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The mathematization of all sciences, the fading of traditional scientific boundaries,
the impact of computer technology, the growing importance of computer modeling
and the necessity of scientific planning all create the need both in education and
research for books that are introductory to and abreast of these developments. The
purpose of this series is to provide such books, suitable for the user of mathematics,
the mathematician interested in applications, and the student scientist. In particular,
this series will provide an outlet for topics of immediate interest because of the
novelty of its treatment of an application or of mathematics being applied or lying
close to applications. These books should be accessible to readers versed in
mathematics or science and engineering, and will feature a lively tutorial style, a
focus on topics of current interest, and present clear exposition of broad appeal.
A compliment to the Applied Mathematical Sciences series is the Texts in Applied
Mathematics series, which publishes textbooks suitable for advanced undergraduate
and beginning graduate courses.
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Preface

Ramsey theory is named after British mathematician Frank P. Ramsey (February 22,
1903–January 19, 1930) who published a paper “On a problem of formal logic” in
1929. Ramsey theory has become a flourishing branch of extremal combinatorics.
Just as Theodore S. Motzkin pointed out, the main spirit of Ramsey theory is that

“Complete disorder is impossible!”

Ramsey theory was subsequently developed by Paul Erdős (March 26, 1913–
September 20, 1996), a Hungarian mathematician, who was working on many math-
ematical problems, particularly in combinatorics, graph theory and number theory.
Earlier than Frank P. Ramsey, Issai Schur (January 10, 1875–January 10, 1941) and
van der Waerden (February 2, 1903–January 2, 1996) obtained similar results in
number theory. We refer the reader to the book Ramsey Theory by Graham, Roth-
schild and Spencer (1990) for a systematically introduction and the book Erdős on
Graphs: His Legacy of Unsolved Problems by Chung and Graham (1999) for many
unsolved problems. As an important method on Ramsey theory, we would like to
refer the reader to the book The Probabilistic Method by Alon and Spencer (2016) for
a systematically introduction. For a comprehensive understanding of random graphs
which are closely related to Ramsey theory, we refer the reader to three books on this
field: The books Random Graphs by Bollobás (2001, 2nd ed.), Random Graphs by
Janson, Łuczak and Ruciński (2000), and Introduction to Random Graphs by Frieze
and Karoński (2016).

The number of research papers on Ramsey theory before 1970s was not substan-
tial. The Combinatorial Conference at Balatonfüred, Hungary 1973, in honor of Paul
Erdős for his 60th birthday, was a milestone in Ramsey theory history. There were
more than two dozen talks devoted to what is now called Ramsey theory. Many pa-
pers have been published after this conference. One striking feature is the invention
of many modern methods that involve ideas from various branches of mathematics
such as probability, algebra, geometry, and analysis.

Graph Ramsey theory is an important area that serves not only as an abundant
source but also as a testing ground of these methods and many other new methods.

vii
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viii Preface

Despite substantial advances in graph Ramsey theory, most outstanding problems
are far from being solved. The new insights generated by tackling these problems will
most likely lead to new tools and techniques. Due to these reasons, graph Ramsey
theory is full of vitality and hence deserves much more research efforts.

The book emphasizes making the text easier for the students to learn. To overcome
difficulties to access sporadic results in an extensive literature, we set out to describe
the material in this elementary book, which aims to provide an introduction to graph
Ramsey theory. The prerequisites for this book are minimal: we only require that
the reader be familiar with elementary level of graph theory, calculus, probability
and linear algebra. To make this book as self-contained as possible, we attempt to
introduce the theory from scratch, for instance, some results rely on the properties of
finite fields, so we laid down the background beforehand. We believe that this book,
intended for beginning graduate students, can serve as an entrance to this beautiful
theory. To facilitate better understanding of the material, this book contains some
standard exercises in which a large part of the exercises are not difficult since our
book serves as a primer on this topic.

We have used the manuscript of the book as lecture notes more than 20 years in
many universities including these in mainland of China, Hong Kong and Taiwan,
etc. We also used it many times for summer schools supported by Natural Science
Foundation of China. The selected topics are almost independent so that beginners
may skip some chapters, sections, and proofs, particularly that are marked with
asterisks. We are sorry for not being able to incorporate many deep results into this
book. As most listeners in the short terms are preferably interested in the specific
topics, they can obtain a clearer picture on the topics from the selected chapters
instead of the whole book.

There are thirteen chapters in this book, divided mainly according to both the
content of the book and methods used for the problems. In Chapter 1, we will
introduce some basic definitions and discuss the existences of Ramsey numbers by
giving upper bounds. In Chapter 2, we will consider several small Ramsey numbers
and a Ramsey number on integers, i.e., Schur number on integers. For algebraic
constructions in this chapter, we shall recall some basics of finite fields briefly. In
Chapter 3, we will focus on the basic method such as vertices are labeled or picked
randomly or semi-randomly, in which we always compute the expectations of random
variables. The frequently-used methods to estimate the probability of a variable from
expectation including Markov’s inequality and Chernoff bound will be introduced
in this chapter. In Chapter 4, we will give an overview on random graphs which now
has become a flourishing branch. Applications to classic Ramsey numbers due to
Erdős (1947) will be given in this chapter, which is always considered as the first
conscious application of the probabilistic method, and the graph Ramsey theory is
always refereed to as the birthplace of random graphs. This chapter also contains
threshold functions for random graphs with certain properties. In Chapter 5, we will
introduce Lovász Local Lemma that relaxes the independence of pairwise events to
partial independence. We will also give an overview of the Martingales and triangle-
free process. In Chapter 6, we shall consider some constructive lower bounds of
Ramsey numbers, which tells us that the probabilistic method is more powerful than
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Preface ix

constructive method for lower bounds of most non-linear Ramsey functions. Also, we
introduce a disproof of the conjecture of Borsuk in geometry that is a surprising by-
product of graph Ramsey theory. Additionally, this chapter contains basic properties
of intersecting hypergraphs. In Chapter 7, Turán numbers will be introduced, in which
the Turán numbers of bipartite graphs are tightly related to the corresponding Ramsey
numbers in many colors. In Chapter 8, we will introduce communication channel, and
the connection between Ramsey theory and communication channel will be revealed.
In Chapter 9, we will introduce the method of the dependent random choice, which
can be applied to embed a small or sparse graph into a dense graph. Chapter 10
focuses on quasi-random graphs and regular graphs with small second eigenvalues,
for which some deep applications especially some graph Ramsey numbers will
be included. In Chapter 11, we will introduce an important Ramsey number on
integers, i.e. van der Waerden number on arithmetic progression. We will also
introduce Szemerédi’s regularity lemma which asserts that every large graph can be
decomposed into a finite number of parts so that the edges between almost every pair
of parts forms a “random-looking” graph. We will give some applications including
a classic application on graphs with bounded maximum degree and a Ramsey-Turán
number by using the regularity lemma. Several extensions on the regularity lemma
will be given. In Chapter 12, we shall discuss some more examples on Ramsey
linear functions. The first section of the chapter discusses the linearity of subdivided
graphs, and the second is on a special linearity: so called Ramsey goodness, proposed
by Burr and Erdős (1983). There are a lot of variants on graph Ramsey theory, some
of which will be introduced in Chapter 13, including size Ramsey numbers, induced
Ramsey theorem, bipartite Ramsey numbers, and Folkman numbers, etc.

We are deeply indebted to these professors who helped us to learn Ramsey theory,
and colleagues who organized seminars and summer schools, as well as students who
attended the classes. In particular, we are deeply indebted to Professor Wenan Zang
who should be a coauthor if he is not so busy since a large part of the book is chosen
from the lecture notes Introduction to Graph Ramsey Theory by Y. Li and W. Zang.
Finally, we would like to thank the National Science Function of China and the
Research Grants Council of Hong Kong for their financial support.

Yusheng Li, Tongji University
Jan. 2022 Qizhong Lin, Fuzhou University
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Chapter 1
Existence
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A typical result in Ramsey theory states that if a mathematical object is partitioned
into finitely many parts, then one of the parts must contain a sub-object of particular
property. The smallest size of the large object such that the sub-object exists is called
Ramsey number.

Ramsey theory can be viewed as a generalization of the following well-known
Pigeonhole Principle. Let 𝑘 and 𝑛 be positive integers. When 𝑁 pigeons are put into
𝑘 pigeonholes, there exists at least one pigeonhole containing more than 𝑛 pigeons
if 𝑁 is large enough.

Here the set of pigeons of size 𝑁 is the large object. The smallest 𝑁 so that the
statement holds is 𝑘𝑛 + 1. For 𝑁 ≥ 𝑘𝑛 + 1, the average size of the substructures is
more than 𝑛, so there exists a class contains at least 𝑛 + 1 objects. The averaging
technique used in the argument is one of the oldest “non-constructive” principles: it
states only the existence of a pigeonhole with more than 𝑛 pigeons and says nothing
about how to find such a pigeonhole.

A cornerstone method in mathematics is the mathematical induction, which de-
duces a general statement for infinitely many parameters from finitely many cases. In
contrast to the induction, Ramsey theory does the job to obtain a general statement
for all large parameters by excluding finitely many exceptions.

1.1 Terminology

We assume that the readers have learned some standard textbooks in graph theory, a
few of which are listed at the end of this book. For terminology and notation that are
not defined here, we refer the reader to that such as Bollobás (1994, 2004), Bondy
and Murty (2008), Diestel (2010), and West (2001), etc.

Let 𝐺1, . . . , 𝐺𝑘 be graphs. Without specified, all graphs are simple graphs. The
Ramsey numberof𝐺1, . . . , 𝐺𝑘 , denoted by 𝑟𝑘 (𝐺1, . . . , 𝐺𝑘) or simply 𝑟 (𝐺1, . . . , 𝐺𝑘),
is defined to be the smallest integer 𝑁 such that for any edge-coloring of the com-
plete graph 𝐾𝑁 by colors 1, . . . , 𝑘 , there exists some 1 ≤ 𝑖 ≤ 𝑘 , such that 𝐺𝑖 is

https://doi.org/10.1007/978-3-031-12762-5_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12762-5_1&domain=pdf
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2 1 Existence

contained in the subgraph spanned by all edges in the color 𝑖. The spanned subgraph
by edges in the color 𝑖 may contain isolated vertices which are those (if any) not
incident to any edge in the color 𝑖. Note that in the definition of Ramsey numbers,
there are no restraints on the way of coloring of edges. We call 𝑟 (𝐺1, . . . , 𝐺𝑘) the
𝑘-coloring Ramsey number. For simplicity, we write 𝑟𝑘 (𝐺, . . . , 𝐺) as 𝑟𝑘 (𝐺), write
𝑟 (𝐾ℓ , . . . , 𝐾𝑛) as 𝑟 (ℓ, . . . , 𝑛), which is called classical Ramsey number. We often
use 𝑟𝑘 (𝑛) to denote 𝑟𝑘 (𝐾𝑛). If a graph 𝐺𝑖 is not complete, then 𝑟 (𝐺1, . . . , 𝐺𝑘) is
also called generalized Ramsey number.

The case 𝑘 = 1 is trivial as 𝑟1 (𝐺) = |𝑉 (𝐺) |. The most studied case is 𝑘 = 2
in which we often refer the two colors for edges as red and blue. Let 𝐹 be the
complementary graph of𝐹. TheRamsey number 𝑟 (𝐺, 𝐻) can be alternatively defined
as the smallest positive integer 𝑁 such that for any graph 𝐹 of order 𝑁 , either 𝐹
contains 𝐺 as a subgraph or its complement 𝐹 contains 𝐻 as a subgraph. We always
call 𝑟 (𝐺,𝐺) or simply 𝑟 (𝐺) the diagonal Ramsey number of 𝐺, and write 𝑟 (𝑛, 𝑛)
or simply 𝑟 (𝑛) for the diagonal classic Ramsey number 𝑟 (𝐾𝑛, 𝐾𝑛) for convenience.

It is a simple fact that 𝑟 (𝐾1, 𝐺) = 1 and 𝑟 (𝐾2, 𝐺) = |𝑉 (𝐺) | for any graph 𝐺 with
|𝑉 (𝐺) | ≥ 2. To see the latter, let 𝑛 = |𝑉 (𝐺) | ≥ 2, and color all edges of 𝐾𝑛−1 blue,
then there is neither a red 𝐾2 nor a blue 𝐺, so 𝑟 (𝐾2, 𝐺) > 𝑛 − 1. On the other hand,
consider a red-blue coloring of edges of 𝐾𝑛. We are done if there exists a red edges.
Otherwise, all edges of 𝐾𝑛 are colored blue, thus we definitely have a blue 𝐺, the
upper bound 𝑟 (𝐾2, 𝐺) ≤ 𝑛 follows.

If 𝐺 is not an empty graph, then 𝑟 (𝐾𝑚, 𝐺) = 𝑚, where 𝐾𝑚 is the complementary
graph of 𝐾𝑚. It is easy to see that 𝑟 (𝐺, 𝐻) is monotone increasing in the sense that
if 𝐺1 is a subgraph of 𝐺 and 𝐻1 is a subgraph of 𝐻, then 𝑟 (𝐺1, 𝐻1) ≤ 𝑟 (𝐺, 𝐻).

Proposition 1.1 For any graphs 𝐺 and 𝐻, 𝑟 (𝐺, 𝐻) = 𝑟 (𝐻,𝐺).

Proof. Let 𝑁 = 𝑟 (𝐺, 𝐻). From the definition of 𝑟 (𝐺, 𝐻), there exists an edge-
coloring of 𝐾𝑁−1 by red and blue such that there is neither red 𝐺 nor blue 𝐻. For
each edge, switch its color to the other. In the new coloring, there is neither red 𝐻 nor
blue 𝐺, so 𝑟 (𝐻,𝐺) ≥ 𝑁 = 𝑟 (𝐺, 𝐻). Similarly, 𝑟 (𝐺, 𝐻) ≥ 𝑟 (𝐻,𝐺). The assertion
follows. □

Generally, for multi-color Ramsey number we have the following facts.

(i) If (𝐻1, 𝐻2, . . . , 𝐻𝑘) is a permutation of (𝐺1, 𝐺2, . . . , 𝐺𝑘), then

𝑟 (𝐺1, 𝐺2, . . . , 𝐺𝑘) = 𝑟 (𝐻1, 𝐻2, . . . , 𝐻𝑘).

(ii) 𝑟 (𝐺1, 𝐺2, . . . , 𝐺𝑘−1, 𝐾1) = 1.
(iii) 𝑟 (𝐺1, 𝐺2, . . . , 𝐺𝑘−1, 𝐾2) = 𝑟 (𝐺1, 𝐺2, . . . , 𝐺𝑘−1).

In order to verify that 𝑟 (𝐺, 𝐻) ≥ 𝑁 + 1 for some 𝑁 , one must have an edge
coloring of 𝐾𝑁 in red and blue, such that there is neither a monochromatic red𝐺 nor
a monochromatic blue 𝐻. Such coloring is always referred to as a Ramsey coloring.
Since the two monochromatic graphs, which contain all vertices, can be referred to
as 𝐹 and 𝐹, respectively, verifying 𝑟 (𝐺, 𝐻) ≥ 𝑁 + 1 is the same to find a graph 𝐹 of
order 𝑁 such that 𝐹 contains no copy of 𝐺 and its complement 𝐹 contains no copy
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1.2 General Upper Bounds 3

of 𝐻. Such a graph 𝐹 of order 𝑁 = 𝑟 (𝐺, 𝐻) − 1 is always called a Ramsey graph for
𝑟 (𝐺, 𝐻).

Let 𝜔(𝐹) and 𝛼(𝐹) be the clique number and independence number of 𝐹, re-
spectively. Then 𝑟 (𝑚, 𝑛) is the smallest 𝑁 such that for any graph 𝐹 of order 𝑁 , we
have either 𝜔(𝐹) ≥ 𝑚 or 𝛼(𝐹) ≥ 𝑛. Note that any graph 𝐹 can yield a lower bound,
good or bad, for a Ramsey number. For example, if 𝜔(𝐹) = 𝑚, and 𝛼(𝐹) = 𝑛, then
we have 𝑟 (𝑚 + 1, 𝑛 + 1) ≥ |𝑉 (𝐹) | + 1. However, it is very difficult to find a good
lower bound for most Ramsey numbers.

Throughout this book, we use the standard asymptotic notation. For functions
𝑓 (𝑛) and 𝑔(𝑛) that take positive values, we write 𝑓 = 𝑂 (𝑔) if 𝑓 ≤ 𝑐𝑔 for all large
𝑛, where 𝑐 > 0 is a constant, 𝑓 = Ω(𝑔) if 𝑔 = 𝑂 ( 𝑓 ) and 𝑓 = Θ(𝑔) if 𝑓 = 𝑂 (𝑔) and
𝑔 = 𝑂 ( 𝑓 ). Denote 𝑓 = 𝑜(𝑔) if 𝑓 /𝑔 → 0. Finally, 𝑓 ∼ 𝑔 denotes that 𝑓 = (1+𝑜(1))𝑔,
i.e. 𝑓 /𝑔 → 1. We use log 𝑛 to denote the natural logarithm based on 𝑒.

1.2 General Upper Bounds

In 1929, Frank P. Ramsey, in a fundamental paper on mathematical logic, gave a
result whose special case can be stated in graph language as follows.

