BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Getting Many Mono *K*₄**': Two Approaches**

William Gasarch

Lets Party Like Its 2019

The following is an early theorem in Ramsey Theory:

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Lets Party Like Its 2019

The following is an early theorem in Ramsey Theory: Thm For all 2-col of the edges of K_{18} there is a mono K_4 .

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's?

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36,

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$,

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. **Answer** This is really two questions.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's Smallest *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? VOTE (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. Answer This is really two questions.

1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's **Smallest** *n* such that \forall 2-col of edges of $K_n \exists 2 \mod K_4$'s? **VOTE** (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. **Answer** This is really two questions.

1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's. The proof used a clever computer search. This is interesting to know but the proof is not math-interesting.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's Smallest *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? VOTE (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. Answer This is really two questions.

- 1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's. The proof used a clever computer search. This is interesting to know but the proof is not math-interesting.
- 2. I will present a two math-interesting proof of the following: Thm For all 2-cols of K_{19} there are TWO mono K_4 's.

Thm For all 2-cols of edges of K_{36} there are 2 mono K_4 's Smallest *n* such that \forall 2-col of edges of $K_n \exists$ 2 mono K_4 's? VOTE (1) n = 36, (2) Some *n*, $19 \le n \le 35$, (3) n = 18. Answer This is really two questions.

- 1. As posed the answer is n = 18. Piwakoswki and Radziszowski https://www.cs.rit.edu/~spr/PUBL/paper40.pdf showed that for every 2-col of K_{18} there are 9 mono K_4 's. The proof used a clever computer search. This is interesting to know but the proof is not math-interesting.
- 2. I will present a two math-interesting proof of the following: Thm For all 2-cols of K_{19} there are TWO mono K_4 's.
- 3. In both cases I will extend to getting many copies of K_4 two different ways.

The Garrett Peters Approach

William Gasarch

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} . Since R(4) = 18 find mono K_4 . Assume its $\{16, 17, 18, 19\}$.

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} . Since R(4) = 18 find mono K_4 . Assume its $\{16, 17, 18, 19\}$. Remove 19 to get K_{18} .

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} . Since R(4) = 18 find mono K_4 . Assume its $\{16, 17, 18, 19\}$. Remove 19 to get K_{18} . Since R(4) = 18 find **another** mono K_4 .

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} . Since R(4) = 18 find mono K_4 . Assume its $\{16, 17, 18, 19\}$. Remove 19 to get K_{18} . Since R(4) = 18 find **another** mono K_4 . DONE!

Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s. (We find f(m) later.)

Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s. (We find f(m) later.) Proof by induction

Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s. (We find f(m) later.) Proof by induction **Base Case:** NEED f(1) = 18.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm \forall 2-col of $K_{f(m)} \exists m \mod K_4$'s. (We find f(m) later.) Proof by induction **Base Case:** NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m - 1 \mod K_4$'s.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm \forall 2-col of $K_{f(m)} \exists m \mod K_4$'s. (We find f(m) later.) Proof by induction Base Case: NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m - 1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume $f(m) \geq 18$.

Thm \forall 2-col of $K_{f(m)} \exists m \mod K_4$'s. (We find f(m) later.) Proof by induction Base Case: NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m - 1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume $f(m) \ge 18$. Since R(4) = 18 there is a mono K_4 . Assume its $\{f(m) - 3, f(m) - 2, f(m) - 1, f(m)\}$.

Thm \forall 2-col of $K_{f(m)} \exists m \mod K_4$'s. (We find f(m) later.) Proof by induction Base Case: NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m - 1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume $f(m) \ge 18$. Since R(4) = 18 there is a mono K_4 . Assume its $\{f(m) - 3, f(m) - 2, f(m) - 1, f(m)\}$. Remove f(m). Whats left is $K_{f(m)-1}$. NEED $f(m-1) \le f(m) - 1$)

Thm \forall 2-col of $K_{f(m)} \exists m \mod K_4$'s. (We find f(m) later.) Proof by induction Base Case: NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m - 1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume $f(m) \ge 18$. Since R(4) = 18 there is a mono K_4 . Assume its $\{f(m) - 3, f(m) - 2, f(m) - 1, f(m)\}$. Remove f(m). Whats left is $K_{f(m)-1}$. NEED $f(m-1) \le f(m) - 1$) By IH $\exists m - 1 \mod K_4$'s. Add the original one, so thats m.

Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s. (We find f(m) later.) Proof by induction **Base Case:** NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m-1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume $f(m) \geq 18$. Since R(4) = 18 there is a mono K_4 . Assume its $\{f(m) - 3, f(m) - 2, f(m) - 1, f(m)\}.$ Remove f(m). Whats left is $K_{f(m)-1}$. NEED $f(m-1) \leq f(m)-1$) By IH $\exists m - 1 \mod K_4$'s. Add the original one, so thats m. By the NEEDS

Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s. (We find f(m) later.) Proof by induction **Base Case:** NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m-1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume f(m) > 18. Since R(4) = 18 there is a mono K_4 . Assume its $\{f(m) - 3, f(m) - 2, f(m) - 1, f(m)\}.$ Remove f(m). Whats left is $K_{f(m)-1}$. NEED $f(m-1) \leq f(m)-1$) By IH $\exists m - 1 \mod K_4$'s. Add the original one, so thats m. By the NEEDS f(1) = 18f(m-1) < f(m) - 1.

Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s. (We find f(m) later.) Proof by induction **Base Case:** NEED f(1) = 18. IH) \forall 2-col of $K_{f(m-1)} \exists m-1 \mod K_4$'s. IS) Let COL: $\binom{[f(m)]}{2} \rightarrow [2]$. We assume f(m) > 18. Since R(4) = 18 there is a mono K_4 . Assume its $\{f(m) - 3, f(m) - 2, f(m) - 1, f(m)\}.$ Remove f(m). Whats left is $K_{f(m)-1}$. NEED $f(m-1) \leq f(m)-1$) By IH $\exists m-1$ mono K_4 's. Add the original one, so thats m. By the NEEDS f(1) = 18 $f(m-1) \leq f(m) - 1.$ SO f(m) = m + 17.

The Standard Approach

William Gasarch

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

 $A_1, A_2, \ldots, A_{\binom{19}{18}}.$

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

ション ふゆ アメリア メリア しょうくしゃ

Since $|A_i| = R(4)$, each A_i has a mono K_4 .

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

Since $|A_i| = R(4)$, each A_i has a mono K_4 . So we get $\binom{19}{18}$ mono K_4 's. So we are almost there.

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

Since $|A_i| = R(4)$, each A_i has a mono K_4 . So we get $\binom{19}{18}$ mono K_4 's. So we are almost there. **YOU" VE BEEN PUNKED**. It is quite possible that the mono K_4 from A_3 and the mono K_4 from A_9 are the same.

Thm For all 2-cols of edges of K_{19} there are 2 mono K_4 's Assume you have a 2-col of the edges of K_{19} .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

Since $|A_i| = R(4)$, each A_i has a mono K_4 . So we get $\binom{19}{18}$ mono K_4 's. So we are almost there. **YOU''VE BEEN PUNKED**. It is quite possible that the mono K_4 from A_3 and the mono K_4 from A_9 are the same. For the real proof, see next slide.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

 $A_1, A_2, \ldots, A_{\binom{19}{18}}.$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.)

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find 1st mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.)

- 1) Find 1st mono K_4 in A_1 . Say its {16, 17, 18, 19}.
- 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find 1st mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these.

List out all subsets of $V = \{1, \dots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find 1st mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19-4}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 .

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find 1st mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 . 3) Since B_1 has 18 = R(4) vertices, find 2nd mono K_4

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find 1st mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 . 3) Since B_1 has 18 = R(4) vertices, find 2nd mono K_4 4) The mono K_4 from A_1 , and the mono K_4 from B are different.

