BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Small Ramsey Numbers-For HS

Exposition by William Gasarch

April 8, 2025

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

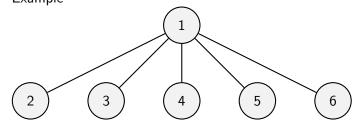
If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We define graphs and complete graphs and state this theorem in those terms.

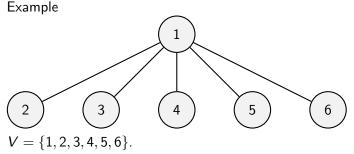
Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

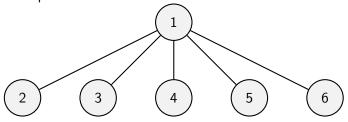
Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example



Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.



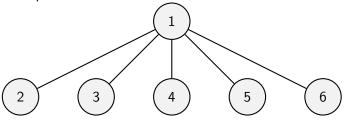
Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example



$$V = \{1, 2, 3, 4, 5, 6\}.$$

$$E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}\}.$$

Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

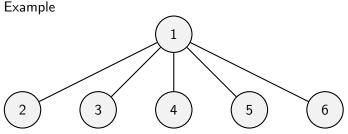


$$V = \{1, 2, 3, 4, 5, 6\}.$$

$$E = \{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}\}.$$

Def The **degree** (**deg**) of a vertex is how many edges use it.

Def A **Graph** G = (V, E) is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.



$$V = \{1, 2, 3, 4, 5, 6\}.$$

$$E=\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}\}.$$

Def The **degree** (**deg**) of a vertex is how many edges use it.

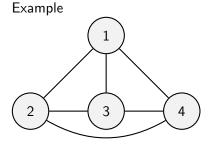
In the above graph deg(1) = 5 and

$$\deg(2) = \deg(3) = \deg(4) = \deg(5) = \deg(6) = 1.$$

Def The **Complete Graph on** n **Vertices**, denoted K_n , is $V = \{1, ..., n\}$ and E is **all** possible edges.

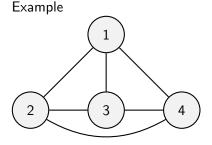
Def The **Complete Graph on** n **Vertices**, denoted K_n , is $V = \{1, ..., n\}$ and E is **all** possible edges. Example

Def The **Complete Graph on** n **Vertices**, denoted K_n , is $V = \{1, ..., n\}$ and E is **all** possible edges.



This graph is K_4 .

Def The **Complete Graph on** n **Vertices**, denoted K_n , is $V = \{1, ..., n\}$ and E is **all** possible edges.



This graph is K_4 .

Note Every vertex of K_n has degree n-1.

Below is standard notation which you may or may not have seen.

Below is standard notation which you may or may not have seen.

Thats a tautology!

Below is standard notation which you may or may not have seen.

Thats a tautology!

Notation

Below is standard notation which you may or may not have seen.

Thats a tautology!

Notation

▶ ∃ means there exists

Below is standard notation which you may or may not have seen.

Thats a tautology!

Notation

- ▶ ∃ means there exists
- ▶ ∀ means for all

Def Let G = (V, E) be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If |U| = k then we may call U a k-clique.

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If |U| = k then we may call U a k-clique.
- 3. If the edges of *G* are 2-colored with **RED** and **BLUE**, and all of the edges between verts of *U* are **RED** then we call *U* a **Red Clique**. Similar for **Blue**.

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If |U| = k then we may call U a k-clique.
- 3. If the edges of *G* are 2-colored with **RED** and **BLUE**, and all of the edges between verts of *U* are **RED** then we call *U* a **Red Clique**. Similar for **Blue**.
- 4. If I formed a rock band it would be called

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If |U| = k then we may call U a k-clique.
- 3. If the edges of *G* are 2-colored with **RED** and **BLUE**, and all of the edges between verts of *U* are **RED** then we call *U* a **Red Clique**. Similar for **Blue**.
- 4. If I formed a rock band it would be called **Bill Gasarch and the Red Cliques!**

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

From now on we use mono for monochromatic

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

From now on we use **mono** for **monochromatic**We could state that as \forall 2-coloring of the edges of $K_6 \exists$ a mono K_3 (triangle).

