2 + 2ε2 − ε1 − ε3 + a

Since n1, n2, n3, a ∈ Z, 2ε2 − ε1 − ε3 + a ∈ Z.
2ε2 − ε1 − ε3 + 2 ∈ [a+ 1].
Since 0 ≤ ε1, ε2, ε3 < 1

0 ≤ 2ε2 − ε1 − ε3 + a ≤ a+ 1.

Hence n1, n2, n3 is a COL′-RED solution to

• n1 + n3 = n2 + b

where b ∈ [a+ 1]

Lemma 5.5 Let 0 ≤ b, r ≤ 1, b+ r = 1. Let q be a prime. Let COL′ : Zq → [2] and COL: R→ [2]
be as defined in Definition 5.1 Then the probability that there is a mono solution to y1+y3 = 2y2+2
is ≤ 3q2r3 + 9qr2.

Proof: By Lemma 5.3 the probability that there is a COL′-RED solution to

• n1 + n3 = 2n2 + 1, or

• n1 + n3 = 2n2 + 2, or
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• n1 + n3 = 2n2 + 3

bounds the probability that there is a COL-RED solution to y1 + y3 = 2y2 + 2.
All ≡ are mod q.
To get the probability that there is a COL′-RED solution to n1 + n3 = 2n2 + 1 is we need to

upper bound the number of solutions to n1 + n3 = 2n2 + 1. There are several types of solutions.
We list them and the probability that they occur.

• Solutions where n1, n2, n3 are all different. n1, n2 determine n3. Hence there are ≤ q2 such
solutions. The Probably that any of them is RED is ≤ q2r3.

• Solutions where n1 = n2. Then n1 determine n3. Hence there are ≤ q such solutions. The
probability that any of them is RED is ≤ qr2.

• Solutions where n1 = n3. Then n1 determine n2. Hence there are ≤ q such solutions. The
probability that any of them is RED is ≤ qr2.

• Solutions where n2 = n3. Then n2 determine n1. Hence there are ≤ q such solutions. The
probability that any of them is RED is ≤ qr2.

• Solutions where n1, n2, n3 are all different. n1, n2 determine n3. Hence there are ≤ q2 such
solutions. The probability that any of them is RED is ≤ q2r3.

• There are no solutions where n1 = n2 = n3. So this case does not contribute to the probability.

Hence the probability that there is a COL′-RED solution to n1 + n3 = 2n2 + 1 is

≤ q2r3 + 3qr2

The same reasoning applies to n1 + n3 = n2 + 2 and n1 + n3 = n2 + 3. Hence the probability
that there is a COL′-RED solution to any of the three equations is

≤ 3q2r3 + 9qr2

Lemma 5.6 Let 0 ≤ a, b, r ≤ 1, b+r = 1. Let q be a prime. Let COL′ : Zq → [2] and COL: R→ [2]
be as defined in Definition 5.1 Then the probability that there is a mono solution to y1+y3 = 2y2+a
is

≤ (a+ 1)(q2r3 + 3qr2)

Proof: By Lemma 5.4 the probability that there is a COL′-RED solution to

• n1 + n3 = 2n2 + 1, or

• n1 + n3 = 2n2 + 2, or

• n1 + n3 = 2n2 + 3
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•
...

• n1 + n3 = 2n2 + a+ 1

bounds the probability that there is a COL-RED solution to y1 + y3 = 2y2 + a.
All ≡ are mod q.
To get the probability that there is a COL′-RED solution to n1 +n3 = 2n2 +1 we need to upper

bound the number of solutions to n1 + n3 = 2n2 + 1. There are several types of solutions. We list
them and the probability that they occur.

• Solutions where n1, n2, n3 are all different. n1, n2 determine n3. Hence there are ≤ q2 such
solutions. The Probably that any of them is RED is ≤ q2r3.

• Solutions where n1 = n2. Then n1 determine n3. Hence there are ≤ q such solutions. The
probability that any of them is RED is ≤ qr2.