List out all subsets of $V = \{1, \ldots, 19\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{19}{18}}.$$

(There are just 19 of these, $A_i = \{1, ..., 19\} - \{i\}$.) 1) Find 1st mono K_4 in A_1 . Say its $\{16, 17, 18, 19\}$. 2) REMOVE all A_i 's that have all of $\{16, 17, 18, 19\}$. There are $\binom{19-4}{18-4} = \binom{15}{14} = 15$ of these. There are $\binom{19}{18} - \binom{15}{14} = 19 - 15 = 4$ left. Call then B_1, B_2, B_3, B_4 . 3) Since B_1 has 18 = R(4) vertices, find 2nd mono K_4 4) The mono K_4 from A_1 , and the mono K_4 from B are different. Those are our 2 mono K_4 's.

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1) Find 1st mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

Find 1st mono *K*₄ in *A*₁. Say its {*x*₁, *x*₂, *x*₃, *x*₄}.
 REMOVE all *A_i*'s that have all of {*x*₁, *x*₂, *x*₃, *x*₄}.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find 1st mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find 1st mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$. 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find 2nd mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$.

ション ふゆ アメリア メリア しょうくしゃ

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

- 1) Find 1st mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$.
- 2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left.
- 3) Find 2nd mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$.

4) REMOVE all A_i 's that have all of $\{y_1, y_2, y_3, y_4\}$.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find 1st mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$.

2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find 2nd mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$. 4) REMOVE all A_i 's that have all of $\{y_1, y_2, y_3, y_4\}$.

 $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - 2\binom{n-4}{14}$ left.

 \forall 2-col of $K_n \exists$ 3 mono K_4 's.

List out all subsets of $V = \{1, \ldots, n\}$ of size R(4) = 18.

$$A_1, A_2, \ldots, A_{\binom{n}{18}}.$$

1) Find 1st mono K_4 in A_1 . Say its $\{x_1, x_2, x_3, x_4\}$.

2) REMOVE all A_i 's that have all of $\{x_1, x_2, x_3, x_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - \binom{n-4}{14}$ left. 3) Find 2nd mono K_4 in one of the sets left. Say its $\{y_1, y_2, y_3, y_4\}$. 4) REMOVE all A_i 's that have all of $\{y_1, y_2, y_3, y_4\}$. $\binom{n-4}{18-4} = \binom{n-4}{14}$ of these. There are $\binom{n}{18} - 2\binom{n-4}{14}$ left. 5) Find 3rd mono K_4 in one of the sets left. DONE.

Want 3 Mono K₄'s (cont)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Need

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$
$$\frac{n!}{18!(n-18)!} > 2\frac{(n-4)!}{14!(n-18)!}$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$
$$\frac{n!}{18!(n-18)!} > 2\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18 \times 17 \times 16 \times 15} > 2(n-4)!$$

Need

$$\binom{n}{18} - 2\binom{n-4}{14} \ge 1$$
$$\binom{n}{18} - 2\binom{n-4}{14} > 0$$
$$\frac{n!}{18!(n-18)!} > 2\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18 \times 17 \times 16 \times 15} > 2(n-4)!$$

 $n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15$

*ロ * * @ * * ミ * ミ * ミ * シ * や * や * や * や * や * *

$$n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$$

n	n(n-1)(n-2)(n-3)
19	93024
20	116280
21	143640
22	175560

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$$

n	n(n-1)(n-2)(n-3)
19	93024
20	116280
21	143640
22	175560

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm \forall 2-cols of the edges of $K_{22} \exists$ 3 mono K_4 's.

Want 3 Mono K_4 's (cont)

$$n(n-1)(n-2)(n-3) > 2 \times 18 \times 17 \times 16 \times 15 = 146889.$$

n	n(n-1)(n-2)(n-3)
19	93024
20	116280
21	143640
22	175560

Thm \forall 2-cols of the edges of $K_{22} \exists$ 3 mono K_4 's.