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

From now on we use **mono** for **monochromatic**

We could state that as

 \forall 2-coloring of the edges of $K_6 \exists$ a mono K_3 (triangle).

We could state that as

 \forall 2-coloring of the edges of $K_6 \exists$ a mono 3-clique (triangle).

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

From now on we use **mono** for **monochromatic**

We could state that as

 \forall 2-coloring of the edges of $K_6 \exists$ a mono K_3 (triangle).

We could state that as

 \forall 2-coloring of the edges of $K_6 \exists$ a mono 3-clique (triangle).

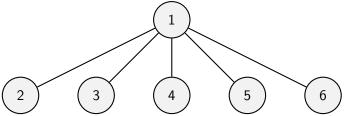
We prove this in the next few slides.

The First Theorem in Ramsey Theory

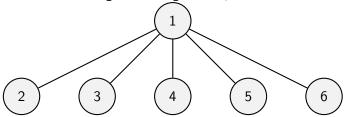
Thm For all 2-colorings of the edges of K_6 there is a mono K_3 .

Given a 2-coloring of the edges of K_6 we look at vertex 1.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

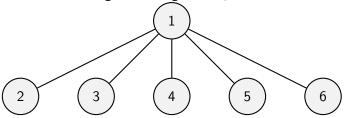


Given a 2-coloring of the edges of K_6 we look at vertex 1.



There are 5 edges coming out of vertex 1.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

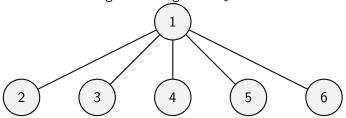


There are 5 edges coming out of vertex 1.

They are 2 colored.

Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.



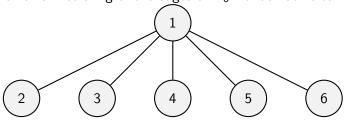
There are 5 edges coming out of vertex 1.

They are 2 colored.

 \exists 3 edges from vertex 1 that are the same color.

Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.



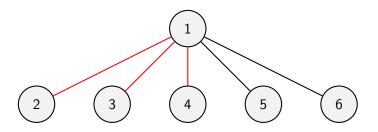
There are 5 edges coming out of vertex 1.

They are 2 colored.

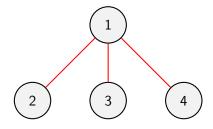
 \exists 3 edges from vertex 1 that are the same color.

We can assume (1,2), (1,3), (1,4) are all **RED**.

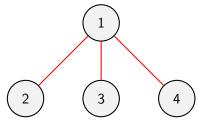
(1,2), (1,3), (1,4) are RED



We Look Just at Vertices 1,2,3,4



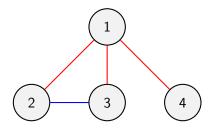
We Look Just at Vertices 1,2,3,4



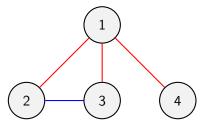
If (2,3) is **RED** then get **RED** Triangle. So assume (2,3) is **BLUE**.

(2,3) is **BLUE**

(2,3) is **BLUE**



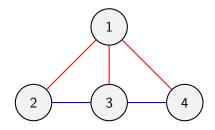
(2,3) is **BLUE**



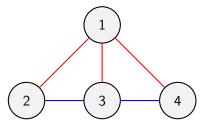
If (3,4) is **RED** then get **RED** triangle. So assume (3,4) is **BLUE**.

(2,3) and (3,4) are **BLUE**

(2,3) and (3,4) are **BLUE**



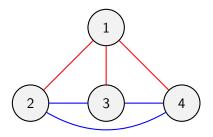
(2,3) and (3,4) are **BLUE**



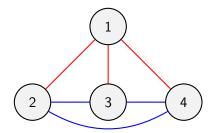
If (2,4) is **RED** then get **RED** triangle. So assume (2,4) is **BLUE**.

