Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SIAM J. COMPUT. © 1984 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, May 1984 010

THE SPECTRA OF FIRST-ORDER SENTENCES AND
COMPUTATIONAL COMPLEXITY*

ETIENNE GRANDJEANY

Abstract. The spectrum of a first-order sentence is the set of cardinalities of its finite models. We
refine the well-known equality between the class of spectra and the class of sets (of positive integers)
accepted by nondeterministic Turing machines in polynomial time. Let Sp (dV) denote the class of spectra
of sentences with d universal quantifiers. For any integer d = 2 and each set of positive integers, A, we obtain:

AeNTIME (n?)» A eSp (dV) > A e NTIME (n*(log n)?).

Further the first implication holds even if we use multidimensional nondeterministic Turing machines.
These results hold similarly for generalized spectra. As a consequence, we obtain a simplified proof of a
hierarchy result of P. Pudldk about (generalized) spectra. We also prove that the set of primes is the
spectrum of a certain sentence with only one variable.

Key words. first-order sentences, spectrum, generalized spectrum, computational complexity, non-
deterministic Turing machine

Introduction. The spectrum of a first-order sentence is the set of cardinalities of
its finite models. If instead of cardinalities of models, we conserve some relations and
functions of the models, then we obtain a generalized spectrum. More precisely, let
¢ be a first-order sentence with relation and function symbols Uy, « - -, Uk, V1, -+, V5
the generalized spectrum of ¢ is the set of finite structures 4 of type {Ui, - - -, Uk}
which have an expansion (/, Vi, - - -, V,) satisfying ¢.

There are equivalence between certain model-theoretic concepts such as (general-
ized) spectra and complexity classes. Jones and Selman [11] proved that if A is a set
of positive integers,

(a) A is a spectrum iff A € U,NTIME (n%).

(n represents the input integer.) Similarly, Fagin [5] proved that if G is an isomorphism
invariant set of structures of a given type,

(b) G is a generalized spectrum iff G € U, NTIME (m?).

(m represents the cardinality of the input structure.) More recently, Immerman [10]
gave purely logic characterizations of the classes P and PSPACE.

In the present paper we adopt the philosophy expressed by N. Immerman in [9],
[10] and J. Lynch in [13]; that is, logical sentences act like automata. Let # be a
property (of integers, of graphs, -). According to our choice of a logical or a
computational viewpoint, there are two kinds of complexity for ?:

(*) the “complexity” of the sentences which characterize property 2;

(**) the computational complexity of the automata which recognize property .

Connections between complexities (*) and (**) allow one to translate some
automata-theoretic results into model-theoretic results: Pudldk [15] uses Cook’s
hierarchy theorem [4] in an essential manner to prove that there is a strict hierarchy
of generalized spectra depending on the number of quantifiers. Conversely, there are
potential translations of model-theoretic results into computational ones. For example,
by equivalence (a), if there is a spectrum whose complement is not a spectrum, then
P # NP. However, we do not know any proved computational result whose proof uses
model-theoretic arguments in an essential manner: we think the reason is that automata
and their computations are more ‘‘supple’ concepts than sentences and their models.

* Received by the editors February 25, 1981, and in revised form December 3, 1982.
+ 3 rue de Sévigné, 69003 Lyon, France. Now at Université Claude Bernard-Lyon 1, 69622 Villeurbanne
Cedex, France.

356

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 357

The logical concepts that we investigate in this paper are exclusively spectra and
generalized spectra which are sets of directed graphs. We justify this last restriction
by the fact that results for directed graphs can be easily generalized to other types of
structures, and that most natural problems of structures concern (directed) graphs.

We think that there are two natural complexity measures of the (generalized)
spectrum of a sentence:

(*;) the maximum arity of the relation and function symbols of the sentence;

(¥2) the number of quantifiers, or, equivalently , of universal quantifiers of the
sentence.

Concerning the relationship between complexities (*,) and (*+*), there is:

THEOREM 0.1 (J. Lynch [13]). If a set, A, of positive integers belongs to
NTIME (n?) for an integer d =2, then A is the spectrum of a sentence with relation
symbols of arity at most d and without function symbols. (The same result holds for
generalized spectra.)

This is a nice result because we easily see that any improvement of it would imply
an improvement of the inclusion NTIME (n*) < DSPACE (n“). However, we do not
know any kind of converse: for example, if a sentence has only binary relation symbols,
we do not know any fixed polynomial time upper bound for its spectrum. (See [6] for
more details about the hypothetical hierarchy of spectra depending on arity of relation
symbols.)

We improve a theorem of Pudlak [15] which connects complexities (*,) and (**)
in both directions. Let Sp (dV) (resp. GenSp (dV)) denote the class of spectra (resp.
generalized spectra) of sentences with at most d universal quantifiers.

THEOREM 0.2 (Pudldk). Let G be an isomorphism invariant set of directed graphs.
Then, for all integers d =2:

G € GenSp (dV) implies G € NTIME (m>?),
G e NTIME (m?) implies G € GenSp (2dV).

Pudlék also states the following translational lemma of model theory:
LEMMA 0.3 (Pudlak). For all integersd=2,e =1,

GenSp (dV) = GenSp (d + 1V) implies GenSp (edV) = GenSp (e(d + 1)V).

From these results and from Cook’s hierarchy theorem, Pudldk deduces the nice
hierarchy result mentioned above which can be reformulated as follows:
COROLLARY 0.4 (Pudlék). For all integers d =0,

GenSp (dV) < GenSp (d + 1V).

Unfortunately, Pudldk’s paper [15] does not provide the proofs of the results
that he states. Therefore the present paper includes an explicit proof of Pudlak’s
hierarchy result. However, its main merit is that it considerably improves the connec-
tions Pudlak states between GenSp (dV) and NTIME (-) since we prove:

THEOREM 0.5. Let A be a set of positive integers and G be an isomorphism invariant
set of directed graphs. Then for all integers d = 2.

(i) AeNTIME (n?)> A €Sp (dV)>A e NTIME (n?(log n)?);
(ii) G e NTIME (m*)-> G € GenSp (dV)-> G € NTIME (m* (log m)?).

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

358 ETIENNE GRANDJEAN

These results are interesting for two reasons:

(1) They state that the polynomial degree of the (nondeterministic) time com-
plexity of a property 2 is almost equal to the number of universal quantifiers required
to express 2.

(2) They allow one to prove Pudldk’s hierarchy result (and the similar result for
spectra) without any model-theoretic lemma, by an immediate translation of the
nondeterministic time hierarchy theorem (Cook [4], Seiferas et al. [17]).

Note that the second implication of (i) is essentially proved by H. Lewis [12] in
a different context: he investigates the complexity of the satisfiability problem for
classes of quantificational sentences.

