Small Poly VDW Numbers

April 10, 2025

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

The following are all true:

1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

The following are all true:

- 1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
- 2. There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.

The following are all true:

- 1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
- 2. There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.
- 3. There exists a number W_4 such that, for all 4-colorings of $\{1, \ldots, W_4\}$ there exists two nums, square-apart, same color.

The following are all true:

- 1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
- 2. There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.
- There exists a number W₄ such that, for all 4-colorings of {1,..., W₄} there exists two nums, square-apart, same color.

4. For all c there exists a number $W_c \ldots$

For all c there exists a number W_c such that for all c-colorings of $\{1, \ldots, W_c\}$ there exists two nums, square-apart, same color.

For all c there exists a number W_c such that for all c-colorings of $\{1, \ldots, W_c\}$ there exists two nums, square-apart, same color.

The proofs in the literature of these theorems give EEEEEEEEENORMOUS bounds on W_2 , W_3 , W_4 , W_c . We look at easier proofs with two **points** in mind:

Would they be good questions on a HS math competition?

Which proofs do you prefer?

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings **R** and **B**. We can assume $COL(1) = \mathbf{R}$.

ション ふゆ アメリア メリア しょうくしゃ

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings **R** and **B**. We can assume $COL(1) = \mathbf{R}$. Since 1 is a square $COL(2) = \mathbf{B}$.

ション ふゆ アメリア メリア しょうくしゃ

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings **R** and **B**. We can assume $COL(1) = \mathbf{R}$. Since 1 is a square $COL(2) = \mathbf{B}$. Since 1 is a square $COL(3) = \mathbf{R}$.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings R and B. We can assume COL(1) = R. Since 1 is a square COL(2) = B. Since 1 is a square COL(3) = R. Since 1 is a square COL(4) = B.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings R and B. We can assume COL(1) = R. Since 1 is a square COL(2) = B. Since 1 is a square COL(3) = R. Since 1 is a square COL(4) = B. Since 1 is a square COL(4) = R.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings R and B. We can assume COL(1) = R. Since 1 is a square COL(2) = B. Since 1 is a square COL(3) = R. Since 1 is a square COL(4) = B. Since 1 is a square COL(4) = B. AH-HA: COL(1) = COL(5) = R.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings **R** and **B**. We can assume COL(1) = **R**. Since 1 is a square COL(2) = **B**. Since 1 is a square COL(3) = **R**. Since 1 is a square COL(4) = **B**. Since 1 is a square COL(5) = **R**. AH-HA: COL(1) = COL(5) and $5 - 1 = 4 = 2^2$. So $W_2 \le 5$. AH-HA: **RBRB** shows that $W_2 \le 5$.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings R and B. We can assume COL(1) = R. Since 1 is a square COL(2) = B. Since 1 is a square COL(3) = R. Since 1 is a square COL(4) = B. Since 1 is a square COL(4) = B. Since 1 is a square COL(5) = R. AH-HA: COL(1) = COL(5) and $5 - 1 = 4 = 2^2$. So $W_2 \le 5$. AH-HA: RBRB shows that $W_2 \le 5$. So $W_2 = 4$.

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2 .

Let COL be a 2-coloring of $\{1, 2, 3, ...\}$ with colorings **R** and **B**. We can assume $COL(1) = \mathbf{R}$. Since 1 is a square COL(2) = B. Since 1 is a square $COL(3) = \mathbb{R}$. Since 1 is a square COL(4) = B. Since 1 is a square $COL(5) = \mathbf{R}$. AH-HA: COL(1) = COL(5) and $5 - 1 = 4 = 2^2$. So $W_2 < 5$. AH-HA: **RBRB** shows that $W_2 < 5$. So $W_2 = 4$. **Upshot** Could be easy HS Math Comp Prob. No computer used.

There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.

There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_3 .

There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_3 .

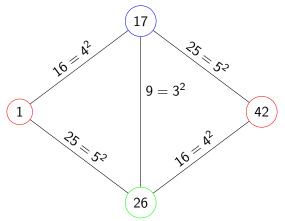


Figure: $\operatorname{COL}(x) = \operatorname{COL}(x + 41)$, and the set of x + 41.

Use COL(x) = COL(x + 41) to finish the proof and find upper bound on W_3 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Use COL(x) = COL(x + 41) to finish the proof and find upper bound on W_3 .

