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The Erdös-Turan Conjecture

Def Let N ∈ N. Let A ⊆ [N]. The density of A is |A|/N.

Szemerédi’s Thm For all δ > 0, for all k , there exists
N = N(δ, k) such that the following holds:

If A ⊆ [N] and A has density ≥ δ then A has a k-AP.

We won’t do the (hard) proof. We will do:

1) Some easy cases, and

2) The k = 3 case which involves the Discrete Fourier Transform.
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An Easy Case

Thm Let N ≥ 3. Let A ⊆ [N] of density ≥ 0.67. Then A contains
a 3-AP.

We can assume N ≡ 0 (mod 3).
Look at

{1, 2, 3}, {4, 5, 6}, . . . , {N − 2,N − 1,N}.

Case 1 ∃x ≡ 1 (mod 3), {x , x + 1, x + 2} ∈ A. A has a 3-AP.

Case 2 ∀x ≡ 1 (mod 3), |{x , x + 1, x + 2} ∩ A| ≤ 2. Then

|A| ≤ 2× N
3 ≤ 0.667N < 0.67N

This contradicts A having density ≥ 0.67.

There may be a HW where you are asked to prove theorems like
the 0.67-Theorem.
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Roth’s Theorem

Roth’s Theorem For all δ > 0 there exists N = N(δ) such that
the following holds

For all A ⊆ [N] of density ≥ δ, A has a 3-AP.

The Intuition behind the proof will be short and clear.

The formal proof will be long and use interesting math.
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Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.
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How Will δ′ and δ Relate

What if the δ increase as follows;
δ,

δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...

Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always

< δ + δ100
∑∞

i=1
1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.

Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.

We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,
δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.



How Will δ′ and δ Relate?

We will later get δ′ ≥ δ + δ2

80 .

Let

δ0 = δ.

δn = δn−1 +
δ2n−1

80
Clearly δn is increasing.

Hence
δn ≥ δn−1 +

δ20
80 .

One can show by induction that

δn ≥ δ0 + n
δ20
80 .

Take n =
⌈
80
δ20

⌉
to get

δn ≥ δ0 + 1.

Hence limn→∞ δn =∞.
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We Will Operate in ZN , not [N]

We will prove the following:
Roth’s Theorem For all δ > 0 there exists N = N(δ) such that
the following holds

For all A ⊆ ZN of density ≥ δ, A has a 3-AP.

Objection! What if the 3-AP is N − 2,N − 1, 0? Then we don’t
have a 3-AP in [N] like we want to.

Next slide will deal with this, BUT WE WILL SKIP.
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Why ZN Is Fine

Roth’s Theorem For all δ > 0 there exists N = N(δ) such that
the following holds

For all A ⊆ ZN of density ≥ δ, A has a 3-AP.
We assume 3 divides N.

View A as
A ∩ {0, . . . ,N/3} ∪ {N/3 + 1, . . . , 2N/3} ∪ {2N/3, . . . ,N − 1}.
Case 1 The density of A ∩ {N/3 + 1, . . . , 2N/3} is ≥ δ/5. Then
do the proof on A ∩ {N/3 + 1, . . . , 2N/3} is ≥ δ/5. Will get a
legit 3-AP

Case 2 The density of A ∩ {N/3 + 1, . . . , 2N/3} is < δ/5. One
can show that either A∩ {0, . . . ,N/3} or A∩ {N/3 + 1, . . . , 2N/3}
is > δ (by enough so that if we keep doing this get > 0.67).
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Detour:
Discrete Fourier Transform



Discrete Fourier Transform

Discrete Fourier Transform (DFT) Let N ∈ N. Let

χ(x) = e
−2πix

N . Then, the DFT of a function f : ZN → C, denoted
as f̂ , is defined as:

f̂ (m) =
N−1∑
x=0

f (x)χ(−mx)

We use this with f being the indicator function of a set A ⊆ ZN .



Large and Small Fourier Coefficients

Let A ⊆ ZN . A as a 0-1 valued function in the obvious way.

Â(m) =
∑N−1

x=0 A(x)χ(−mx)

Note that Â(0) =
∑N−1

x=0 A(x)χ(0) =
∑N−1

x=0 A(x) = |A|.
Informal Fact
1) If maxx 6=0 Â(x) is small then A looks random.

2) If maxx 6=0 Â(x) is large then A looks non-random.
See next few slides for examples.
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Â(m) =
∑N−1

x=0 A(x)χ(−mx)

Note that Â(0) =
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Small Fourier Coefficients
Let A be the set of quadratic Residues mod 199. This is a
random-looking set.

