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1 Needed Lemmas

We will need Stewart’s Theorem. For the sake of completeness we state and prove it.

Theorem 1.1. (Stewart’s Theorem) Let T be the triangle in Figure 1. Then b*m + c¢*n = a(d? + mn).

™ 2 -

Figure 1: Premise of Stewart’s Theorem

Proof. We use the law of cosines twice:
The triangle with sides b-d-n: b*> = d? + n? — 2dncos(0') = b% + d? + n? + 2dn cos(9).
The triangle with sides d-c-m: ¢ = d? + m? — 2dm cos(6).

Multiply the first equation by n and the second by m to get
b*m = d*m + n?m + 2dnm cos(0)

n = d*n+m?n — 2dmn cos(0)

Add these two to get

b’m 4 *n = d*(m 4+ m) + mn(m + n) = d*a + mna = a(d* + mn)

We will need a lemma about a system of equations over R.

Lemma 1.2. Let E be the following system of equations

a1+a3 :2a2+l.
a2+a4 :2a3+§.
a3+a5 :2a4+7.

a4 —+ Qg = 2a5 —+ %
Then there is no real solution for E such that
la1] =...=|ag] (mod 2).



Proof. All = are mod 2.
Assume, by way of contradiction, that aq,...,as € R is a solution such that

la1] =+ = |ag] -
For 1 <i<6let b, =a;+ (i —4) |asz] + (3 —7) |asa]. Note that

e b3 = a3 — |as] €[0,1]. Hence |a3| = 0.
e by = a4 — |as] €[0,1]. Hence |aq| = 0.

Claim 1: by,...,bg is a solution to FE.
Proof of Claim 1
We need to show that, for 2 <i <5

bi—1+biy1 =20+ %
ai—1+ (i —5) las] + aipr + (4 — 1) lag) + (i = 3) las] + (2 — ) [as] =2(a;(i —4) [as] + (3 —1i) [as]) + 3
@1+ aiy1 + (20 = 8) las) + (6 — 20) [as] = 2a; + (2i — 8) lag] + (6 — 2i) [as] + 3
a;—1+a;41 = 2a; + %

End of Proof of Claim 1

Claim 2 |b] =--- = |bg] = 0.

Proof of Claim 2 Since |b3] = 0 it suffices to show that all of the [b;]|’s have the same parity.
[bi] = lai] + (1 = 4) [as] + (3 =) [aa] = |ai] +i]az] + |aa] —i]ad]

= lai] + laa] +i(las] — [aa])

By the hypothesis of this Lemma, |a3] = |a4], so

[bi] = [ai] + |aa].
Since all of the |a;|’s have the same parity, all the |b;|’s have the same parity.
End of Proof of Claim 2

We use that 0 < b3, by < 1 and (Vi)[|b;] = 0].
Since by = 2b3 — by + 3, ba € (=2, %). Since [ba] =0, |b2] € {0,2}. If by > 2, then

1 1
4 <2y + b5 = 2(2bs —bat+ ) + (b — by +3) =3bs +1 <4

which is impossible. Hence |by] = 0.
By an identical argument |bs] = 0. Now that we know |by] = |b3] = 0, we may use the same argument to show that
[b1] = 0, similarly |bs] = 0. We then conclude that

2>b1+b6 =(2b2—b3+%)+(2b5—b4+%)
= (2(2b3 —bs+ 3) — b3+ 3) + (2(2bs —bs + 3) —ba + 3)
=by+by+2>2

which is a contradiction.

2 Vl¢-fg Theorem

The following theorem was proven by Erdés et al. [1].
Theorem (Erdés et al.). For all n, there exists a 2-coloring of R™ with no monochromatic g

Proof. The rough motivation is to color R™ in small spherical shells so that it’s impossible for all 6 points to lie in a single

shell, but not too small so that we have control over which point lies in which cell.
2
To formalize this intuition, color x = (z1,...,z,) by the quantity L%J (mod 2). Hence, the open ball of radius % around

the origin is colored with 0, the shell surrounding it with thickness % is colored with 1 (up to this point the open ball with

radius % is colored), and the next shell of % is colored with 0, and so on. See Figure 2.
Assume, by way of contradiction, that there is a monochromatic £g. Let the points be denoted by vy, ..., vg, where v;—v;_1 = d

for a constant unit vector d. See Figure 3.
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For1<i<6leta; = % By Stewart’s Theorem, we have that (V2 < i < 5)[a;—1 + a;+1 = 2a; + %] By Lemma 1.2 this set

of 4 equations has no solution such that |a;] have the same parity. That is a contradiction.
O



Figure 2: Illustration of our coloring scheme in R? in the unit ball

"'i| ’

¢

&
S

Figure 3: Stewart’s theorem concludes that |v;_1|? + [v;41]? = 2|v;]? + 2.
Divide both sides by 6 to obtain the equations for a;.
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