 $\operatorname{COL}(1) = \operatorname{COL}(1+41) = \operatorname{COL}(1+2\times41) = \cdots = \operatorname{COL}(1+41\times41)$

イロト 不得 トイヨト イヨト ヨー ろくで

Use COL(x) = COL(x + 41) to finish the proof and find upper bound on W_3 .

$$\operatorname{COL}(1) = \operatorname{COL}(1+41) = \operatorname{COL}(1+2\times41) = \cdots = \operatorname{COL}(1+41\times41)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

So 1 and 41^2 are a square apart and the same color. $\mathit{W}_3 \leq 1+41^2=1682$

Use COL(x) = COL(x + 41) to finish the proof and find upper bound on W_3 .

$$\operatorname{COL}(1) = \operatorname{COL}(1+41) = \operatorname{COL}(1+2\times41) = \cdots = \operatorname{COL}(1+41\times41)$$

ション ふゆ アメリア メリア しょうくしゃ

So 1 and 41² are a square apart and the same color. $W_3 \le 1 + 41^2 = 1682$ Can we get better bound on W_3 ?

Better Bound on W₃

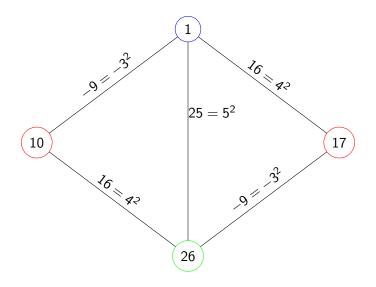


Figure: If $x \ge 10$ then COL(x) = COL(x+7), so $W_3 \le 59$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

 Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of {1,...,2006} there exists 2 numbers that are a square apart that are the same color

Reflection on W₃, W₄

 Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of {1,...,2006} there exists 2 numbers that are a square apart that are the same color

ション ふゆ アメリア メリア しょうくしゃ

2. 240 took exam, 40 tried this problem, 10 got it right.

Reflection on W₃, W₄

- Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of {1,..., 2006} there exists 2 numbers that are a square apart that are the same color
- 2. 240 took exam, 40 tried this problem, 10 got it right.
- 3. Bill Gasarch and Matt Jordan proved, by hand, $W_3 = 29$.

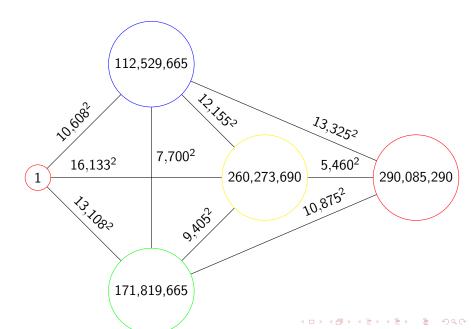
ション ふゆ アメリア メリア しょうくしゃ

- Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of {1,...,2006} there exists 2 numbers that are a square apart that are the same color
- 2. 240 took exam, 40 tried this problem, 10 got it right.
- 3. Bill Gasarch and Matt Jordan proved, by hand, $W_3 = 29$.
- 4. Is there a HS-proof that *W*₄ exists? Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told **NO**.

- Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of {1,...,2006} there exists 2 numbers that are a square apart that are the same color
- 2. 240 took exam, 40 tried this problem, 10 got it right.
- 3. Bill Gasarch and Matt Jordan proved, by hand, $W_3 = 29$.
- 4. Is there a HS-proof that *W*₄ exists? Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told **NO**.
- 5. The question still remains: Is there a HS proof that W_4 exists?

- Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of {1,...,2006} there exists 2 numbers that are a square apart that are the same color
- 2. 240 took exam, 40 tried this problem, 10 got it right.
- 3. Bill Gasarch and Matt Jordan proved, by hand, $W_3 = 29$.
- 4. Is there a HS-proof that *W*₄ exists? Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told **NO**.
- 5. The question still remains: Is there a HS proof that W_4 exists? YES. Discovered by Zach Price in 2019 via clever computer search. Next slide.

 W_4 Exists: COL(x) = COL(x + 290, 085, 290)



Reflection on W₄

- Zach's proof shows W₄ ≤ 1 + 299, 085, 290².
 PRO Proof is easy to verify
 CON Number is large, proof does not generalize to W₅.
- The classical proof.
 PRO Gives bounds for W_c.
 CON Bounds are GINORMOUS, even for W₂.
- 3. A Computer Search showed that $W_4 = 58$. **PRO** Get exact value.

CON not human-verifiable. Does not generalize to W_5 .

Which do you prefer?