BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Probabilistic Method Proof of Turan's Theorem

Exposition by William Gasarch

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}.$$

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}$$
.

Turan proved this in 1941 with a complicated proof.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}$$
.

Turan proved this in 1941 with a complicated proof. We proof this

more easily using Probability, but first need a lemma.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}$$
.

Turan proved this in 1941 with a complicated proof. We proof this

more easily using Probability, but first need a lemma. The proof

we give is due to Ravi Boppana and appears in the Alon-Spencer book on *The Probabilistic Method*

Lemma

Lemma If
$$G = (V, E)$$
 is a graph. Then

$$\sum_{v\in V} deg(v) = 2e.$$

Lemma

Lemma If G = (V, E) is a graph. Then

$$\sum_{v \in V} deg(v) = 2e.$$

Proof: Try to count the edges by summing the degrees at each vertex. This counts every edge TWICE.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size $\geq \frac{n}{\frac{2e}{n} + 1}.$

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size $\geq \frac{n}{\frac{2e}{n} + 1}$.

Proof: Take the graph and RANDOMLY permute the vertices.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size

$$\geq \frac{n}{\frac{2e}{n}+1}$$
.

Proof: Take the graph and RANDOMLY permute the vertices.

Example:

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size

$$\geq \frac{n}{\frac{2e}{n}+1}$$
.

Proof: Take the graph and RANDOMLY permute the vertices.

Example:

The set of vertices that have NO edges coming out on the right form an Ind Set. Call this set *I*.

How Big is 1?

How big is I

How Big is 1?

How big is / WRONG QUESTION!

How Big is 1?

How big is / WRONG QUESTION!

What is the EXPECTED VALUE of the size of *I*. (NOTE- we permuted the vertices RANDOMLY)

Let $v \in V$. What is prob that $v \in I$

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can v and its vertices be laid out: $(d_v + 1)!$. In how many of them is v on the right? $d_v!$.

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can v and its vertices be laid out: $(d_v + 1)!$. In how many of them is v on the right? $d_v!$.

$$\Pr(v \in I) = \frac{d_v!}{(d_v + 1)!} = \frac{1}{d_v + 1}.$$

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can v and its vertices be laid out: $(d_v + 1)!$. In how many of them is v on the right? $d_v!$.

$$\Pr(v \in I) = \frac{d_v!}{(d_v + 1)!} = \frac{1}{d_v + 1}.$$

Hence

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can v and its vertices be laid out: $(d_v + 1)!$. In how many of them is v on the right? $d_v!$.

$$\Pr(v \in I) = \frac{d_v!}{(d_v + 1)!} = \frac{1}{d_v + 1}.$$

Hence

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}.$$

How Big is this Sum?

Need to find lower bound on

$$\sum_{v\in V}\frac{1}{d_v+1}.$$

Rephrase

NEW PROBLEM:

Minimize

$$\sum_{v \in V} \frac{1}{x_v + 1}$$

relative to the constraint:

$$\sum_{v \in V} x_v = 2e.$$

KNOWN: This sum is minimized when all of the x_v are $\frac{2e}{|V|} = \frac{2e}{n}$. So the min the sum can be is

$$\sum_{v \in V} \frac{1}{\frac{2e}{n}+1} = \frac{n}{\frac{2e}{n}+1}.$$

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}$$
 and $\sum_{v \in V} d_v = 2e$.

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}$$
 and $\sum_{v \in V} d_v = 2e$.

To lower bound E(|I|) we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_v + 1}$ with constraint $\sum_{v \in V} x_v = 2e$.

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}$$
 and $\sum_{v \in V} d_v = 2e$.

To lower bound E(|I|) we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_v + 1}$ with constraint $\sum_{v \in V} x_v = 2e$.

The min occurs when $(\forall v)[x_v = \frac{2e}{n}]$. Hence

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}$$
 and $\sum_{v \in V} d_v = 2e$.

To lower bound E(|I|) we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_v + 1}$ with constraint $\sum_{v \in V} x_v = 2e$.

The min occurs when $(\forall v)[x_v = \frac{2e}{n}]$. Hence

$$E(I) \ge \sum_{v \in V} \frac{1}{x_v + 1} \ge \sum_{v \in V} \frac{1}{\frac{2e}{n} + 1} = \frac{n}{\frac{2e}{n} + 1}.$$