(2,4) is **BLUE**

(2,4) is **BLUE**



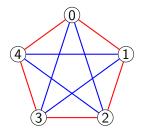
(2,4) is **BLUE**



Note that there is a **BLUE** triangle with verts 2, 3, 4. Done!

What If We Color Edges Of K_5 ?

What If We Color Edges Of K_5 ?

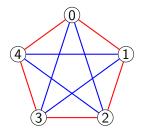


This graph is not arbitrary.

$$\mathrm{SQ}_5 = \{x^2 \text{ (mod 5)}: 0 \leq x \leq 4\} = \{0, 1, 4\}.$$

- ▶ If $i j \in SQ_5$ then **RED**.
- ▶ If $i j \notin SQ_5$ then **BLUE**.

What If We Color Edges Of K_5 ?



This graph is not arbitrary.

$$SQ_5 = \{x^2 \pmod{5} : 0 \le x \le 4\} = \{0, 1, 4\}.$$

- ▶ If $i j \in SQ_5$ then **RED**.
- ▶ If $i j \notin SQ_5$ then **BLUE**.

Two ways to show no mono \triangle s on next slide.

Need to show there are no mono \triangle .

Need to show there are no mono \triangle .

Method 1

Need to show there are no mono \triangle .

Method 1

The \mathbb{R} edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbb{R}$.

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbf{B}$.

Need to show there are no mono \triangle .

Method 1

The **R** edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbf{R}$. The **B** edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbf{B}$. **PRO** Easy Proof.

No Mono ∧s

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x)=\mathrm{COL}(0,1)=R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x)=\mathrm{COL}(0,1)=B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbf{R}$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = \mathbf{B}$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2$, $b - c \equiv y^2$, $c - a \equiv z^2$.

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

Method 2 All \equiv are mod 5.

1) Assume a,b,c form a \triangle . Then $a-b,b-c,c-a\in\mathrm{SQ}_5$. $a-b\equiv x^2,\ b-c\equiv y^2,\ c-a\equiv z^2.$ $x^2+y^2+z^2\equiv 0.$

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

Method 2 All \equiv are mod 5.

1) Assume a, b, c form a \triangle . Then $a - b, b - c, c - a \in SQ_5$. $a - b \equiv x^2, b - c \equiv y^2, c - a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0.

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

- 1) Assume a, b, c form a \triangle . Then $a b, b c, c a \in SQ_5$. $a b \equiv x^2, b c \equiv y^2, c a \equiv z^2$. $x^2 + v^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0.
- 2) Assume a, b, c form a \triangle . Then $a b, b c, c a \notin SQ_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin SQ_5$ so $2(a + b) = 2 \cdot 2(b + c) = 2 \cdot 2(a + c)$

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

- 1) Assume a, b, c form a \triangle . Then $a b, b c, c a \in SQ_5$. $a b \equiv x^2, b c \equiv y^2, c a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0.
- 2) Assume a,b,c form a \triangle . Then $a-b,b-c,c-a \notin \mathrm{SQ}_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin \mathrm{SQ}_5$ so $2(a-b)=x^2$, $2(b-c)=y^2$, $2(c-a)=z^2$.

$$2(x^2+y^2+z^2)\equiv 0.$$

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. PRO Easy Proof. CON didn't use SQ_5 so unlikely to generalize.

- 1) Assume a, b, c form a \triangle . Then $a b, b c, c a \in SQ_5$. $a b \equiv x^2, b c \equiv y^2, c a \equiv z^2$. $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0.
- 2) Assume a,b,c form a \triangle . Then $a-b,b-c,c-a \notin \mathrm{SQ}_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin \mathrm{SQ}_5$ so $2(a-b)=x^2$, $2(b-c)=y^2$, $2(c-a)=z^2$. $2(x^2+y^2+z^2)\equiv 0$. Divide by 2 (mult by 3) to get $x^2+y^2+z^2\equiv 0$ which implies x=y=z.

Need to show there are no mono \triangle .