Theorem 1.1 (Ramsey’s theorem) For 𝑘 ≥ 2 and 𝑛1, 𝑛2, . . . , 𝑛𝑘 ≥ 1, the Ramsey
number 𝑟 (𝑛1, 𝑛2, . . . , 𝑛𝑘) exists. If 𝑛𝑖 ≥ 2 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑘 , then

𝑟 (𝑛1, 𝑛2, . . . , 𝑛𝑘) ≤
𝑘∑︁
𝑖=1

𝑟 (𝑛1, . . . , 𝑛𝑖−1, 𝑛𝑖 − 1, 𝑛𝑖+1, . . . , 𝑛𝑘) − 𝑘 + 2.

Proof. The proof of the upper bound is by induction on 𝑛1 + 𝑛2 + · · · + 𝑛𝑘 . Note that
𝑟 (2, 𝑛) = 𝑟 (𝑛, 2) = 𝑛 and

𝑟𝑘 (𝑛1, . . . , 𝑛𝑖−1, 2, 𝑛𝑖+1, . . . , 𝑛𝑘) = 𝑟𝑘−1 (𝑛1, . . . , 𝑛𝑖−1, 𝑛𝑖+1, . . . , 𝑛𝑘),

we may assume that 𝑁𝑖 = 𝑟 (𝑛1, . . . , 𝑛𝑖−1, 𝑛𝑖 − 1, 𝑛𝑖+1, . . . , 𝑛𝑘) exists for any 𝑖 ≤ 𝑘 ,
and 𝑛𝑖 ≥ 3. Let

𝑁 =

𝑘∑︁
𝑖=1

𝑁𝑖 − 𝑘 + 2

and consider an edge-coloring of 𝐾𝑁 by colors 1, 2, . . . , 𝑘 . We have to show that the
subgraph 𝐺𝑖 spanned by all edges in some color 𝑖 contains 𝐾𝑛𝑖 . For a vertex 𝑣 of
𝐾𝑁 , let 𝑑𝑖 (𝑣) be the degree in 𝐺𝑖 . If 𝑑𝑖 (𝑣) ≤ 𝑁𝑖 − 1 for each 1 ≤ 𝑖 ≤ 𝑘 , then

𝑁 − 1 =

𝑘∑︁
𝑖=1

𝑑𝑖 (𝑣) ≤
𝑘∑︁
𝑖=1

(𝑁𝑖 − 1) = 𝑁 − 2,

which leads to a contradiction. Thus there is some 𝑖 such that 𝑑𝑖 (𝑣) ≥ 𝑁𝑖 . If there
is a 𝐾𝑛𝑖−1 in color 𝑖, then we are done since which together with 𝑣 form a 𝐾𝑛1 in
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4 1 Existence

color 𝑖. Otherwise, by the definition of 𝑁𝑖 , the corresponding 𝑘 edge-coloring of 𝐾𝑁𝑖
contains a monochromatic 𝐾𝑛 𝑗 in some color 𝑗 ≠ 𝑖. The proof is complete. □

For a graph 𝐺 of order at least two, denote by 𝐺′ for a graph obtained by deleting
one vertex from 𝐺. We can generalize Theorem 1.1 as follows.

Theorem 1.2 Let 𝑘 ≥ 2 be an integer and let 𝐺1, 𝐺2, . . . , 𝐺𝑘 be graphs. Then the
Ramsey number 𝑟 (𝐺1, 𝐺2, . . . , 𝐺𝑘) exists. If each 𝐺𝑖 has at least two vertices, then

𝑟 (𝐺1, 𝐺2, . . . , 𝐺𝑘) ≤
𝑘∑︁
𝑖=1

𝑟 (𝐺1, . . . , 𝐺𝑖−1, 𝐺
′
𝑖 , 𝐺𝑖+1, . . . , 𝐺𝑘) − 𝑘 + 2.

The popularization of Ramsey’s Theorem began with its rediscovery in a classic
paper of Erdős and Szekeres in 1935.

Theorem 1.3 For 𝑚 ≥ 2 and 𝑛 ≥ 2,

𝑟 (𝑚, 𝑛) ≤ 𝑟 (𝑚 − 1, 𝑛) + 𝑟 (𝑚, 𝑛 − 1).

Moreover,

𝑟 (𝑚, 𝑛) ≤
(
𝑚 + 𝑛 − 2
𝑚 − 1

)
.

Proof. The first inequality is a special case of Theorem 1.1. The second can be
proved by induction on 𝑚 + 𝑛. The case 𝑚 = 2 or 𝑛 = 2 is trivial. For the case 𝑚 ≥ 3
and 𝑛 ≥ 3, by noting the first inequality and the induction hypothesis, and the fact
that (

𝑚 + 𝑛 − 3
𝑚 − 2

)
+

(
𝑚 + 𝑛 − 3
𝑚 − 1

)
=

(
𝑚 + 𝑛 − 2
𝑚 − 1

)
,

the second inequality follows. □

Let us consider the first non-trivial Ramsey number 𝑟 (3, 3), which was a problem
for International Mathematical Olympiad.

Theorem 1.4 We have 𝑟 (3, 3) = 6.

Proof. By the upper bound in Theorem 1.3, we have 𝑟 (3, 3) ≤
(4
2
)
= 6. More direct

proof is easy. Let 𝐹 be a graph of order 6 and 𝑣 ∈ 𝑉 (𝐹). Note that 𝑣 has at least three
neighbors in 𝐹 or in 𝐹, say, three neighbors 𝑆 = {𝑣1, 𝑣2, 𝑣3} in 𝐹. If any two vertices
in 𝑆 are adjacent, then these two vertices and 𝑣 form a triangle. Otherwise, 𝑆 induces
a triangle in 𝐹 hence 𝑟 (3, 3) ≤ 6. Note the fact that 𝐶5 = 𝐶5, which contains no 𝐾3,
the lower bound 𝑟 (3, 3) > 5 follows. □

The upper bound by Erdős and Szekeres (1935) stood for a long time, until Yackel
(1972), Rödl (unpublished, 1980’s), Graham and Rödl (1987) and Thomason (1988)
proved that (in different forms)

𝑟 (𝑚, 𝑛) ≤ 𝑜
[(
𝑚 + 𝑛 − 2
𝑚 − 1

)]
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1.2 General Upper Bounds 5

as 𝑚 fixed and 𝑛→ ∞ or 𝑚 = 𝑛→ ∞.
A breakthrough of Conlon (2009) further improves the upper bound as

𝑟 (𝑛, 𝑛) ≤ 1
𝑛𝑐1 log 𝑛/log log 𝑛

(
2𝑛 − 2
𝑛 − 1

)
≤ 1

exp(𝑐2 log2 𝑛/log log 𝑛)
4𝑛,

where 𝑐𝑖 and 𝑐 henceforth are positive constants and the second inequality comes
from

(2𝑘
𝑘

)
∼ 1√

𝜋𝑘
4𝑘 as 𝑘 → ∞. Recently, Sah (preprint, 2020+) improves the upper

bound further as
𝑟 (𝑛, 𝑛) ≤ 1

exp(𝑐 log2 𝑛)
4𝑛.

However, this does not change the following limit that

lim
𝑛→∞

𝑟 (𝑛, 𝑛)1/𝑛 ≤ 4.

We shall prove a result emphasizing on the condition for the strict inequality in
the above theorem, which is needed for finding exact values of some small Ramsey
numbers.

Theorem 1.5 If 𝐺 and 𝐻 are graphs on at least two vertices, then

𝑟 (𝐺, 𝐻) ≤ 𝑟 (𝐺′, 𝐻) + 𝑟 (𝐺, 𝐻′).

If both 𝑟 (𝐺′, 𝐻) and 𝑟 (𝐺, 𝐻′) are even, then

𝑟 (𝐺, 𝐻) ≤ 𝑟 (𝐺′, 𝐻) + 𝑟 (𝐺, 𝐻′) − 1.

Proof. The first inequality is a special case of Theorem 1.2, and we shall prove the
second. On contrary, suppose 𝑁 := 𝑟 (𝐺, 𝐻) = 𝑟 (𝐺′, 𝐻) + 𝑟 (𝐺, 𝐻′) which is even.
Thus there exists an edge coloring of 𝐾𝑁−1 such that there is neither red 𝐺 nor blue
𝐻. For any vertex 𝑣, we have 𝑑𝑅 (𝑣) ≤ 𝑟 (𝐺′, 𝐻) − 1 and 𝑑𝐵 (𝑣) ≤ 𝑟 (𝐺, 𝐻′) − 1.
Therefore, we have

𝑑𝑅 (𝑣) = 𝑟 (𝐺′, 𝐻) − 1 and 𝑑𝐵 (𝑣) = 𝑟 (𝐺, 𝐻′) − 1

by noting that 𝑑𝑅 (𝑣) + 𝑑𝐵 (𝑣) = 𝑁 − 2 = (𝑟 (𝐺′, 𝐻) − 1) + (𝑟 (𝐺, 𝐻′) − 1). Consider
the number of edges of 𝑅, which is

𝑒(𝑅) = 1
2
(𝑁 − 1) (𝑟 (𝐺′, 𝐻) − 1).

But the right hand side is not an integer since both 𝑁 − 1 and 𝑟 (𝐺′, 𝐻) − 1 are odd,
yielding a contradiction. □

The following is a two-step recursive upper bound, due to Li, Rousseau and Zang
(2004), in which the main argument in the proof is to count the number of triangles.
Let 𝐺′′ be any graph obtained by deleting two vertices from 𝐺.
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6 1 Existence

Theorem 1.6 Let 𝐺 and 𝐻 be graphs of order at least three, and let 𝐴 = 𝑟 (𝐺′′, 𝐻)
and 𝐵 = 𝑟 (𝐺, 𝐻′′). Then

𝑟 (𝐺, 𝐻) ≤ 𝐴 + 𝐵 + 2 + 2
√︁
(𝐴2 + 𝐴𝐵 + 𝐵2)/3.

In particular, 𝑟 (𝐺,𝐺) ≤ 4𝑟 (𝐺,𝐺′′) + 2.

Proof. Let 𝑁 = 𝑟 (𝐺, 𝐻) −1, 𝑎 = 𝐴−1 and 𝑏 = 𝐵−1. Then there is an edge-coloring
of 𝐾𝑁 by red and blue in which there is neither red 𝐺 nor blue 𝐻. Denote by 𝑉 the
vertex set of the colored 𝐾𝑁 , and let 𝐹𝑅 = (𝑉, 𝐸𝑅) and 𝐹𝐵 = (𝑉, 𝐸𝐵) denote the red
and blue subgraphs, respectively, where (𝐸𝑅, 𝐸𝐵) is the corresponding partition of
the edge set of 𝐾𝑁 . Then the number 𝑀 of monochromatic triangles is

𝑀 =
1
3

( ∑︁
𝑢𝑣∈𝐸𝑅

|𝑁𝑅 (𝑢) ∩ 𝑁𝑅 (𝑣) | +
∑︁
𝑢𝑣∈𝐸𝐵

|𝑁𝐵 (𝑢) ∩ 𝑁𝐵 (𝑣) |
)
,

where 𝑁𝑅 (𝑢) and 𝑁𝐵 (𝑢) are neighborhoods of 𝑢 in 𝐹𝑅 and 𝐹𝐵, respectively. Since
an edge 𝑢𝑣 ∈ 𝐸𝑅 and a red copy of𝐺′′ in 𝑁𝑅 (𝑢) ∩𝑁𝑅 (𝑣) yield a red 𝐾2+𝐺′′ hence a
red𝐺, we have |𝑁𝑅 (𝑢) ∩𝑁𝑅 (𝑣) | ≤ 𝑟 (𝐺′′, 𝐻) −1 = 𝑎. Similarly, |𝑁𝐵 (𝑢) ∩𝑁𝐵 (𝑣) | ≤
𝑟 (𝐺, 𝐻′′) − 1 = 𝑏 for an edge 𝑢𝑣 ∈ 𝐸𝐵. Thus we have

𝑀 ≤ 𝑎 |𝐸𝑅 | + 𝑏 |𝐸𝐵 |
3

=
1
6

∑︁
𝑣∈𝑉

(
𝑎𝑑𝑅 (𝑣) + 𝑏𝑑𝐵 (𝑣)

)
.

where 𝑑𝑅 (𝑣) = |𝑁𝑅 (𝑣) | and 𝑑𝐵 (𝑣) = |𝑁𝐵 (𝑣) |. As observed by Goodman (1959),
the number of non-monochromatic triangles is 1

2
∑
𝑣∈𝑉 𝑑𝑅 (𝑣)𝑑𝐵 (𝑣), it follows that(

𝑁

3

)
− 1

2

∑︁
𝑣∈𝑉

𝑑𝑅 (𝑣)𝑑𝐵 (𝑣) ≤
1
6

∑︁
𝑣∈𝑉

(
𝑎𝑑𝑅 (𝑣) + 𝑏𝑑𝐵 (𝑣)

)
.

Or equivalently,

𝑁 (𝑁 − 1) (𝑁 − 2)
3

−
∑︁
𝑣∈𝑉

(
𝑑𝑅 (𝑣) +

𝑏

3

) (
𝑑𝐵 (𝑣) +

𝑎

3

)
+ 𝑎𝑏𝑁

9
≤ 0.

Notice that 𝑥𝑦 ≤ (𝑥 + 𝑦)2/4, implying that(
𝑑𝑅 (𝑣) +

𝑏

3

) (
𝑑𝐵 (𝑣) +

𝑎

3

)
≤ 1

4

(
𝑁 − 1 + 𝑎 + 𝑏

3

)2
,

and thus
𝑁 (𝑁 − 1) (𝑁 − 2)

3
− 𝑁

4

(
𝑁 − 1 + 𝑎 + 𝑏

3

)2
+ 𝑎𝑏𝑁

9
≤ 0.

Equivalently, we get
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1.3 Upper Bounds for 𝑟𝑘 (3) 7

(𝑁 − 1)2 − 2(𝐴 + 𝐵) (𝑁 − 1) − (𝐴 − 𝐵)2

3
≤ 0,

which gives 𝑁 − 1 ≤ 𝐴 + 𝐵 + 2
√︁
(𝐴2 + 𝐴𝐵 + 𝐵2)/3 as required. □

The following result due to Walker (1968) is often used in estimating small
Ramsey numbers.

Corollary 1.1 For 𝑛 ≥ 3, 𝑟 (𝑛, 𝑛) ≤ 4𝑟 (𝑛 − 2, 𝑛) + 2.

Denote by 𝐺 + 𝐻 the graph obtained from vertex-disjoint 𝐺 and 𝐻 by adding
edges connecting 𝐺 and 𝐻 completely, which is called the join of 𝐺 and 𝐻. Then
𝐵𝑛 = 𝐾2 + 𝐾𝑛 contains 𝑛 triangles all sharing a common edges. We always call
𝐵𝑛 an 𝑛-book or simply book graph. We have the following result by Rousseau and
Sheehan (1978).

Theorem 1.7 Let 𝑚, 𝑛 ≥ 1 be integers with 2(𝑚 + 𝑛) + 1 > (𝑛 − 𝑚)2/3. Then

𝑟 (𝐵𝑚, 𝐵𝑛) ≤ 2(𝑚 + 𝑛 + 1).

In particular, 𝑟 (𝐵𝑛, 𝐵𝑛) ≤ 4𝑛 + 2.

Proof. From the facts that 𝐾𝑚 can be obtained from 𝐵𝑚 by deleting two vertices and
𝑟 (𝐾𝑚, 𝐵𝑛) = 𝑚, it follows from Theorem 1.6 that

𝑟 (𝐵𝑚, 𝐵𝑛) ≤ 𝑚 + 𝑛 + 2 + 2
√︁
(𝑚2 + 𝑚𝑛 + 𝑛2)/3.

To get the upper bound as desired, note that the Ramsey number is an integer, we
need only to verify that 2

√︁
(𝑚2 + 𝑚𝑛 + 𝑛2)/3 < 𝑚 + 𝑛 + 1, which is equivalent to

2(𝑚 + 𝑛) + 1 > (𝑛 − 𝑚)2/3, as given. □

In the next chapter, we will show the above upper bound for 𝑟 (𝐵𝑛, 𝐵𝑛) can be
achieved for infinitely many 𝑛. Rousseau and Sheehan (1978) also conjectured that
there exists a positive constant 𝑐 > 0 such that for all 𝑚, 𝑛 ≥ 1,

𝑟 (𝐵𝑚, 𝐵𝑛) ≤ 2(𝑚 + 𝑛) + 𝑐.

Recently, Chen, Lin and You (2021+) show that this conjecture holds asymptotically.

1.3 Upper Bounds for 𝒓𝒌 (3)

Let us write 𝑟𝑘 instead of 𝑟𝑘 (3) in the proof for convenience. We have known that
𝑟2 = 6. The only known exact value for a multicolored Ramsey number is 𝑟3 = 17
by Greenwood and Gleason (1955), and we will discuss it in the next chapter. For
𝑘 = 4, we only known that 51 ≤ 𝑟4 ≤ 62, where the lower bound is due to Chung
(1973) while the upper bound is due to Fettes, Kramer and Radziszowski (2004)
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8 1 Existence

which improves that by Sanchez-Flores (1995) and an earlier upper bound due to
Folkman (1974). In this section, we focus on the upper bound of 𝑟𝑘 when 𝑘 is large
and we will consider further the lower bound of 𝑟𝑘 in the next chapter.

