BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Euclidean Ramsey Theory: Area

Exposition by William Gasarch

February 18, 2025

Mono Triangles

Def Assume there is a coloring of \mathbb{R}^2 . A **Mono Triangle** is a triangle with all three vertices the same color.

Mono Triangles

Def Assume there is a coloring of \mathbb{R}^2 . A **Mono Triangle** is a triangle with all three vertices the same color.

We will prove the following:

Thm \forall finite colorings of \mathbb{R}^2 , \exists a mono triangle with area 1.

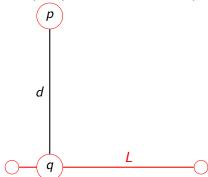
The Two Color Case

Thm For all $\mathrm{COL} \colon \mathbb{R}^2 \to [2]$ there is a mono triangle with area 1.

Thm For all COL: $\mathbb{R}^2 \to [2]$ there is a mono triangle with area 1. **Case 1:** \exists a horiz. line L which is all \mathbb{R} , and a \mathbb{R} point p not on L.

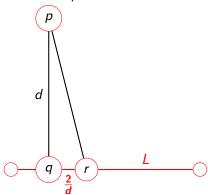
Thm For all COL: $\mathbb{R}^2 \to [2]$ there is a mono triangle with area 1. **Case 1:** \exists a horiz. line L which is all \mathbb{R} , and a \mathbb{R} point p not on L. Let q be point on L closest to p. d = d(p,q):

Thm For all COL: $\mathbb{R}^2 \to [2]$ there is a mono triangle with area 1. **Case 1:** \exists a horiz. line L which is all \mathbb{R} , and a \mathbb{R} point p not on L. Let q be point on L closest to p. d = d(p,q):

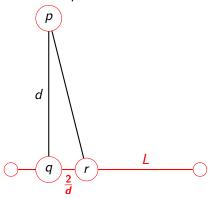


Let r be a point on L such that $d(q, r) = \frac{2}{d}$.

Let r be a point on L such that $d(q, r) = \frac{2}{d}$.

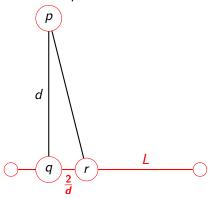


Let r be a point on L such that $d(q, r) = \frac{2}{d}$.



Area of triangle pqr is $\frac{1}{2} \times \frac{2}{d} \times d = 1$.

Let r be a point on L such that $d(q, r) = \frac{2}{d}$.



Area of triangle pqr is $\frac{1}{2} \times \frac{2}{d} \times d = 1$. Case 1 DONE.

The following cases are either trivial or similar to Case 1.

The following cases are either trivial or similar to Case 1.

Case 2: \exists a horiz. line L which is all R, but every p not on L is B.

The following cases are either trivial or similar to Case 1.

Case 2: \exists a horiz. line L which is all R, but every p not on L is B.

Case 3: \exists a horiz. line L which is all B, and a B point p not on L.

The following cases are either trivial or similar to Case 1.

Case 2: \exists a horiz. line L which is all R, but every p not on L is B.

Case 3: \exists a horiz. line L which is all B, and a B point p not on L.

Case 4: \exists a horiz. line L which is all B, but every p not on L is R.

The following cases are either trivial or similar to Case 1.

Case 2: \exists a horiz. line L which is all R, but every p not on L is B.

Case 3: \exists a horiz. line L which is all B, and a B point p not on L.

Case 4: \exists a horiz. line L which is all B, but every p not on L is R.

So whats left? See next slide.

Case 5: Every Horiz Line has Both Colors

Case 5: Every Horiz Line has Both Colors

Case 5: Every horiz. line has both colors. We call this mixed.

Case 5: Every Horiz Line has Both Colors

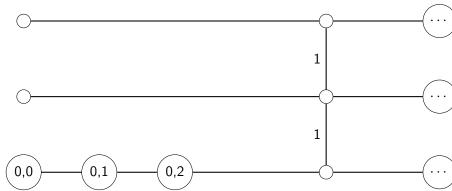
Case 5: Every horiz. line has both colors. We call this **mixed**. We continue on next slide.

Three Key Points

We focus on (0,0), (0,1), (0,2) and the infinite horiz. lines that are 1 and 2 above x-axis.

