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The Erdos-Turan Conjecture

Def Let N € N. Let A C [N]. The density of A is |A|/N.

Szemerédi's Thm For all § > 0, for all k, there exists
N = N(6, k) such that the following holds:
If AC [N] and A has density > 6 then A has a k-AP.

We won't do the (hard) proof. We will do:

1) Some easy cases, and
2) The k = 3 case which involves the Discrete Fourier Transform.
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An Easy Case

Thm Let N > 3. Let A C [N] of density > 0.67. Then A contains
a 3-AP.

We can assume N =0 (mod 3).

Look at

{1,2,3},{4,5,6},....{N—-2,N—1,N}.
Case 1 3x =1 (mod 3), {x,x+1,x+2} € A. A has a 3-AP.
Case 2Vx =1 (mod 3), [{x,x+1,x+2}NAl <2 Then

Al <2x ¥ <0.667N < 0.67N
This contradicts A having density > 0.67.

There may be a HW where you are asked to prove theorems like
the 0.67-Theorem.
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Roth’s Theorem For all § > 0 there exists N = N(J) such that
the following holds
For all A C [N] of density > §, A has a 3-AP.

The Intuition behind the proof will be short and clear.

The formal proof will be long and use interesting math.
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Intuition Behind Roth’s Theorem

Given A C [N] of density 0 we show one of the following happens.
1) A looks random. Then A will have a 3-AP.
2) There is a very large AP N’ C [N]

N ={a,a+d,...,a+ kd}
such that
AN N’ has density 6’ > & in N'.
Can view AN N’ as a denser-than-§ subset of N'.

Repeat this procedure until either you get the Random case or
the density is > 0.67.

Much of what | said here isn't quite right, but thats the intuition.
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How Will §’ and / Relate

What if the § increase as follows;

100
5+5

5100 6100
T T
S+ 5+ 5 + 55

Then density is always

< 54_5100221 % — 54_5100.

If § = % then density is always < % +
Much less than 0.67.

We increase § enough so that the density goes to oc.

1
10100 -
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How Will §’ and § Relate?

We will later get &' > 0 + %.
Let
do = 0.

52
5n = 5n—1 + 'é_l
Clearly 4§, is increasing.

Hence s

5n > 5n—1 + 3*0-

One can show by induction that
52

Op > 0o + nﬁ.

Take n = [%W to get

Op > 0o + 1.

Hence lim,,_ 0, = 00.
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We Will Operate in Zy, not [N]

We will prove the following:

Roth’s Theorem For all § > 0 there exists N = N(J) such that
the following holds

For all A C Zp of density > 6§, A has a 3-AP.

Objection! What if the 3-AP is N — 2, N — 1,07 Then we don’t
have a 3-AP in [N] like we want to.

Next slide will deal with this, BUT WE WILL SKIP.
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Why Zy Is Fine

Roth’s Theorem For all § > 0 there exists N = N(J) such that
the following holds

For all A C Zy of density > 6, A has a 3-AP.

We assume 3 divides M.

View A as

An{0,...,N/3} U{N/3+1,...,2N/3}U{2N/3,..., N — 1}.
Case 1 The density of AN{N/3+1,...,2N/3} is > §/5. Then
do the proof on AN{N/3+1,...,2N/3} is > 6/5. Will get a
legit 3-AP

Case 2 The density of AN{N/3+1,...,2N/3} is < /5. One
can show that either AN{0,...,N/3} or AN{N/3+1,...,2N/3}
is > ¢ (by enough so that if we keep doing this get > 0.67).
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Discrete Fourier Transform

Discrete Fourier Transform (DFT) Let N € N. Let

xX(x) = e~%". Then, the DFT of a function f : Zyn — C, denoted
as f, is defined as:

R N—-1
F(m) = F)x(—mx)
x=0

We use this with f being the indicator function of a set A C Zy.
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Large and Small Fourier Coefficients

Let AC Zp. A as a 0-1 valued function in the obvious way.
A(m) = 32350 AB)X(—mx)

Note that A(0) = S-1-3 AGx(0) = T3 Ax) = [Al
Informal Fact

o~

1) If max,o A(x) is small then A looks random.

~

2) If max,.o A(x) is large then A looks non-random.
See next few slides for examples.
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Small Fourier Coefficients
Let A be the set of quadratic Residues mod 199. This is a
random-looking set.

~ ~

Figure: Left: Summands of A(1). Right: Summands of A(3)

Left /3(1) = 2)1(9:80 A(x)x(—x). The blue dots on the circle are the

~

summands. Note that they mostly cancel out, so A(1) is small.
Right /3(3) = Z)l((fo A(x)x(—3x). The blue dots on the circle are

~

the summands. Note that they mostly cancel out, so A(3) is small.