• Solutions where n1 = n3. Then n1 determine n2. Hence there are ≤ q such solutions. The
probability that any of them is RED is ≤ qr2.

• Solutions where n2 = n3. Then n2 determine n1. Hence there are ≤ q such solutions. The
probability that any of them is RED is ≤ qr2.

• Solutions where n1, n2, n3 are all different. n1, n2 determine n3. Hence there are ≤ q2 such
solutions. The probability that any of them is RED is ≤ q2r3.

• There are no solutions where n1 = n2 = n3. So this case does not contribute to the probability.

Hence the probability that there is a COL′-RED solution to n1 + n3 = 2n2 + 1 is

≤ q2r3 + 3qr2

The same reasoning applies to n1 +n3 = n2 +2, . . ., n1 +n3 = n2 +a+1. Hence the probability
that there is a COL′-RED solution to any of the a+ 1 equations is

≤ (a+ 1)(q2r3 + 3qr2).

Lemma 5.7 Let q be a prime and let m ≥ q3. Let p1(x, y), . . . , pm(x, y) ∈ Z[x, y] be such that the
following hold:

1. For all i, pi(x, y) is linear in x, y. We intend pi(x, y) to be a function from R2 to R.

2. The coefficients of pi(x, y) are quadratic polynomials in i over Z. Formally

pi(x, y) = a(i)x+ b(i)y + c(i)

where a, b, c ∈ Z[i] and are quadratic.
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3. If a, d ∈ [0, 2m2] then, for all i, 0 ≤ pi(a, d) ≤ 2m2

Let b, r be such that 0 ≤ b, r ≤ 1 and b+ r = 1. Let COL be as in Definition 5.1.
THEN

Pr(∃a, d ∈ R,COL(p1(a, d)) = · · · = COL(pm(a, d)) = BLUE) ≤ 2500m6bm/6.

Proof:
The proof is in two parts

PART ONE: The Set of Intervals Mod q.
Fix a, d ∈ R. We want to bound

Pr(COL(p1(a, d)) = · · · = COL(pm(a, d)) = BLUE).

Recall that COL(z) = COL′(z mod q). Hence, in order to have

COL(p1(a, d)) = · · · = COL(pm(a, d)) = BLUE)

we need to have the following happen:

• p1(a, d) mod q is in an interval that COL′ colors BLUE. This occurs with probability b.

• p2(a, d) mod q is in an interval that COL′ colors BLUE. This occurs with probability b.

• Etc until pm(a, d) mod q is in an interval that COL′ colors BLUE. This occurs with probability
b.

At first glance you might think the probability of this happening is bm which is small, so good
news for us. Alas no. Here is an extreme possibility (that we later show cannot happen): all of the
pi(a, d) mod q are in the same interval. This raises the question: how many distinct intervals do
we get?

Let F (x) = px(a, d). By premise 2, F (x) is quadratic. Also recall that q is prime and m ≥ q3.
Hence F (x),m, q satisfy the premise of Theorem 3.5. Therefore

{F (1) mod q, . . . , F (m) mod q}

will intersect ≥ q/6 intervals. Hence

{p1(a, d) mod q, . . . , pm(a, d) mod q}

will intersect ≥ q/6 intervals.
Hence

Pr(COL(p1(a, d)) = · · · = COL(pm(a, d)) = BLUE) ≤ bq/6.

PART TWO: How Many Sets of Intervals?
The statement

Pr(COL(p1(a, d)) = · · · = COL(pm(a, d)) = BLUE) ≤ bq/6.
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is not about a, d: its about interval patterns. That is, we map a, d to the set of intervals mod q
that

p1(a, d) mod q, . . . , pm(a, d) mod q

are in and then we look at the probability that all of those intervals are the same color.
So the question is: how many sets of intervals can there be?
Since the coloring is mod q we can assume a, d ∈ [0, q). By premise 3, 0 ≤ pi(a, d) ≤ 2m2. We

now ask about the intervals (not mod q).
Consider the following questions:

• Of the intervals [0, 1), [1, 2), . . ., [2m2 − 1, 2m2) which one has p1(a, d)? There are 2m2

possibilities. Note that which interval can be determined from the sign changes of the following
sequence:

p1(a, d)− 1, p1(a, d)− 2), . . . , p1(a, d)− 2m2.