Method 1

The R edges are all symmetric so if there is a \triangle edge can assume one of the edges is (0,1). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = R$. The B edges are all symmetric so if there is a \triangle can assume one of the edges is (0,2). No x with $\mathrm{COL}(0,x) = \mathrm{COL}(0,1) = B$. **PRO** Easy Proof. **CON** didn't use SQ_5 so unlikely to generalize.

- 1) Assume a, b, c form $a \triangle$. Then $a b, b c, c a \in SQ_5$. $a b \equiv x^2, b c \equiv y^2, c a \equiv z^2$.
- $x^2 + y^2 + z^2 \equiv 0$. Can show this implies x = y = z = 0.
- 2) Assume a,b,c form a \triangle . Then $a-b,b-c,c-a \notin \mathrm{SQ}_5$. For all p, product of 2 nonsquares mod p is in SQ_p (HW). $2 \notin \mathrm{SQ}_5$ so $2(a-b)=x^2$, $2(b-c)=y^2$, $2(c-a)=z^2$.
- $2(x^2 + y^2 + z^2) \equiv 0$. Divide by 2 (mult by 3) to get $x^2 + y^2 + z^2 \equiv 0$ which implies x = y = z.
- **UPSHOT** R(3,3) = 6.

Asymmetric Ramsey Numbers

Definition Let $a, b \ge 2$. R(a, b) is least n such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

- 1. R(a, b) = R(b, a).
- 2. R(2, b) = b
- 3. R(a,2) = a

Asymmetric Ramsey Numbers

Definition Let $a, b \ge 2$. R(a, b) is least n such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

- 1. R(a, b) = R(b, a).
- 2. R(2, b) = b
- 3. R(a,2) = a

Proof left to the reader, but its easy.

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem
$$R(a, b) \le R(a - 1, b) + R(a, b - 1)$$

Let $n = R(a - 1, b) + R(a, b - 1)$.

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem $R(a,b) \le R(a-1,b) + R(a,b-1)$ Let n = R(a-1,b) + R(a,b-1). Assume you have a coloring of the edges of K_n .

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$

Let n = R(a - 1, b) + R(a, b - 1).

Assume you have a coloring of the edges of K_n .

The proof has three cases on the next three slides.

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem $R(a,b) \leq R(a-1,b) + R(a,b-1)$ Let n = R(a-1,b) + R(a,b-1). Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem
$$R(a,b) \leq R(a-1,b) + R(a,b-1)$$

Let $n = R(a-1,b) + R(a,b-1)$.
Assume you have a coloring of the edges of K_n .
The proof has three cases on the next three slides.
They will be

1. There is a vertex with large Red Deg.

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem
$$R(a,b) \leq R(a-1,b) + R(a,b-1)$$

Let $n = R(a-1,b) + R(a,b-1)$.
Assume you have a coloring of the edges of K_n .
The proof has three cases on the next three slides.
They will be

- 1. There is a vertex with large **Red** Deg.
- 2. There is a vertex with large Blue Deg.

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem
$$R(a, b) \le R(a - 1, b) + R(a, b - 1)$$

Let
$$n = R(a - 1, b) + R(a, b - 1)$$
.

Assume you have a coloring of the edges of K_n .

The proof has three cases on the next three slides.

They will be

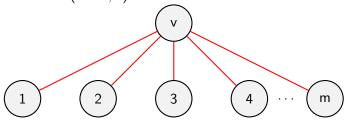
- 1. There is a vertex with large **Red** Deg.
- 2. There is a vertex with large **Blue** Deg.
- 3. All verts have small **Red** degree and small **Blue** degree.

Case 1 $(\exists v)[\deg_R(v) \geq R(a-1,b)].$

Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Let m = R(a-1,b).

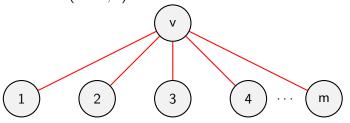
Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Let m = R(a-1,b).

Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Let m = R(a-1,b).



Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a .

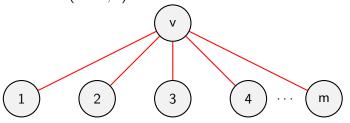
Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Let m = R(a-1,b).



Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a .

Case 1.2 There is a Blue K_b in $\{1, ..., m\}$. DONE.

Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Let m = R(a-1,b).



Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a .

Case 1.2 There is a Blue K_b in $\{1, ..., m\}$. DONE.

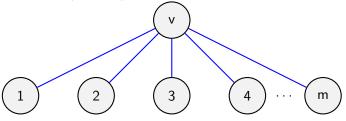
Case 1.3 Neither. **Impossible** since m = R(a - 1, b).

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b - 1)].$

Case 2
$$(\exists v)[\deg_B(v) \ge R(a, b - 1)]$$
.
Let $m = R(a, b - 1)$.

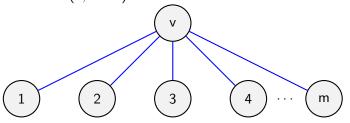
Case 2 $(\exists v)[\deg_B(v) \ge R(a,b-1)]$. Let m = R(a,b-1).

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b - 1)]$. Let m = R(a, b - 1).



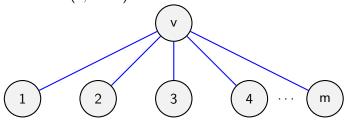
Case 2.1 There is a Red K_a in $\{1, \ldots, m\}$. DONE

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b - 1)]$. Let m = R(a, b - 1).



Case 2.1 There is a Red K_a in $\{1, ..., m\}$. DONE Case 2.2 There is a Blue K_{b-1} in $\{1, ..., m\}$. This set together with vertex v is a Blue K_b .

Case 2 $(\exists v)[\deg_B(v) \ge R(a, b - 1)]$. Let m = R(a, b - 1).



Case 2.1 There is a Red K_a in $\{1, \ldots, m\}$. DONE

Case 2.2 There is a Blue K_{b-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Blue K_b .

Case 2.3 Neither. **Impossible** since m = R(a, b - 1).

Case 3 Negate Case 1 and Case 2:

Case 3 Negate Case 1 and Case 2:

1. $(\forall v)[\deg_R(v) \leq R(a-1,b)-1]$ and

Case 3 Negate Case 1 and Case 2:

- 1. $(\forall v)[\deg_R(v) \leq R(a-1,b)-1]$ and
- 2. $(\forall v)[\deg_B(v) \leq R(a,b-1)-1]$

Case 3 Negate Case 1 and Case 2:

- 1. $(\forall v)[\deg_R(v) \leq R(a-1,b)-1]$ and
- 2. $(\forall v)[\deg_B(v) \leq R(a, b-1) 1]$

Hence

$$(\forall v)[\deg(v) \leq R(a-1,b) + R(a,b-1) - 2 = n-2]$$

Case 3 Negate Case 1 and Case 2:

- 1. $(\forall v)[\deg_R(v) \leq R(a-1,b)-1]$ and
- 2. $(\forall v)[\deg_B(v) \leq R(a, b-1) 1]$

Hence

$$(\forall v)[\deg(v) \leq R(a-1,b) + R(a,b-1) - 2 = n-2]$$

Not possible since every vertex of K_n has degree n-1.

 $R(3,3) \le R(2,3) + R(3,2) \le 3+3 = 6$

- $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 = 10$

- $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- Arr $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$

- Arr $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$

- Arr $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- Arr $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- Arr $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$

- $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- Arr $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- Arr $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- Arr $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$

- Arr $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- Arr $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- Arr $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- Arr $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- Arr $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$

- Arr $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- Arr $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- Arr $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$
- $R(4,5) \le R(3,5) + R(4,4) \le 15 + 20 = 35$

- Arr $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$
- $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$
- Arr $R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$
- Arr $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$
- Arr $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$
- $R(4,4) \le R(3,4) + R(4,3) \le 10 + 10 = 20$
- Arr $R(4,5) \le R(3,5) + R(4,4) \le 15 + 20 = 35$
- $R(5,5) \le R(4,5) + R(5,4) \le 35 + 35 = 70.$

Table of Bounds

R(a,b)	Bound on $R(a, b)$
R(3,3)	6
R(3,4)	10
R(3,5)	15
R(3,6)	21
R(3,7)	28
R(4,4)	20
R(4,5)	35
R(5,5)	70

Table of Bounds

R(a,b)	Bound on $R(a, b)$
R(3,3)	6
R(3,4)	10
R(3,5)	15
R(3,6)	21
R(3,7)	28
R(4,4)	20
R(4,5)	35
R(5,5)	70

Can we make some improvements to this?