Lemma 1.1 For 𝑘 ≥ 2,

𝑟𝑘 (3) ≤ 2 + 𝑘 (𝑟𝑘−1 (3) − 1).

Proof. The assertion follows from Theorem 1.1. More directive proof is as follows.
Let 𝑁 = 𝑟𝑘 −1. There is an edge-coloring of 𝐾𝑁 by colors 1, 2, . . . , 𝑘 such that there
is no monochromatic triangle. Denote by 𝑁𝑖 (𝑣) for the neighborhood of 𝑣 in color
𝑖. Note that 𝑁𝑖 (𝑣) contains no edge in color 𝑖 since otherwise there is a triangle in
color 𝑖, so we have 𝑑𝑖 (𝑣) = |𝑁𝑖 (𝑣) | ≤ 𝑟𝑘−1 − 1. Therefore,

𝑟𝑘 − 2 = 𝑁 − 1 =

𝑘∑︁
𝑖=1

𝑑𝑖 (𝑣) ≤ 𝑘 (𝑟𝑘−1 − 1).

The desired upper bound follows. □

Corollary 1.2 Let 𝑚 be a positive integer, and let

𝑐 = 𝑐(𝑚) = 𝑟𝑚 (3) − 1
𝑚!

+
∑︁
𝑡>𝑚

1
𝑡!
.

For 𝑘 ≥ 𝑚,
𝑟𝑘 (3) < 𝑐 · 𝑘! + 1.

In particular, 𝑟𝑘 (3) < 𝑒 · 𝑘! + 1 for 𝑘 ≥ 1.

Proof. Lemma 1.1 gives that 𝑟𝑘 − 1 ≤ 1 + 𝑘 (𝑟𝑘−1 − 1). Using this repeatedly, we
have

𝑟𝑘 − 1 ≤ 1 + 𝑘 (𝑟𝑘−1 − 1)
≤ 1 + 𝑘 [1 + (𝑘 − 1) (𝑟𝑘−2 − 1)]
≤ 1 + 𝑘 + 𝑘 (𝑘 − 1) + · · · + 𝑘 (𝑘 − 1) · · · (𝑚 + 1) (𝑟𝑚 − 1)

= 𝑘!
(

1
𝑘!

+ 1
(𝑘 − 1)! + · · · + 1

(𝑚 + 1)! +
𝑟𝑚 − 1
𝑚!

)
,

and the desired upper bound follows. In particular, 𝑐(1) = 𝑒. □

An improvement can be obtained by noting the following fact.

Lemma 1.2 Let 𝑘 and 𝑝 be even integers. If 𝑟𝑘−1 (3) ≤ 𝑝, then

𝑟𝑘 (3) ≤ 𝑘 (𝑝 − 1) + 1.

In particular, if both 𝑘 and 𝑟𝑘−1 (3) are even, then

𝑟𝑘 (3) ≤ 𝑘 (𝑟𝑘−1 (3) − 1) + 1.
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1.3 Upper Bounds for 𝑟𝑘 (3) 9

Proof. If 𝑟𝑘−1 ≤ 𝑝 − 1, then the assertion follows from Lemma 1.1. So we assume
that 𝑟𝑘−1 = 𝑝, which is even. Set 𝑁 = 𝑟𝑘 − 1, then 𝑁 ≤ 1 + 𝑘 (𝑟𝑘−1 − 1) by
Lemma 1.1, and we want to show that 𝑁 ≤ 𝑘 (𝑟𝑘−1 − 1). On contrary, suppose that
𝑁 = 1+ 𝑘 (𝑟𝑘−1 − 1). Clearly, 𝑁 is odd and there is an edge coloring of 𝐾𝑁 by colors
1, . . . , 𝑘 such that there is no monochromatic 𝐾3 in any color. For a fixed color 𝑗 , let
𝐸 𝑗 be the set of edges in color 𝑗 . Since

∑
𝑥 𝑑 𝑗 (𝑥) = 2|𝐸 𝑗 | is even, where the sum is

over 𝑁 vertices and 𝑁 is odd, we have that there exists a vertex 𝑥 with 𝑑 𝑗 (𝑥) is even.
Since 𝑑 𝑗 (𝑥) ≤ 𝑟𝑘−1 − 1 and 𝑟𝑘−1 is even, we get 𝑑 𝑗 (𝑥) ≤ 𝑟𝑘−1 − 2. Therefore,

𝑁 − 1 =

𝑘∑︁
𝑗=1

𝑑 𝑗 (𝑥) ≤ (𝑟𝑘−1 − 2) + (𝑘 − 1) (𝑟𝑘−1 − 1) = 𝑘 (𝑟𝑘−1 − 1) − 1,

yielding a contradiction. □

Theorem 1.8 Let 𝑚 be even and 𝑝 odd. If 𝑟𝑚 (3) ≤ 𝑝, then for any 𝑘 ≥ 𝑚,

𝑟𝑘 (3) ≤ 𝑘!
©­­«
𝑝 − 1
𝑚!

+
∑︁
𝑚<𝑡≤𝑘,
𝑡 𝑜𝑑𝑑

1
𝑡!

ª®®¬ + 1.

Proof. The idea of the proof is a combination of that in Wan (1997), and Chung and
Graham (1999). For fixed even 𝑚 ≥ 2 and 𝑘 ≥ 𝑚, set

𝐴𝑘 = 𝐴𝑘 (𝑚) =
𝑝 − 1
𝑚!

+
∑︁
𝑚<𝑡≤𝑘,
𝑡 𝑜𝑑𝑑

1
𝑡!
.

Note that for 2𝑛 − 1 ≥ 𝑚,

𝐴2𝑛 = 𝐴2𝑛−1 and 𝐴2𝑛+1 = 𝐴2𝑛 +
1

(2𝑛 + 1)! .

We shall prove that 𝑟𝑘 ≤ 𝑘!𝐴𝑘 + 1 by induction on 𝑘 ≥ 𝑚. The assertion holds for
𝑘 = 𝑚 as 𝑚!𝐴𝑚 + 1 = 𝑝. By the fact that

(𝑚 + 1)!𝐴𝑚+1 = (𝑚 + 1) (𝑝 − 1) + 1,

the assertion for 𝑘 = 𝑚+1 follows from Lemma 1.1. We now suppose that 𝑘 ≥ 𝑚+2.
Let 𝑘 = 2𝑛 ≥ 𝑚 + 2 be an even integer. Then 𝑘 − 1 ≥ 𝑚 + 1, and 𝑘 − 1 is odd. It is
easy to verify that

(𝑘 − 1)!𝐴𝑘−1 = (𝑘 − 1)!
(
𝑝 − 1
𝑚!

+ 1
(𝑚 + 1)! +

1
(𝑚 + 3)! + · · · + 1

(𝑘 − 1)!

)
is an odd integer. From the induction assumption 𝑟𝑘−1 ≤ (𝑘 − 1)!𝐴𝑘−1 + 1, where
the right-hand side is even, and Lemma 1.2, we have
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10 1 Existence

𝑟𝑘 − 1 ≤ 𝑘 (𝑟𝑘−1 − 1) = 𝑘!𝐴𝑘−1

= 𝑘!𝐴2𝑛−1 = 𝑘!𝐴2𝑛 = 𝑘!𝐴𝑘 .

So 𝑟𝑘 ≤ 𝑘!𝐴𝑘 + 1. For 𝑟2𝑛+1, from Lemma 1.1 and what just proved,

𝑟2𝑛+1 − 1 ≤ 1 + (2𝑛 + 1) (𝑟2𝑛 − 1)
≤ 1 + (2𝑛 + 1) ((2𝑛)!𝐴2𝑛)
= 1 + (2𝑛 + 1)!𝐴2𝑛 = (2𝑛 + 1)!𝐴2𝑛+1,

completing the proof. □

Using a very old result of Folkman (1974) that 𝑟4 (3) ≤ 65 and Theorem 1.8, we
have 𝑟𝑘 (3) ≤ 𝑐𝑘!+ 1 for 𝑐 = (𝑒 − 𝑒−1 + 3)/2. However, we are more concerned what
is the limit of 𝑟𝑘 (3)/𝑘! as 𝑘 → ∞. No matter what 𝑟𝑚 (3) we know, we cannot obtain
the limit from Theorem 1.8 since it is the limit of 𝐴∞ (𝑚) as 𝑚 → ∞.

Proposition 1.2 As 𝑘 → ∞, the limit of 𝑟𝑘 (3)/𝑘! exists.

Proof. It is clear that the limit of 𝑟𝑘 (3)/𝑘! exists if and only if that of (𝑟𝑘 (3) − 1)/𝑘!
does, and the limits are the same if they exist. Denote by ℓ for lim

𝑘→∞
(𝑟𝑘 − 1)/𝑘!. For

any 𝜖 > 0, there are infinitely many 𝑚 such that (𝑟𝑚 − 1)/𝑚! < ℓ + 𝜖/2. Take such
large𝑚 that (𝑟𝑘−1)/𝑘! > ℓ−𝜖 for 𝑘 ≥ 𝑚 and that

∑
𝑡>𝑚 1/𝑡! < 𝜖/2. From Corollary

1.2, we have
ℓ − 𝜖 < 𝑟𝑘 − 1

𝑘!
<
𝑟𝑚 − 1
𝑚!

+
∑︁
𝑡>𝑚

1
𝑡!
< ℓ + 𝜖 .

Thus lim
𝑘→∞

(𝑟𝑘 − 1)/𝑘! = ℓ. □

Problem 1.1 Prove or disprove that the limit of 𝑟𝑘 (3)/𝑘! is zero.

1.4 Some Early Ramsey Numbers

This section contains several early generalized Ramsey numbers. The first general-
ized Ramsey number was due to Gerencsér and Gyárfás in 1967, who computed the
Ramsey number of paths. In this section 𝑃1+𝑛 is a path of length 𝑛 instead of a Paley
graph defined in the next chapter.

Theorem 1.9 For 𝑛 ≥ 𝑚 ≥ 1,

𝑟 (𝑃1+𝑛, 𝑃1+𝑚) = 𝑛 + ⌈𝑚/2⌉ .

Proof. We only consider the diagonal case since the proof for general case is similar.
In the following, we shall show

𝑟 (𝑃1+𝑛, 𝑃1+𝑛) = 𝑛 + ⌈𝑛/2⌉ .
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1.4 Some Early Ramsey Numbers 11

The assertion is trivial for 𝑛 = 1 or 𝑛 = 2, so we assume 𝑛 ≥ 3 and the assertion
holds for 𝑛 − 1. The facts that the graph 𝐺 = 𝐾𝑛 ∪ 𝐾ℓ , where ℓ = ⌈𝑛/2⌉ − 1 and its
complement contain no 𝑃1+𝑛 give 𝑟 (𝑃1+𝑛, 𝑃1+𝑛) ≥ 𝑁 , where 𝑁 = 𝑛 + ⌈𝑛/2⌉.

In the following, we consider a red-blue edge coloring of 𝐾𝑁 and we shall show
that there is a monochromatic path of length 𝑛. If not, by assumption, we have a
monochromatic, say red, path 𝑃 of length 𝑛− 1. Consider two disjoint blue paths𝑄1
and 𝑄2 consisting of edges between 𝑉 (𝑃) and 𝑉 (𝐾𝑁 ) \ 𝑉 (𝑃), such that their end-
vertices are in𝑉 (𝐾𝑁 )\𝑉 (𝑃), and they do not contain end-vertices of 𝑃. Furthermore,
the sum of their lengthes are maximum. We shall prove that the following claim by
induction on 𝑛. Denote by 𝑢0, 𝑣0, 𝑢1, 𝑣1, 𝑢2, 𝑣2 for the end-vertices of 𝑃,𝑄1, 𝑄2,
respectively.

Claim 𝑉 (𝑃) ∪𝑉 (𝑄1) ∪𝑉 (𝑄2) = 𝑉 (𝐾𝑁 ).

Proof. It is easy to see that | (𝑉 (𝑄1) ∪𝑉 (𝑄2)) \𝑉 (𝑃) | ≥ 2 since otherwise there
is at most one vertex outside 𝑉 (𝑃) hence |𝑉 (𝑃) | ≥ 𝑁 − 1 ≥ 𝑛 + 1. Thus

|𝑉 (𝑃) ∪𝑉 (𝑄1) ∪𝑉 (𝑄2) | ≥ 𝑛 + 2.

Suppose the claim is false, i.e., there exists a vertex 𝑥 ∈ 𝑉 (𝐾𝑁 ) with 𝑥 ∉ 𝑉 (𝑃) ∪
𝑉 (𝑄1) ∪𝑉 (𝑄2). From the structures of 𝑄1 and 𝑄2,

|𝑉 (𝑃) ∩𝑉 (𝑄𝑖) | =
1
2
( |𝑉 (𝑄𝑖) | − 1) = |𝑉 (𝑄𝑖) \𝑉 (𝑃) | − 1.

Thus we have

|𝑉 (𝑃) \ (𝑉 (𝑄1) ∪𝑉 (𝑄2)) | ≥ 𝑛 + 2 − |(𝑉 (𝑄1) ∪𝑉 (𝑄2)) \𝑉 (𝑃) |
> 𝑛 + 2 − |𝑉 (𝐾𝑁 ) \𝑉 (𝑃) |
= 𝑛 + 2 − ⌈𝑛/2⌉
= ⌊𝑛/2⌋ + 2.

Thus at least ⌊𝑛/2⌋ + 3 vertices of 𝑃, implying at least ⌊𝑛/2⌋ + 1 internal vertices of
𝑃 are not covered by 𝑄1 ∪𝑄2. Therefore, there exists an internal edge 𝑢𝑣 of 𝑃 such
that 𝑢, 𝑣 ∉ 𝑉 (𝑄1 ∪𝑄2).

One of edges 𝑥𝑢 and 𝑥𝑣, say 𝑥𝑢, must be blue as otherwise the length of 𝑃 can be
increased by replacing 𝑢𝑣 by 𝑢𝑥 and 𝑥𝑣. Therefore, the edges 𝑢1𝑢 and 𝑢2𝑢 are red.
Thus the edge 𝑢1𝑣 and 𝑣𝑢2 must be blue by the same argument as above. Now

𝑄′
1 = 𝑄1 + 𝑢1𝑣 + 𝑣𝑢2 +𝑄2,

and 𝑄′
2 = {𝑥} are two paths with the sum of lengths greater than that of 𝑄1 and 𝑄2

satisfying the same conditions, yielding a contradiction and proving the claim. □

Consider the four edges 𝑢0𝑢1, 𝑢0𝑢2, 𝑣0𝑣1, 𝑣0𝑣2. All of these edges are blue by the
maximality of 𝑃. Therefore, the cycle

𝐶 = 𝑄1 + 𝑢1𝑢0 + 𝑢0𝑢2 +𝑄2 + 𝑣2𝑣0 + 𝑣0𝑣1
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12 1 Existence

is monochromatically blue. Since the vertices of 𝐶 are in 𝑉 (𝑃) and out of 𝑉 (𝑃)
alternatively, the length of 𝐶 is

2(𝑁 − 𝑛) = 2⌈𝑛/2⌉ .

If 𝑛 is odd, then the length of 𝐶 is 𝑛 + 1, which gives a path of length 𝑛 by removing
an edge of 𝐶. So we assume that 𝑛 is even and the length of 𝐶 is 𝑛. If there is a blue
edge between 𝐶 and 𝑉 (𝐾𝑁 ) \𝑉 (𝐶), then we can find such blue path again. Thus we
assume that all edges between 𝐶 and 𝑉 (𝐾𝑁 ) \𝑉 (𝐶) are red. Therefore, we can find
a red path with length 2⌈𝑛/2⌉ ≥ 𝑛 easily. This contradicts to the maximality of 𝑃,
completing the proof. □

It takes about 40 years after Gyárfás, Ruszinkó, Sárközy and Szemerédi (2007)
showed that

𝑟 (𝑃𝑛, 𝑃𝑛, 𝑃𝑛) =
{

2𝑛 − 1 if 𝑛 is odd,
2𝑛 − 2 if 𝑛 is even,

in which the authors used Szemerédi regularity lemma (1976) and the idea of
connected matchings which was suggested by Łuczak (1999). We will discuss further
on related topics in latter chapters.

The following is due to Chvátal and Harary (1972), and Burr and Roberts (1973),
in which 𝐾1,𝑛 is a star of 𝑛 edges.

Theorem 1.10 For positive integers 𝑚 and 𝑛,

𝑟 (𝐾1,𝑚, 𝐾1,𝑛) =
{
𝑚 + 𝑛 − 1 if 𝑚 and 𝑛 are both even,
𝑚 + 𝑛 otherwise.

Proof. From the recursive upper bounds in Theorem 1.5, we have

𝑟 (𝐾1,𝑚, 𝐾1,𝑛) ≤ 𝑟 (𝐾𝑚, 𝐾1,𝑛) + 𝑟 (𝐾1,𝑚, 𝐾𝑛) = 𝑚 + 𝑛,

and if𝑚 and 𝑛 are both even, the inequality is strict. The desired upper bound follows.
For the lower bound, the proof is clear if 𝑚 = 1 or 𝑛 = 1. So we assume that

𝑚 ≥ 2 and 𝑛 ≥ 2, and separate the remaining proof into two cases.

