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Probabilistic Method
Proof of Turan’s
Theorem

Exposition by William Gasarch
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Turan proved this in 1941 with a complicated proof. We proof this

more easily using Probability, but first need a lemma. The proof

we give is due to Ravi Boppana and appears in the Alon-Spencer
book on The Probabilistic Method



Lemma
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Lemma

Lemma If G = (V,E) is a graph. Then

Z deg(v) = 2e.

Proof: Try to count the edges by summing the degrees at each
vertex. This counts every edge TWICE.
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Proof of Turan’s Theorem

Theorem If G = (V,E) is a graph, |V| =n, and |E| = e, then G

has an ind set of size "
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Proof: Take the graph and RANDOMLY permute the vertices.

The set of vertices that have NO edges coming out on the right
form an Ind Set. Call this set /.

Example:



How Big is I?
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How Big is I?

How big is /

WRONG QUESTION!

What is the EXPECTED VALUE of the size of /.
(NOTE- we permuted the vertices RANDOMLY)
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What is Prob v € |
Let v € V. What is prob that v € /

S
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v has degree d,. How many ways can v and its vertices be laid
out: (dy + 1)!. In how many of them is v on the right? d,!.

d! 1

PveN =G g~ a1

Hence

E(|I]) =
vevd +1



How Big is this Sum?

Need to find lower bound on

1
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Rephrase

NEW PROBLEM:
Minimize

1
ZXv+l

vev

relative to the constraint:
Z x, = 2e.
vev

KNOWN: This sum is minimized when all of the x, are IV\ = 2—6
So the min the sum can be is

Z2e :2e+1'

vev n
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Recap and Done

E(I)=>,ev Tlﬂ and Y,y dy = 2e.

To lower bound E(|/|) we solve a continuous problem: minimize
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> veV 41 With constraint > o\, x, = 2e.

The min occurs when (Vv)[x, = 2¢]. Hence

E(I)ZZ —Zze :252_1'

Xv veV n