Table of Bounds

R(a,b)	Bound on $R(a, b)$
R(3,3)	6
R(3,4)	10
R(3,5)	15
R(3,6)	21
R(3,7)	28
R(4,4)	20
R(4,5)	35
R(5,5)	70

Can we make some improvements to this? YES!

Table of Bounds

R(a,b)	Bound on $R(a, b)$
R(3,3)	6
R(3,4)	10
R(3,5)	15
R(3,6)	21
R(3,7)	28
R(4,4)	20
R(4,5)	35
R(5,5)	70

Can we make some improvements to this? YES! We need a theorem.

Table of Bounds

R(a,b)	Bound on $R(a, b)$
R(3,3)	6
R(3,4)	10
R(3,5)	15
R(3,6)	21
R(3,7)	28
R(4,4)	20
R(4,5)	35
R(5,5)	70

Can we make some improvements to this? YES! We need a theorem. We first do an example.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Oh My! That means there are $\frac{27}{2}$ edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Oh My! That means there are $\frac{27}{2}$ edges. Contradiction.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Oh My! That means there are $\frac{27}{2}$ edges. Contradiction.

We generalize this on the next slide.

Lemma Let G = (V, E) be a graph.

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$
$$V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$$

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Lemma Let G = (V, E) be a graph.

$$V_{\mathrm{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$

 $V_{\mathrm{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{\nu \in V_{\mathrm{even}}} \deg(\nu) + \sum_{\nu \in V_{\mathrm{odd}}} \deg(\nu) = \sum_{\nu \in V} \deg(\nu) = 2|E| \equiv 0 \pmod{2}.$$

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\mathrm{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Lemma Let G = (V, E) be a graph.

$$V_{\mathrm{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$

 $V_{\mathrm{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{\nu \in V_{\mathrm{even}}} \deg(\nu) + \sum_{\nu \in V_{\mathrm{odd}}} \deg(\nu) = \sum_{\nu \in V} \deg(\nu) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds \equiv 0 (mod 2). Must have even numb of them. So $|V_{\rm odd}| \equiv$ 0 (mod 2).

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{\nu \in V_{\mathrm{even}}} \deg(\nu) + \sum_{\nu \in V_{\mathrm{odd}}} \deg(\nu) = \sum_{\nu \in V} \deg(\nu) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds \equiv 0 (mod 2). Must have even numb of them. So $|V_{\rm odd}| \equiv$ 0 (mod 2).

Handshake Lemma If all pairs of people in a room shake hands, even number of shakes.

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds \equiv 0 (mod 2). Must have even numb of them. So $|V_{\rm odd}| \equiv$ 0 (mod 2).

Handshake Lemma If all pairs of people in a room shake hands, even number of shakes. (Pre-COVID when people shook hands.)

Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.

Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.

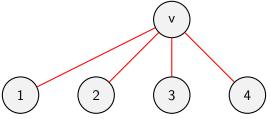
And NOW to our improvements on small Ramsey numbers.

Assume we have a 2-coloring of the edges of K_9 .

Assume we have a 2-coloring of the edges of K_9 . Case 1 $(\exists v)[\deg_R(v) \ge 4]$.

Assume we have a 2-coloring of the edges of K_9 .

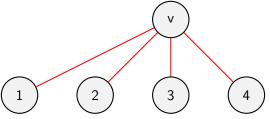
Case 1 $(\exists v)[\deg_R(v) \geq 4]$.



R(3,4) < 9 Case 1

Assume we have a 2-coloring of the edges of K_9 .

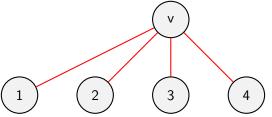
Case 1 $(\exists v)[\deg_R(v) \geq 4]$.



1) If any of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$ are **RED**, have **RED** K_3 .

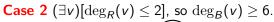
Assume we have a 2-coloring of the edges of K_9 .

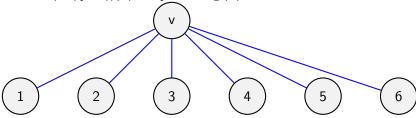
Case 1 $(\exists v)[\deg_R(v) \geq 4]$.



- 1) If any of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$ are **RED**, have **RED** K_3 .
- 2) If all of $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$ are **BLUE**, have **BLUE** K_4 .

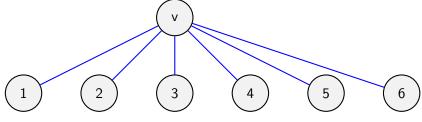
$R(3,4) \le 9$ Case 2





$R(3,4) \le 9$ Case 2

Case 2 $(\exists v)[\deg_R(v) \leq 2]$, so $\deg_B(v) \geq 6$.



(1) There is a **RED** K_3 in $\{1, 2, 3, 4, 5, 6\}$. Have **RED** K_3 .

R(3,4) < 9 Case 2

Case 2 $(\exists v)[\deg_R(v) \leq 2]$, so $\deg_B(v) \geq 6$.



- (1) There is a **RED** K_3 in $\{1, 2, 3, 4, 5, 6\}$. Have **RED** K_3 .
- (2) There is a **BLUE** K_3 . With v get a **BLUE** K_4 .

$$R(3,4) \le 9$$
 Case 3

$$R(3,4) \leq 9$$
 Case 3

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

$R(3,4) \leq 9$ Case 3

Recall

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

$$R(3,4) \leq 9$$
 Case 3

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

Negation of Case 1 and Case 2 yields

$$R(3,4) \leq 9$$
 Case 3

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

Negation of Case 1 and Case 2 yields

Case 3 $(\forall v)[\deg_R(v) = 3].$

$$R(3,4) \leq 9$$
 Case 3

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

Negation of Case 1 and Case 2 yields

Case 3 $(\forall v)[\deg_R(v) = 3].$

SO the **RED** graph is a graph on 9 verts with all verts of degree 3.

$$R(3,4) \leq 9$$
 Case 3

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

Negation of Case 1 and Case 2 yields

Case 3 $(\forall v)[\deg_R(v) = 3].$

SO the **RED** graph is a graph on 9 verts with all verts of degree 3.

This is impossible!

What was it about R(3,4) that made that trick work?

What was it about R(3,4) that made that trick work? We originally had

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

Key: R(2,4) and R(3,3) were both even!

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

Key: R(2,4) and R(3,3) were both **even!**

Theorem $R(a,b) \leq$

- 1. R(a, b-1) + R(a-1, b) always.
- 2. R(a, b-1) + R(a-1, b) 1 if $R(a, b-1) \equiv R(a-1, b) \equiv 0 \pmod{2}$

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

Key: R(2,4) and R(3,3) were both **even!**

Theorem $R(a, b) \leq$

- 1. R(a, b 1) + R(a 1, b) always.
- 2. R(a, b-1) + R(a-1, b) 1 if $R(a, b-1) \equiv R(a-1, b) \equiv 0 \pmod{2}$

Proof left to the Reader.

Some Better Upper Bounds

- $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6.$
- Arr $R(3,4) \le R(2,4) + R(3,3) \le 4+6-1=9.$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$
- $R(5,5) \le R(4,5) + R(5,4) = 62.$

Some Better Upper Bounds

- $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6.$
- $R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 1 = 9.$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- Arr $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- Arr $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$
- Arr $R(5,5) \le R(4,5) + R(5,4) = 62.$

Are these tight?

Some Better Upper Bounds

- Arr $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6.$
- Arr $R(3,4) \le R(2,4) + R(3,3) \le 4+6-1=9.$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- Arr $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$
- Arr $R(5,5) \le R(4,5) + R(5,4) = 62.$

Are these tight? Some yes, some no.