These results are optimal in the following sense: each first implication of (i) and
(ii) holds even if the nondeterministic Turing machine (NTM) is multidimensional; so
any improvement of one of the above implications would improve the known simula-
tion of a multidimensional T(n) time-bounded NTM by a (one-dimensional)
T(n) - (log T(n))* time-bounded NTM.

Notice that Immerman [9], [10] also investigates the number of quantifiers as a
complexity measure: using connections between first-order expressibility and computa-
tional complexity, he hopes to translate into computational complexity, some lower
bounds he obtains for first-order expressibility of “‘natural” properties of graphs.
However, his results and methods are quite different from ours because he characterizes
a property, not by only one sentence, but by a uniform sequence of sentences. (Of
course, by the uniformity condition, such a sequence can be regarded in a certain
sense as a unique sentence.) As a consequence, he no longer needs additional relation
and function symbols, but only a successor relation. Immerman’s opinion in [9] is that
“it is difficult to show lower bounds for the expressibility of (existential) second-order
sentences’” and that ‘“‘first-order sentences mimic computations much more closely.”
In fact, from our results and from the time hierarchy theorem, it is immediate that
there is a spectrum in Sp (d'V) which cannot be accepted by an NTM in time less than
n?. However, Immerman is right in a certain sense: we are not able to prove a
nontrivial lower bound for any naturally defined (generalized) spectrum.

Our paper includes the following sections. Notation and definitions are given in
§ 1. In § 2, we give two arguments for the naturalness of the measure (Gen)Sp (dV):
first that it is preserved under intersection and union, secondly that it is equivalent
to other complexity measures such as quantifier depth. We also prove the previously
mentioned upper bound of spectra.

The announced lower bound for spectra is proved in § 3. Besides the usual
“folding” technique [5], [11], [13] for encoding the time units and the tape cells of a
computation of a NTM, the proof essentially uses a ‘“‘numbering” of the ordered pairs
(H(t),t), where H(t) is the position of a tape head at instant ¢; informally, this
numbering, N, is such that if N(x)=(H(¢), t), and if ¢’ is the first time after ¢ such
that H(t)=H(t'), then N(x +1)=(H (¢'), t').

Lastly, § 4 presents two corollaries of the previous results. First is the hierarchy
result of the classes (Gen)Sp (dV). The second is a rather surprising result: The set
of primes and most ‘‘natural” sets of positive integers are spectra of certain sentences
with only one variable.

1. Preliminaries.

1.1. Preliminaries in logic. We will use the usual notation and definitions in
first-order logic and model theory (see [3, Chap. 1], for example). In particular, our
formulas include the equality symbol =, and relation and function symbols.

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 359

The arity of a relation or function symbol is a nonnegative integer; in fact, a
0-ary relation (resp. function) symbol is a proposition (resp. an (individual) constant)
symbol.

Our logical connectives are exlusively v, A, 7, interpreted as “‘or,” “‘and,” “‘not,”
respectively. The existential and universal quantifiers 3 and V are interpreted as ‘‘there
exists’’ and ‘“‘for all,” respectively.

(Individual) variables are called x, y, z, ¢t with or without subscripts or primes.
The metavariable v (with or without subscripts or primes) will denote any variable.

A term is an expression constructed from variables and function symbols in the
usual way. An atomic formula is of the form 7, =17, or R(7y," -, 7,), where 7; is a
term and R is an r-ary relation symbol. A (first-order) formula is built out of atomic
formulas in the usual way, using v, A, =1, 3, V. A signed atomic formula is an atomic
formula or its negation.

We suppose familiarity with the notions of subformula, of (existentially or uni-
versally) quantified variable, of free occurrence of a variable, and of free variable. A
(first-order) sentence is a formula all of whose variables are quantified. We use
¢ (v, « -+, vx) to denote a formula ¢ whose free variables form a subset of {v1, - - -, vi}.

A prenex sentence is a sentence ¢ of the form

Quvy - Qi (vy, ** +, Vi)

where ¢ is a quantifier-free formula and Q,, - - -, Q, are quantifiers; Qv - - - Qvk
and ¢ are respectively the prefix and the matrix of ¢. A quantifier-free formula is in
disjunctive normal form if it is a disjunction of conjunctions of signed atomic formulas.

Sometimes we will use the following abbreviations: v # v’ for —w =v'; ¢ > ¢ for
=1p Vi, o oy for (p > ¢) A (¥ > @). The conjunction of the indexed formulas ¢;, for
ieJ and J a finite set, will be denoted A,.; ¢;, and similarly for the disjunction. Let
7 and Qb (where Q is a quantifier) abbreviate the k-tuple vy, - - -, v, and the string
Qu; - - - Quy, respectively. (More generally, let a, denote a k-tuple of elements
ai, -, a in a given set.)

A type T is a finite set of relation and function symbols {V, - - -, Vi.}. The arity
of J is the maximum arity of Vi, - -, Vi. A formula is of type J if all its relation
and function symbols are in .

A structure M ={D, V1, -+, Vi) of type T consists of a nonempty set D called
the domain of # (denoted D (#)) and for each r-ary relation (resp. function) symbol
of 7, an interpretation, i.e., an r-ary relation (resp. function) on D. If V.1,-+-, V),
are other relations and functions on D, the structure (D, Vi, -+, Vi, Viir, -+, V)
is called an expansion of # and is denoted (M, Vi1, - -, V,). For convenience, our
notation does not distinguish between a relation or function symbol and its interpreta-
tion. The cardinality of a structure is the cardinality of its domain. A finite structure
is a structure of finite cardinality.

Let ¢ and 4 be respectively a sentence and a structure of type J. We put HF ¢,
and we say that /(is a model of ¢, to mean that ¢ becomes a true assertion when each
logical symbol v, A, 1, 3, V, = is given its usual meaning and each relation (resp.
function) symbol is given its interpretation in the structure .

Let D be a nonempty finite set and J be a type; we will regard the elements of
D ,as constant symbols; let Ip =F UD be the type I enlarged by these constant
symbols. Any structure of type J on the demain D is identified with its expansion
of type Ip where constant symbols a € D are interpreted as themselves. Let ¢ (0x) be
a formula of type 7 and a, be a k-tuple of elements in D; ¢(a,) will denote the

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

360 ETIENNE GRANDJEAN

sentence of type Ip constructed from ¢ (0,) be replacing each free occurrence of v;
by a;. If there is a structure, ./, of type I on the domain D, such that # F¢ (a), we
will say that ¢ (ay) is satisfiable in D, or, in case the domain D is implicit, satisfiable.

Existential second-order sentences are expressions of the form 3V;---3V,p
where ¢ is a first-order sentence and V7, - - -, V,, are among the relation and function
symbols of ¢. (Unless stated otherwise, formula and sentence will mean first-order
formula and first-order sentence.) Let # be a structure of type 9 and ¢ be a sentence
of type TU{Vy, -+, V,}, where Vy, - -+, V, are symbols not in 7. Then we put

MEIV, -V

to mean that # has an expansion ' of type I U{V1, - -, V,} such that #'F¢. (Of
course, the type of AV, - - -3V, is 7.)