Figure: Left: Summands of Â(1). Right: Summands of Â(3)

Left Â(1) =
∑198

x=0 A(x)χ(−x). The blue dots on the circle are the

summands. Note that they mostly cancel out, so Â(1) is small.

Right Â(3) =
∑198

x=0 A(x)χ(−3x). The blue dots on the circle are

the summands. Note that they mostly cancel out, so Â(3) is small.

All of the Â(m) for m 6= 0 are small.
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Large Fourier Coefficients

We look at a non-random set A and two of its Fourier Coefficients.

The set A is: formed as follows.

Take the union of the following sets.
{10, 20, . . . , 190} (an AP- not random)

{16, 26, 36, . . . , 186} (an AP- not random)

{17, 18, 59} (Some noise tossed in)
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Large Fourier Coefficients
Let A be the AP from the prior slide.

Figure: Left: Summands of Â(1). Right: Summands of Â(40)

Left Â(1) =
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x=0 A(x)χ(−x). The blue dots on the circle are the

summands. Note that they mostly cancel out, so Â(1) is small.

Right Â(40) =
∑198

x=0 A(x)χ(−40x). The blue dots on the circle
are the summands. Note that they mostly do not cancel out, so
Â(40) is large.

Non-Rand Since A is non-random, ∃m 6= 0, Â(m) large.
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Left Â(1) =
∑N

x=0 A(x)χ(−x). The blue dots on the circle are the

summands. Note that they mostly cancel out, so Â(1) is small.
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PROJECT-Write Programs For The Following

Random Sets Given N, Form A = QRN , the set of quad residues
mod N. Then find, ∀m ∈ A− {0}, Â(m). Find the max M Should
have M � |A|.

Non-Rand Sets Given N and a, d , L ∈ ZN (d , L 6= 0), first form

A = {a, a + d , . . . , a + Ld} The arithmetic is mod N .

Then find, ∀m ∈ A− {0}, Â(m). Find the max M. Should have M
large, perhaps close to |A|.

Non-Rand Sets? Given N and x , y , L ∈ ZN (d , L 6= 0), first form
A a random union of x AP’s of length y . Then find, ∀m ∈ A−{0},
Â(m). Find the max M. For which x , y is M small? large?



Plan For The Proof

Let Q be the number of 3-AP’s in A.

We will obtain

Q =
1

N
|B|2|A|+ E

where B = A ∩ [N3 ,
2N
3 ] and |E | ≤ maxm 6=0 |Â(m)||B|.

Case 1 B has low density. A ∩ [0, N3 − 1] or A ∩ [2N3 + 1,N] has
density > δ.

Case 2 B has high density > δ.

Case 3 B has medium density and maxm 6=0 |Â(m)| is “small”.
Then |Q| ≥ 1, so A has a 3-AP.

Case 4 maxm 6=0 |Â(m)| is “large.” There is a long AP P such that
A ∩ P has density > δ.
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Case 1 B has low density. A ∩ [0, N3 − 1] or A ∩ [2N3 + 1,N] has
density > δ.

Case 2 B has high density > δ.

Case 3 B has medium density and maxm 6=0 |Â(m)| is “small”.
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Initial Setup

1) We assume that N is odd so that 2 is invertible in ZN . If N is
even, we may replace N with N + 1 leading to a negligible change
in density.

2) Let B = A ∩ [N3 ,
2N
3 ).

3) If x , y , z is a 3-AP in ZN such that x + z ≡ 2y (mod N), with
x , y ∈ B and z ∈ A, then it is also a 3-AP in N.

4) Q be the number of 3-APs in A where x , y ∈ B.

5) We will express Q as a summation involving A and B.

6) We will express Q as a summation involving Â and B̂.
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Q As a Summation Involving A and B

All summations are from 0 to N − 1 with some conditions added.

Q =
∑

x ,y ,z,x+z≡2y B(x)B(y)A(z)

We want to have a summation without conditions.

Consider∑N−1
m=0

∑
x ,y ,z B(x)B(y)A(z)χ(−m(x + z − 2y))

When x + z = 2y , χ(−m(x + z − 2y)) = 1 so we get NQ as a
subsum.
One can show that all of the other terms cancel out.

Hence∑N−1
m=0

∑
x ,y ,z,m B(x)B(y)A(z)χ(−m(x + z − 2y)) = NQ

Q = 1
N

∑
x ,y ,z,m B(x)B(y)A(z)χ(−m(x + z − 2y))

We have Q in terms of A,B.
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Q = 1
N

∑
x ,y ,z,m B(x)B(y)A(z)χ(−m(x + z − 2y))

With some manipulation and the definitions one can obtain:

Q = 1
N

∑N−1
m=0 B̂(m)B̂(−2m)Â(m)
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Split the Sum Into a Big Part and an Error Term

Q = 1
N

∑N−1
m=0 B̂(m)B̂(−2m)Â(m)

Split the sum into two parts:

m = 0 We get 1
N

∑
m B̂(0)B̂(0)Â(0) = 1

N |B|
2|A|.

m 6= 0 We get 1
N

∑
m 6=0 B̂(m)B̂(−2m)Â(m)

We denote this sum by E for error.