 $R(3,3) \geq 6$

$$R(3,3) \ge 6$$

R(3,3) = 6 as shown in prior slide.

$$R(4,4) = 18$$

$$R(4,4) = 18$$

Vertices are $\{0,\ldots,16\}$.

$$R(4,4) = 18$$

Vertices are $\{0, \ldots, 16\}$.

Use

COL(a, b) =RED if $a - b \in SQ_{17}$, BLUE OW.

$$R(4,4) = 18$$

Vertices are $\{0, \ldots, 16\}$.

Use

$$COL(a, b) =$$
RED if $a - b \in SQ_{17}$, **BLUE** OW.

Same idea as above for K_5 , but more cases for algebra. **UPSHOT** R(4,4)=18 and the coloring used math of interest!

$$R(3,5) = 14$$

$$R(3,5) = 14$$

Vertices are $\{0, \ldots, 13\}$.

$$R(3,5) = 14$$

Vertices are $\{0, \ldots, 13\}$.

Use

 $COL(a, b) = RED \text{ if } a - b \equiv CUBE_{14}, BLUE OW.$

$$R(3,5) = 14$$

Vertices are $\{0, \ldots, 13\}$.

Use

$$COL(a, b) =$$
RED if $a - b \equiv CUBE_{14}$, BLUE OW.

Same idea as above for K_5 , but more cases for the algebra.

$$R(3,5) = 14$$

Vertices are $\{0, \dots, 13\}$.

Use

$$COL(a, b) = RED \text{ if } a - b \equiv CUBE_{14}, BLUE OW.$$

Same idea as above for K_5 , but more cases for the algebra.

UPSHOT R(3,5) = 14 and the coloring used math of interest!

$$R(3,4) = 9$$

This is a subgraph of the R(3,5) graph

$$R(3,4) = 9$$

This is a subgraph of the R(3,5) graph

UPSHOT R(3,4) = 9 and the coloring used math of interest!

Good news R(4,5) = 25.

Good news R(4,5) = 25.

Bad news

Good news R(4,5) = 25.

Bad news

THATS IT.

Good news R(4,5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.

Summary of Bounds

R(a,b)	Old Bound	New Bound	Opt	Int?
R(3,3)	6	6	6	Y
R(3,4)	10	9	9	Y
R(3,5)	15	14	14	Y
R(3,6)	21	19	18	Lower-Y
R(3,7)	28	27	23	Lower-Y
R(4,4)	20	18	18	Y
R(4,5)	35	31	25	N
R(5,5)	70	62	≤ 46	N

What is we use more colors?

What is we use more colors? Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ?

What is we use more colors? Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ? Yes- proofs are similar.

What is we use more colors? Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ? Yes- proofs are similar.

Graphs are vertices and unordered-pairs-of-vertices. What if we allow unordered-triples-of-vertices.

What is we use more colors?

Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ?

Yes- proofs are similar.

Graphs are vertices and unordered-pairs-of-vertices. What if we allow unordered-triples-of-vertices.

A **3-hypergraph** is a set V of vertices and a set E of unordered triples of vertices.

What is we use more colors?

Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ?

Yes- proofs are similar.

Graphs are vertices and unordered-pairs-of-vertices. What if we allow unordered-triples-of-vertices.

A 3-hypergraph is a set V of vertices and a set E of unordered triples of vertices.

One can do Ramsey Theory on these objects.

What is we use more colors?

Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ?

Yes- proofs are similar.

Graphs are vertices and unordered-pairs-of-vertices. What if we allow unordered-triples-of-vertices.

A 3-hypergraph is a set V of vertices and a set E of unordered triples of vertices.

One can do Ramsey Theory on these objects.

Applications?

What is we use more colors?

Is there some n such that for all 3-colorings of the edges of K_n there is a mono K_3 ? K_k ?

Yes- proofs are similar.

Graphs are vertices and unordered-pairs-of-vertices. What if we allow unordered-triples-of-vertices.

A 3-hypergraph is a set V of vertices and a set E of unordered triples of vertices.

One can do Ramsey Theory on these objects.

Applications? Yes, but to other parts of pure math.

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

(Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

Moral of the Story

- 1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

 (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
- Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.