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1 Needed Lemmas

We will need Stewart’s Theorem. For the sake of completeness we state and prove it.

Theorem 1.1. (Stewart’s Theorem) Let T be the triangle in Figure 1. Then b2m+ c2n = a(d2 +mn).

Figure 1: Premise of Stewart’s Theorem

Proof. We use the law of cosines twice:
The triangle with sides b-d-n: b2 = d2 + n2 − 2dn cos(θ′) = b2 + d2 + n2 + 2dn cos(θ).
The triangle with sides d-c-m: c2 = d2 +m2 − 2dm cos(θ).

Multiply the first equation by n and the second by m to get

b2m = d2m+ n2m+ 2dnm cos(θ)
c2n = d2n+m2n− 2dmn cos(θ)

Add these two to get

b2m+ c2n = d2(m+m) +mn(m+ n) = d2a+mna = a(d2 +mn)

We will need a lemma about a system of equations over R.

Lemma 1.2. Let E be the following system of equations

a1 + a3 = 2a2 + 1
3 .

a2 + a4 = 2a3 + 1
3 .

a3 + a5 = 2a4 + 1
3 .

a4 + a6 = 2a5 + 1
3 .

Then there is no real solution for E such that

ba1c ≡ . . . ≡ ba6c (mod 2).
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Proof. All ≡ are mod 2.
Assume, by way of contradiction, that a1, . . . , a6 ∈ R is a solution such that

ba1c ≡ · · · ≡ ba6c .
For 1 ≤ i ≤ 6 let bi = ai + (i− 4) ba3c+ (3− i) ba4c. Note that

• b3 = a3 − ba3c ∈ [0, 1]. Hence ba3c ≡ 0.

• b4 = a4 − ba4c ∈ [0, 1]. Hence ba4c ≡ 0.

Claim 1: b1, . . . , b6 is a solution to E.
Proof of Claim 1
We need to show that, for 2 ≤ i ≤ 5

bi−1 + bi+1 = 2bi + 1
3

ai−1 + (i− 5) ba3c+ ai+1 + (4− i) ba4c+ (i− 3) ba3c+ (2− i) ba4c = 2(ai(i− 4) ba3c+ (3− i) ba4c) + 1
3

ai−1 + ai+1 + (2i− 8) ba3c+ (6− 2i) ba4c = 2ai + (2i− 8) ba3c+ (6− 2i) ba4c+ 1
3

ai−1 + ai+1 = 2ai + 1
3

End of Proof of Claim 1

Claim 2 bb1c ≡ · · · ≡ bb6c ≡ 0.
Proof of Claim 2 Since bb3c ≡ 0 it suffices to show that all of the bbic’s have the same parity.

bbic = baic+ (i− 4) ba3c+ (3− i) ba4c ≡ baic+ i ba3c+ ba4c − i ba4c
≡ baic+ ba4c+ i(ba3c − ba4c)

By the hypothesis of this Lemma, ba3c ≡ ba4c, so

bbic ≡ baic+ ba4c .
Since all of the baic’s have the same parity, all the bbic’s have the same parity.
End of Proof of Claim 2

We use that 0 ≤ b3, b4 < 1 and (∀i)[bbic ≡ 0].
Since b2 = 2b3 − b4 + 1

3 , b2 ∈ (− 2
3 ,

7
3 ). Since bb2c ≡ 0, bb2c ∈ {0, 2}. If b2 ≥ 2, then

4 ≤ 2b2 + b5 = 2(2b3 − b4 +
1

3
) + (2b4 − b3 +

1

3
) = 3b3 + 1 < 4

which is impossible. Hence bb2c = 0.
By an identical argument bb5c = 0. Now that we know bb2c = bb3c = 0, we may use the same argument to show that
bb1c = 0, similarly bb6c = 0. We then conclude that

2 > b1 + b6 = (2b2 − b3 + 1
3 ) + (2b5 − b4 + 1

3 )
= (2(2b3 − b4 + 1

3 )− b3 + 1
3 ) + (2(2b4 − b3 + 1

3 )− b4 + 1
3 )

= b3 + b4 + 2 ≥ 2

which is a contradiction.

2 `6-`6 Theorem

The following theorem was proven by Erdös et al. [1].

Theorem (Erdős et al.). For all n, there exists a 2-coloring of Rn with no monochromatic `6

Proof. The rough motivation is to color Rn in small spherical shells so that it’s impossible for all 6 points to lie in a single
shell, but not too small so that we have control over which point lies in which cell.

To formalize this intuition, color x = (x1, . . . , xn) by the quantity
⌊
|x|2
6

⌋
(mod 2). Hence, the open ball of radius 1

6 around

the origin is colored with 0, the shell surrounding it with thickness 1
6 is colored with 1 (up to this point the open ball with

radius 1
3 is colored), and the next shell of 1

6 is colored with 0, and so on. See Figure 2.
Assume, by way of contradiction, that there is a monochromatic `6. Let the points be denoted by v1, . . . , v6, where vi−vi−1 = d
for a constant unit vector d. See Figure 3.

For 1 ≤ i ≤ 6 let ai =
|v2

i |
6 . By Stewart’s Theorem, we have that (∀2 ≤ i ≤ 5)[ai−1 + ai+1 = 2ai + 1

3 ]. By Lemma 1.2 this set
of 4 equations has no solution such that baic have the same parity. That is a contradiction.
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Figure 2: Illustration of our coloring scheme in R2 in the unit ball

Figure 3: Stewart’s theorem concludes that |vi−1|2 + |vi+1|2 = 2|vi|2 + 2.
Divide both sides by 6 to obtain the equations for ai.
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