Case 1 𝑚 or 𝑛, say 𝑚, is odd.

For this case, set
𝑍𝑚+𝑛−1 = {0, 1, 2, . . . , 𝑚 + 𝑛 − 2}

and 𝐴 = {±1,±2, · · · ,±(𝑚−1)/2}. Define a graph on 𝑍𝑚+𝑛−1, in which two vertices
𝑥 and 𝑦 are adjacent if and only if 𝑥 − 𝑦 ∈ 𝐴. This graph is (𝑚 − 1)-regular and its
complement is (𝑛 − 1)-regular, which yields that 𝑟 (𝐾1,𝑚, 𝐾1,𝑛) ≥ 𝑚 + 𝑛.

Case 2 Both 𝑚 and 𝑛 are even.

From case 1, we have

𝑟 (𝐾1,𝑚, 𝐾1,𝑛) ≥ 𝑟 (𝐾1,𝑚−1, 𝐾1,𝑛) ≥ 𝑚 + 𝑛 − 1,
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1.4 Some Early Ramsey Numbers 13

the desired lower bound follows. □

Let 𝑇𝑛 denote a tree of order 𝑛. we have the following lower bound.

Lemma 1.3 For 𝑛 ≥ 2,
𝑟 (𝑇𝑛) ≥

4𝑛
3

− 1.

Proof. For a tree 𝑇𝑛, it is unique to separate the vertices of 𝑇𝑛 into two color classes.
Assume that the sizes of color classes of 𝑇𝑛 are 𝑚 and 𝑛 − 𝑚 with 𝑚 ≤ 𝑛 − 𝑚. If
𝐺 = 𝐾𝑚−1 ∪ 𝐾𝑛−1, or 𝐺 = 𝐾𝑛−𝑚−1 ∪ 𝐾𝑛−𝑚−1, then neither 𝐺 nor 𝐺 contains 𝑇𝑛,
which implies 𝑟 (𝑇𝑛) ≥ max{𝑚 + 𝑛 − 1, 2(𝑛 −𝑚) − 1}.Minimizing the right side on
1 ≤ 𝑚 ≤ 𝑛 − 1, we have 𝑟 (𝑇𝑛) ≥ 4𝑛

3 − 1. □

The lower bound in the above lemma is sharp. A broom 𝐵𝑘,ℓ is a tree on 𝑛 = 𝑘 + ℓ
vertices obtained by identifying an end-vertex of a path 𝑃ℓ with the central vertex
of a star 𝐾1,𝑘 . Erdős et al. (1982) proved that 𝑟 (𝐵𝑘,ℓ) = 𝑘 + ⌈ 3ℓ2 ⌉ − 1 for ℓ ≥ 2𝑘
and 𝑘 ≥ 1. Yu and Li (2016) determined all other Ramsey numbers of brooms. In
particular, for any integer 𝑘, ℓ with 𝑘 ≥ 2 and 𝑛 = 𝑘 + ℓ,

𝑟 (𝐵𝑘,ℓ) =
{
𝑛 + ⌊ ℓ2 ⌋ − 1 if ℓ ≥ 2𝑘 − 1,
2𝑛 − 2⌊ ℓ2 ⌋ − 1 if 4 ≤ ℓ ≤ 2𝑘 − 2.

Problem 1.2 Find a good expression for 𝑟 (𝑇1+𝑛, 𝑇1+𝑛).

The following result of Chvátal (1977) stimulated generalized Ramsey theory
greatly.

Theorem 1.11 For 𝑘, 𝑛 ≥ 1,

𝑟 (𝑇𝑛, 𝐾𝑘) = (𝑘 − 1) (𝑛 − 1) + 1.

Proof. The complete (𝑘 − 1)-partite graph 𝐾𝑘−1 (𝑛 − 1) yields the lower bound
𝑟 (𝐾𝑘 , 𝑇𝑛) ≥ (𝑘 − 1) (𝑛 − 1) + 1. To get the reverse inequality, we use induction
on 𝑛. Let 𝐺 be a graph on 𝑁 = (𝑘 − 1) (𝑛 − 1) + 1 vertices. Suppose that 𝐺
contains no 𝐾𝑘 , that is to say, 𝛼(𝐺) ≤ 𝑘 − 1. We shall see that 𝐺 contains 𝑇𝑛. Let
𝑆 ⊂ 𝑉 (𝐺) be an maximum independent set of size ℓ ≤ 𝑘 − 1. Outside 𝑆, there are
𝑁−ℓ ≥ (𝑘−1) (𝑛−2)+1 vertices, which must contain𝑇𝑛−1 by induction, where𝑇𝑛−1
is a tree obtained from 𝑇𝑛 by deleting a vertex 𝑣 of degree one. Let 𝑢 be the vertex
of 𝑇𝑛−1 adjacent to 𝑣 in 𝑇𝑛. Since 𝑆 is maximum, 𝑢 has at least one neighborhood in
𝑆, yielding 𝑇𝑛 as claimed. □

Let𝐶𝑛 be a cycle on 𝑛 vertices. In the early 1970’s, the Ramsey number 𝑟 (𝐶𝑚, 𝐶𝑛)
was studied by several authors, we refer the reader to Bondy and Erdős (1973),
Faudree and Schelp (1974), and Rosta (1973). We conclude this section with the
Ramsey number 𝑟 (𝐶3, 𝐶𝑛) by Chartrand and Schuster (1971), in which the authors
also determined the exact value of 𝑟 (𝐶𝑚, 𝐶𝑛) for 𝑚 = 4, 5.

Lemma 1.4 We have 𝑟 (𝐶3, 𝐶4) = 7.
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14 1 Existence

Proof. Consider a red-blue edge coloring of 𝐾7, and denote 𝑅 and 𝐵 by graphs
induced by the red and blue edges, respectively. It is clear that Δ(𝑅) ≤ 3 and
Δ(𝐵) ≤ 3. This implies that both 𝑅 and 𝐵 are 3-regular, which is impossible since
the number of vertices is odd. On the other hand, if we color edges of 𝐾6 by red and
blue such that the red graph is 𝐾3,3, then there is neither red 𝐾3 nor blue 𝐶4 hence
the lower bound 𝑟 (𝐶3, 𝐶4) > 6 follows as desired. □

Theorem 1.12 If 𝑛 ≥ 4, then 𝑟 (𝐶3, 𝐶𝑛) = 2𝑛 − 1.

Proof. We prove the equality by induction on 𝑛 ≥ 4, which is just obtained for
𝑛 = 4. Now we assume that 𝑟 (𝐶3, 𝐶𝑛) = 2𝑛 − 1 for 𝑛 ≥ 4 and consider the number
𝑟 (𝐶3, 𝐶𝑛+1). Denote by 𝐾𝑚,𝑛 the complete bipartite graph of order 𝑚 + 𝑛 whose
vertex set may be partitioned as 𝑉1 ∪ 𝑉2, where |𝑉1 | = 𝑚 and |𝑉2 | = 𝑛. Since 𝐾𝑛,𝑛
contains no 𝐶3 and its complement contains no 𝐶𝑛+1, the lower bound follows.

Let𝐺 be a graph of order 2𝑛+1, and assume𝐺 has no𝐶3. Since 𝑟 (𝐶3, 𝐶𝑛) = 2𝑛−1,
𝐺 contains a cycle 𝐶𝑛 := 𝑢1𝑢2 · · · 𝑢𝑛𝑢1. Denote the remaining vertices of 𝐺 (and
hence 𝐺) by 𝑣1, 𝑣2, . . . , 𝑣𝑛+1. If any 𝑣𝑖 is adjacent in 𝐺 to two consecutive vertices
of 𝐶𝑛, then 𝐺 contains a 𝐶𝑛+1, completing the proof. Suppose, then, that no such 𝑣𝑖
exists. We consider two cases.

Case 1 There exist two alternate vertices of 𝐶𝑛, say 𝑢 𝑗 and 𝑢 𝑗+2, which are
respectively joined in 𝐺 to two distinct 𝑣𝑖 and 𝑣𝑖′ .

Case 2 No two alternate vertices of 𝐶𝑛 are respectively joined in 𝐺 to distinct
vertices 𝑣𝑖 and 𝑣𝑖′ .

For Case 1, it is easy to check that either 𝐺 contains 𝐶3 or 𝐺 contains a 𝐶𝑛+1 by
noting 𝑢 𝑗+1𝑣𝑖 and 𝑢 𝑗+1𝑣𝑖′ are edges in 𝐺. For Case 2, note that there is an edge 𝑣𝑖𝑣𝑖′
in 𝐺 since otherwise 𝐺 contains a 𝐶𝑛+1 as desired and we may assume 𝑢 𝑗𝑣𝑖 is an
edge in 𝐺. It can be shown that either 𝐺 contains 𝐶3 or 𝐺 contains a 𝐶𝑛+1. We leave
the details to the reader. The proof is complete. □

1.5 Hypergraph Ramsey Number

We shall conclude this chapter with the existence of the hypergraph Ramsey number.
A hypergraph G on vertex set 𝑉 is a pair (𝑉, E), where the edge set E is a family

of subsets of 𝑉 . Let 𝑉 (𝑟 ) be the family of all 𝑟-subsets of 𝑉 , which is also denoted
by

(𝑉
𝑟

)
. If E ⊆ 𝑉 (𝑟 ) , then G is called 𝑟-uniform. Thus a 2-uniform hypergraph is

just a graph. When E = 𝑉 (𝑟 ) , we say that G is complete, denoted by 𝐾 (𝑟 )
𝑛 , where

𝑛 = |𝑉 |. If all elements in 𝑉 (𝑟 ) are colored in 𝑘 colors, a subset 𝑋 ⊆ 𝑉 is said to
be monochromatic when any element in 𝑋 (𝑟 ) , not element of 𝑋 itself, has the same
color. That is to say, the subset 𝑋 induces a monochromatic complete sub-hypergraph
of G.

Define 𝑟 (𝑟 )
𝑘

(𝑛1, 𝑛2, . . . , 𝑛𝑘) to be the minimum integer 𝑁 such that every col-
oring of 𝑉 (𝑟 ) with |𝑉 | = 𝑁 by colors 1, 2, . . . , 𝑘 , then for some 𝑖, there exists
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1.5 Hypergraph Ramsey Number 15

𝑋 ⊆ 𝑉 with |𝑋 | = 𝑛𝑖 that induces a monochromatic 𝐾 (𝑟 )
𝑛𝑖 in the color 𝑖. Write

𝑟
(𝑟 )
𝑘

(𝑛) for 𝑟 (𝑟 )
𝑘

(𝑛, 𝑛, . . . , 𝑛), 𝑟 (𝑟 ) (𝑚, 𝑛) for 𝑟 (𝑟 )2 (𝑚, 𝑛) and 𝑟𝑘 (𝑛1, 𝑛2, . . . , 𝑛𝑘) for
𝑟
(2)
𝑘

(𝑛1, 𝑛2, . . . , 𝑛𝑘). Note that 𝑟 (1) (𝑚, 𝑛) = 𝑚 + 𝑛 − 1 and for 𝑟 ≥ 2,

𝑟 (𝑟 ) (𝑚, 𝑛) =
{

max{𝑚, 𝑛} if 𝑟 = min{𝑚, 𝑛},
min{𝑚, 𝑛} if 𝑟 > min{𝑚, 𝑛}.

Theorem 1.13 For 𝑟, 𝑚, 𝑛 ≥ 2, 𝑟 (𝑟 ) (𝑚, 𝑛) exists and

𝑟 (𝑟 ) (𝑚, 𝑛) ≤ 𝑟 (𝑟−1)
(
𝑟 (𝑟 ) (𝑚 − 1, 𝑛), 𝑟 (𝑟 ) (𝑚, 𝑛 − 1)

)
+ 1.

Proof. From the fact that 𝑟 (1) (𝑚, 𝑛) = 𝑚+𝑛−1 and the upper bound that 𝑟 (2) (𝑠, 𝑡) ≤
𝑟 (2) (𝑠 − 1, 𝑡) + 𝑟 (2) (𝑠, 𝑡 − 1) in Section 1.2, we see that the assertion holds for 𝑟 = 2.
For 𝑟 > 2, we assume that 𝑟 (𝑟−1) (𝑠, 𝑡) exists.

Let 𝑉 be a set with 𝑁 = 𝑟 (𝑟−1) (
𝑟 (𝑟 ) (𝑚 − 1, 𝑛), 𝑟 (𝑟 ) (𝑚, 𝑛 − 1)

)
+ 1 vertices. For

a given coloring 𝑐 : 𝑉 (𝑟 ) → {red, blue}, a vertex 𝑣 ∈ 𝑉 and 𝑋 = 𝑉 \ {𝑣}, define a
coloring

𝑐 : 𝑋 (𝑟−1) → {red,blue}, 𝑐(𝑆) = 𝑐(𝑆 ∪ {𝑣})

for 𝑆 ∈ 𝑋 (𝑟−1) as 𝑆 ∪ {𝑣} ∈ 𝑋 (𝑟 ) . From the definition of 𝑟 (𝑟−1) (𝑠, 𝑡) and

|𝑋 | = 𝑟 (𝑟−1)
(
𝑟 (𝑟 ) (𝑚 − 1, 𝑛), 𝑟 (𝑟 ) (𝑚, 𝑛 − 1)

)
,

we see that either 𝑋 contains a subset 𝑌 with |𝑌 | = 𝑟 (𝑟 ) (𝑚 − 1, 𝑛) such that 𝑌 (𝑟−1)

is completely red in 𝑐, or 𝑋 contains a subset 𝑍 with |𝑍 | = 𝑟 (𝑟 ) (𝑛, 𝑚 − 1) such that
𝑍 (𝑟−1) is completely blue in 𝑐. Without loss of generality, we assume that the former
is the case. We shall show that 𝑌 contains either a subset 𝐴 with |𝐴| = 𝑚 such that
𝐴(𝑟 ) is completely red in 𝑐 or subset 𝐵 with |𝐵| = 𝑛 such that 𝐵 (𝑟 ) is completely
blue in 𝑐.

We now have 𝑌 ⊆ 𝑋 = 𝑉 \ {𝑣} with |𝑌 | = 𝑟 (𝑟 ) (𝑚 − 1, 𝑛). Consider the restriction
of the coloring 𝑐 of𝑉 (𝑟 ) on𝑌 (𝑟 ) . From the definition, we know that either𝑌 contains
a subset 𝐵 with |𝐵| = 𝑛 such that 𝐵 (𝑟 ) is completely blue in 𝑐, or 𝑌 contains a
subset 𝐴0 with |𝐴0 | = 𝑚 − 1 such that 𝐴(𝑟 )

0 is completely red in 𝑐. In the former
case, we are done. In the latter case, set 𝐴 = 𝐴0 ∪ {𝑣}, then |𝐴| = 𝑚 since 𝑣 ∉ 𝐴.
For any 𝑇 ∈ 𝐴(𝑟 ) , if 𝑣 ∉ 𝑇 , then 𝑇 ∈ 𝐴

(𝑟 )
0 and hence 𝑐(𝑇) is red. Otherwise,

𝑆 = 𝑇 \ {𝑣} ∈ 𝐴
(𝑟−1)
0 ⊆ 𝑌 (𝑟−1) , so 𝑐(𝑆) is red since 𝑌 (𝑟−1) is completely red in 𝑐.

The definition of 𝑐 implies that 𝑐(𝑇) is red since 𝑐(𝑇) = 𝑐(𝑆), thus 𝐴(𝑟 ) is completely
red in 𝑐. □

The following is the multicolor case for the existence of hypergraph Ramsey
number. Denote 𝑟𝑖 = 𝑟 (𝑟 )𝑘 (𝑛1, . . . , 𝑛𝑖−1, 𝑛𝑖 − 1, 𝑛𝑖+1, . . . , 𝑛𝑘).

Theorem 1.14 For 𝑟, 𝑘, 𝑛1, . . . , 𝑛𝑘 ≥ 2, 𝑟 (𝑟 )
𝑘

(𝑛1, . . . , 𝑛𝑘) exists and

𝑟
(𝑟 )
𝑘

(𝑛1, . . . , 𝑛𝑘) ≤ 𝑟 (𝑟−1)
𝑘

(𝑟1, 𝑟2, . . . , 𝑟𝑘) + 1.
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16 1 Existence

The above results do not give rational upper bounds for the hypergraph Ramsey
numbers other than the cases 𝑟 = 2 and small 𝑛𝑖 . Erdős, Hajnal, and Rado (1965)
showed that there are positive constants 𝑐 and 𝑐′ such that

2𝑐𝑛
2
< 𝑟 (3) (𝑛, 𝑛) < 22

𝑐′𝑛
.

