0.1 Quadratic VDW Theorem

We prove a lemma from which the Quadratic VDW Theorem will be obvious.

Lemma 0.1.1 Fix c throughout. For all r there exists U = U(r) such that for all c-colorings $\chi:[U] \to [c]$ one of the following statements holds. **Statement I:** $\exists a, d \in [U], \{a, a+d^2\}$ same color. **Statement II:** $\exists a, d_1, \ldots, d_r \in [U], \{a, a+d_1^2, a+d_2^2, \ldots, a+d_r^2\}$ diff colors.

Proof:

We define U(r) to be the least number such that this Lemma holds. We will prove U(r) exists by giving an upper bound on it. Base Case: r = 1. U(1) = 2.

If 1,2 are the same color take a = 1, d = 1.

If 1,2 are different colors take $a = 1, d_1 = 1$.

Induction Hypothesis Assume U(r) exists, and let **Induction Step:** Let $X = W(2U(r), c^{U(r)})$. We show that

$$U(r+1) \le (X \times U(r))^2 + X \times U(r).$$

Let χ be a *c*-coloring of

$$[(X \times U(r))^2 + X \times U(r)].$$

View this set as $(X \times U(r))^2$ consecutive elements followed by X blocks of length U(r). Let the last X blocks be

$$B_1, B_2, \ldots, B_X.$$

Restrict χ to the blocks. Let $\chi^*:[X] \to [c^{U(r)}]$ be the coloring viewed as a $c^{U(r)}$ -coloring of the blocks. By VDW applied to χ^* and the choice of X there exists $A, D' \in [X]$ such that

$$\{B_A, B_{A+D'}, \dots, B_{A+(k+2U(r))D'}\}$$
 same color.

Since the blocks viewed as points are D' apart, and each block has U(r) elements in it, corresponding elements in adjacent blocks are $D = D' \times U(r)$ numbers apart.

Consider the coloring of B_A . Since B_A is of size U(r) either there exists $a, d \in B_A$ such that

- $\exists a, d \text{ such that } a, a + d^2$ are the same color (we ignore this case since if it happens, we are done), or
- $\exists a, (d'_1)^2, \ldots, (d'_r)^2$ such that

 $a, a + (d'_1)^2, \ldots, a + (d'_r)^2$ are different colors. In this case we also have that, since the $B_A + jD$ are the same color as B_A , that for all $0 \le j \le X$

 $a+jD, a+d_1^2+jD, \ldots, a+d_r^2+jD$ are all different colors.

Let the new anchor be $a = a' - D^2$. Let $d_i = D + d'_i$ for all $1 \le i \le r$, and $d_{r+1} = D$. We show that these parameters work.

• $a - D^2$ and $a - D^2 + (D + d_1)^2$ are a square apart.

If they are the same color, we are done. If they are different colors then let $a - D^2 + (D + d_1)^2$ be colored c_1 .

• $a - D^2$ and $a - D^2 + (D + d_2)^2$ are a square apart.

If they are the same color, we are done. If they are different colors then let $a - D^2 + (D + d_2)^2$ be colored c_2 .

- : : :
- $a D^2$ and $a D^2 + (D + d_r)^2$ are a square apart.

If they are the same color, we are done. If they are different colors then let $a - d^2 + (D + d_r)^2$ be colored c_r .

• $a - D^2$ and a are a square apart.

If they are the same color, we are done. If they are different colors then let a be colored c_{r+1} .

We need to show that all of the c_i 's are different.

Look at $a - D^2 + (D - d_i)^2 = a + 2d_iD$. This is the same color as $a + d_i$. Hence for all $1 \le i < j \le r$ $c_i \ne c_j$.

What about c_{r+1} ? This is the color of a which we know is different from the color of any of the $a + d_i^2$ and hence for all $1 \le i \le r$, $c_i \ne c_{r+1}$.

 $\mathbf{2}$