~

All of the A(m) for m # 0 are small.
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Large Fourier Coefficients

We look at a non-random set A and two of its Fourier Coefficients.
The set A is: formed as follows.

Take the union of the following sets.
{10,20,...,190} (an AP- not random)

{16,26,36,...,186} (an AP- not random)
{17,18,59} (Some noise tossed in)
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Large Fourier Coefficients
Let A be the AP from the prior slide.

Terms e~(-2ni mx / 199) on the Unit Circle (m=40)
Terms or me

o~ ~

Figure: Left: Summands of A(1). Right: Summands of A(40)

Left A\(l) = Zy:o A(x)x(—x). The blue dots on the circle are the

~

summands. Note that they mostly cancel out, so A(1) is small.

Right /3(40) = 2)1((‘;:80 A(x)x(—40x). The blue dots on the circle
are the summands. Note that they mostly do not cancel out, so

~

A(40) is large.
Non-Rand Since A is non-random, 3m # 0, Z(m) large.



PROJECT-Write Programs For The Following

Random Sets Given N, Form A = QRN, the set of quad residues

mod N. Then find, Vm € A— {0}, A(m). Find the max M Should
have M < |A|.

Non-Rand Sets Given N and a,d,L € Zy (d, L # 0), first form

A={a,a+d,...,a+ Ld} The arithmetic is mod N .

~

Then find, Vm € A— {0}, A(m). Find the max M. Should have M
large, perhaps close to |A|.

Non-Rand Sets? Given N and x,y,L € Zy (d, L # 0), first form
A a random union of x AP's of length y. Then find, Ym € A— {0},
A(m). Find the max M. For which x,y is M small? large?
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Plan For The Proof

Let @ be the number of 3-AP’s in A. We will obtain

Q= %\BF!A\ LE
where B = AN [Y, 2V] and |E| < maxmzo |A(m)||B].
Case 1 B has low density. AN[0,5 —1] or AN[2¥ + 1, N] has
density > 9.
Case 2 B has high density > §.

Case 3 B has medium density and maxy,o |A(m)] is “small”.
Then |Q| > 1, so A has a 3-AP.

~

Case 4 maxm,.o |A(m)| is “large.” There is a long AP P such that
AN P has density > 6.

~
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Initial Setup

1) We assume that N is odd so that 2 is invertible in Zy. If N is
even, we may replace N with N 4 1 leading to a negligible change
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@ As a Summation Involving A and B

All summations are from 0 to N — 1 with some conditions added.
Q = Zx7y7z7x+zE2y B(X)B(y)A(Z)

We want to have a summation without conditions.

Consider

S om=6 Yony.z BOOBMAZ)X(—m(x + z - 2y))

When x +z =2y, x(—m(x+ z —2y)) =1 so we get NQ as a
subsum.

One can show that all of the other terms cancel out.

Hence
Ym0 Yony.zim BOBA@)X(=m(x + 2 — 2y)) = NQ

Q=4 Xyzm B)BY)AZ)X(—m(x + z — 2y))
We have Q in terms of A, B.
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= % Y4 B(m)B(—2m)A(m)
Split the sum into two parts:
m =0 We get &3 B(0)B(0)A(0) = 4|B[?|A].

~

m # 0 We get 4 3,0 B(m)B(~2m)A(m)
We denote this sum by E for error.

Despite the name, it might be large.
If |E| is large and negative then you may get |Q| < 0.

We will analyze E very carefully.
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|EJ < maxmzo |A(m)|(3,, [B(m)X)V2(3,, | B(—2m)2)V/2.

Since 2 is invertible mod N we have

ST 1B(=2m)| =Y |B(m)|
Hence
|E| < & maxmzo |A(m)| 3, [B(m)?|

We want to bound |}, |§(m)2] in terms of B.



Bounding |E| Using Plancherel Theorem

|E| < & maxmzo |A(m)| 3, 1B(m)?|



Bounding |E| Using Plancherel Theorem

|E| < & maxmzo |A(m)| 3, 1B(m)?|

“Recall” Plancherel Theorem



Bounding |E| Using Plancherel Theorem

|E| < & maxmzo |A(m)| 3, 1B(m)?|

“Recall” Plancherel Theorem
Y vezy [FO)P = § ez, IF(m)?