Garrett Peters got: **Thm** \forall 2-cols of the edges of $K_{20} \exists$ 3 mono K_4 's.

The key to the prior proof is how many A_i 's do you remove.

Want m Mono K_4 's

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

ション ふゆ アメリア メリア しょうくしゃ

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K_4 = \{x_1, x_2, x_3, x_4\}$.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset . 2) Take ord, $A \in SETA$, \exists many K in A = K.

2) Take arb A ∈ SETA. ∃ mono K₄ in A, K₄ = {x₁, x₂, x₃, x₄}.
▶ SETK4 = SETK4 ∪ {K₄}.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K_4 = \{x_1, x_2, x_3, x_4\}$.

$$\blacktriangleright \text{ SETK4} = \text{SETK4} \cup \{K_4\}.$$

▶ SETA = SETA - { $A \in SETA : x_1, x_2, x_3, x_4 \in A$ }.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K_4 = \{x_1, x_2, x_3, x_4\}$.

$$\blacktriangleright \text{ SETK4} = \text{SETK4} \cup \{K_4\}.$$

▶ SETA = SETA - { $A \in SETA : x_1, x_2, x_3, x_4 \in A$ }.

3) If SETA $\neq \emptyset$ then go to step 2. Else STOP.

The key to the prior proof is how many A_i 's do you remove. We removed $\binom{n-4}{18-4} = \binom{n-4}{14}$ in each iteration.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Subsets of $V = \{1, ..., n\}$, size R(4) = 18: $A_1, A_2, ..., A_{\binom{n}{18}}$. 1) SETA = $\{A_1, A_2, ..., A_{\binom{n}{18}}\}$. SETK4 = \emptyset .

2) Take arb $A \in SETA$. \exists mono K_4 in A, $K_4 = \{x_1, x_2, x_3, x_4\}$.

$$\blacktriangleright \text{ SETK4} = \text{SETK4} \cup \{K_4\}.$$

▶ SETA = SETA - { $A \in SETA : x_1, x_2, x_3, x_4 \in A$ }.

3) If SETA $\neq \emptyset$ then go to step 2. Else STOP. Since $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$ this process can go for $\ge m$ iterations and produce $\ge m$ mono K_4 's.

・ロト・日本・モート ヨー うへぐ

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's.

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's. Rephrase as

$$\binom{n}{18} - (m-1)\binom{n-4}{14} > 0$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's. Rephrase as

$$\binom{n}{18} - (m-1)\binom{n-4}{14} > 0$$
$$\frac{n!}{(n-18)!18!} > (m-1)\frac{(n-4)!}{14!(n-18)!}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's. Rephrase as

$$\binom{n}{18} - (m-1)\binom{n-4}{14} > 0$$
$$\frac{n!}{(n-18)!18!} > (m-1)\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18!} > (m-1)\frac{(n-4)!}{14!}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's. Rephrase as

$$\binom{n}{18} - (m-1)\binom{n-4}{14} > 0$$
$$\frac{n!}{(n-18)!18!} > (m-1)\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18!} > (m-1)\frac{(n-4)!}{14!}$$
$$\frac{n \times (n-1) \times (n-2) \times (n-3)}{18 \times 17 \times 16 \times 15} > m-1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Thm Let $m, n \ge \mathbb{N}$. Assume $\binom{n}{18} - (m-1)\binom{n-4}{14} \ge 1$. For any 2-col of K_n there exists m mono K_4 's. Rephrase as

$$\binom{n}{18} - (m-1)\binom{n-4}{14} > 0$$
$$\frac{n!}{(n-18)!18!} > (m-1)\frac{(n-4)!}{14!(n-18)!}$$
$$\frac{n!}{18!} > (m-1)\frac{(n-4)!}{14!}$$
$$\frac{n \times (n-1) \times (n-2) \times (n-3)}{18 \times 17 \times 16 \times 15} > m-1$$
$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1)$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Want m Mono K_4 's (cont)

We just proved the following.