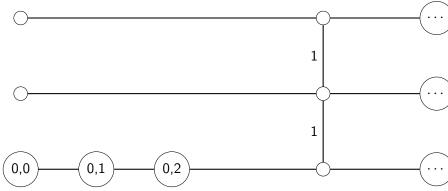
Three Key Points

We focus on (0,0), (0,1), (0,2) and the infinite horiz. lines that are 1 and 2 above x-axis.



Three Key Points

We focus on (0,0), (0,1), (0,2) and the infinite horiz. lines that are 1 and 2 above x-axis.



Two of (0,0), (0,1), (0,2) are the same color, say **R**.

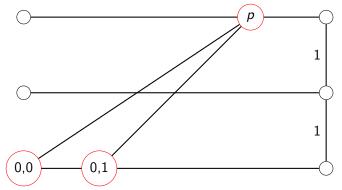
Case 5.1: (0,0) and (0,1) are R

Case 5.1: (0,0) and (0,1) are R

 $\exists R p$ on top line since all horiz. lines are mixed.

Case 5.1: (0,0) and (0,1) are R

 \exists **R** *p* on top line since all horiz. lines are mixed.



Area of (0,0), (0,1), p is $\frac{1}{2} \times 1 \times 2 = 1$.

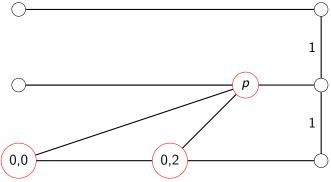
Case 5.2: (0,0) and (0,2) are R

Case 5.2: (0,0) and (0,2) are R

 \exists **R** *p* on middle line since all horiz. lines are mixed.

Case 5.2: (0,0) and (0,2) are R

 $\exists R p$ on middle line since all horiz. lines are mixed.



Area of (0,0), (0,2), p is $\frac{1}{2} \times 2 \times 1 = 1$.

The Three Color Case

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1.

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**.

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**. **Thoughts**

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**.

Thoughts

1. The key to the 2-color case was that we had horiz. lines that all used **R** and **B**. We will try to get a set of horiz lines that all use **the same** colors.

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**.

- 1. The key to the 2-color case was that we had horiz. lines that all used **R** and **B**. We will try to get a set of horiz lines that all use **the same** colors.
- 2. Another key is that the horiz. lines were equally spaced.

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**.

- 1. The key to the 2-color case was that we had horiz. lines that all used **R** and **B**. We will try to get a set of horiz lines that all use **the same** colors.
- 2. Another key is that the horiz. lines were equally spaced.
- So we need horiz. lines that all use the same set of colors and our equally spaced.

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**.

- 1. The key to the 2-color case was that we had horiz. lines that all used **R** and **B**. We will try to get a set of horiz lines that all use **the same** colors.
- 2. Another key is that the horiz. lines were equally spaced.
- 3. So we need horiz. lines that all use the same set of colors and our equally spaced. What does this make you think of?

Thm For all COL: $\mathbb{R}^2 \to [3]$ there is a mono triangle with area 1. We use the colors **R**, **B**, **G**.

- 1. The key to the 2-color case was that we had horiz. lines that all used **R** and **B**. We will try to get a set of horiz lines that all use **the same** colors.
- 2. Another key is that the horiz. lines were equally spaced.
- So we need horiz. lines that all use the same set of colors and our equally spaced. What does this make you think of? Answer on next slide.

Let W = W(k, c) where we will pick k and c later.

Let W = W(k, c) where we will pick k and c later.

Define

$$COL': [W(k,c)] \to \{\{R\}, \{B\}, \{G\}, \{R,B\}, \{R,G\}, \{B,G\}, \{R,B,G\}\}\}$$

as follows:

Let W = W(k, c) where we will pick k and c later.

Define

$$COL': [W(k,c)] \to \{\{R\}, \{B\}, \{G\}, \{R,B\}, \{R,G\}, \{B,G\}, \{R,B,G\}\}\}$$

as follows:

COL'(i) = the set of colors used by COL on the line y = i.

What Happens

What Happens

There exists $X \subseteq \{R, B, G\}$ and d such that:

What Happens

There exists $X \subseteq \{R, B, G\}$ and d such that: Only Uses Colors in X 0, kdOnly Uses Colors in X 0,2dOnly Uses Colors in X 0,d

Case 1: |X| = 1. Assume R

Case 1: |X| = 1. Assume R

Case 1: |X| = 1. Assume R

Area of $(0, d), (0, 2d), (\frac{2}{d}, d)$ is $\frac{1}{2} \times \frac{2}{d} \times d = 1$.