Bounding |E| Using Plancherel Theorem

|E| S % maxm7é0 |A(m)| Zm |B(m)2|

“Recall” Plancherel Theorem

ZXEZN |f(X) 2 = % ZITIEZN |f(m)|2
In the case where f is an indicator function for a set we get



Bounding |E| Using Plancherel Theorem

‘E| S % maxm7é0 |A(m)| Zm |B(m)2|

“Recall” Plancherel Theorem

ZXEZN |f(X) 2 = % ZITIEZN |f(m)|2
In the case where f is an indicator function for a set we get

ez, F() = & S ez, [F(m)



Bounding |E| Using Plancherel Theorem

‘E| S % maxm7é0 |A(m)| Zm |B(m)2|

“Recall” Plancherel Theorem

ZXEZN |f(X) 2 = % ZmeZN |f(m)|2
In the case where f is an indicator function for a set we get

ez, F() = & S ez, [F(m)

Apply this to & 5 - |F(m)|? to get



Bounding |E| Using Plancherel Theorem

‘E| S % maxm7é0 |A(m)| Zm |B(m)2’

“Recall” Plancherel Theorem

ZXEZN |f(X) 2 = % ZmeZN |f(m)|2
In the case where f is an indicator function for a set we get

ez, F() = & S ez, [F(m)

Apply this to & 5 - |F(m)|? to get

|E[ < maxmzo [A(m)[ 22, B(m) < maxmzo [A(m)][ B



Bounding |E| Using Plancherel Theorem

‘E| S % maxm7é0 |A(m)| Zm |B(m)2’

“Recall” Plancherel Theorem

ZXEZN |f(X) 2 = % ZmeZN |f(m)|2
In the case where f is an indicator function for a set we get

ez, F() = & S ez, [F(m)

Apply this to & 5 - |F(m)|? to get

|E| < maxmzo |A(m)] 22, B(m) < maxmzo [A(m)]|B
We are done bounding |E]|.
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~

|E| < maxmzo |A(m)]|B|
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The proof now goes into four cases:

Case 1 |B| < 14l EASY to show AN[0, ¥ — 1] or AN[2Y, N] has
density > %‘5. We omit.

Case 2 |B| > lllA‘ . EASY to show B has density 5 11‘5 . We omit.

Case 3 %‘ <|B| < % and maxmo |A(m)| < %. We show
that, if N is large enough, @ > 1. This is not quite enough to get
a 3-AP in A but we will deal with that later.

Case 4 maxmo \Z( )| > &N (We do not need info on |B].). W.

show there is a long AP P such that the density of Ain P is
52

>0+ 75

After the 4 cases we recap and see why we have the theorem.
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Case 3: %'4' <|B| < 11| | & MaXms£o |A(m)| < ZN

|Q| = %|B|?|A| + E. Always True.
|E| < maxmzo |A(m)||B|. Always True.
Plan
We want to show Q@ > 1 (This is not quite enough, but we deal
with it later.)
1) We use |B| > ﬂ to show that | B[2|A] is large.
2) We use |B| < 11|A| and maxmﬂ)ﬁ( )| < 5 N to show |E| is
small.
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1) Using |B| > 14l

Since |B| > %‘ we have

1 A[°
~|BI?|A] > .
N’ IF1Al 2 25N
Since |A| > 0N we have
|A]3 - §3N2
25N — 25
Upshot
1 §3N2
~|B?|A| > :
LIBRIAI > 28
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2) Using |B| < and maxyo |A(m)| < 57

|E| < maximzo |A(m)||B].
Since maxmo |A(m)| < &N and |B| < BA

0N LAl _ N 116N _ 116°N?2

E| < max|A(m)||B| < _
El < maxlAmIIBI< 75" % 5~ =79 * 30 = 300
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53 N2 B 1153N2
25 300

Q= |BI*|A] + E >

Want N such that |Q| > 1.

Here is the subtle point we alluded to earlier. @ is the set of all
3-AP’s in A. This includes 3-APs of the form x, x, x. So we really
want Q — |A| > 1. Since |A| ~ 0N we really need Q@ — N > 1.
BN2  1183N% SN > 1

25 300
53 1183\ ps2
(g——wo)N —o0N>1

SN2 -GN > 1.
We leave it to the reader to determine N large enough so that this
inequality holds.
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o~

1) Let r be such that |A(r)| is maximized.

2) Let x = |A(r)|.
3) Note that x > ‘%V

We will use these later.

We want a large AP P st A has density > § in it.
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Let r be as on the last slide.

Divide Zy into roughly v/N intervals of size roughly v/N.
Map x € Zy to the interval that rx (mod N) is in.
Pigeonhole Principle: dp < g that map to same interval.
Hence r(p — q) <V/N (mod N). Let d = p — gq.

We can assume @ eN.
Let P be the AP

{_dgm, _dg/Ner, _dgm+2d,--- ,0,d,2d,- - ,d‘fsm.}



DFT of P

Pis

{—dgm’ —dier’ —dgm+2d7_,_ 0.d.2d, - d\6m}



DFT of P

Pis

{—dgm’ —dier’ —dgm+2d7_,_ 0.d.2d, - C’\GW}

We need information on x(—rx) as x € P.