Despite the name, it might be large.
If |E | is large and negative then you may get |Q| ≤ 0.

We will analyze E very carefully.
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Bounding |E | Using Elementary Math

E = 1
N

∑
m 6=0 B̂(m)B̂(−2m)Â(m)

In this talk I will SKIP the elementary but clever steps and go right
to the important bound on E ; however all of the steps are in the
slides. GOTO the slide titled RECAP AND FINAL BOUND ON
|E |.

E = 1
N

∑
m 6=0 Â(m)B̂(m)B̂(−2m)

|E | = 1
N

∑
m 6=0 |Â(m)|B̂(m)B̂(−2m)|

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m 6=0 |B̂(m)B̂(−2m)|

When m = 0, B̂(m)B̂(2m) = |B|2 ≥ 0. Since the last line is an
inequality we can add the m = 0 back into it.

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m |B̂(m)B̂(−2m)|
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Recall that Cauchy-Schwartz inequality
If x , y ∈ Cn, |

∑n
i=1 xiyi | ≤ (
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i=1 |x2i |)1/2(

∑n
i=1 |y2i |)1/2.

Apply this to
∑

m B̂(m)B̂(−2m)| to get

|E | ≤ 1
N maxm 6=0 |Â(m)|(

∑
m |B̂(m)2|)1/2(

∑
m |B̂(−2m)|2)1/2.
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∑
m |B̂(m)B̂(−2m)|

Recall that Cauchy-Schwartz inequality
If x , y ∈ Cn, |

∑n
i=1 xiyi | ≤ (

∑n
i=1 |x2i |)1/2(

∑n
i=1 |y2i |)1/2.

Apply this to
∑

m B̂(m)B̂(−2m)| to get

|E | ≤ 1
N maxm 6=0 |Â(m)|(
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Since 2 is invertible mod N we have

∑
m

|B̂(−2m)| =
∑
m

|B̂(m)|

Hence

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m |B̂(m)2|

We want to bound |
∑

m |B̂(m)2| in terms of B.
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∑
m |B̂(m)2|)1/2(

∑
m |B̂(−2m)|2)1/2.

Since 2 is invertible mod N we have

∑
m

|B̂(−2m)| =
∑
m

|B̂(m)|

Hence

|E | ≤ 1
N maxm 6=0 |Â(m)|
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We are done bounding |E |.



Bounding |E | Using Plancherel Theorem

|E | ≤ 1
N maxm 6=0 |Â(m)|
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∑

m B(m) ≤ maxm 6=0 |Â(m)||B|
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Four Cases

The proof now goes into four cases:

Case 1 |B| < |A|
5 . EASY to show A ∩ [0, N3 − 1] or A ∩ [2N3 ,N] has

density ≥ 6δ
5 . We omit.

Case 2 |B| > 11|A|
30 . EASY to show B has density 11δ

10 . We omit.

Case 3 |A|5 ≤ |B| ≤
11|A|
30 and maxm 6=0 |Â(m)| ≤ δ2N

10 . We show
that, if N is large enough, Q ≥ 1. This is not quite enough to get
a 3-AP in A but we will deal with that later.

Case 4 maxm 6=0 |Â(m)| > δ2N
10 . (We do not need info on |B|.). We

show there is a long AP P such that the density of A in P is
≥ δ + δ2

40 .

After the 4 cases we recap and see why we have the theorem.
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10 . We show
that, if N is large enough, Q ≥ 1. This is not quite enough to get
a 3-AP in A but we will deal with that later.

Case 4 maxm 6=0 |Â(m)| > δ2N
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Case 3: |A|
5
≤ |B| ≤ 11|A|

30
& maxm 6=0 |Â(m)| ≤ δ2N

10

|Q| = 1
N |B|

2|A|+ E . Always True.

|E | ≤ maxm 6=0 |Â(m)||B|. Always True.

Plan

We want to show Q ≥ 1 (This is not quite enough, but we deal
with it later.)

1) We use |B| ≥ |A|5 to show that 1
N |B|

2|A| is large.

2) We use |B| ≤ 11|A|
30 and maxm 6=0 Â(m)| ≤ δ2N

10 to show |E | is
small.
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10

|Q| = 1
N |B|

2|A|+ E . Always True.

|E | ≤ maxm 6=0 |Â(m)||B|. Always True.