Want m Mono K_4 's (cont)

We just proved the following. Thm Let g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Then \forall 2-col of $K_{g(m)} \exists m \mod K_4$'s.

・ ロト・ 御 ト・ ヨト・ ヨー・ クへで

GP Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s where f(m) = m + 17.

GP Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s where f(m) = m + 17.

ST Thm \forall 2-col of $K_{g(m)} \exists m \mod K_4$'s where g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1).$$

GP Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s where f(m) = m + 17.

ST Thm \forall 2-col of $K_{g(m)} \exists m \mod K_4$'s where g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1).$$

Garrett Peters' approach is better for small m.

GP Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s where f(m) = m + 17.

ST Thm \forall 2-col of $K_{g(m)} \exists m \mod K_4$'s where g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1).$$

Garrett Peters' approach is better for small m.

Standard approach is better for large *m*.

GP Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s where f(m) = m + 17.

ST Thm \forall 2-col of $K_{g(m)} \exists m \mod K_4$'s where g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1).$$

ション ふゆ アメビア メロア しょうくり

Garrett Peters' approach is better for small m.

Standard approach is better for large *m*. **HW** Find the crossover point.

GP Thm \forall 2-col of $K_{f(m)} \exists m \text{ mono } K_4$'s where f(m) = m + 17.

ST Thm \forall 2-col of $K_{g(m)} \exists m \mod K_4$'s where g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1).$$

Garrett Peters' approach is better for small m.

Standard approach is better for large m.

HW Find the crossover point.

Extra Credit Improve the standard approach so that the crossover point is lower.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{n}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{18}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

2) There are
$$\frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15} + 1$$
 mono K_4 's.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{18}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

2) There are
$$\frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15} + 1$$
 mono K_4 's.

3) There are
$$\frac{n(n-1)(n-2)(n-3)}{73440} + 1$$
 mono K_4 's.

Thm Let $n \geq \mathbb{N}$. \forall 2-col of K_n the following happens.

1) There are
$$\left\lfloor \frac{\binom{n}{3}}{\binom{n-4}{14}} \right\rfloor + 1$$
 mono K_4 's.

2) There are
$$\frac{n(n-1)(n-2)(n-3)}{18 \times 17 \times 16 \times 15} + 1$$
 mono K_4 's.

3) There are
$$\frac{n(n-1)(n-2)(n-3)}{73440} + 1$$
 mono K_4 's.

4) There are
$$\frac{n^4}{73440} - \frac{n^3}{12240} + \Omega(n^2)$$
 mono K_4 's.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24}$ mono K_3 . In K_n there are $\binom{n}{3}$ triples.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$. In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$. In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3} \mod K_3$.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24} \mod K_3$. In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3} \mod K_3$. There are $\sim \frac{n^4}{73440} \mod K_4$'s.

ション ふゆ アメビア メロア しょうくり

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24}$ mono K_3 . In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3}$ mono K_3 . There are $\sim \frac{n^4}{73440}$ mono K_4 's. We rephrase this as what fraction of the $\binom{n}{4}$ K_4 's are mono.

Thm \forall 2-cols of $K_n \exists \sim \frac{n^3}{24}$ mono K_3 . In K_n there are $\binom{n}{3}$ triples. We want to know the **fraction** of them that are mono. **Thm** \forall 2-cols of $K_n \exists \sim \frac{1}{8} \binom{n}{3}$ mono K_3 . There are $\sim \frac{n^4}{73440}$ mono K_4 's. We rephrase this as what fraction of the $\binom{n}{4}$ K_4 's are mono. There are $\frac{1}{3060} \binom{n}{4}$ mono K_4 's.

Left to the reader

Left to the reader

1. Generalize to mono K_m .

Left to the reader

1. Generalize to mono K_m .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. Generalize to *c* colors.

Left to the reader

- 1. Generalize to mono K_m .
- 2. Generalize to *c* colors.
- 3. Generalize to c colors and mono K_m .

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで