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Recall Schur’s Thm

Thm (∀c)(∃S = S(c)) st ∀ COL : [S ]→[c] ∃x , y , z st

I COL(x) = COL(y) = COL(z)

I x + y = z

We proved using Ramsey’s Thm.

What about other equations?
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Terminology: Mono Solution

Def Let E (x1, . . . , xn) be an equation (e.g., x + y = z).

Let R, c ∈ N.
Let COL : [R]→[c].
A monochromatic solution (mono sol) is a tuple of numbers in
[R], (d1, . . . , dn) such that

1) d1, . . . , dn are all the same color.

2) E (d1, . . . , dn) is true.

A distinct monochromatic solution (d-mono sol) is a mono sol
where all of the elements are different.

We can restate Schur’s Thm
Thm (∀c)(∃S = S(c)) st ∀ COL : [S ]→[c] there is a mono sol to
x + y = z .

(We can modify the proof to get a d-mono sol.)
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Terminology: Regular

Def Let E (x1, . . . , xn) be an equation (e.g., x + y = z).
E is regular if the following is true:

(∀c ∈ N)(∃R ∈ N) ∀ COL : [R]→[c] there is a mono sol.

One can define d-regular with d-mono sol.

We can restate Schur’s Thm
Thm x + y = z is regular. (Can also show d-regular.)
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Thm 2w + 3x = 5y is regular.

This is a stupid thm.

Take x = y = z = 1. Or any x = y = z .
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2w + 3x = 5y

Thm 2w + 3x = 5y is d-regular.

Let c ∈ N. Use VDW’s thm with c and with k we pick later.
∃W for all COL : [W ]→[c] ∃a, d

a, a + d , . . . , a + (k − 1)d are all the same color

We pick 0 ≤W ,X ,Y ≤ k distinct later and then set
w = a + Wd x = a + Xd y = a + Yd
Good News: COL(w) = COL(x) = COL(y).
Want

2w + 3x = 5y

2(a + Wd) + 3(a + Xd) = 5(a + Yd)
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How We Get What We Want

Want
2w + 3x = 5y

2(a + Wd) + 3(a + Xd) = 5(a + Yd)

2a + 2Wd + 3a + 3Xd = 5a + 5Y WOW all of the a’s Drop out!

2Wd + 3Xd = 5Yd WOW all of the d ’s Drop out!

2W + 3X = 5Y

Could do W = 1, X = 1, Y = 1. But this causes x = y = z .

Will do W = 0, X = 5, Y = 3.

So get w = a x = a + 5d y = a + 3d .
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Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].

By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)

Done!



Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given c , let R = R(c) = W (6, c).

COL : [R]→[c].
By VDW ∃a, d , COL(a) = COL(a + d) = · · · = COL(a + 5d).

w = a x = a + 5d y = a + 3d

COL(a + d) = COL(a + 5d) = COL(a + 3d)

2(a) + 3(a + 5d) = 5(a + 3d)
Done!



What Was Special About 2w + 3x = 5y?

2w + 3x = 5y

Set w = a+Wd , x = a+Xd , y = a+Yd and the a’s dropped out.

Then all the d ’s dropped out so we go equation in just W ,X ,Y .

What is it about

2w + 3x = 5y

that made all of the a’s drop out? Discuss.
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Mini Rado Thm (Statement)

The key to 2w + 3x = 5y is that 2 + 3 = 5.

Can phrase as 2w + 3x − 5y = 0 and say sum of coefficients is 0.

Thm Let a1, . . . , am ∈ N and b1, . . . , bn ∈ N be st∑m
i=1 ai =

∑n
i=1 bi . Then∑m

i=1 aixi =
∑n

i=1 biyi is d-regular.
(One exception: x = y .)

We won’t prove this but you have seen most of the ideas needed to
prove it.
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Other Equations



2w + 3x = 5y + z

Thm 2w + 3x = 5y + z is d-regular.

Let c ∈ N.Use VDW’s thm with c and with k we pick later.
∃W for all COL[W ]→[c] ∃a, d

a, a + d , . . . , a + (k − 1)d are all the same color

We pick 0 ≤W ,X ,Y ,Z ≤ k later and then set
w = a + Wd x = a + Xd y = a + Yd z = a + Zd
Good News: COL(w) = COL(x) = COL(y) = COL(z).
Want

2w + 3x = 5y + z

2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)
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How We Get What We Want

Want
2w + 3x = 5y + z

2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (a + Zd)

2a + 2Wd + 3a + 3Xd = 5a + 5Yd + a + Zd

WOW Nothing drops out.
What to do? Discuss.

We would like to set z = Zd instead of z = a + Zd .

Need a Variant of VDW’s Thm.
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Extended VDW Thm



Extended VDW’s Thm

VDW’s Thm (∀k , c)(∃W = W (k , c) st ∀ COL : [W ]→[c] ∃a, d st

COL(a) = · · · = COL(a + (k − 1))d

What about d itself? Can it be the same colors as
a, a + d , . . . , a + (k − 1)d?

Extended VDW’s Thm
EVDW Thm (∀k, c)(∃E = E (k, c) st ∀ COL : [E ]→[c] ∃a, d st

COL(a) = · · · = COL(a + (k − 1)d) = COL(d)
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Proof of Extended VDW Thm

Pf. Ind on c .

E (k , 1) = k.
We show E (k, c) ≤W (kX , c) for a large X .

COL : [W (kX , c)]→[c].
By VDW there exists A,D:
A,A + D, . . . ,A + kXD is color (we can assume) c .
A,A + D, . . . ,A + (k − 1)D are color c . So COL(D) 6= c .

A,A + 2D, . . . ,A + 2(k − 1)D are c . So COL(2D) 6= c .

...
...

...
...

...
...

A,A + XD,A + 2XD, . . . ,A + (k − 1)XD. So
COL((k − 1)XD) 6= c.

D, 2D, . . . , (k − 1)XD use [c − 1], only c − 1 colors.
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Proof of Extended VDW Thm (cont)

D, 2D, . . . , (k − 1)XD use [c − 1].

Set X = E (k , c − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use [c − 1].
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists
a′, d ′
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a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.
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Real EVDW

What I presented above is NOT the EVDW. This is:

EVDW Thm
(∀k , c, e ∈ N)(∃E = E (k , e, c)(∀COL : [E ]→[c])(∃a, d) st

a, a + d , a + 2d , . . . , a + (k − 1)d , de

are all the same color.
This I leave to the reader.
We will only use the e = 1 case.
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Back to
2w + 3x = 5y + z



2w + 3x = 5y + z

Thm 2w + 3x = 5y + z is regular.

Let c ∈ N.Use EVDW’s thm with c and with k we pick later.
∃W for all COL[W ]→[c] ∃a, d

a, a + d , . . . , a + (k − 1)d , d are all the same color

We pick 0 ≤W ,X ,Y ,Z ≤ k later and then set
w = a + Wd x = a + Xd y = a + Yd z = Zd
Good News: COL(w) = COL(x) = COL(y) = COL(z).
Want

2w + 3x = 5y + z

2(a + Wd) + 3(a + Xd) = 5(a + Yd) + (Zd)
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How We Get What We Want
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2a + 2Wd + 3a + 3Xd = 5a + 5Yd + Zd WOW The a’s drop out.

2Wd + 3Xd = 5Yd + Zd WOW The d ’s drop out.

2W + 3X = 5Y + Z
We’ll take W = 2, X = 4, Y = 3, Z = 1

So take w = a + 2d x = a + 4d y = a + 3d z = d

So take EVDW with k = 5.

Done
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Rado’s Thm (Half of it)

Thm Let a1, . . . , ak ∈ Z be st some subset of the ai ’s sums to 0.
Then

a1x1 + · · ·+ akxk = 0 is regular.

We won’t prove. You have seen most of the ideas needed to prove
it.
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An Equation Where
Rado Fails



x + 2y = 4z

We define COL : N→[4] st

x + 2y = 4z has no mono solution.

COL(5ab) = b mod 5. Note that b 6= 0.

If a1, a2, a3 is a mono solution, say color is b.

a1 = 5e1b1 a2 = 5e2b2 a3 = 5e3b3

b1 ≡ b2 ≡ b3 ≡ b (mod 5)
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b1 + 2b2 = 4b3

Take this mod 5 to get 3b ≡ 4b so b ≡ 0 (mod 5) Contradiction.



What Was Special About x + 2y = 4z? About 5?

1. The proof used that NO subset of 1, 2,−4 sums to 0.

2. We used 5 since

2.1 We need a prime p
2.2 We needed 3b ≡ 0 (mod p) implies b ≡ 0 (mod p)

5 is the lowest such prime.
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Rado’s Thm (Other Half of it)

Thm Let a1, . . . , ak ∈ Z be st no subset of the ai ’s sums to 0.
a1x1 + · · ·+ akxk = 0
is not regular.

We will not prove this but you have all of the ideas you need to
prove it.
(The c-coloring that shows non-regularity uses c=the first prime
bigger then any sum of the coefficients.)
Research Question

1. For x + 2y = 4z what about 4-coloring? 3-coloring?
2-coloring?

2. More generally one can take an equation where no sum of the
coefficients is 0 and look at colorings with a small number of
colors.
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Full Rado

Full Rado Thm A linear equation
∑n

i=1 aixi = 0 is regular iff
some subset of the coefficient sum to 0.

(For most equations with the coefficients sum to 0 you actually get
d-regular.)
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Misc



Research Questions

(Some is known about some of these.)
Prove or disprove that the equations below are regular.

1.
∑n

i=1 aixi = A for some A.

2. Higher degree equations (seems hard).
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Other Equations

1. There is a matrix form of Rado which we omit.

2. Folkman’s Thm For all k, c there exists N = N(k , c) st for
all COL : [N]→[c] there exists a1, . . . , ak st ALL non-empty
sums of the ai ’s are the same color.

3. For all c there exists N = N(c) st for any COL : [N]→[c]
there is a mono solution to 16x2 + 9y2 = z2.

(This equation has certain properties that make it work, so
there is really a more general thm here.) http:

//fourier.math.uoc.gr/~ergodic/Slides/Host.pdf

http://fourier.math.uoc.gr/~ergodic/Slides/Host.pdf
http://fourier.math.uoc.gr/~ergodic/Slides/Host.pdf
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x2 + y2 = z2 Result by Heule&Kullmann&Marek

Thm There exists N st for any COL : [N]→[2] there is a mono
solution to x2 + y2 = z2.

Do we know what N is? We actually do!

I ∃ 2-col of [7824] w/o mono sol to x2 + y2 = z2.

I ∀ 2-col of [7825] ∃ mono sol to x2 + y2 = z2.

Thm proven by SAT-Solver. 200 terabytes: 2nd longest proof ever.
(See next slide for longest).

Research Questions
1) See how large and N you can color just with your laptop.
Greedy, Randomized Greedy, are worth trying. Does Rand-Greedy
do better? (I think so.)

2) Once you have done (1) try it out on other equations.

3) (Might be Hard) Obtain a human-readable proof with perhaps a
much bigger N, but which can be generalized to c = 3 and beyond.
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Longest Proof Ever (as of April 2026)

Let S(c) be the least number S such that for all

∀COL : [S ]→[c])(∃x , y , z ∈ [S ] Such That

x , y , z are the same color, and
x + y = z .

The following are known:
S(2) = 4
S(3) = 1e
S(4) = 44
The values of S(3) and S(4) were found in 1965 with the aid of a
computer; however, given when it was done, they could not have
used that much time or space.
In 2017 Heule showed S(5) = 160 with a SAT-SOLVER. The proof
takes two perabytes which is the largest proof currently.
The SAT Solver is described here:
https://arxiv.org/pdf/1711.08076
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