Two (first-order or second-order) sentences of type 7, ¢ and ¢, are (semantically)
equivalent if for each structure # of type 7,

MEe iff MEY.

We similarly define the (semantical) equivalence of formulas ¢ (dx) and ¢ (o).
In the following, for each integer n >0, D, will denote the set {0, 1,---,n —1}.
The spectrum of a sentence ¢, denoted Sp (¢), is the set of cardinalities of its
finite models, or, equivalently, the set of integers #n > 0 such that

(DYFAV, -+ AV,

if ¢ is of type {V,,* -+, V,,}.

A directed graph or, in short, a graph, will be a finite structure 4 = (D, R), where
R is a binary relation. (In graph-theoretic terminology, ¥ is a labeled directed graph
on m vertices labeled 0,1, -+, m—1.)

The generalized spectrum of a sentence ¢ of type {R, Vi, -+, V,} where R is a
specified binary relation symbol, is the set of directed graphs ¢ =(D,,, R) such that

GEAV, - -3V,

It is denoted GenSp (¢).

We will investigate the number of universal quantifiers as a complexity measure.
There is a little difficulty: a universal (resp. existential) quantifier in the scopes of an
odd number of negation signs must be treated as an existential (resp. universal)
quantifier. So, to make sense, we always assume in this paper that no quantifier occurs
in the scope of a negation sign. (Clearly, each formula is equivalent to a formula of
the requisite form.)

Let Sp (dV) (resp. GenSp (dV)) denote the class of spectra (resp. generalized
spectra) of sentences with at most d universal quantifiers.

The depth (resp. universal depth) of a formula ¢, denoted by depth (¢) (resp.
V-depth (¢)), is the maximum number of quantifiers (resp. universal quantifiers) in
the scopes of which a subformula of ¢ can be found. More formally, for a quantifier-free
formula ¢, depth (¢)=0; for any formulas ¢, ¢, ¢, depth(Iovy)=depth(Voy)=
1+depth(y¢), and depth(¢ov ¢;) =depth (A ¢;) =max[depth(¢), depth(yy)].
V-depth(—) is defined as depth (—), except that V-depth(Jovy) = V-depth (¢).

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 361

1.2. Preliminaries in computational complexity. For all real numbers r, [r]
(resp. |r]) is the least (resp. greatest) integer n =r (resp.n =r) and logr is the
logarithm of r in base 2.

Let f(n) and g(n) be two nonnegative real-valued functions on positive integers.
We use the notation f(n) = O(g(n)) to mean that there is a constant number ¢ such
that, for all sufficiently large integers n, f(n)=cg(n).

We suppose that the reader knows the main definitions about Turing machines
and nondeterministic computations (see [8, Chap. 7]). Our model of computation will
be a one-dimensional nondeterministic Turing machine (NTM); more precisely, an
NTM has several one-dimensional tapes, infinite to the right only, which consist of
one (read-only) input tape and several (read-write) worktapes. A multidimensional
NTM is an NTM whose worktapes are multidimensional. (Unless otherwise specified,
NTM will mean a one-dimensional NTM.)

Let = be a finite set. =" will denote the set of finite nonempty words over the
alphabet =. A subset of =" is called a language over X.

Let M be an NTM and X be the set of input symbols of M. (An input of M is
a word of =".) M accepts an input w if, when it is started in start state with all tape
cells blank except that the leftmost input tape cells contain w, and with all tape heads
at the leftmost cells of the tapes, a computation (i.e., some sequence of moves) takes
M to the accepting state. Further, if T is the number of moves of such a computation,
then we say that M accepts w in time T.

Let T'(n) be a function from positive integers to positive integers. An NTM M
accepts a language L =37 in time T(n), if

(i) M accepts no input except the words of L, and

(ii) each word of L of length n is accepted by M in time at most T (n).

To make sense, we require that T'(n)=n +1 since it needs » +1 moves to read an
input of length n and the first blank symbol. Let NTIME (f(n)) denote the class of
languages accepted by a NTM in time max(n+1, [f(n)]), for a real-valued
function f.

Let A be a set of positive integers. Identifying each positive integer n with 17,
(1" is the word of n 1’s), we can regard A as a language over the one-letter alphabet
3 ={1}. Thus A belongs to NTIME (T (n)) if the corresponding language belongs to
this class. Let Bin (A) denote the set of binary representations of the integers of A.
(Of course, Bin (A)< {0, 1}*.)

Our complexity results for spectra will be presented with integers in unary
notation. However, if one prefers binary notation, then the following lemma will give
an immediate translation of our results.

LEMMA 1.1. Let A be a set of positive integers. Then for all integers d =1 and
k =0, the following statements are equivalent.

(i) A eNTIME (n(logn)").
(ii) There is an NTM which accepts Bin (A) in time O(nd(log n)*), where n is the
input integer.

(iii) Bin (A)e NTIME (2*'n*), where n is the length of the input integer.

Proof. 1t is sufficient to remark that there is a deterministic Turing machine which
transforms any integer n from unary to binary notation (resp. from binary to unary
notation) in time O(n): the lemma follows by linear speed-up (see respectively [7],
[8] and [2], [17] for linear speed-up of nonlinear and linear functions). 0

It is natural to encode a directed graph, ¥, of domain D,, with the word
WiWsz - - - w2 Over the alphabet {0, 1}, defined by: for 1=i=m?,

W,'=1 iff @FR(al, az),

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

362 ETIENNE GRANDJEAN

where (a1, a,) is the ith element of D2 for lexicographical ordering. An NTM, M,
accepts a set of graphs, G, in time T(m) if M accepts in time T(m) the set of words
w1+ - w2 which encode the graphs of G. (Notice that the input has length m?, not
m ; m is the number of vertices of the encoded graph.) We will say that a set of graphs,
G, belongs to NTIME (f(m)) if an NTM accepts G in time max (m*+1, [f(m)]).

2. Upper bounds for spectra. Lemmas, Propositions and Theorems 2.1 to 2.5
will be expressed for spectra. However, they hold as well for generalized spectra with
the same proofs.

LEMMA 2.1. For each sentence ¢ with at most d universal quantifiers, there is a
quantifier-free formula ¢'(X;) such that

Sp (¢) =Sp (Vxap'(¥a)).

Proof. By standard manipulation of quantifiers, it is easy to put all the quantifiers
of ¢ in front of the sentence. Therefore we can assume that ¢ is prenex. We use the
following fact: a sentence of the form V&, 3v'y (7, v') is equivalent to the second-order
sentence AFV o, (0r, F(0r)) where F is a new k-ary function symbol. For example,
the sentence Vx3yVz3aty(x, y, z, t) is equivalent to IF,VxVz3t y(x, Fi(x), z,t) and

then to AF ARz (x, Fi(x), z, Fa(x, 2)).

From this example, we clearly see that the prenex sentence ¢ can be transformed
according to the following rule: To each existentially quantified variable v, associate
a function symbol F (a ‘“‘Skolem function”) and replace each occurrence of v in the
matrix of ¢ by the term F(vy, - - -, vy), Where vy, - - -, v are the universally quantified
variables lying before v in the prefix of ¢; lastly, remove all the existential
quantifiers. 0

It is natural to require that complexity classes be closed under intersection and
union. We have:

PROPOSITION 2.2. Let A, B be two sets in Sp (dY), for d =1, and A’ be a finite
modification of A (i.e., A’ is constructed from A by adding or removing finitely many
positive integers). Then

(i) ANBeSp (dV);
(ii) AUB€eSp (dV);

(iii) A'eSp (dV).

Proof. (i) By Lemma 2.1, we can assume that A =Sp (VZuy(%X;)) and B=
Sp (VEa,(%,)), where ¢, and ¢, are quantifier-free formulas. We can also assume
that ¢, and ¢; have no common relation or function symbol. Then ANB=
Sp (VX4(o(%a) A $1(X4))). This proves (i).

(ii) Clearly, AUB =Sp (¢) with ¢ =Vipo(%s) vViapi(Xs). Let Ry be a new
0-ary relation symbol. (Intuitively, the proposition symbol R, stands for the disjunct
VXapo(X4).) ¢ is equivalent to the second-order sentence IRo[(T1R,V VX 0(%,)) A
(Ro Vv Vxa41(%4))]. The first-order sentence in brackets is equivalent to the sentence

@' =Vx4[(MRoV Yo(%4)) A (Ro Vv ¥1(%4))],
and then AUB =Sp (¢’).
(iii) By (i) and (ii), it is sufficient to prove that for each positive integer k,
the sets {n: n >k} and {k} belong to Sp (1V). We have
{n:n>k}=Sp (Elx0~ 3 N Xi# xj),

osi<j=k

{k}=Sp(3x1---3xk(N xi#xaAVy l.\:/1y=x,~)). 0

1=si<jsk

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 363

Another argument for the naturalness of a complexity measure is the fact that it
has several reformulations.

THEOREM 2.3. Let A be a set of positive integers. A € Sp (dV) if and only if there
is a sentence ¢ such that A = Sp (¢) with the following property (i) (resp. (ii), (iii)):

(i) V-depth (¢)=d;

(ii) @ has d quantifiers

(iii) depth (¢)=d.

Theorem 2.3 is an immediate consequence of

PROPOSITION 2.4. For each sentence ¢ of universal depth d, there is a sentence ¢'
with d universal quantifiers only and no existential quantifier, so that Sp (¢) = Sp (¢').

Proposition 2.4 is a particular case of Lemma 2.4’ proved in the Appendix. The
proof uses additional “Skolem functions” and relations, as do the proofs of Lemma
2.1 and Proposition 2.2(ii), respectively. Notice that Proposition 2.2 (except part (iii))
is an immediate consequence of Theorem 2.3.

To prove our upper bound theorem for spectra, we shall use the following
definitions and lemma.

DEFINITIONS. An elementary formula of type I is a signed atomic formula of
one of the five following forms:

(Mvi=vz, (MR(@,), F(d,)=041,

where R, F are respectively r-ary relation and function symbols of J.

Let n be a strictly positive integer. An n-formula of type J is a formula of type
I, =7 UD, which is constructed from an elementary formula of type I by replacing
each variable by an element of D,,. (So an n-formula of type 7 is of the form (—1)e; = e,
(—m)R(e,) or F(e,)=e,,1, where R,Fe J and e;€D,,.)

Remark. Since n has length O(logn) in base 2, an n-formula can be encoded
with O(log n) symbols.

LEMMA 2.5. If A € Sp (dV), then there are a type T and a sentence

¢ =V, 3y ‘_/1 Yi(Xa, Yic)

such that:

(i) A=Sp(e);

(ii) each ¢, 1 =i=c, is a conjunction of elementary formulas of type J.

Proof. By Lemma 2.1, A =Sp (Vx40'(%4)) for a quantifier-free formula ¢'. We
construct ¢ as follows. First put ¢' in disjunctive normal form. Secondly, transform
the signed atomic subformulas of ¢’ as in the following example: the subformula
=R (Fi(x,y), F2(y)) is replaced by the equivalent formula

Az3At(Fi(x, y) =2z AF,(y)=t AR(z, 1)).

Lastly, put the added existential quantifiers in the prefix. O
THEOREM 2.6. Let A be a set of positive integers and G be an isomorphism invariant
set of directed graphs. Then :
(i) A€Sp (dY) implies Ae NTIME (n®(log n)?), for each integer d = 1;
(ii) G € GenSp (dV) implies G e NTIME (md(log m)?), for each integer d =2.
Proof. of (i) Let A =Sp (¢) where the sentence ¢ of type 7 is of the form

V437 '_/1 Ui(Xa, Vi)

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

364 ETIENNE GRANDJEAN

of Lemma 2.5. .The principle of the algorithm which checks if an integer belongs to
A, is given by the following equivalences.
Let n be a positive integer and / be a structure of type J on the domain D,. Then:

ME@efor all a4 e D¢ there are b, e D* and ie{l, -, c}, such that
MEi(ag, by)
o there are a function g:D%->D¥ and a function h:D%->{1,---,c},
such that

ME N nay(da g(da)).
ageDy
Let ¢, denote the above conjunction. Clearly, ¢, is of the form A;_, m;, where each
m; is an n-formula of type 7 and n’'= O(n?). (Here and in the following, the constant
numbers implicit in O-notation only depend on the sentence ¢.)
We have:

n €Sp (¢) <> ¢ has a model of domain D,,

and then from the previous equivalences:

(*) neSp(¢)e>there are functions g:Dﬁ >D* and h:D¢->1{1, -, ¢} such
that the conjunction ¢, is satisfiable in D,.

For each (relation or function) symbol s € 7, let I1, denote the set of n-formulas
m:(1=i =n') mentioned above which contain the symbol s. The following equivalences
are obvious:

A A m issatisfiable <> for each s € 7, A .y, 7 is satisfiable
seT mwellg

ofor each s € 7, II; includes no pair of incompatible
n-formulas.

(Incompatible n-formulas are of the forms R(e,) and —R(e,) or F(é,)=e and
F(e,)=e' withe #e'.)

The following nondeterministic algorithm (divided in two procedures, (a) and
(b)), thus emerges.

(a) Construct the binary representation of n. Guess (nondeterministically) the
functions g and 4 and write the conjunction ¢,,. There are n? values to guess for
each function. Since integers are written in base 2, procedure (a) requires a time
on* log n). ,

(b) Check (deterministically) if ¢, is satisfiable in D,. (Recall: @, =Aj_; 7,
where n' = O(nd) and each ; is an n-formula of type J.) Procedure (b) divides into
three steps:

(b1) Evaluate the (in)equalities, i.e., n-formulas of the form (—1)e =e', among the
n-formulas #;; if any is false, then ¢, is not satisfiable; otherwise, delete the (true)
(in)equalities and sort the conjunction ¢, in the form A 4 A o, 7

(b2) Sort each conjunction A, ., 7 according to the lexicographical order of the
arguments ¢, of the n-formulas 7. (Recall that 7= has form (—)R (e,) or F(e,) =e,+1.)

(bs) For each s € 7, test whether Il includes a pair of incompatible n-formulas,
using the fact that incompatible n-formulas (if any) now appear side by side.

We clearly see that steps (b;) and (bs) each require time O(n log n). Therefore
procedure (b) requires time O(nd(log n)?) which is the time to execute step (b2) with
the sorting algorithm of [1, p. 78].

It is easy to implement procedures (a) and (b) on an NTM, and then A€
NTIME (n“(log n)?), by linear speed-up.

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 365

Proof of (ii) Similar to the proof of (i). Therefore we only emphasize the differ-
ences. Let G = GenSp (¢) where the sentence ¢ of type 7 ={R, V1, -, V,}is as in
Lemma 2.5.

Let ¢ be a directed graph of domain D,,. By the argument used in the proof of
(i), we obtain:

% € GenSp(p) <> there are functions g: D& - D and h:D% {1, -, c}such
that & has an expansion (¥, Vy, - -+, V,,) which is a model

of Pg,h-

Let A(9) denote the conjunction of the m? m-formulas (—)R(e;, ¢5), where
(e1, e2) € D2, such that 9F(—)R(ey, e2). Then we obtain the following equivalence:

(x%) Y eGenSp (p)<>there are functions g:Dﬁl >D* and h:D%&-
{1,---,c}, such that the conjunction ., AA(9) is
satisfiable in D,,..

The second member of equivalence (**) is similar to the second member of equivalence
(%) in the proof of (i), except that ¢, is now replaced by ¢, AA(%Y) which is a
conjunction of O(m*®) m-formulas of type 7, since d = 2. Therefore the remainder of
the proof is exactly like that of (i). O

Remarks. Part (i) of Theorem 2.6 is essentially stated by H. Lewis [12, Prop.
3.2] with a proof more informal than ours. More precisely, he states the following:
“Whether a prenex sentence with d universal quantifiers has a model of cardinality
n can be ascertained nondeterministically in time f(j¢| - n?), for some polynomial f.”
(l¢| denotes the length of sentence ¢.) However, H. Lewis states his proposition in a
different context: he uses it as a tool to prove a complexity upper bound for the
satisfiability problem of a class of sentences with a fixed number of universal quantifiers;
he does not need to know a precise value of polynomial f. (Moreover he assumes that
¢ contain no function symbol and no equality symbol.)

By Theorems 2.3 and 2.6, the spectrum of any sentence ¢ of universal depth d
belongs to NTIME (nd(log n)®). In fact, there is a natural generalization of the
algorithm of Theorem 2.6 which accepts Sp (¢) in time O (n®(log n)?), and similarly
for generalized spectra.

3. Lower bounds for spectra. We want to ‘‘simulate” a computation of an NTM
in a finite structure. Therefore we need a numbering of the structure to express the
numbering of the tape cells and of the time units the computation requires. We can
construct a linear order by:

LEMMA 3.1. There is a first-order sentence ¥ such that:

(i) ¢ has only two universal quantifiers ;
(i) ¢ is of type T ={Fsucy R<, Rsuc, Co, C1}, where Fs,. is a unary function symbol,
R_. and R, are binary relation symbols and c,, ¢; are constant symbols ;
(iti) if M ={D, R, Rsue, Co, 1) is a finite structure of cardinality at least two, then:

MEIFs,p < R is a strict linear order of D, and Rg,, co, ¢ are respectively
the corresponding successor relation and the first and last
elements of this order.

Proof. Let us give some sentences with their intuitive meaning.
U1: Vx3yFsu(y) =x A VxFgsyc(x) # x.
Y1 expresses that Fg,. is a permutation of the (finite) domain and has no loop.

U Vx TR (x, x)AVxVy[x #y > (R<(x,y) e R(x, y))].

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

366 ETIENNE GRANDJEAN

¢, expresses that R is a tournament.
Y3 VxVy[(R<(x, y) Ay # 1) > R<(x, Fsuc(y)]A Fsuclct) = co.

Y5 expresses that R_ is a transitive relation for function Fg,., except for the value
Fsuc(c;) which is cq.

A consequence of the conjunction ¢ A 2 A5 is that the permutation Fg,. has
only one cycle. In investigating this cycle, we clearly see that this conjunction implies
that R is a linear order of the domain, with first and last elements co, c;, respectively,
and that Fg,. maps each element to its immediate successor for this order, with
moreover Fgu(ci) = co. Therefore the following sentence defines the successor relation:

Ya: VxVy[Rsuclx, y) © (Fsuclx) =y Ax #c1)].

So the conjunction ; A ¥, A 3 A b, has properties (ii) and (iii). Clearly, it has an
equivalent form with property (i) also since it is a conjunction of sentences with at
most two universal quantifiers. [

In the following, we will use Lemma 3.1 with the expressive symbols <, Suc, 0, [
instead of R, Rs,, Co, c1, respectively.

The following is our second main result.

THEOREM 3.2. Let A be a set of positive integers and G be an isomorphism invariant
set of directed graphs. Then, for any integer d =?2:

(i) AeNTIME (n?) implies A € Sp (dV);

(ii) G eNTIME (m*?) implies G € GenSp (dV).

Moreover these two implications hold even if we use multidimensional NTMs.

Proof of (i). Let A be a setin NTIME (n¢). By Proposition 2.2(iii), we can assume
that A is a set of integers n = 2. For each integer n =2, let us consider ¢1">$, a word
of length n, that we regard as a ‘“‘self-bounded” unary representation of n. Clearly,
the set A’ ={¢1"7?$: n € A} also belongs to NTIME (1 “), and then, by speed-up, there
is an NTM, M, which accepts A' in time n?—1. The input head of M does not visit
any cell outside the input, because of the “bounds” ¢ and $. (An NTM which accepts
A must visit the n cells of the input plus the next one to the right. It is less convenient
to encode n+1 cells than n cells in a domain of n elements: this is why we consider
A’ in place of A. Similarly, we choose the time bound n?—1 for technical reasons
which will be explained later.)

In the following, we will adopt almost the same notation as J. Lynch [13] used
in the proof of his theorem (mentioned in our introduction), so that it is easy to
compare his proof and ours.

Suppose that the tapes of M are the input tape and only one (one-dimensional)
worktape. The set of input symbols of M is of course =={1, ¢, $}. Let I be the set
of worktape symbols of M, including the blank symbol b. Let Q be the set of M's
states, including qo, the start state, and q,, the accepting state. Let § be the transition
function of the NTM M. More precisely, § maps each (o, v, q) € LXI'X Q to a subset
of I'x{~1,0, 1}*x Q; the set 8(c, y,q) consists of those (y', a, B, q') such that if at
some time, the symbols under the input head and the worktape head are respectively
o,v and M is in state ¢, then the following is a possible move: M prints y' in place
of v, and at the following time, the input head and the worktape head move accordingly
to numbers a, B, respectively (0 means no movement, 1 and —1 a movement to the
right and to the left, respectively) and M enters state q'.

Since M accepts A’ in time n — 1, we can regard each computation of M (on an
input of length n) as a sequence of exactly n* —1 moves by adopting the following
conventions: each computation of M is truncated by an n“ — 1 time-bounded clock;

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 367

in case M enters an (accepting or rejecting) final state before the clock rings, then M
continues “‘running” in the same configuration until the clock rings. Therefore each
computation of M uses exactly n¢ configurations (including the start and the final
configurations) and at most n? worktape cells.

By Lemma 3.1, there is an existential second-order sentence which defines a
linear order < of the domain with the corresponding successor relation, Suc, and first
and last elements, 0 and /, respectively. To encode the moves of M, we shall use the
lexicographical order of k-tuples, constructed from <, and also denoted <, and the
corresponding successor relation, also denoted Suc. More precisely, X, <y, is an
abbreviation of

k j—1
xi1<yiv V (/\ Xi =i /\xf<)’f)-

i=2 \i=1

Similarly, Suc (%, y«) abbreviates the following formula:

k
[suc iy A (=1ay=0)]

j-1

k
1xi=yiASuc(xj,yj)A./\ (x,'=l/\y,~=0)]

k-1
vV [
j=2 i=j+1

k—1
V[A xi =y ASuc (xg, Yk)]-
i=1

Clearly % <y, and Suc (X, yx) express the required relations. Let y, =X +1
and X, =y.—1 be synonymous with Suc (X, yi). Lastly, let X, =y, (or
% =yx+0) and x, #y, abbreviate the conjunction A,_,x;=y; and its negation,
respectively.

Let ¢ in short denote the d-tuple of variables o4 = vy, - -+, vg. Similarly, let 0
(resp. I) denote the constant symbol O (resp. /) repeated d times. For convenience,
our notation does not distinguish between a variable and its assignment.

Now let us consider a domain of n elements, denoted E,,, and let us intuitively
describe how to encode in E, a computation of M on an input of length n. There are
as many elements in E ¢ as time units (resp. worktape cells) used in the computation.
So each element 7 (resp. y, y) of E¢ (resp. E,, E%) corresponds to a time unit (resp.
an input cell, a worktape cell), also denoted f (resp.y, 7). (This is the “folding”
technique of [5], [11], [13].) For convenience, we will use (d, k)-ary functions: a
(d, k)-ary function symbol F abbreviates a k-tuple Fy,:--,F; of d-ary function
symbols. Let us introduce the following relation and function symbols for which the
argument intuitively means “at time 7":

The d-ary relation symbols C¥,C,,C\, 02, yel': C¥(t) (intuitively) means
“the symbol under the input head is ¢”; C,(7) (resp. C, (7)) means ‘“the symbol
under (resp. printed by) the worktape head is y.”

The d-ary function symbol H*: H*(f) is ““the cell, y, under the input head.”

The (d, d)-ary function symbol H: H(t)=(H,(7), -+, Hy(f)) is ‘“the cell, 7y,
under the worktape head.”

The d-ary relation symbols S, q € Q: S,(f) means “M is in state q.”

For technical reasons, we also introduce a (d, 2d)-ary function symbol, N, less
intuitive than the previous symbols. It will be used to lexicographically number the
n® couples (H(f),f) of the computation. The (intuitive) value of N(x)=
(Ny(%), -+ +, Ny(%)) is “the couple (H(f),?) of number %.”

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

368 ETIENNE GRANDJEAN

Function N is defined by the two following sentences with only d universal
quantifiers:

e VIIX(H(F), 1) =N (%),

where the subformula (H (), f) = N(%) abbreviates
d i d
./_\1 H;(t)=Ni(x)A ./~\1 ti = Ngii(%);

02 (VE#DAX' =% +1)N(X)<N(x"),

where (Vi#[) and (3x'=i+1) abbreviate Vi(x#[->---) and
J5'(x'=x+1nA---), respectively. Clearly, ¢; expresses that the equality
(H(7),7)=N(X) defines a bijection between the n? d-tuples 7 and the n?
d-tuples %, and ¢, expresses that N is an increasing function for lexicographical order.

Figure 1 illustrates (for a particular computation) how function N numbers the
ordered pairs (H(f), f) which are intuitively the worktape head positions during
the computation. (We assume that d =1 and n = 6; each element of E, is denoted in
Fig. 1 by its rank for order <.)

tape

v

0]o0
1 2
i

2 5
time T

3 3

411

5 4

L 2

FiG. 1

It should be clear that ¢, A ¢, implies that function N satisfies the two following
(informal) statements:

(a) t'is the first time after £ such that H(f) = H(¢') iff H(f) = H(¢') and there is X
such that N(X)=(H(f),f) and N(x+1)=(H('),).

(b) 7' #0 and the worktape cell H(f') has never been visited before time 7’ iff
there are £, f such that N(¥)=(H(?),7) and N(x+1) =(H(¢'),7) and H(f) #
H(t).

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 369

The following sentences express how to encode an accepting computation of M
in a structure with the relation and function symbols mentioned above.

@3: VI[(H*(f) =0 C¥(@) A (H*(1) = 1o C¥ (7))
AO<H*(@)<le CH (D))
@3 expresses what is the symbol under the input head. (Recall that the input is $1">$.)
@4: Cp(0) A H*(0)=0A H(0)=04 S,,(0).

(In ¢, and in the following sentences, C,(f), y€T', abbreviates the conjunction
C,() AN yer—n1Cy(1); C(f), yel', and S,(f),qe Q, are similar abbrevi-
ations.) ¢4 describes the start configuration.

Let ¢s be the conjunction, for all (o, v, q) e ZXxTI' X Q, of:

Vi 1)3t'=1+1)
[CZT()ACy(T)nS,(7))
> VA(Cy @) nH*({')=H*() +a nH(@') = H(@) + B 1 Sy ('))],

where the disjunction extends over all (v', a, B, q') of 8(o, v, q). ¢5 describes the set
of possible moves determined by the transition function §. (Notice that we assume
that the worktape head prints the symbol y' at time 7, not at time 7 +1.)

ve: (V' #0)3FAx(AX' =%+1)
[N(®) = (H®), D) a N(&) = (HF), 7)
n A LH@O=HE) A C4 @) > 6, ()]
’ AH® = HE) > G()])

Using équivalence_s (a) and (b), ¢s expresses what is the symbol under the worktape
head at time 7' # 0, according to whether the scanned worktape cell has been visited
or not before.

7. Sq.,(l)

Let ¢ be the sentence ¢ of Lemma 3.1 and ¢ be the conjunction /\,7=0 ¢i. Then
it should be clear that M accepts ¢1"$ iff ¢ has a model of cardinality n. Hence
n e A iff n € Sp (¢). Moreover, ¢ is a conjunction of sentences with at most d universal
quantifiers. This proves part (i) of the theorem in case the machine M has only one
(one-dimensional) worktape.

In the general case, for every k-dimensional worktape of M, we need a (d, kd)-ary
function symbol, H, and a (d, (k + 1)d)-ary function symbol, N, and the corresponding
sentences ¢, ¢» and . There are also obvious modifications of sentences ¢4 and ¢@s.

Proof of (ii). Similar to the proof of (i). Therefore we only dwell on the differences.
Let G be an isomorphism invariant set of directed graphs such that G € NTIME (m%).
Let X be the alphabet of six symbols {0, 1, (0, ¢), (1, ¢), (0, $), (1, $)}. A “self-bounded”
encoding of a directed graph ¥ is a word of s

(w1, ¢)W2 W21 (W2, $),

where the word wy - - - w,,2 of {0, 1} encodes the graph ¥. Clearly, there is an NTM
which accepts the set of self-bounded encodings of the graphs of G in time
max (m?, m? —1).

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

370 ETIENNE GRANDJEAN

We construct a sentence ¢ such that G = GenSp (¢) exactly as in the proof of
(i), except that the conjunct ¢3, expressing what is the symbol under the input head,
is now replaced by the conjunction of:

VI[H*(7) = (0, 0)C}(1)],
ViI[H*(f)=(l, 1) C¥ ()],
Vi3x3Ay[H*(t) = (x,y) A (R(x, y) = CT () A (CR(x, y) & C§ (1))

Note that H* is now a (d, 2)-ary function symbol since we have to “fold up” an input
of length m? to encode it in a domain of m elements.

There is a slight technical difficulty in case G € NTIME (m %), because an NTM
which accepts the set of self-bounded encodings of graphs of G in time m? cannot
be sped up, and then each computation requires m?+1 configurations. In this case,
the ordered pair [= (I, I) does not encode the last time unit, but rather the time unit
before last. However, we are not interested by the last configuration, except for its
state. From these remarks, the reader should be able to modify sentences ¢s and ¢
for this case. 0

Remarks. In fact, we have proved a little more than the stated theorem: if A, a
set of positive integers, belongs to NTIME (n?), for an integer d =2, then A is the
spectrum of a sentence with at most d universal quantifiers and a type of arity d.
Similarly, for generalized spectra.

As P. Pudlék [16] points out, the implication G € NTIME (m“) > G € GenSp (dV)
might be useful for finding some nontrivial lower bound for a concrete problem in
NP. In particular, if G& GenSp (2V) then G NTIME (m?).

4. Corollaries.
CoROLLARY 4.1 (Pudldk [15] for (ii)). Let d be a nonnegative integer. Then:
(i) there is a set of positive integers, A, such that:

AeSp(d+1V)—Sp (dVv);
(i) there is a set of directed graphs, G, such that
G € GenSp (d+1V)—GenSp (dV).

Proof. (i) Clearly, {1} € Sp (1V) —Sp(0V). So assume that d = 1. A particular case
of the nondeterministic time hierarchy [4],[17]is that there is a set of positive integers

A eNTIME (n?*")—NTIME (n“(log n)?).
From Theorems 2.6 and 3.2, it immediately follows that
AeSp(d+1V)—Sp(aVv).

(ii) Let us consider a sentence ¢ with d +1 universal quantifiers only, such that
A=Sp(¢p). Let T be the type of ¢. Now let us regard ¢ as a sentence of type
J U{R}, R a new binary relation symbol. Let us define G(A)=GenSp (¢). G(A) is
the set of directed graphs on n vertices, such that n € A. Let us assume that G(A) =
GenSp (¢') where ¢’ has at most d universal quantifiers; then A =Sp (¢'), a contra-
diction. 0O

Remarks. By the same proof, Corollary 4.1 holds not only for directed graphs,
but also for structures of any type.

Corollary 4.1 can be strengthened as follows: The sentence ¢ (with d + 1 universal
quantifiers) such that A =Sp (¢) (resp. G(A) = GenSp (¢)), hasa type of arity d + 1.

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 371

In analyzing the proof of Theorem 3.2(i), we clearly see that the only reason why
we assume d =2 is that we need two universal quantifiers to define a linear order. If
we suppose that a structure has a “built-in” linear ordering, then the restriction d =2
can be removed.

DEFINITION. Let ¢ be a sentence whose type includes <, a binary relation symbol.
Let Sp< (¢) denote the set of integers n, such that there is a model of ¢ of domain
D,={0,---,n—1}, where < is interpreted as the natural order of D,.

LEMMA 4.2. There is a first-order sentence ¢ such that:

(i) ¢ has only one universal quantifier
(i) ¢ is of type T ={<, Fsyc, o, C1} where < is a binary relation symbol, Fs,.is a
unary function symbol and cy, c; are constant symbols ;

(iii) Let A be a structure of type T on the domain D, where < is the natural order
of D,. Then

MEYIf co=0,ci=n—1andFs,(e)=e +1 foreach e € D,
except that Fg,.(n —1)=0.
Proof. Properties (ii) and (iii) clearly hold for the conjunction of
Vx3yx =Fgsu(y) and (Vx #c)x <Fsu(x) A Fsuclci) = co. 0

COROLLARY 4.3. Let A be a set of positive integers in NTIME (n). Then there

are a type I and a quantifier-free formula ¢ (x) of type T U{<}, such that:
(i) @ has only one variable x ;

(ii) A =Sp< (Vxe(x));

(iii) the arity of T is 1.