They also conjectured that 𝑟 (3) (𝑛, 𝑛) > 22𝑐𝑛 for some constant 𝑐 > 0, and Erdős
offered a $500 reward for a proof. Similarly, for 𝑟 ≥ 4, there is a difference of one
exponential between the known upper and lower bounds for 𝑟 (𝑟 ) (𝑛, 𝑛), i.e.,

𝑡𝑟−1 (𝑐𝑛2) ≤ 𝑟 (𝑟 ) (𝑛, 𝑛) ≤ 𝑡𝑟 (𝑐′𝑛),

where the tower function 𝑡𝑟 (𝑥) is defined by 𝑡1 (𝑥) = 𝑥 and 𝑡𝑖+1 (𝑥) = 2𝑡𝑖 (𝑥 ) . The
study of 3-uniform hypergraphs is particularly important for our understanding of
hypergraph Ramsey numbers. This is because of an ingenious construction called
the stepping-up lemma due to Erdős and Hajnal (see, e.g., Chapter 4.7 in the book
by Graham, Rothschild and Spencer (1990)). Their method allows one to construct
lower bound colorings for uniformity 𝑟+1 from colorings for uniformity 𝑟, effectively
gaining an extra exponential each time it is applied. Unfortunately, the smallest 𝑟 for
which it works is 𝑟 = 3. Therefore, proving that 𝑟 (3) (𝑛, 𝑛) has doubly exponential
growth will allow one to close the gap between the upper and lower bounds for
𝑟 (𝑟 ) (𝑛, 𝑛) for all uniformities 𝑟 . There is some evidence that the growth rate of
𝑟 (𝑟 ) (𝑛, 𝑛) is closer to the upper bound, namely, that with four colors instead of two
this is known to be true. Erdős and Hajnal (see, e.g., Graham, Rothschild and Spencer
(1990)) constructed a 4-coloring of the triples of a set of size 22𝑐𝑛 which does not
contain a monochromatic subset of size 𝑛. This is sharp up to the constant 𝑐. It
also shows that the number of colors matters a lot in this problem and leads to the
question of what happens in the intermediate case when we use three colors. The
3-color Ramsey number 𝑟3 (𝑛, 𝑛, 𝑛) is the minimum 𝑁 such that every 3-coloring
of the triples of an 𝑁-element set contains a monochromatic set of size 𝑛. In this
case, Erdős and Hajnal (1989) have made some improvement on the lower bound
2𝑐𝑛2 (see also in Chung and Graham(1998)), showing that 𝑟3 (𝑛, 𝑛, 𝑛) ≥ 2𝑐𝑛2 log2 𝑛.
Conlon, Fox and Sudakov (2010) substantially improved this bound, extending the
above-mentioned stepping-up lemma of these two authors to show that there exists
a constant 𝑐 > 0 such that

𝑟 (3) (𝑛, 𝑛, 𝑛) ≥ 2𝑛
𝑐 log𝑛

.

For off-diagonal Ramsey numbers, a classical argument of Erdős and Rado (1952)
demonstrates that

𝑟 (𝑟 ) (𝑠, 𝑛) ≤ 2(
𝑟 (𝑟−1) (𝑠−1,𝑛−1)

𝑟−1 ) .

Conlon, Fox and Sudakov (2010) obtained that for fixed 𝑠 ≥ 4 and sufficiently large
𝑛,

2𝑐𝑛 log 𝑛 ≤ 𝑟 (3) (𝑠, 𝑛) ≤ 2𝑐
′𝑛𝑠−2 log 𝑛.
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1.6 Exercises 17

where the upper bound improves the exponent of that due to Erdős and Rado (1952)
by a factor of 𝑛𝑠−2/poly log 𝑛, while the lower bound confirms a conjecture of Erdős
and Hajnal (1972). Mubayi and Suk (three papers in 2017-2018) considered further
for 4-uniform case, in particular, the authors obtained that

𝑟 (4) (5, 𝑛) ≥ 2𝑛
𝑐 log𝑛

, and 𝑟 (4) (6, 𝑛) ≥ 22𝑐𝑛1/5
,

where 𝑐 > 0 is a constant.

1.6 Exercises

1. Suppose that 𝑆 ⊆ {1, 2, . . . , 2𝑛} with |𝐴| = 𝑛 + 1. Show that there exists a pair
of numbers in 𝑆 such that one divides the other. (Hint: Write each 𝑠 ∈ 𝑆 in the form
𝑠 = 2𝑘𝑚, where 𝑚 is odd.)

2. An application of the pigeonhole principle is to prove a famous result of Erdős-
Szekeres (1935): Let 𝐴 = (𝑎1, . . . , 𝑎𝑛) be a sequence of 𝑛 different real numbers.
Prove that if 𝑛 ≥ 𝑠𝑡 + 1, then either 𝐴 has an increasing subsequence of 𝑠 + 1 terms
or a decreasing one of 𝑡 + 1 terms. (Hint: Associate each 𝑎𝑖 to a pair (𝑥𝑖 , 𝑦𝑖), where
𝑥𝑖 (𝑦𝑖) is the number of terms in the longest increasing (decreasing) subsequence
ending (starting) at 𝑎𝑖 . Place 𝑎𝑖 in the pigeonhole of a grid of 𝑛2 pigeonholes with
coordinates (𝑥𝑖 , 𝑦𝑖).)

3. Give an easier proof for the existence of 𝑛 in the last exercise, say 𝑛 ≤
𝑟 (𝑠 + 1, 𝑡 + 1).

4. Prove Theorem 1.2.

5. Prove that 𝑟 (𝐾𝑚+𝐾𝑛, 𝐾𝑝 +𝐾𝑞) ≤
(𝑚+𝑝−1

𝑚

)
𝑛+

(𝑚+𝑝−1
𝑝

)
𝑞. (A. Thomason, 1982)

6. Let 𝐺 be a graph on 𝑁 vertices. Prove that the number of triangles contained
in 𝐺 and 𝐺 is (

𝑁

3

)
− 1

2

∑︁
𝑣∈𝑉 (𝐺)

𝑑 (𝑣) (𝑁 − 1 − 𝑑 (𝑣)).

(R. Goodman, 1959.)

7. Let ℓ = 𝑟 (𝐾𝑛, 𝐾𝑛−2). Show 𝑟 (𝐾𝑛, 𝐾𝑛) ≤ 𝑟 (𝐵ℓ , 𝐵ℓ) and hence Walker’s bound
𝑟 (𝐾𝑛, 𝐾𝑛) ≤ 4𝑟 (𝐾𝑛, 𝐾𝑛−2) + 2.

8. Let 𝑘 ≥ 2. Prove that

𝑟 (𝑛1 + 1, . . . , 𝑛𝑘 + 1) ≤ (𝑛1 + · · · + 𝑛𝑘)!
𝑛1! · · · 𝑛𝑘!

.

9. Prove that
𝑟 (𝑛, 𝑛) ≤ 4𝑟 (𝑛 − 1, 𝑛 − 1) − 2.
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18 1 Existence

(Hint: In a Ramsey coloring, each of |𝑁𝑅 (𝑥) ∩ 𝑁𝐵 (𝑦) | and |𝑁𝐵 (𝑥) ∩ 𝑁𝑅 (𝑦) | is at
most 𝑟 (𝑛−1, 𝑛−1)−1. The sum over 𝑥 ≠ 𝑦 counts each non-monochromatic triangle
twice.)

10. Color all non-empty subsets (not the points) of [𝑁] by 𝑘 colors. Prove that, if
𝑁 is large enough, then there are two disjoint non-empty subsets 𝐴, 𝐵 such that 𝐴, 𝐵
and 𝐴 ∪ 𝐵 have the same color. (Hint: Let 𝑁 = 𝑟𝑘 (3), and 𝜒 a 𝑘-coloring of subsets
of [𝑁]. Color any edge 𝑖 𝑗 with 𝑖 < 𝑗 of 𝐾𝑁 on [𝑁] by color 𝜒( [𝑖, 𝑗 − 1]).)

11. Show that

𝑟 (𝑇, 𝐾𝑛1 , · · · , 𝐾𝑛𝑘 ) = (𝑚 − 1) (𝑟 (𝐾𝑛1 , . . . , 𝐾𝑛𝑘 ) − 1) + 1,

where 𝑇 is a tree of order 𝑚.

12. Assume that 𝑚 − 1 divides 𝑛 − 1. Show that for every tree 𝑇 on 𝑚 vertices,
𝑟 (𝑇, 𝐾1,𝑛) = 𝑚 + 𝑛 − 1.

13. Complete the proof of Theorem 1.12.

14.∗ Let 𝐵𝑘,ℓ be a tree on 𝑛 = 𝑘 + ℓ vertices obtained by identifying an end-vertex
of a path 𝑃ℓ with the central vertex of a star 𝐾1,𝑘 . Prove that 𝑟 (𝐵𝑘,ℓ) = 𝑘 + ⌈ 3ℓ

2 ⌉ − 1
for ℓ ≥ 2𝑘 and 𝑘 ≥ 1. (Erdős et al., 1982)

15. Burr and Erdős (See Chung and Graham, 1998) asked to prove that 𝑟 (𝑛+1, 𝑛) >
(1 + 𝑐)𝑟 (𝑛, 𝑛) for some fixed 𝑐 > 0. From known results, find the pairs (𝑚, 𝑛) with
2 ≤ 𝑚 ≤ 𝑛 such that 𝑟 (𝑚 − 1, 𝑛 + 1) ≤ 𝑟 (𝑚, 𝑛).
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Chapter 2
Small Ramsey Numbers

What are exact values of 𝑟 (𝑚, 𝑛)? This is more challenging than to show their
existence. Let us call the classical Ramsey number 𝑟 (𝑚, 𝑛) to be the small Ramsey
number if 𝑚 and 𝑛 are small. In this chapter, we shall obtain some exact values of
small Ramsey numbers in the first section. To get more, it is necessary to have a
short introduction on finite fields in the second section. The exact value of 𝑟3 (3) is
an early application of finite field in the graph Ramsey theory. Relating to 𝑟𝑘 (3), a
Ramsey function on integers is the Schur function, which will be discussed in the
third section. One of the most important graphs constructed by finite field are Paley
graphs, which are highly symmetric and yield almost all currently best known lower
bounds of small Ramsey numbers, and exact values of infinitely many book graphs
𝐵𝑛. Also, Paley graphs form a family of quasi-random graphs, see Chapter 10. We
have some context on graph spectra in the sixth section, particularly that related to
the independence numbers of graphs, which gives exact independence numbers of
infinitely many Paley graphs, showing such Paley graphs are not good for the lower
bounds of classical Ramsey numbers.

2.1 Ramsey Folklore

As mentioned in Chapter 1, if 𝑁 = 𝑟 (𝐺, 𝐻), then there exists a graph 𝐹 of order
𝑁 − 1 such that 𝐹 contains no 𝐺 and its complement 𝐹 contains no 𝐻, for which 𝐹
is called a Ramsey graph for 𝑟 (𝐺, 𝐻). To illustrate the idea, we shall find the first
four nontrivial classical Ramsey numbers.

Theorem 2.1 We have four exact values of Ramsey numbers as follows.

𝑟 (3, 3) = 6, 𝑟 (3, 4) = 9, 𝑟 (3, 5) = 14, 𝑟 (4, 4) = 18.

Proof. We have 𝑟 (3, 3) = 6 in the last chapter. Since both 𝑟 (3, 3) = 6 and 𝑟 (2, 4) = 4
are even, by Theorem 1.5, we have 𝑟 (3, 4) ≤ 9. Moreover,

19© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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20 2 Small Ramsey Numbers

𝑟 (3, 5) ≤ 𝑟 (2, 5) + 𝑟 (3, 4) ≤ 14. (2.1)

To obtain a lower bound of 𝑟 (3, 5), let us consider the graph𝐺 on vertex set 𝑍13 =

{0, 1, . . . , 12} (the integers modulo 13). Denote by 𝐴 = {1, 5, 8, 12} = {±1,±5},
which consists of all non-zero cubic (mod 13) of 𝑍13. Connect vertices 𝑖 and 𝑗 by
an edge if and only if 𝑖 − 𝑗 ∈ 𝐴. It is easy to check that 𝐺 is triangle-free and
𝛼(𝐺) = 4. Thus 𝑟 (3, 5) ≥ 14 hence 𝑟 (3, 5) = 14. Furthermore the equalities in (2.1)
hold, which implies that 𝑟 (3, 4) = 9.

From 𝑟 (3, 4) = 9, we have 𝑟 (4, 4) ≤ 2𝑟 (3, 4) = 18. To get a lower bound, let us
consider the graph with vertex set 𝑍17 = {0, 1, . . . , 16}, in which 𝑖 and 𝑗 are adjacent
if and only if 𝑖− 𝑗 ∈ {±1,±2,±4,±8}, the set of non-zero quadratics (mod 17). This
graph shows that 𝑟 (4, 4) ≥ 18. We will see that this graph is indeed a Paley graph
later. □

Greenwood and Gleason (1955) computed four exact values as in the above
theorem. They also found that the exact value of 𝑟 (3, 3, 3) is 17, see the next section,
which is the only known exact value among all nontrivial classical Ramsey number
in three or more colors. Graver and Yackel (1968) determined that 𝑟 (3, 6) = 18 and
𝑟 (3, 7) = 23. No other classical Ramsey number is found without aid of computers.
Using the computers, Grinstead and Roberts (1982) found that 𝑟 (3, 8) is between 28
and 29, and they obtained 𝑟 (3, 9) = 36; Mckay and Zhang (1992) finally determined
𝑟 (3, 8) = 28. MaKay and Radziszowki (1995) computed 𝑟 (4, 5) = 25. All known
non-trivial classical Ramsey numbers 𝑟 (𝑚, 𝑛) and some bounds at present are listed
in Table 2.1. The Ramsey graphs for 𝑟 (3, 5) and 𝑟 (4, 4) are illustrated in Fig. 2.1.

𝑚\𝑛 3 4 5 6 7 8 9 10
3 6 9 14 18 23 28 36 40/43
4 18 25 35/41 49/61 56/84 69/115 92/149
5 43/49 58/87 80/143 101/216 121/316 141/442

Table 2.1 Some values and bounds of 𝑟 (𝑚, 𝑛) .

Radziszowski’s dynamic survey (1994) offers up-to-date information on small
Ramsey numbers. The paucity of known exact values 𝑟 (𝑚, 𝑛) indicates the difficulty
in this area. Also this paucity stimulates our curiosity to find more classical Ramsey
numbers. The following story came from Spencer (1994).

Erdős asks us to imagine an alien force, vastly more powerful than us, landing
the earth and demanding the value of 𝑟 (5, 5) or they will destroy our planet. In this
case, he claims, “we should marshall all our computers and all our mathematicians
and attempt to find the value. But suppose, instead, that they ask for 𝑟 (6, 6). In that
case, we should attempt to destroy the aliens.”

Perhaps as the improvement of computers and algorithms, the value of 𝑟 (5, 5) and
even 𝑟 (6, 6) can be obtained in the near future. But for a bit larger 𝑛, the exact value
of 𝑟 (𝑛, 𝑛) is still far away from being tractable. However, more “exact” results are
known on generalized Ramsey numbers, some of which will be discussed in latter
chapters.
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2.2 Finite Field and 𝑟3 (3) 21
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Fig. 2.1 Ramsey graphs for 𝑟 (3, 5) and 𝑟 (4, 4)

2.2 Finite Field and 𝒓3(3)

Greenwood and Gleason (1955) proved that 𝑟3 (3) = 17 by partitioning a finite field,
which is an example for applications of finite fields in graph Ramsey theory. On
finite fields, one of elementary facts is that there exists a field 𝐹 (𝑞) of 𝑞 elements if
and only if 𝑞 is a prime power. A finite field 𝐹 (𝑞) is often called Galois field thus
denoted by 𝐺𝐹 (𝑞). For simplicity, we use the notation 𝐹 (𝑞) or 𝐹𝑞 . On 𝐹 (𝑞) there
are two operations, addition and multiplication. When 𝑞 = 𝑝 is a prime, the set of
elements of 𝐹 (𝑝) can be viewed as
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22 2 Small Ramsey Numbers

𝑍𝑝 = {0, 1, . . . , 𝑝 − 1},

where the addition and multiplication are more pleasing since they are arithmetic
modulo 𝑝. The tables for two operations + and · for elements in 𝑍5 are as follows.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 2.2 Operations on 𝑍5

Recall an easy fact from group theory as follows.

Lemma 2.1 Let 𝐺 be a multiplicative group and let 𝑆 be a finite subset of 𝐺. If 𝑆 is
closed for multiplication, then 𝑆 is a subgroup of 𝐺.

Since 𝑝 |𝑎𝑏 implies 𝑝 |𝑎 or 𝑝 |𝑏, so 𝑍∗
𝑝 = 𝑍𝑝 \ {0} is closed for multiplication

modulo 𝑝 hence it is a multiplicative group of order 𝑝 − 1, and thus the index of
any element 𝑥 of 𝑍∗

𝑝 is a factor of 𝑝 − 1; namely it satisfies that the equation 𝑥𝑝−1 ≡
1 (mod 𝑝), hence any element of 𝐹 (𝑝) satisfies the equation 𝑥𝑝 ≡ 𝑥 (mod 𝑝). Also,
for any 𝑎 ∈ 𝑍∗

𝑝 , 𝑎𝑥 ≡ 1 (mod 𝑝) has unique solution in 𝑍∗
𝑝 , so the inverse 𝑎−1 of

𝑎 exists. Thus 𝑍𝑝 is a finite field of 𝑝 elements. Formally, when 𝑍𝑝 is viewed as
a field, the congruence 𝑎 ≡ 𝑏 (mod 𝑝) should be written as 𝑎 = 𝑏, which is an
equality in the field. We sometimes do not distinguish the two notations to signify
the operations in 𝑍𝑝 .

The field 𝐹 (𝑝) is the unique field of order 𝑝 up to isomorphism. To discuss some
structure of finite field 𝐹 (𝑝𝑚), let us begin with some basics. Of course, we shall
constrain ourselves with what are needed here.

Let 𝐹 be a (finite or infinite) field such as the field 𝑍𝑝 , 𝑄 of rational numbers, or
𝑅 of real numbers. A polynomial

𝑓 (𝑥) = 𝑎0𝑥
𝑚 + 𝑎1𝑥

𝑚−1 + · · · + 𝑎𝑚

is called a polynomial on 𝐹 if any coefficient 𝑎𝑖 ∈ 𝐹. Denote by 𝐹 [𝑥] for the set of all
polynomials on 𝐹. Then 𝐹 [𝑥] is a ring on the ordinary addition and the multiplication
of polynomials.

Fix a polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥] of degree 𝑚. We define an equivalence relation ≡
on 𝐹 [𝑥] for with 𝑔1 (𝑥) ≡ 𝑔2 (𝑥) if and only if 𝑓 (𝑥) | (𝑔1 (𝑥) − 𝑔2 (𝑥)), that is to say,
the reminders of 𝑔1 (𝑥) and 𝑔2 (𝑥) are the same when 𝑓 (𝑥) divides them. Let

𝑔𝑖 (𝑥) = 𝑓 (𝑥)ℎ𝑖 (𝑥) + 𝑟𝑖 (𝑥),

where the degree of 𝑟𝑖 (𝑥) is less 𝑚. Denote by ⟨𝑔(𝑥)⟩ for the equivalence class that
contains 𝑔(𝑥), then ⟨𝑔𝑖 (𝑥)⟩ = ⟨𝑟𝑖 (𝑥)⟩, and 𝑔1 (𝑥) ≡ 𝑔2 (𝑥) if and only if 𝑟1 (𝑥) = 𝑟2 (𝑥).
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2.2 Finite Field and 𝑟3 (3) 23

Let 𝐹 [𝑥]/( 𝑓 (𝑥)) be the set of all equivalence classes. Then it is a ring on addition
and multiplication in an obvious way.

Theorem 2.2 Let 𝑓 (𝑥) ∈ 𝐹 [𝑥]. Then 𝐹 [𝑥]/( 𝑓 (𝑥)) is a field if and only if 𝑓 (𝑥) is
irreducible over 𝐹.

This field is called a residue field or quotient field. To simplify the notation,
we use the unique polynomial of minimum degree, namely, the remainder, in an
equivalence class to represent the class. Then each element in the field 𝐹 [𝑥]/( 𝑓 (𝑥))
can be expressed uniquely as

𝑟 (𝑥) = 𝑏0𝑥
𝑚−1 + 𝑏1𝑥

𝑚−2 + · · · + 𝑏𝑚−1, 𝑏𝑖 ∈ 𝐹, 0 ≤ 𝑖 ≤ 𝑚 − 1,

where 𝑚 is the degree of 𝑓 (𝑥). So the field 𝑍𝑝 [𝑥]/( 𝑓 (𝑥)) contains 𝑝𝑚 elements,
which is thus denoted by 𝐹 (𝑝𝑚). As an example, the field 𝐹 (32) can be expressed
as 𝑍3 [𝑥]/( 𝑓 (𝑥)), where 𝑓 (𝑥) ∈ 𝑍3 [𝑥] is irreducible of degree 2, so

𝐹 (32) = {0, 1, 2, 𝑥, 𝑥 + 1, 𝑥 + 2, 2𝑥, 2𝑥 + 1, 2𝑥 + 2}.

The sum of two elements is the sum of two polynomials, but the product of two
elements depends on the form of 𝑓 (𝑥). For 𝑍3 [𝑥]/( 𝑓 (𝑥)), if 𝑓 (𝑥) = 𝑥2 + 1, then
𝑥(𝑥+1) = 𝑥2+𝑥 = −1+𝑥 = 𝑥+2. If 𝑓 (𝑥) = 𝑥2+𝑥+2, then 𝑥(𝑥+1) = 𝑥2+𝑥 = −2 = 1.

For an element 𝑟 (𝑥) ∈ 𝐹 (𝑞) = 𝑍𝑝 [𝑥]/( 𝑓 (𝑥)) and 𝑠 ∈ 𝑍𝑝 , where 𝑞 = 𝑝𝑚, each
coefficient of 𝑠𝑟 (𝑥) is the product of 𝑠 and the corresponding coefficient. So we see
an interesting fact that 𝑝𝑟 (𝑥) = 0, which is trivial if we write it as 0𝑟 (𝑥) = 0.

Since 𝐹∗ = 𝐹 (𝑝𝑚) \ {0} is closed on multiplication so it is a multiplicative group.
It is interesting to see that 𝐹∗ is a cyclic group, its generators are called primitive
elements of 𝐹 (𝑝𝑚). For example, in 𝑍3 [𝑥]/(𝑥2 + 1), the element 𝑥 + 1 is a primitive
element.

𝑖 1 2 3 4 5 6 7 8
(𝑥 + 1)𝑖 𝑥 + 1 2𝑥 2𝑥 + 1 2 2𝑥 + 2 𝑥 𝑥 + 2 1

Table 2.3 A primitive element (𝑥 + 1) of 𝑍3 [𝑥]/(𝑥2 + 1)
Let us define the period of an irreducible polynomial 𝑓 (𝑥) ∈ 𝑍𝑝 [𝑥], denoted by

𝑝( 𝑓 ), as the smallest ℓ such that 𝑓 (𝑥) | (𝑥ℓ − 1) in 𝑍𝑝 [𝑥]. Clearly 𝑝( 𝑓 ) ≤ 𝑝𝑚 − 1,
where 𝑚 is the degree of 𝑓 (𝑥). As 𝑓 (𝑥) | (𝑥ℓ − 1) in 𝑍𝑝 [𝑥] is equivalent to 𝑥ℓ = 1 in
𝑍𝑝 [𝑥]/( 𝑓 (𝑥)), so if we choose 𝑓 (𝑥) such that 𝑝( 𝑓 ) = 𝑝𝑚 − 1, then 𝑥 is a primitive
element of the field 𝑍𝑝 [𝑥]/( 𝑓 (𝑥)). For example, 𝑓 (𝑥) = 𝑥2 + 𝑥 + 2 of 𝑍3 [𝑥] is
irreducible with 𝑝( 𝑓 ) = 8, so 𝑥 is a primitive element of 𝐹 (32) = 𝑍3 [𝑥]/(𝑥2 +𝑥 +2).

𝑖 1 2 3 4 5 6 7 8
𝑥𝑖 𝑥 2𝑥 + 1 2𝑥 + 2 2 2𝑥 𝑥 + 2 𝑥 + 1 1

Table 2.4 A primitive element 𝑥 of 𝑍3 [𝑥]/(𝑥2 + 𝑥 + 2)

In conclusion, 𝑍𝑝 [𝑥]/( 𝑓 (𝑥)) is a field of order 𝑝𝑚, where 𝑓 (𝑥) ∈ 𝑍𝑝 [𝑥] is
irreducible with degree𝑚. This field is unique up to isomorphism. If 𝑝( 𝑓 ) = 𝑝𝑚−1,
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24 2 Small Ramsey Numbers

then we can simply express the elements of 𝐺𝐹 (𝑝𝑚) as

0, 𝑥, 𝑥2, . . . , 𝑥𝑞−1 = 1.

This expression is convenient for the multiplication but not for the addition.

Theorem 2.3 𝑟3 (3) = 17.

Proof. The right upper bound follows from Theorem 1.1. Indeed, if the edges of 𝐾17
are colored by colors 1, 2, 3, a vertex 𝑣 has at least six neighbors connected by the
edges in the same color, say color 1. Two of such neighbors 𝑥 and 𝑦 of 𝑣 and 𝑣 itself
form a monochromatic triangle if the edge 𝑥𝑦 is colored by 1, or six neighbors induce
a 𝐾6 whose edges are colored by colors 2 and 3, which contains a monochromatic
triangle as 𝑟 (3, 3) = 6. This proves that 𝑟3 (3) ≤ 17.

Greenwood and Gleason (1955) proved that 𝑟3 (3) ≥ 17 by considering 𝐹 (24),
which is isomorphic to 𝑍2 [𝑥]/(𝑥4 + 𝑥 + 1) since 𝑥4 + 𝑥 + 1 is a irreducible in 𝑍2 [𝑥]
with period 15. Then the elements of 𝐹 (24) can be identified as

{0, 𝑥, 𝑥2, . . . , 𝑥15 = 1},

where
0 = 0 𝑥8 = 1 + 𝑥2

𝑥 = 𝑥 𝑥9 = 𝑥 + 𝑥3

𝑥2 = 𝑥2 𝑥10 = 1 + 𝑥 + 𝑥2

𝑥3 = 𝑥3 𝑥11 = 𝑥 + 𝑥2 + 𝑥3

𝑥4 = 1 + 𝑥 𝑥12 = 1 + 𝑥 + 𝑥2 + 𝑥3

𝑥5 = 𝑥 + 𝑥2 𝑥13 = 1 + 𝑥2 + 𝑥3

𝑥6 = 𝑥2 + 𝑥3 𝑥14 = 1 + 𝑥3

𝑥7 = 1 + 𝑥 + 𝑥3 𝑥15 = 1

Table 2.5 The elements in a field 𝐹 (16)
Note that − 𝑓 (𝑥) = 𝑓 (𝑥) in 𝑍2 [𝑥]. Let 𝐴0 be the set of all cubic residues of

𝐹∗ = 𝐹 \ {0}, then

𝐴0 = {𝑥3, 𝑥6, 𝑥9, 𝑥12, 𝑥15}
= {𝑥3, 𝑥2 + 𝑥3, 𝑥 + 𝑥3, 1 + 𝑥 + 𝑥2 + 𝑥3, 1}.

Then 𝐴0 is a subgroup of multiplicative group 𝐹∗. Set

𝐴1 = 𝑥𝐴0 = {1 + 𝑥, 1 + 𝑥 + 𝑥3, 1 + 𝑥 + 𝑥2, 1 + 𝑥2 + 𝑥3, 𝑥}

and
𝐴2 = 𝑥2𝐴0 = {𝑥 + 𝑥2, 1 + 𝑥2, 𝑥 + 𝑥2 + 𝑥3, 1 + 𝑥3, 𝑥2}.

The sets 𝐴0, 𝐴1, 𝐴2 are cosets of 𝐴0 in multiplicative group 𝐹∗. Let us call a subset
𝑆 of 𝐹 (𝑞) sum-free if the equation 𝑥 + 𝑦 = 𝑧 has no solutions in 𝑆. Observe that 𝐴0
is sum-free from the above table hence 𝐴1 and 𝐴2 are also sum-free.
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2.3 Schur Numbers 25

Define an edge coloring of 𝐾16 on vertex set 𝐹 (24) as follows. Color an edge 𝑢𝑣
with color 𝑖 if 𝑢 + 𝑣 ∈ 𝐴𝑖 . Then all edges are colored by colors 0, 1 and 2. We claim
that there is no monochromatic triangle. Suppose that vertices 𝑢, 𝑣 and 𝑤 induce a
monochromatic triangle in color 𝑖. Then 𝑢 + 𝑣 ∈ 𝐴𝑖 , 𝑣 + 𝑤 ∈ 𝐴𝑖 and 𝑢 + 𝑤 ∈ 𝐴𝑖 ,
contradicting to the fact that 𝐴𝑖 is sum-free as 𝑢 + 𝑤 = (𝑢 + 𝑣) + (𝑣 + 𝑤). Thus
𝑟3 (3) ≥ 17. □

Let us remark that in most applications, we are not concerned with the precise
structure of a finite field. If this is the case, then we can write 𝑥 ∈ 𝐹 (𝑞) to signify
that 𝑥 is an arbitrary element of 𝐹 (𝑞), not necessarily a polynomial of the single
variable 𝑥.

2.3 Schur Numbers

It is hard to determine the exact classical Ramsey numbers as stated. The only known
multi-color classical Ramsey number is 𝑟3 (3) = 17 proved in the last section. For
𝑘 = 4, 5, we have 51 ≤ 𝑟4 (3) ≤ 62, where the upper bound was established by
Fettes, Kramer and Radziszowski (2004) while the lower bound was obtained by
Chung (1973), and 162 ≤ 𝑟5 (3) ≤ 307, where the lower bound is due to Exoo
(1994) and the upper bound is implied by that of 𝑟4 (3) from the upper bound
𝑟𝑘 (3) ≤ 𝑘 (𝑟𝑘−1 (3) − 1) + 2 proved in the last chapter.

We are more interested in the asymptotic behavior of 𝑟𝑘 (3) as 𝑘 → ∞. Let 𝑓 (𝑛)
be a function taking non-negative values. Call the function 𝑓 (𝑛) super-multiplicative
if 𝑓 (𝑚 + 𝑛) ≥ 𝑓 (𝑚) 𝑓 (𝑛). The following result is elementary.

Lemma 2.2 Suppose the function 𝑓 (𝑛) > 0 is super-multiplicative. Then lim
𝑛→∞

𝑓 (𝑛)1/𝑛

exists and it is equal to sup
𝑛≥1

𝑓 (𝑛)1/𝑛. If 𝑚 is fixed, then

𝑓 (𝑛) ≥ 𝑐 𝑓 (𝑚)𝑛/𝑚,

where 𝑐 = 𝑐(𝑚) > 0 is a constant.

Proof. Set ℓ = sup
𝑛≥1

𝑓 (𝑛)1/𝑛. Then 0 < ℓ ≤ ∞ and lim
𝑛→∞

𝑓 (𝑛)1/𝑛 ≤ ℓ. We shall show

that lim
𝑛→∞

𝑓 (𝑛)1/𝑛 ≥ ℓ.

Case 1 ℓ < ∞.

For any 𝜖 > 0, there is some 𝑚 such that 𝑓 (𝑚)1/𝑚 > ℓ − 𝜖 . For any 𝑛 ≥ 𝑚, let
𝑛 = 𝑞𝑚 + 𝑟 with 0 ≤ 𝑟 < 𝑚. Thus

𝑓 (𝑛) ≥ 𝑓 (𝑞𝑚) 𝑓 (𝑟) ≥ 𝑓 (𝑚)𝑞 𝑓 (𝑟).

Since 𝑞/𝑛→ 1/𝑚 and 𝑓 (𝑟)1/𝑛 → 1, we have
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26 2 Small Ramsey Numbers

lim
𝑛→∞

𝑓 (𝑛)1/𝑛 ≥ 𝑓 (𝑚)1/𝑚 > ℓ − 𝜖 .

Thus lim
𝑛→∞

𝑓 (𝑛)1/𝑛 ≥ ℓ since 𝜖 > 0 is arbitrary.

Case 2 ℓ = ∞.

For any 𝑀 > 0, there is 𝑚 ≥ 1 such that 𝑓 (𝑚)1/𝑚 > 𝑀 , we can similarly show
that lim

𝑛→∞
𝑓 (𝑛)1/𝑛 ≥ 𝑀 . It follows that lim

𝑛→∞
𝑓 (𝑛)1/𝑛 = ∞ since 𝑀 > 0 is arbitrary.

This prove the first assertion.
For fixed 𝑚, let 𝑛 = 𝑞𝑚 + 𝑟 with 0 ≤ 𝑟 < 𝑚. Then

𝑓 (𝑛) ≥ 𝑓 (𝑟) 𝑓 (𝑚) (𝑛−𝑟 )/𝑚 =
𝑓 (𝑟)

𝑓 (𝑚)𝑟/𝑚
𝑓 (𝑚)𝑛/𝑚.

Let 𝑐 = min{ 𝑓 (𝑟)/ 𝑓 (𝑚)𝑟/𝑚 : 0 ≤ 𝑟 < 𝑚}. Then 𝑐 = 𝑐(𝑚) is a positive constant and
𝑓 (𝑛) ≥ 𝑐 𝑓 (𝑚)𝑛/𝑚 as desired. □

Proposition 2.1 The function 𝑟𝑘 (3) − 1 is super-multiplicative. Hence the following
limits exist and

lim
𝑘→∞

𝑟𝑘 (3)1/𝑘 = lim
𝑘→∞

(𝑟𝑘 (3) − 1)1/𝑘 = sup
𝑘

(𝑟𝑘 (3) − 1)1/𝑘 .

