Poly VDW Theorem Cheat Sheet II A Very Useful Notation

Theorem 0.1. Poly VDW Theorem Let $p_1, \ldots, p_k \in Z[x]$ be such that $p_i(0) = 0$. Let $c \in N$. Then $\exists W = W(p_1, \ldots, p_k; c)$ such that for all COL: $[W] \rightarrow [c] \exists a, d$, such that

 $a, a + p_1(d), \ldots, a + p_k(d)$ same col.

Notation 0.2. PVDW $(p_1(x), \ldots, p_k(x))$ means $\forall c \in \mathsf{N}, \exists W = W(p_1, \ldots, p_k; c)$ such that $\forall \text{ COL: } [W] \rightarrow [c] \exists a, d \text{ such that}$

 $a, a + p_1(d), \ldots, a + p_k(d)$ same col.

Notation 0.3. Let P be a finite subset of Z[x] such that $(\forall p \in P)[p(0) = 0]$. Assume the max degree of a poly is d. For $1 \leq i \leq d$ let n_i be the number of lead coefficients of polys in P of degree i. The *index* of P is $(n_d, n_{d-1}, \ldots, n_1)$.

- 1. $\{x^4, 2x^4 + x^3, x^2, 2x^2, 100x^2, x, 100000x\}$ has index (2, 0, 3, 2).
- 2. $\{x^3, x^3 + \Box_1 x^2 + \Box_2 x, x^2 + x, 3x, 4x, 10x : -10^{100} \le \Box_1, \Box_2 \le 10^{100}\}$ has index (1, 1, 3).

Notation 0.4.

- 1. We put an ordering on indices of the same length: $(m_d, \ldots, m_1) \leq (n_d, \ldots, n_1)$ if $(\forall i) [m_i \leq n_i]$.
- 2. We now allow ω as an entry in an index

Notation 0.5. For $n_d, \ldots, n_1 \in \mathsf{N} \cup \{\omega\}$ PVDW (n_d, \ldots, n_1) means $(\forall P \subseteq \mathsf{Z}[x]), P$ of index $\leq (n_d, \ldots, n_1),$ PVDW(P) is true.

- 1. VDW's Theorem is $PVDW(\omega)$.
- 2. The theorem about $a, a + d^2$ is PVDW(1, 0).