Proof. Let ¢' be the conjunction of the sentence ¢ of Lemma 4.2 and of the
sentences @i, * +, @7 (of Theorem 3.2) in which each occurrence of Suc (v, v’) is
replaced by Fs,(v)=v'Av #c.. (Moreover ¢s and ¢; are modified as in case G €
NTIME (m?) of Theorem 3.2(ii).) Let ¢” be the equivalent form of ¢’ with only one
universal quantifier. Vx¢(x) is the sentence constructed from ¢"” as in Lemma 2.1. [

Let Prime denote the set of prime numbers. The usual algorithm for testing
whether an integer n (written in base 2, for example) is prime, is to divide n by the
|Vn| first positive integers. This algorithm works in time vn f(logn), for a poly-
nomial f. (Pratt’s nondeterministic algorithm [8, p. 342], [14] works in time f(log n),
for a polynomial f.) From Lemma 1.1, it follows that Prime € NTIME (n). Indeed it
seems that most ‘‘natural” sets of integers belong to NTIME (n).

COROLLARY 4.4, There is a type I and a prenex sentence ¢ of type T U{<} such
that:

(i) Prime =Sp(¢);
(ii) ¢ has only one variable (universally quantified);

(iii) the arity of I is 1.

Appendix. We want to prove:
PROPOSITION 2.4. For each sentence ¢ of universal depth d, there is a sentence ¢'
with d universal quantifiers only and no existential quantifier, so that Sp (¢)=Sp (¢’).
LeMMA 2.4, For each formula ¢ (%) of type T, such that ¥-depth (¢) =d, there
is a quantifier-free formula ¢ * (%, y4) of type T* 2T, so that (i) and (ii) are true:
(i) Any finite structure, M, of type I, has an expansion (M, N') of type T*, such
that for each k-tuple a, in D (M),

M= @(ay) implies (M, NY=VF0*(ar, Ja).

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

372 ETIENNE GRANDJEAN

(i) Given any finite structures, M and (M, N'), of respective types T and T*, and
any k-tuple a, in D (M),

(M, N)YEFap™(ax, Ja) implies ME@(ar).

From Lemma 2.4', we obtain Proposition 2.4 for each sentence ¢, by taking
@' =V540*(Va).

Proof of Lemma 2.4'. By induction on the “complexity” of the formula ¢. We
build ¢* as follows:

Case 1. For a quantifier-free formula ¢, ¢* = ¢.

For all formulas o(%x), ¥1(Xk), ¥ (Xx, 2):

Case 2. (on)* =4 Ay,

Case 3. Vz)* =y™*;

Case 4. (Yov ¥1)* =[R(%) v ¢ (Zs Ja)1A[TR (%) v ¥ (i, Ja)], where R is a
new k-ary relation symbol and d = V-depth (¢o v ¢1);

Case 5. (z¢(xy, 2))* =¢*(%i, F(X1), Va), where F is a new k-ary function
symbol and d = V-depth (¢).

We shall prove (i) and (ii) only for the hardest case, Case 4, and shall give a
sketch of proof of (i) in Case 5. The reader can easily complete the proof for the
other cases.

Case 4. ¢ =gV ;. Let M be a finite structure of type I (the type of ¢, and
also of ¢ and ¢1). Let (M, Vo) and (M, A1) be the expansions of ./, of respective
types I (the type of &) and I (the type of ¢¥), given by the induction hypothesis.
We can suppose T, T, =J. Let R be the new k-ary relation on D(A#), defined as
follows: for any k-tuple a, .in D (),

R(ay) is true iff (M, N'1)EVGapT (ak, 7a).

Now suppose that # F¢(a,) for a k-tuple a, in D (). By the induction hypothesis,
we have either (M, No)EVya§ (ar, ya) or (M, N1)EVyap¥ (dk, 74), and then as
a consequence,

(A1) (M, No, N1, RYEV4[R (ax) v ¢ (ax, §a)I A [R (ax) v ¢ (ax, ya)11-

So (i) is proved.

Now we prove (ii). Let (#, Ao, /1, R) be a finite structure of type 7,U T U{R}
and let @, be a k-tuple in D (#) for which (A.1) is true. Then according to whether
R (a;) is true or false, we have

either (M, NYEV YT (A, 5a) or (M, NoY=Y 548 (ars Fa)s

and so A k¢ (ay).

Case 5. ¢(xi)=3zy (X, z). Let M be a finite structure of type I (the type of
¢ and also of ¢) and let (#, /') be the expansion of /4 of type T* (the type of
¢*(%k, z, Ja)), given by the induction hypothesis. We construct a k-ary function F
on D (M) as follows: for each a, in D(#), F(a,) is a chosen element b such that
(M, NYEN Y *(ax, b, ya) if there exists one, and if not, then F(a,) is any element
in D (/). It is clear that (i) is true with the expansion {(/, &, F). 0

Acknowledgments. Many thanks to Pascal Michel for helpful technical dis-
cussions. Thanks to Peter Clote for his help.

Downloaded 02/06/25 to 129.2.89.253 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SPECTRA OF SENTENCES AND COMPUTATIONAL COMPLEXITY 373

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974,
[2] R. V. BOOK AND S. A. GREIBACH, Quasi-realtime languages, Math. Systems Theory, 4 (1970), pp.
97-111.
[3] C. C. CHANG AND H. J. KEISLER, Model Theory, North-Holland, Amsterdam, 1973.
[4] S. A. COOK, A hierarchy for nondeterministic time complexity, J. Comput. Systems Sci., 7 (1973), pp.
343-353.
[5] R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, in Complexity of
Computations, R. M. Karp, ed., American Mathematical Society, Providence, RI, 1974, pp. 43-73.
[6] , A spectrum hierarchy, Z. Math. Logik Grundlag. Math., 21 (1975), pp. 123-134.
[7] J. HARTMANIS AND R. E. STEARNS, On the computational complexity of algorithms, Trans. Amer.
Math. Soc., 117 (1965), pp. 285-306.
[8] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation,
Addison-Wesley, Reading, MA, 1979.
[9] N. IMMERMAN, Number of quantifiers is better than number of tape cells, J. Comput. Systems Sci., 22
(1981), pp. 384-405.
[10] , Upper and lower bounds for first-order expressibility, J. Comput. System Sci., 25, 1 (1982).
[11] N.D.JONES AND A. L. SELMAN, Turing machines and the spectra of first-order formulas with equality,
J. Symbolic Logic, 39 (1974), pp. 139-150.
[12] H. R. LEwis, Complexity results for classes of quantificational formulas, J. Comput. Systems Sci., 21
(1980), pp. 317-353.
[13] J. F. LyNCH, Complexity classes and theories of finite models, Math. Systems Theory, 15 (1982), pp.
127-144.
[14] V. R. PRATT, Every prime has a succinct certificate, this Journal, 4 (1975), pp. 214-220.
[15] P. PUDLAK, The observational predicate calculus and complexity of computations, Comment. Math.
Univ. Carolin., 16 (1975), pp. 395-398.
[16] , Personal communication (1982).
[17] J. 1. SEIFERAS, M. J. FISHER AND A. R. MEYER, Separating nondeterministic time complexity classes,
J. Assoc. Comput. Mach., 25 (1978), pp. 146-167.