• Of the intervals [0, 1), [1, 2), . . ., [2m2 − 1, 2m2) which one has p2(a, d)? There are 2m2

possibilities.

Note that which interval can be determined from the sign changes of the following sequence:

p2(a, d)− 1, p2(a, d)− 2), . . . , p2(a, d)− 2m2.

• Etc until Of the intervals [0, 1), [1, 2), . . ., [2m2 − 1, 2m2) which one has pm(a, d)? There are
2m2 possibilities.

Note that which interval can be determined from the sign changes of the following sequence:

pm(a, d)− 1, pm(a, d)− 2), . . . , pm(a, d)− 2m2.

At a first glance it would seem like there are (2m2)m possibilities. There are far less.
Consider the sequence of polynomials

p1(x, y)− 1, . . . , p1(x, y)− 2m2,

p2(x, y)− 1, . . . , p2(x, y)− 2m2,

...

pm(x, y)− 1, . . . , pm(x, y)− 2m2.

The maximum number of sign changes in this sequence is an upper bound on the number of
ways p1(a, d), . . ., pm(a, d) can be in the intervals.

By Lemma 4.7.2 the number of sign changes is ≤ 625(2m3)2 = 2500m6. Hence the number of
ways p1(a, d), . . . , pm(a, d) are in the intervals is ≤ 2500m6.
COMBINE PARTS ONE AND TWO
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Map (a, d) ∈ R2 to the set of ≥ q/6 intervals that contain

p1(a, d) mod q, . . . , pm(a, d) mod q.

There are at most 2500m6 sets of intervals. Each one has probability ≤ bq/6 of having them all
be blue. By the union bound the probability that one of those sets has every interval blue is

≤ 2500m6bq/6.

6 An Anti-Rado Theorem

Theorem 6.1 Let m ∈ N (thing of m as large). Let p1(x, y), . . . , pm(x, y) ∈ Z[x, y] be such that
the following hold:

1. For all i, pi(x, y) is linear in x, y. We intend pi(x, y) to be a function from R2 to R.

2. The coefficients of pi(x, y) are quadratic polynomials in i over Z.

3. If a, d ∈ [0, 2m2] then, for all i, 0 ≤ pi(a, d) ≤ 2m2

Then there exists a 2-coloring of RED such that the following hold:

1. There is no RED solution to y1 + y3 = 2y2 + 2.

2. There is no BLUE solution to the system of equations {pi(x, y)}mi=1

Proof: Let 0 ≤ b, r ≤ 1 such that b + r = 1. We will pick b, r later. Let q a prime such that
m ≥ q3. Let COL be as in Definition 5.1 with parameters r, s, q.

By Lemma 5.5,

Pr(there is a RED solution to y1 + y3 = 2y2 + 2) ≤ 3q2r3 + 9qr2.

By Lemma 5.7,

Pr(there is a BLUE solution to {pi(x, y)}mi=1) ≤ 2500m6bq/6.

Hence we want to pick b, r such that

3q2r3 + 9qr2 + 2500m6bq/6 < 1

Choose r = q−3/4 and b = 1− r
Then,
3q2r3 + 9qr2 = 3q−1/4 + 9q−1/2 < 12q−1/4 < 1

2
for a sufficiently large q.
Similarly,

2500m6bq/6 = 2500m6(1− q−3/4)q/6 ≤ 2500m6(1−m−1/4)q/6 ≤ 2500m6(1−m−1/4)
m1/3

6 < 1
2

for a sufficiently large m.
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Therefore, if m and q is sufficiently large, there exists r and b that makes the probability of
having a RED solution to y1 + y3 = 2y2 + 2 or a BLUE solution to {pi(x, y)}mi=1 is less than 1.

This shows that there exists a 2-coloring of RED such that:
There is no RED solution to y1 + y3 = 2y2 + 2 And there is no BLUE solution to {pi(x, y)}mi=1

TO BILL: q gets too big and r gets too small to clearly find out exact number for b using
code. Using graphing calculator q = 1011 was the first q that makes the equation less than 1, with
r ≈ 2.815 · 10−8

TO CHAEWOON: IF q = 1011 THEN m = q3 = 1033. This actually is much better than
Conlon-Wu’s 1033. DID WE DO ANYTHING TO MAKE IT better (perhaps better version of the
signed patterns theorem) OR DID WE JUST TRY HARDER TO MINIMIZE m?

TO CHAEWOON AND KELIN-WE’LL TALK ABOUT HOW/IF WE CAN GET ANY INFO
ON THIS POINT. ONE THOUGHT- IF THE INTERVAL THEOREM IS EMPIRICALLY GOOD
ENOUGH WITH q2 OR EVEN q, THAT MIGHT HELP IF WE ONLY CLAIM AN EMPIRICAL
RESULT. LATER

A Empirical Results on Intervals

Let a ∈ Q and q be a prime. Let f(x) = x2 + ax (mod q). By Theorem 3.4 the set

X = {f(1), . . . , f(q2)}

hits at least q/2 of the intervals

[0, 1), [1, 2), . . . , [q − 1, q).

We suspected that far more intervals are hit, even if X stops at q. We wrote a program to test
this.

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit
by f(1), . . . , f(q) by f(1), . . . , f(q) by f(1), . . . , f(q2) by f(1), . . . , f(q2)

0.1 13 8 0.615385 13 1.000000

0.1 17 12 0.705882 17 1.000000

0.1 19 14 0.736842 19 1.000000

0.1 23 15 0.652174 23 1.000000

0.1 29 18 0.620690 29 1.000000

0.1 31 20 0.645161 31 1.000000

0.1 37 24 0.648649 37 1.000000

0.1 41 26 0.634146 41 1.000000

0.1 43 27 0.627907 43 1.000000

0.1 47 31 0.659574 47 1.000000
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a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.2 13 8 0.615385 13 1.000000

0.2 17 10 0.588235 17 1.000000

0.2 19 12 0.631579 19 1.000000

0.2 23 13 0.565217 23 1.000000

0.2 29 19 0.655172 29 1.000000

0.2 31 20 0.645161 31 1.000000

0.2 37 24 0.648649 37 1.000000

0.2 41 27 0.658537 39 0.951220

0.2 43 26 0.604651 42 0.976744

0.2 47 31 0.659574 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.3 13 9 0.692308 13 1.000000

0.3 17 11 0.647059 17 1.000000

0.3 19 12 0.631579 19 1.000000

0.3 23 17 0.739130 23 1.000000

0.3 29 19 0.655172 29 1.000000

0.3 31 20 0.645161 31 1.000000

0.3 37 23 0.621622 37 1.000000

0.3 41 28 0.682927 41 1.000000

0.3 43 29 0.674419 43 1.000000

0.3 47 30 0.638298 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.4 13 9 0.692308 13 1.000000

0.4 17 10 0.588235 17 1.000000

0.4 19 12 0.631579 19 1.000000

0.4 23 12 0.521739 23 1.000000

0.4 29 19 0.655172 29 1.000000

0.4 31 19 0.612903 31 1.000000

0.4 37 23 0.621622 37 1.000000

0.4 41 27 0.658537 39 0.951220

0.4 43 28 0.651163 42 0.976744

0.4 47 27 0.574468 47 1.000000
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a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.5 13 8 0.615385 11 0.846154

0.5 17 11 0.647059 13 0.764706

0.5 19 12 0.631579 15 0.789474

0.5 23 15 0.652174 18 0.782609

0.5 29 18 0.620690 23 0.793103

0.5 31 20 0.645161 24 0.774194

0.5 37 22 0.594595 29 0.783784

0.5 41 26 0.634146 31 0.756098

0.5 43 28 0.651163 33 0.767442

0.5 47 30 0.638298 36 0.765957

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.6 13 8 0.615385 13 1.000000

0.6 17 11 0.647059 17 1.000000

0.6 19 10 0.526316 19 1.000000

0.6 23 16 0.695652 23 1.000000

0.6 29 15 0.517241 29 1.000000

0.6 31 20 0.645161 31 1.000000

0.6 37 24 0.648649 37 1.000000

0.6 41 25 0.609756 39 0.951220

0.6 43 27 0.627907 42 0.976744

0.6 47 28 0.595745 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.7 13 7 0.538462 13 1.000000

0.7 17 10 0.588235 17 1.000000

0.7 19 12 0.631579 19 1.000000

0.7 23 13 0.565217 23 1.000000

0.7 29 21 0.724138 29 1.000000

0.7 31 19 0.612903 31 1.000000

0.7 37 22 0.594595 37 1.000000

0.7 41 25 0.609756 41 1.000000

0.7 43 29 0.674419 43 1.000000

0.7 47 31 0.659574 47 1.000000
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a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.8 13 9 0.692308 13 1.000000

0.8 17 12 0.705882 17 1.000000

0.8 19 13 0.684211 19 1.000000

0.8 23 16 0.695652 23 1.000000

0.8 29 17 0.586207 29 1.000000

0.8 31 21 0.677419 31 1.000000

0.8 37 24 0.648649 37 1.000000

0.8 41 29 0.707317 39 0.951220

0.8 43 28 0.651163 42 0.976744

0.8 47 30 0.638298 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

0.9 13 7 0.538462 13 1.000000

0.9 17 11 0.647059 17 1.000000

0.9 19 14 0.736842 19 1.000000

0.9 23 16 0.695652 23 1.000000

0.9 29 20 0.689655 29 1.000000

0.9 31 21 0.677419 31 1.000000

0.9 37 22 0.594595 37 1.000000

0.9 41 31 0.756098 41 1.000000

0.9 43 31 0.720930 43 1.000000

0.9 47 30 0.638298 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.0 13 7 0.538462 7 0.538462

1.0 17 9 0.529412 9 0.529412

1.0 19 10 0.526316 10 0.526316

1.0 23 12 0.521739 12 0.521739

1.0 29 15 0.517241 15 0.517241

1.0 31 16 0.516129 16 0.516129

1.0 37 19 0.513514 19 0.513514

1.0 41 21 0.512195 21 0.512195

1.0 43 22 0.511628 22 0.511628

1.0 47 24 0.510638 24 0.510638
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a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.1 13 7 0.538462 13 1.000000

1.1 17 12 0.705882 17 1.000000

1.1 19 15 0.789474 19 1.000000

1.1 23 15 0.652174 23 1.000000

1.1 29 18 0.620690 29 1.000000

1.1 31 21 0.677419 31 1.000000

1.1 37 26 0.702703 37 1.000000

1.1 41 29 0.707317 41 1.000000

1.1 43 28 0.651163 43 1.000000

1.1 47 31 0.659574 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.2 13 8 0.615385 13 1.000000

1.2 17 10 0.588235 17 1.000000

1.2 19 12 0.631579 19 1.000000

1.2 23 14 0.608696 23 1.000000

1.2 29 20 0.689655 29 1.000000

1.2 31 21 0.677419 31 1.000000

1.2 37 24 0.648649 37 1.000000

1.2 41 29 0.707317 39 0.951220

1.2 43 26 0.604651 42 0.976744

1.2 47 31 0.659574 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.3 13 9 0.692308 13 1.000000

1.3 17 12 0.705882 17 1.000000

1.3 19 11 0.578947 19 1.000000

1.3 23 12 0.521739 23 1.000000

1.3 29 20 0.689655 29 1.000000

1.3 31 20 0.645161 31 1.000000

1.3 37 20 0.540541 37 1.000000

1.3 41 25 0.609756 41 1.000000

1.3 43 24 0.558140 43 1.000000

1.3 47 30 0.638298 47 1.000000
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a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.4 13 7 0.538462 13 1.000000

1.4 17 11 0.647059 17 1.000000

1.4 19 12 0.631579 19 1.000000

1.4 23 15 0.652174 23 1.000000

1.4 29 17 0.586207 29 1.000000

1.4 31 20 0.645161 31 1.000000

1.4 37 21 0.567568 37 1.000000

1.4 41 26 0.634146 39 0.951220

1.4 43 26 0.604651 42 0.976744

1.4 47 30 0.638298 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.5 13 7 0.538462 11 0.846154

1.5 17 9 0.529412 13 0.764706

1.5 19 13 0.684211 15 0.789474

1.5 23 16 0.695652 18 0.782609

1.5 29 17 0.586207 23 0.793103

1.5 31 21 0.677419 24 0.774194

1.5 37 21 0.567568 29 0.783784

1.5 41 24 0.585366 31 0.756098

1.5 43 29 0.674419 33 0.767442

1.5 47 31 0.659574 36 0.765957

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.6 13 9 0.692308 13 1.000000

1.6 17 10 0.588235 17 1.000000

1.6 19 13 0.684211 19 1.000000

1.6 23 14 0.608696 23 1.000000

1.6 29 18 0.620690 29 1.000000

1.6 31 18 0.580645 31 1.000000

1.6 37 24 0.648649 37 1.000000

1.6 41 27 0.658537 39 0.951220

1.6 43 28 0.651163 42 0.976744

1.6 47 30 0.638298 47 1.000000
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a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.7 13 8 0.615385 13 1.000000

1.7 17 11 0.647059 17 1.000000

1.7 19 11 0.578947 19 1.000000

1.7 23 16 0.695652 23 1.000000

1.7 29 19 0.655172 29 1.000000

1.7 31 20 0.645161 31 1.000000

1.7 37 24 0.648649 37 1.000000

1.7 41 28 0.682927 41 1.000000

1.7 43 27 0.627907 43 1.000000

1.7 47 30 0.638298 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.8 13 8 0.615385 13 1.000000

1.8 17 11 0.647059 17 1.000000

1.8 19 10 0.526316 19 1.000000

1.8 23 15 0.652174 23 1.000000

1.8 29 17 0.586207 29 1.000000

1.8 31 20 0.645161 31 1.000000

1.8 37 23 0.621622 37 1.000000

1.8 41 26 0.634146 39 0.951220

1.8 43 28 0.651163 42 0.976744

1.8 47 31 0.659574 47 1.000000

a q Numb of Ints Hit Ratio of Ints Hit Numb of Ints Hit Ratio of Ints Hit

1.9 13 6 0.461538 13 1.000000

1.9 17 10 0.588235 17 1.000000

1.9 19 14 0.736842 19 1.000000

1.9 23 18 0.782609 23 1.000000

1.9 29 18 0.620690 29 1.000000

1.9 31 20 0.645161 31 1.000000

1.9 37 26 0.702703 37 1.000000

1.9 41 26 0.634146 41 1.000000

1.9 43 27 0.627907 43 1.000000

1.9 47 31 0.659574 47 1.000000

25



References

[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Springer, 2006.

[2] D. Conlon and Y. H. Wu. More on lines in Euclidean Ramsey theory. C.R. Math. Acad. Paris,
361:897–901, 2023.

26