Proof. Let us write 𝑟𝑛 (3) as 𝑟𝑛 in the proof. Set 𝑁 = 𝑟𝑛 − 1 and 𝑀 = 𝑟𝑚 − 1. Color
the edges of 𝐾𝑁 by 𝑛 colors and color edges of 𝐾𝑀 by other 𝑚 colors so that there
is no monochromatic triangles in any color. Then, “blow-up” one with another by
replacing each vertex 𝑣 of 𝐾𝑁 with a colored 𝐾𝑀 , denoted by 𝐻𝑣 for this 𝐾𝑀 . For
any distinct vertices 𝑢 and 𝑣 of 𝐾𝑁 , if 𝑢′ ∈ 𝑉 (𝐻𝑢), and 𝑣′ ∈ 𝑉 (𝐻𝑣), color edge
between 𝑢′ and 𝑣′ with the color as the edge 𝑢𝑣 in 𝐾𝑁 . We thus have a complete
graph on 𝑁𝑀 vertices whose edges are colored with 𝑛 + 𝑚 colors and there is no
monochromatic triangles. Therefore

𝑟𝑚+𝑛 − 1 ≥ (𝑟𝑚 − 1) (𝑟𝑛 − 1),

as claimed. □

It seems to be very difficult to determine the exact value of the limit of 𝑟𝑘 (3)1/𝑘 .
From 𝑟3 (3) = 17, we have lim

𝑘→∞
𝑟𝑘 (3)1/𝑘 ≥ (𝑟3 (3) − 1)1/3 = 2.5 · · · . Nevertheless,

we shall do it better.
Schur defined an extremal number in 1916 as follows. A set 𝑆 of integers is said

to be sum-free if 𝑎, 𝑏 ∈ 𝑆 (𝑎 and 𝑏 not necessarily distinct) implies

𝑎 + 𝑏 ∉ 𝑆.

Let [𝑁] = {1, 2, . . . , 𝑁}. A result of Schur (1916) states that if the integers [⌊𝑘!𝑒⌋]
are partitioned in any manner into 𝑘 classes, then at least one of the classes is not
sum-free. Accordingly, the Schur number 𝑠𝑘 is defined to be the largest positive
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2.3 Schur Numbers 27

integer 𝑁 such that [𝑁] can be partitioned in some manner into 𝑘 sum-free classes.
No many exact values of Schur numbers have been known. It is not hard to verify
that 𝑠1 = 1, 𝑠2 = 4 and 𝑠3 = 13. With the aid of a computer, Baumert showed that
𝑠4 = 44, reported in Abbott and Hanson (1972). It was showed that 𝑠5 ≥ 160 by
Exoo (1994) and 𝑠6 ≥ 536 by Fredricksen and Sweet (2000). A relation between
𝑟𝑘 (3) and 𝑠𝑘 is as follows.

Theorem 2.4 For any positive integer 𝑘 ,

𝑟𝑘 (3) ≥ 𝑠𝑘 + 2.

Proof. Set 𝑁 = 𝑠𝑘 . Then [𝑁] can be partitioned into 𝑘 sum-free sets 𝐴1, 𝐴2, . . . , 𝐴𝑘 .
We now color the edges of 𝐾𝑁+1 on vertex set {0} ∪ [𝑁] in the following way: color
the edge 𝑢𝑣 with color 𝑖 if |𝑢 − 𝑣 | ∈ 𝐴𝑖 . Since 1 ≤ |𝑢 − 𝑣 | ≤ 𝑁 for any distinct
𝑢 and 𝑣, all edges are colored. We then claim that there are no monochromatic
triangles. Suppose not, some distinct vertices 𝑢, 𝑣 and 𝑤 induce a monochromatic
triangle in color 𝑖, where 0 ≤ 𝑢 < 𝑣 < 𝑤 ≤ 𝑁 . Thus |𝑢 − 𝑣 | = 𝑣 − 𝑢 ∈ 𝐴𝑖 and
|𝑣 − 𝑤 | = 𝑤 − 𝑣 ∈ 𝐴𝑖 . It follows that |𝑢 − 𝑤 | = 𝑤 − 𝑢 = (𝑤 − 𝑣) + (𝑣 − 𝑢) ∈ 𝐴𝑖 ,
contradicting to the fact that 𝐴𝑖 is sum-free. Therefore, the 𝑘-colored 𝐾𝑁+1 do not
contain monochromatic triangle, implying that 𝑟𝑘 (3) ≥ 𝑁 + 2 = 𝑠𝑘 + 2. □

Corollary 2.1 𝑟5 (3) ≥ 162, and 𝑟6 (3) ≥ 538.

The original paper of Schur was motivated by Fermat’s Last Theorem. He actually
proved the following result.

Theorem 2.5 For any fixed integer 𝑚 ≥ 1, if 𝑝 is a prime with 𝑝 ≥ 𝑠𝑚 + 2, then the
equation

𝑥𝑚 + 𝑦𝑚 ≡ 𝑧𝑚 (mod 𝑝)

has a nonzero solution.

Proof. We shall prove the equation 𝑥𝑚 + 𝑦𝑚 ≡ 1 (mod 𝑝) has a nonzero solution for
𝑝 ≥ 𝑠𝑚+2. If [𝑝−1] is partitioned into𝑚 subsets, then one of subsets is not sum-free
as 𝑝 − 1 ≥ 𝑠𝑚 + 1, and thus there exist 𝑎, 𝑏, 𝑐 in this subset such that 𝑎 + 𝑏 = 𝑐. Set
𝐻 = {𝑥𝑚 : 𝑥 ∈ 𝑍∗

𝑝}, which is a multiplicative subgroup of 𝑍∗
𝑝 . Then the index of 𝐻,

i.e., the number of cosets of 𝑍∗
𝑝 on 𝐻, is 𝑘 = 𝑔𝑐𝑑 (𝑚, 𝑝 − 1) ≤ 𝑚. The cosets of 𝑍∗

𝑝

on 𝐻 define a partition of 𝑍∗
𝑝 such that 𝑠 and 𝑡 are in the same coset if and only if

𝑠𝑡−1 ∈ 𝐻. Suppose that 𝑎, 𝑏, 𝑐 ∈ [𝑝 − 1] from the same coset satisfy that 𝑎 + 𝑏 = 𝑐.
Then

𝑎𝑐−1 + 𝑏𝑐−1 ≡ 1 (mod 𝑝).

Since 𝑎𝑐−1, 𝑏𝑐−1, 1 ∈ 𝐻, we obtain that 𝑎𝑐−1 = 𝑥𝑚, 𝑏𝑐−1 = 𝑦𝑚 for some nonzero 𝑥
and 𝑦 in 𝑍𝑝 , proving the assertion. □

A partition {𝐴1, 𝐴2, . . . , 𝐴𝑘} of [𝑁] is called symmetric if any 𝑥 ∈ 𝐴𝑖 implies
that 𝑁 + 1 − 𝑥 ∈ 𝐴𝑖 . It is clear that any sum-free partition {𝐴1, 𝐴2, . . . , 𝐴𝑘} of [𝑠𝑘]
is symmetric since 𝑥 + 𝑦 = 𝑠𝑘 + 1 must have a solution for any 𝑥 ∈ 𝐴𝑖 and 1 ≤ 𝑖 ≤ 𝑘 .
We will see the partition in the proof of the following lemma is symmetric.
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28 2 Small Ramsey Numbers

Lemma 2.3 For any positive integer 𝑘 ,

𝑠𝑘+1 ≥ 3𝑠𝑘 + 1.

Proof. Let {𝐴1, 𝐴2, . . . , 𝐴𝑘} be a sum-free partition of [𝑠𝑘]. Then 𝑥 + 𝑦 = 𝑠𝑘 + 1 has
a solution in any 𝐴𝑖 . Set 𝐵𝑘+1 = {𝑠𝑘 + 1, 𝑠𝑘 + 2, . . . , 2𝑠𝑘 + 1} and extend 𝐴𝑖 to 𝐵𝑖 as
follows. For any 𝑥 ∈ 𝐴𝑖 , add 3𝑠𝑘 + 2 − 𝑥 in 𝐴𝑖 . Since 1 ≤ 𝑥 ≤ 𝑠𝑘 , we have

2𝑠𝑘 + 2 ≤ 3𝑠𝑘 + 2 − 𝑥 ≤ 3𝑠𝑘 + 1,

and thus 𝐵1, 𝐵2, · · · , 𝐵𝑘 , 𝐵𝑘+1 form a partition of [3𝑠𝑘 + 1]. It is easy to see that
𝐵𝑘+1 is sum-free. For 1 ≤ 𝑖 ≤ 𝑘 and 𝑥, 𝑦 ∈ 𝐵𝑖 , we claim that 𝑥 + 𝑦 ∉ 𝐵𝑖 .

Indeed, if both 𝑥 and 𝑦 are in 𝐴𝑖 , then the assertion follows from 𝑥 + 𝑦 ∉ 𝐴𝑖 and
𝑥 + 𝑦 ≤ 2𝑠𝑘 . If both 𝑥 and 𝑦 are in 𝐵𝑖 \ 𝐴𝑖 , then the assertion follows from the fact
that 𝑥 + 𝑦 ≥ 2(2𝑠𝑘 + 2) > 3𝑠𝑘 + 1. Now we assume that exactly one of them is in 𝐴𝑖 ,
say, 𝑥 ∈ 𝐴𝑖 , and 𝑦 ∈ 𝐵𝑖 \ 𝐴𝑖 . Clearly, 𝑦 = 3𝑠𝑘 + 2 − 𝑦′ for some 𝑦′ ∈ 𝐴𝑖 . Moreover,
we obtain that

𝑥 + 𝑦 ≥ 𝑥 + 2𝑠𝑘 + 2 ≥ 2𝑠𝑘 + 3.

Therefore, if 𝑥 + 𝑦 ∈ 𝐵𝑖 , then 𝑥 + 𝑦 ∈ 𝐵𝑖 \ 𝐴𝑖 . It follows that

𝑥 + 𝑦 = 3𝑠𝑘 + 2 − 𝑧

for some 𝑧 ∈ 𝐴𝑖 , which implies that

𝑥 + 𝑧 = 3𝑠𝑘 + 2 − 𝑦 = 𝑦′,

contradicting to the fact that 𝐴𝑖 is sum-free.
Therefore, 𝐵1, 𝐵2, · · · , 𝐵𝑘+1 form a sum-free partition of [3𝑠𝑘 + 1], and hence

𝑠𝑘+1 ≥ 3𝑠𝑘 + 1. □

The following is a result of Abbott and Hanson (1972), which is a generalization
of the above lemma.

Theorem 2.6 Let 𝑚 and 𝑛 be positive integers and 𝑎𝑛 = 2𝑠𝑛 + 1. Then

𝑠𝑚+𝑛 ≥ (2𝑠𝑚 + 1)𝑠𝑛 + 𝑠𝑚.

In particular, 𝑎𝑚+𝑛 ≥ 𝑎𝑚 · 𝑎𝑛, namely 𝑎𝑛 is super-multiplicative.

Proof. For 𝑏 = 0, 1, . . . , 𝑠𝑛, set

𝐴𝑏 = {𝑏(2𝑠𝑚 + 1) + 𝑐 |𝑐 = 1, 2, . . . , 𝑠𝑚},

and for 𝑐 = 1, 2, . . . , 𝑠𝑚, set

𝐴𝑐 = {𝑏(2𝑠𝑚 + 1) + 𝑐 |𝑏 = 0, 1, . . . , 𝑠𝑛}.

Let
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2.3 Schur Numbers 29

𝐴 = ∪𝑠𝑛
𝑏=0𝐴𝑏 = ∪𝑠𝑚

𝑐=1𝐴
𝑐 .

Partition 𝐴0 = [𝑠𝑚] into 𝑚 sum-free classes 𝐶1, 𝐶2, . . . , 𝐶𝑚, and partition 𝐴 into 𝑚
classes 𝐷1, 𝐷2, . . . , 𝐷𝑚 by placing 𝐴𝑐 in 𝐷𝑖 if 𝑐 ∈ 𝐶𝑖 . We claim that each of these
classes is sum-free. Suppose to the contrary, 𝐷𝑖 is not sum-free, i.e., there are some
elements 𝑏1𝑀 + 𝑐1, 𝑏2𝑀 + 𝑐2, 𝑏3𝑀 + 𝑐3 of 𝐷𝑖 , where 𝑀 = 2𝑠𝑚 + 1, such that

(𝑏1𝑀 + 𝑐1) + (𝑏2𝑀 + 𝑐2) = 𝑏3𝑀 + 𝑐3,

where 𝑐1, 𝑐2, 𝑐3 are all in 𝐶𝑖 . We thus have

𝑐1 + 𝑐2 ≡ 𝑐3 (mod 𝑀).

However, 2 ≤ 𝑐1 + 𝑐2 ≤ 2𝑠𝑚 < 𝑀 , and 1 ≤ 𝑐3 ≤ 𝑠𝑚 < 𝑀 , so 𝑐1 + 𝑐2 = 𝑐3,
contradicting to the fact that 𝐶𝑖 is sum-free.

For 𝑏 = 1, 2, . . . , 𝑠𝑛, set

𝐵𝑏 = {𝑏(2𝑠𝑚 + 1) − 𝑐 |𝑐 = 0, 1, . . . , 𝑠𝑚}.

Let
𝐵 = ∪𝑠𝑛

𝑏=1𝐵𝑏 .

Partition [𝑠𝑛] into 𝑛 sum-free classes 𝐶𝑚+1, 𝐶𝑚+2, · · · , 𝐶𝑚+𝑛, and partition 𝐵 into 𝑛
classes 𝐷𝑚+1, 𝐷𝑚+2, · · · , 𝐷𝑚+𝑛 by placing 𝐵𝑏 in 𝐷𝑚+𝑖 if 𝑏 ∈ 𝐶𝑚+𝑖 . We claim that
each 𝐷𝑚+𝑖 is sum-free. In fact, for any elements 𝑏1𝑀 − 𝑐1, 𝑏2𝑀 − 𝑐2, 𝑏3𝑀 − 𝑐3 of
𝐷𝑚+𝑖 , where 𝑀 = 2𝑠𝑚 + 1, and 𝑏1, 𝑏2, 𝑏3 are of 𝐶𝑚+𝑖 , satisfying 𝑏1 + 𝑏2 ≠ 𝑏3 since
𝐶𝑚+𝑖 is sum-free. If 𝑏1 + 𝑏2 ≥ 𝑏3 + 1, then by noting 𝑀 − 𝑐1 − 𝑐2 ≥ 1 we obtain that

(𝑏1𝑀 − 𝑐1) + (𝑏2𝑀 − 𝑐2) ≥ 𝑏3𝑀 + 1 > 𝑏3𝑀 − 𝑐3.

If 𝑏1 + 𝑏2 ≤ 𝑏3 − 1, then (𝑏1𝑀 − 𝑐1) + (𝑏2𝑀 − 𝑐2) ≤ (𝑏3 − 1)𝑀 < 𝑏3𝑀 − 𝑐3.
Therefore (𝑏1𝑀−𝑐1)+ (𝑏2𝑀−𝑐2) ≠ 𝑏3𝑀−𝑐3, which implies that 𝐷𝑚+𝑖 is sum-free.

It is easy to verify that 𝐴0, 𝐵1, 𝐴1, 𝐵2, 𝐴2, · · · , 𝐵𝑠𝑛 , 𝐴𝑠𝑛 is a partition of the set
𝐴 ∪ 𝐵 = [(2𝑠𝑚 + 1)𝑠𝑛 + 𝑠𝑚] in the natural order. Thus 𝐴 ∪ 𝐵 has been partitioned
into sum-free classes 𝐷1, 𝐷2, . . . , 𝐷𝑚+𝑛. The proof is complete. □

Corollary 2.2 For any fixed positive integer 𝑚,

𝑠𝑘 > 𝑐(2𝑠𝑚 + 1)𝑘/𝑚

for any integer 𝑘 > 𝑚, where 𝑐 = 𝑐(𝑚) > 0 is a constant.

Proof. The assertion follows from the super-multiplicity of the function 2𝑠𝑛 + 1 and
Lemma 2.2. □

Since (2𝑠6 + 1)1/6 ≥ 10731/6 by 𝑠6 ≥ 536, we thus have 𝑠𝑘 ≥ 𝑐 1073𝑘/6 and
𝑟𝑘 (3) ≥ 𝑐1073𝑘/6, where 10731/6 = 3.199 · · · . The following is a very old conjecture
of Erdős.

Conjecture 2.1 (Erdős) The limit of 𝑟𝑘 (3)1/𝑘 is infinity as 𝑘 → ∞.
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30 2 Small Ramsey Numbers

Erdős and Graham (1973), Bondy and Erdős (1973), and Graham, Rothschild and
Spencer (1990, Ramsey Theory) considered multicolor Ramsey numbers 𝑟𝑘 (𝐶2𝑚+1),
where 𝐶2𝑚+1 is a cycle of length 2𝑚 + 1. Generally, we have

𝑚2𝑘 + 1 ≤ 𝑟𝑘 (𝐶2𝑚+1) < 2𝑚 · (𝑘 + 2)!.

For 𝑚 = 2, Li (2009) showed that 𝑟𝑘 (𝐶5) ≤ 𝑐
√

18𝑘𝑘! for all 𝑘 ≥ 3, where 0 < 𝑐 <
1/10 is a constant. In general, Lin and Chen (2019) showed that 𝑟𝑘 (𝐶2𝑚+1) ≤ 𝑐𝑘

√
𝑘!

for all 𝑘 ≥ 3, where 𝑐 is a positive constant depending only on 𝑚. For the lower
bound, Day and Johnson proved (2017) that

𝑟𝑘 (𝐶2𝑚+1) ≥ 2𝑚(2 + 𝜖)𝑘−1

for large 𝑘 , where 𝜖 = 𝜖 (𝑚) > 0 and 𝜖 → 0 as 𝑚 → ∞. In particular, 𝑟𝑘 (𝐶5) >
𝑐17𝑘/4. We will give a simpler proof here.