DFT of P

Pis

—dvN —dv/N —dv'N
6 = 6 +d, 6

We need information on x(—rx) as x € P.
X(*rX) — g2mirx/N

+2d,---,0,d,2d, - --



DFT of P

Pis

d
6 6+’6

{—dm —dvN —dv/N

We need information on x(—rx) as x € P.
X(*rX) — g2mirx/N

X(—rx) depends on rx (mod N)

+2d,---,0,d,2d, - --



DFT of P

Pis

d
6 6+’6

{—dm —dvN —dv/N

We need information on x(—rx) as x € P.
X(*rX) — g2mirx/N

X(—rx) depends on rx (mod N)

We know that rd < /N (mod N).

+2d,---,0,d,2d, - --



DFT of P

Pis

+d,

—dvVN —dv/N —dv/N
{ 6 ' 6 6

We need information on x(—rx) as x € P.
X(er) — g2mirx/N

X(—rx) depends on rx (mod N)

We know that rd < /N (mod N).

We know that |x| < @.

+2d,---,0,d,2d, - --



DFT of P

Pis

+d, +2d,---,0,d,2d, -+, —e.

{—d\W’ —dv'N —dv/N dv'N }
6 6 6

We need information on x(—rx) as x € P.
X(*rX) — g2mirx/N

X(—rx) depends on rx (mod N)

We know that rd < /N (mod N).

We know that |x| < @.
One can show from here that AN P has high density. We omit this.
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Recap The Overview

Thm For any § > 0, suppose N is "sufficiently large” and let
A C [N] of density > . Then A contains a 3-AP.

1) Proof for 6 = 0.67.

2) Show that if A C [N] has density 0 then either
a) Ais random, so has at 3-AP.
b) A is not random. 3 long AP P, AN P has density > .

)
3) Measure randomness by Fourier coefficients. Next Slide.
4) Will operate in Zy instead of N.



Fourier Coefficients

Let @ be the number of 3-AP’s in A.



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BP?|A|+ E
Q= yIBIFIAl+



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BP?|A|+ E
Q= yIBIFIAl+

where B= AN [%, %] and |E| < maxmzg \,Z\\(m)HB|



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BP?|A|+ E
Q= yIBIFIAl+

where B = AN [%, %] and |E| < maxmzg \/Z\\(m)HB|
Case 1 |B] < 4l An[0, 4] or AN [2Y, N] density> 5.



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BP?|A|+ E
Q= yIBIFIAl+

where B = AN [%, %] and |E| < maxmzg \/Z\\(m)HB|
Case 1 |B] < 4l An[0, 4] or AN [2Y, N] density> 5.

Case 2 |B| < 11|A‘ B has density 3 115



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BI’|A|+ E
Q= yIBIFIAl+

where B = AN [%, %] and |E| < maxmzg \/Z\\(m)HB|
Case 1 |B] < 4l An[0, 4] or AN [2Y, N] density> 5.
Case 2 |B| < 11|A‘ B has density 3 115

Case 3 14l < \B[ < LA and maxo |A(m)] < ZN.



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BI’|A|+ E
Q= yIBIFIAl+

where B = AN [%, %] and |E| < maxmzg \/Z\\(m)HB|
Case 1 |B] < 4l An[0, 4] or AN [2Y, N] density> 5.
Case 2 |B| < 11|A‘ B has density 3 115

Case 3 14l < \B[ < LA and maxo |A(m)] < ZN.

1) Use |B| > @ to show % |B|?|A| is large.



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BI’|A|+ E
Q= yIBIFIAl+

where B = AN [%, %] and |E| < maxmzg \/Z\\(m)HB|
Case 1 |B] < 4l An[0, 4] or AN [2Y, N] density> 5.
Case 2 |B| < 11|A‘ B has density 3 115
Case 3 @ < \B[ < % and maxgmo |A(m)| < 5;—(’)\’.
Use |B| > ‘A| to show &|B|?|A| is large.
1) | N g
2) Use |B| < 11|A| and maxm.o /Z( )| < 5 N to show |E| is small.

Together get \Q| > 1.



Fourier Coefficients

Let @ be the number of 3-AP’s in A.
Using a fancy triple sum and some math we obtained:

1
= —|BI’|A|+ E
Q= yIBIFIAl+

where B= AN [%, %] and |E| < maxmzg \,Z\\(m)HB|

Case 1 |B] < 4l An[0, 4] or AN [2Y, N] density> 5.
Case 2 |B| < 11|A‘ B has density 3 115
Case 3 @ < \B[ < % and maxgmo |A(m)| < 5;—(’)\’.
1) Use |B| > ‘A| to show % |B|?|A| is large.
2) Use |B| < 11|A| and maxm.o E( )| < 5 N to show |E| is small.

Together get \Q| > 1.
Case 4 maxmo |/K( )| > 1(’)\’ We show there is a long AP P

such that the density of Ain Pis > § + 40
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All Later Results Used Same Philosophy

The two cases:
A looks random so has a 3-AP
A does not look random so a subset has higher density.

are the key to all later results, including Gowers.