Plan

We want to show Q ≥ 1 (This is not quite enough, but we deal
with it later.)

1) We use |B| ≥ |A|5 to show that 1
N |B|

2|A| is large.

2) We use |B| ≤ 11|A|
30 and maxm 6=0 Â(m)| ≤ δ2N
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1) Using |B| ≥ |A|
5

Since |B| ≥ |A|5 we have

1

N
|B|2|A| ≥ |A|

3

25N
.

Since |A| ≥ δN we have

|A|3

25N
≥ δ3N2

25
.

Upshot

1

N
|B|2|A| ≥ δ3N2

25
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2) Using |B| ≤ 11|A|
30

and maxm 6=0 |Â(m)| ≤ δ2N
10

|E | ≤ maxm 6=0 |Â(m)||B|.

Since maxm 6=0 |Â(m)| ≤ δ2N
10 and |B| ≤ 11|A|

30

|E | ≤ max
m 6=0
|Â(m)||B| ≤ δ2N

10
× 11|A|

30
≤ δ2N

10
× 11δN

30
=

11δ3N2

300
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Lower Bound on |Q|

|Q| = |B|2|A|+ E ≥ δ3N2

25
− 11δ3N2

300

Want N such that |Q| ≥ 1.

Here is the subtle point we alluded to earlier. Q is the set of all
3-AP’s in A. This includes 3-APs of the form x , x , x . So we really
want Q − |A| ≥ 1. Since |A| ∼ δN we really need Q − δN ≥ 1.
δ3N2

25 −
11δ3N2

300 − δN ≥ 1

( δ
3

25 −
11δ3

300 )N2 − δN ≥ 1

δ3

300N
2 − δN ≥ 1.

We leave it to the reader to determine N large enough so that this
inequality holds.
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3) Note that x > δ2N
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3) Note that x > δ2N
10

We will use these later.

We want a large AP P st A has density > δ in it.



Case 4: maxm 6=0 |Â(m)| > δ2N
10

1) Let r be such that |Â(r)| is maximized.
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10

1) Let r be such that |Â(r)| is maximized.
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10

1) Let r be such that |Â(r)| is maximized.
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The Difference d For The AP P We Seek

Let r be as on the last slide.

Divide ZN into roughly
√
N intervals of size roughly

√
N.

Map x ∈ ZN to the interval that rx (mod N) is in.

Pigeonhole Principle: ∃p < q that map to same interval.

Hence r(p − q) ≤
√
N (mod N). Let d = p − q.

We can assume
√
N
6 ∈ N.

Let P be the AP

{
−d
√
N

6
,
−d
√
N

6
+ d ,

−d
√
N

6
+ 2d , · · · , 0, d , 2d , · · · , d

√
N
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We need information on χ(−rx) as x ∈ P.
χ(−rx) = e2πirx/N

χ(−rx) depends on rx (mod N)

We know that rd ≤
√
N (mod N).

We know that |x | ≤ d
√
N

6 .
One can show from here that A∩P has high density. We omit this.
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Recap The Overview

Thm For any δ > 0, suppose N is ”sufficiently large” and let
A ⊆ [N] of density ≥ δ. Then A contains a 3-AP.

1) Proof for δ = 0.67.

2) Show that if A ⊆ [N] has density δ then either
a) A is random, so has at 3-AP.
b) A is not random. ∃ long AP P, A ∩ P has density > δ.

3) Measure randomness by Fourier coefficients. Next Slide.

4) Will operate in ZN instead of N.
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Fourier Coefficients

Let Q be the number of 3-AP’s in A.

Using a fancy triple sum and some math we obtained:

Q =
1

N
|B|2|A|+ E

where B = A ∩ [N3 ,
2N
3 ] and |E | ≤ maxm 6=0 |Â(m)||B|.

Case 1 |B| < |A|
5 . A ∩ [0, N3 ] or A ∩ [2N3 ,N] density> 6δ

5 .

Case 2 |B| < 11|A|
30 . B has density 11δ

10 .

Case 3 |A|5 ≤ |B| ≤
11|A|
30 and maxm 6=0 |Â(m)| ≤ δ2N

10 .

1) Use |B| ≥ |A|5 to show 1
N |B|

2|A| is large.

2) Use |B| ≤ 11|A|
30 and maxm 6=0 Â(m)| ≤ δ2N

10 to show |E | is small.
Together get |Q| ≥ 1.

Case 4 maxm 6=0 |Â(m)| > δ2N
10 . We show there is a long AP P

such that the density of A in P is ≥ δ + δ2

40 .
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All Later Results Used Same Philosophy

The two cases:

A looks random so has a 3-AP

A does not look random so a subset has higher density.

are the key to all later results, including Gowers.
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