Case 2:
$$|X| = 2$$
. Assume $X = \{R, B\}$

Focus on $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d)$.

Case 2:
$$|X| = 2$$
. Assume $X = \{R, B\}$

Focus on $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d)$.

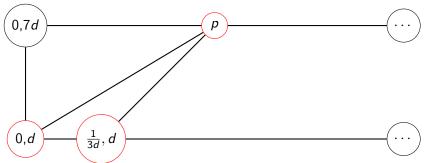
Two of them are the same color. Assume R.

Case 2.1:
$$|X| = 2$$
. $COL(0, d) = COL(\frac{1}{3d}, d) = R$

Key Some point p on 6d-horiz. line is \mathbb{R} .

Case 2.1: |X| = 2. $COL(0, d) = COL(\frac{1}{3d}, d) = R$

Key Some point p on 6d-horiz. line is \mathbb{R} .



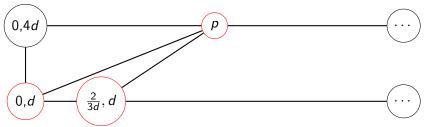
Area of triangle $((0,d),(\frac{1}{3d},d),p)$ is $\frac{1}{2}\times\frac{1}{3d}\times 6d=1$.

Case 2.2:
$$|X| = 2$$
. $COL(0, d) = COL(\frac{2}{3d}) = R$

Key Some point p on 3d-horiz. line is \mathbb{R} .

Case 2.2:
$$|X| = 2$$
. $COL(0, d) = COL(\frac{2}{3d}) = R$

Key Some point p on 3d-horiz. line is \mathbb{R} .



Area of triangle $((0,d),(\frac{2}{3d},d),p)$ is $\frac{1}{2}\times\frac{2}{3d}\times3d=1$.

Case 3: |X| = 3

Case 3: |X| = 3

Focus on $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d), (\frac{1}{d}, d)$.

Case 3:
$$|X| = 3$$

Focus on (0,d), $(\frac{1}{3d},d)$, $(\frac{2}{3d},d)$, $(\frac{1}{d},d)$.

Key Two of $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d), (\frac{1}{d}, d)$ are same color.

Case 3:
$$|X| = 3$$

Focus on $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d), (\frac{1}{d}, d)$.

Key Two of $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d), (\frac{1}{d}, d)$ are same color.

Old News If $\frac{1}{3d}$ apart or $\frac{2}{3d}$ apart then similar to Case 2.

Case 3:
$$|X| = 3$$

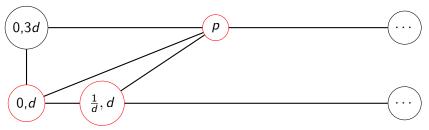
Focus on $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d), (\frac{1}{d}, d)$.

Key Two of $(0, d), (\frac{1}{3d}, d), (\frac{2}{3d}, d), (\frac{1}{d}, d)$ are same color.

Old News If $\frac{1}{3d}$ apart or $\frac{2}{3d}$ apart then similar to Case 2.

We Assume $COL(0, d) = COL(\frac{1}{d}, d) = \mathbb{R}$.

Case 3: |X| = 3



Area of triangle $((0, d), (\frac{1}{d}, d), p)$ is $\frac{1}{2} \times \frac{1}{d} \times 2d = 1$.

Fill in the Parameters

We used W = W(k, c).

Fill in the Parameters

We used W = W(k, c).

1. The colors are nonempty subsets of $\{R, B, G\}$ so $c = 2^3 - 1 = 7$.

Fill in the Parameters

We used W = W(k, c).

- 1. The colors are nonempty subsets of $\{R, B, G\}$ so $c = 2^3 1 = 7$.
- 2. We need 7d, so AP of length 7. k = 7.
- 3. **Upshot** Used W(7,7).

Generalize

Thm $(\forall c)(\forall COL : \mathbb{R}^2 \to [c]) \exists$ mono triangle with area 1.

Generalize

Thm $(\forall c)(\forall COL \colon \mathbb{R}^2 \to [c]) \exists$ mono triangle with area 1. This is a HW problem.

Generalize

Thm $(\forall c)(\forall COL : \mathbb{R}^2 \to [c]) \exists$ mono triangle with area 1.

This is a HW problem.

Key is to find the right parameters for VDW.