Let C2𝑚+1 = {𝐶3, 𝐶5, . . . , 𝐶2𝑚+1} be the family of odd cycles of length at most
2𝑚 + 1. The class Ramsey number 𝑟𝑘 (C2𝑚+1) is defined as the smallest integer 𝑁
such that any 𝑘-edge-coloring of 𝐾𝑁 contains at least a monochromatic cycle in
C2𝑚+1. It is clear that

𝑟𝑘 (C2𝑚+1) ≤ 𝑟𝑘 (𝐶2𝑚+1).

For a graph 𝐺, denote by 𝑔(𝐺) the girth of 𝐺 that is the smallest length of
a cycle in 𝐺. Let 𝑔0 (𝐺) and 𝑔1 (𝐺) be even girth and odd girth of 𝐺, which are
the smallest length of an even cycle and an odd cycle in 𝐺, respectively. Clearly
𝑔(𝐺) = min{𝑔0 (𝐺), 𝑔1 (𝐺)}.

For a 𝑘-edge-coloring X of 𝐾𝑁 with colors {1, 2, . . . , 𝑘}, let𝐺𝑖 be the monochro-
matic graph induced by all edges in color 𝑖. We write

𝑔1 (X) = min
1≤𝑖≤𝑘

𝑔1 (𝐺𝑖),

which is called the odd girth of X.
We write an edge {𝑢, 𝑣} as 𝑢𝑣 simply and the color of edge 𝑢𝑣 in X as X(𝑢𝑣).

Lemma 2.4 For any integer 𝑚 ≥ 1, 𝑟𝑘 (C2𝑚+1) − 1 is super-multiplicative, i.e.,

𝑟𝑘+𝑛 (C2𝑚+1) − 1 ≥ (𝑟𝑘 (C2𝑚+1) − 1) (𝑟𝑛 (C2𝑚+1) − 1).

Proof. Let 𝑀 = 𝑟𝑘 (C2𝑚+1) − 1 and 𝑁 = 𝑟𝑛 (C2𝑚+1) − 1. Let 𝑈 and 𝑉 be the vertex
sets of 𝐾𝑀 and 𝐾𝑁 , respectively. There exists an edge-coloring X of 𝐾𝑀 with colors
1, 2, . . . , 𝑘 and an edge-coloring Y of 𝐾𝑁 with colors 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑛 such
that

𝑔1 (X) > 2𝑚 + 1, 𝑔1 (Y) > 2𝑚 + 1.

Denote by 𝐺 and 𝐻 the edge-colored 𝐾𝑀 and 𝐾𝑁 , respectively. Replace each vertex
𝑣 of 𝐻 with a copy of 𝐺, which is denoted by 𝐺𝑣 . The obtained graph, denoted by
𝐺 × 𝐻, is called the “blow up” of 𝐾𝑁 by 𝐾𝑀 . Formally, we define 𝐺 × 𝐻 to be an
edge-colored complete graph of order 𝑀𝑁 on vertex set𝑈×𝑉 , and an edge-coloring
Z that assigns an edge (𝑢, 𝑣) (𝑢′, 𝑣′) of 𝐺 × 𝐻 to be
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2.3 Schur Numbers 31

Z
(
(𝑢, 𝑣) (𝑢′, 𝑣′)

)
=

{
X(𝑢𝑢′) 𝑖 𝑓 𝑣 = 𝑣′,
Y(𝑣𝑣′) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑀 } and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }. The vertices of 𝐺 × 𝐻 can be
labelled as follows.

𝑢𝑖 \ 𝑣 𝑗 𝑣1 𝑣2 · · · 𝑣𝑁
𝑢1 (𝑢1, 𝑣1 ) (𝑢1, 𝑣2 ) · · · (𝑢1, 𝑣𝑁 )
𝑢2 (𝑢2, 𝑣1 ) (𝑢2, 𝑣2 ) · · · (𝑢2, 𝑣𝑁 )
.
.
.

.

.

.
.
.
. · · ·

.

.

.

𝑢𝑀 (𝑢𝑀 , 𝑣1 ) (𝑢𝑀 , 𝑣2 ) · · · (𝑢𝑀 , 𝑣𝑁 )

Table 2.6 The vertices of 𝐺 × 𝐻

Call an edge to be vertical if it has form (𝑢𝑖 , 𝑣) (𝑢 𝑗 , 𝑣) with 𝑢𝑖 ≠ 𝑢 𝑗 and 𝑣 ∈ 𝑉 ,
and horizontal if it has form (𝑢, 𝑣𝑖) (𝑢, 𝑣 𝑗 ) with 𝑢 ∈ 𝑈 and 𝑣𝑖 ≠ 𝑣 𝑗 , and skew if it has
form (𝑢, 𝑣) (𝑢′, 𝑣′) with 𝑢 ≠ 𝑢′ and 𝑣 ≠ 𝑣′. The edge-coloring Z assigns a vertical
edge (𝑢𝑖 , 𝑣) (𝑢 𝑗 , 𝑣) with color X(𝑢𝑖𝑢 𝑗 ) as same as the color of the corresponding
edge 𝑢𝑖𝑢 𝑗 in 𝐺, and Z assigns a non-vertical edge (𝑢, 𝑣) (𝑢′, 𝑣′) with color Y(𝑣𝑣′)
as same as the color of the corresponding edge 𝑣𝑣′ in 𝐻.

Claim 𝑔1 (Z) > 2𝑚 + 1.

Proof. Suppose to the contrary, there is a monochromatic odd cycle of length at
most 2𝑚 + 1. Let (𝑢𝑖1 , 𝑣 𝑗1 ), (𝑢𝑖2 , 𝑣 𝑗2 ), . . . , (𝑢𝑖2ℓ+1 , 𝑣 𝑗2ℓ+1 ) be a monochromatic odd
cycle 𝐶2ℓ+1 with 1 ≤ ℓ ≤ 𝑚.

If the color of this 𝐶2ℓ+1 is one of 1, 2, . . . , 𝑘 in X, say color 1, since there
are no edge between distinct 𝐺𝑣 in the color 1, then 𝑢𝑖1 , 𝑢𝑖2 , . . . , 𝑢𝑖2ℓ+1 must form
a monochromatic odd cycle of length 2ℓ + 1 in same 𝐺𝑣 , which contradicts to
𝑔1 (X) > 2𝑚 + 1.

Therefore, the color of the 𝐶2ℓ+1 must be one of 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑛 in Y, say
𝑘 + 1, and 𝑣 𝑗𝑠 ≠ 𝑣 𝑗𝑠+1 for 1 ≤ 𝑠 ≤ 2ℓ + 1 as the edge (𝑢𝑖𝑠 , 𝑣 𝑗𝑠 ) (𝑣𝑖𝑠+1 , 𝑣 𝑗𝑠+1 ) is not
vertical.

Consider the monochromatic closed walk 𝑣 𝑗1 , 𝑣 𝑗2 , . . . , 𝑣 𝑗2ℓ+1 , 𝑣 𝑗1 . If 𝑣 𝑗𝑠+1 = 𝑣 𝑗1 for
some 𝑠 < 2ℓ+1, then we consider a cycle in this walk formed by 𝑣 𝑗1 , 𝑣 𝑗2 , . . . , 𝑣 𝑗𝑠+1 =

𝑣 𝑗1 , where 𝑣 𝑗1 , 𝑣 𝑗2 , . . . , 𝑣 𝑗𝑠 are pairwise distinct that form a monochromatic cycle of
length 𝑠 in 𝐻. Since 𝑔1 (Y) > 2𝑚 + 1, we obtain that 𝑠 must be an even integer. Then
we consider the monochromatic closed walk 𝑣 𝑗𝑠+1 , 𝑣 𝑗𝑠+2 , . . . , 𝑣 𝑗2ℓ+1 , 𝑣 𝑗𝑠+1 . Repeat the
process, we will obtain a monochromatic odd cycle of length at most 2𝑚 + 1 in 𝐻,
which leads to a contradiction. □

Now, we have the following result by Lemmas 2.2 and 2.4.

Theorem 2.7 Let 𝑚 and 𝑠 be fixed positive integers. Then there exists a constant
𝑐 = 𝑐(𝑚, 𝑠) > 0 such that

𝑟𝑘 (C2𝑚+1) ≥ 𝑐[𝑟𝑠 (C2𝑚+1) − 1]𝑘/𝑠

for all large 𝑘 .
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32 2 Small Ramsey Numbers

Note that 𝑟2 (C5) = 𝑟2 ({𝐶3, 𝐶5}) > 4 and the red-blue edge-coloring of 𝐾5
contains monochromatic𝐶5 if there is no monochromatic𝐶3. Thus we have 𝑟2 (C5) =
5. Now we shall show the following result.

Theorem 2.8 We have 𝑟4 (C5) > 17.

Proof. Let 𝐾17 be defined on 𝑍17, here we use 𝑍17 = {0,±1,±2, . . . ,±8} for con-
venience. For 1 ≤ ℓ ≤ 8, define 𝐻ℓ be the subgraph consists of all edges 𝑖 𝑗 if and
only if |𝑖 − 𝑗 | ≡ ℓ (mod 17). Then, each 𝐻ℓ is a Hamilton cycle and they form an
edge partition of 𝐾17. Denote 𝐺1 = 𝐻1 ∪ 𝐻3, 𝐺2 = 𝐻2 ∪ 𝐻6, 𝐺3 = 𝐻4 ∪ 𝐻5 and
𝐺4 = 𝐻8 ∪ 𝐻7.

Claim 1 𝐺1, 𝐺2, 𝐺3 and 𝐺4 are isomorphic to each other.

Proof. For 𝑖 ∈ 𝑍17, 𝜑(𝑖) ≡ 2𝑖 (mod 17) is an isomorphism from 𝐺1 to 𝐺2.
Indeed, 𝑖 𝑗 is an edge of 𝐻1 if and only if |𝑖 − 𝑗 | ≡ 1 (mod 17), which is equivalent
to |2𝑖 − 2 𝑗 | ≡ 2 (mod 17), i.e., 𝜑(𝑖)𝜑( 𝑗) is an edge of 𝐻2. Similarly, 𝑖 𝑗 is an edge
of 𝐻3 if and only if 𝜑(𝑖)𝜑( 𝑗) is an edge of 𝐻6. Moreover, by noticing that −5 ≡ 12
(mod 17) and 7 ≡ 24 (mod 17), we have for 𝑖 ∈ 𝑍17, 𝜑(𝑖) ≡ 2𝑠−1𝑖 (mod 17) is an
isomorphism from 𝐺1 to 𝐺𝑠 for 𝑠 = 3, 4. □

Claim 2 𝐺1 contains neither 𝐶3 nor 𝐶5.

Proof. Suppose there exists an triangle in 𝐺1 = 𝐻1 ∪ 𝐻3, say 𝑖1𝑖2𝑖3𝑖1. Since 𝐻1
and 𝐻3 are triangle-free, we have 𝐻1 contains at least one edge of this triangle, and
so dose 𝐻3. Without loss of generality, assume that 𝑖1𝑖2 ∈ 𝐻1 and 𝑖1𝑖3 ∈ 𝐻3. Thus

|𝑖2 − 𝑖1 | ≡ 1 (mod 17) and |𝑖3 − 𝑖1 | ≡ 3 (mod 17),

which implies that |𝑖3 − 𝑖2 | ≡ 2 (mod 17) or |𝑖3 − 𝑖2 | ≡ 4 (mod 17), contradicting
to the fact that 𝑖2𝑖3 is an edge of 𝐻1 ∪𝐻3. By a similar argument as above, we obtain
that 𝐺1 contains no cycle of length 5. This completes the proof. □

From Claims 1 and 2, we have 𝑟4 (C5) > 17 as desired. □

Recall that
𝑟𝑘 (𝐶2ℓ+1) ≥ 𝑟𝑘 (C2𝑚+1)

for any 1 ≤ ℓ ≤ 𝑚, so Theorem 2.8 implies that there exists a constant 𝑐 > 0 such
that 𝑟𝑘 (𝐶5) > 𝑐 · 17𝑘/4 for all 𝑘 ≥ 3.

We will see in latter chapters that 𝑟𝑘 (𝐶2𝑚) = 𝑂 (𝑘𝑚/(𝑚−1) ) for fixed 𝑚 ≥ 2, while
𝑟𝑘 (𝐶𝑛) is linear in 𝑛 for fixed 𝑘 .

2.4 Paley Graphs

We have seen some recursive upper bounds for 𝑟 (𝑚, 𝑛) in last chapter. However
they are not effective on estimating larger classical Ramsey numbers. For the lower
bounds, the situation is even worse.
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2.4 Paley Graphs 33

Property 2.1 Let 𝑚𝑖 and 𝑛𝑖 be positive integers. Then

𝑟 (𝑚1𝑚2 + 1, 𝑛1𝑛2 + 1) > (𝑟 (𝑚1 + 1, 𝑛1 + 1) − 1) (𝑟 (𝑚2 + 1, 𝑛2 + 1) − 1).

Proof. Let 𝐺 be a graph of order 𝑁1 = 𝑟 (𝑚1 + 1, 𝑛1 + 1) − 1 with 𝜔(𝐺) ≤ 𝑚1 and
𝛼(𝐺) ≤ 𝑛1. Let 𝐻 be a graph of order 𝑁2 = 𝑟 (𝑚2 + 1, 𝑛2 + 1) − 1 with 𝜔(𝐻) ≤ 𝑚2
and 𝛼(𝐻) ≤ 𝑛2. One can “blow up” the graph𝐺 by 𝐻 as follows. For any vertex 𝑣 of
𝐺, replace 𝑣 by a copy of 𝐻, denoted it by 𝐻𝑣 . For any pair of vertices 𝑥 and 𝑦 from
distinct copies 𝐻𝑢 and 𝐻𝑣 , 𝑥 and 𝑦 are adjacent if and only if 𝑢 and 𝑣 are adjacent.
Inside the same copy 𝐻𝑣 , the adjacency of 𝐻 is preserved. Clearly, the clique number
of the new graph is at most 𝑚1𝑚2 and its independent number is at most 𝑛1𝑛2. So
the claimed inequality follows. □

✖✕
✗✔
𝐺

✖✕
✗✔
𝐺

✖✕
✗✔
𝐺 ✖✕
✗✔
𝐺

✖✕
✗✔
𝐺

Fig. 2.2 Using 𝐺 to blow up 𝐶5

On the other hand, we have successfully obtained the right lower bound of 𝑟3 (3)
by using finite field. Let us return to finite fields for help.

Let us have some discuss on the density of primes. We know that there are infinitely
many primes. Let 𝜋(𝑛) be the number of primes 𝑝 with 𝑝 ≤ 𝑛, the famous prime
number theorem states that 𝜋(𝑛) ∼ 𝑛/log 𝑛, where log 𝑥 is the natural logarithmic
function. For any integers𝑚 and 𝑟 with𝑚 ≥ 2, 0 < 𝑟 < 𝑚 and (𝑟, 𝑚) = 1, Dirichlet’s
theorem tells us that there are infinitely many primes 𝑝 of the form 𝑝 ≡ 𝑟 (mod 𝑚).
Let 𝜋𝑚 (𝑟, 𝑛) be the number of these primes with 𝑝 ≤ 𝑛. So Dirichlet’s theorem tells
us that 𝜋𝑚 (𝑟, 𝑛) → ∞ as 𝑛 → ∞. Noticing that 2 is the only even prime, we have
that for 𝑛 > 𝑚 ≥ 2, ∑︁

𝑟 : 0<𝑟<𝑚
(𝑟,𝑚)=1

𝜋𝑚 (𝑟, 𝑛) =
{

𝜋(𝑛) if 𝑚 is odd,
𝜋(𝑛) − 1 otherwise.

The following result is usually called Siegel-Walfisz Theorem, which says that all
summands 𝜋𝑚 (𝑟, 𝑛) in above sum are almost the same for large 𝑛. Let 𝜙(𝑚) be the
number of integers 𝑟 ∈ [𝑚] with (𝑟, 𝑚) = 1, which is called the Euler’s function.

Theorem 2.9 If 𝑟 and 𝑚 are fixed and (𝑟, 𝑚) = 1, then, as 𝑛→ ∞,
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34 2 Small Ramsey Numbers

𝜋𝑚 (𝑟, 𝑛) ∼
𝑛

𝜙(𝑚) log 𝑛
.

Equivalently, the 𝑛th prime 𝑝 of the form 𝑝 ≡ 𝑟 (mod 𝑚) is asymptotically equal to
𝜙(𝑚)𝑛 log 𝑛. Consequently, if 𝑝 and 𝑝′ are two consecutive primes of this form, then
𝑝 ∼ 𝑝′ as 𝑝 → ∞.

Theorem 2.10 (Prime number theorem) As 𝑛 → ∞, 𝜋(𝑛) ∼ 𝑛/log 𝑛, and 𝑝𝑛 ∼
𝑛 log 𝑛, where 𝑝𝑛 is the 𝑛th prime. Consequently, 𝑝𝑛 ∼ 𝑝𝑛+1.

Another way to describe the density of the primes is to estimate the difference
𝑝𝑛+1 − 𝑝𝑛. It has been shown that 𝑝𝑛+1 − 𝑝𝑛 = 𝑂 (𝑝𝑎𝑛), where 𝑎 is a constant with
0 < 𝑎 < 1. The currently known best value of 𝑎 is 21

40 = 0.525, see Baker, Harman
and Pintz (2001).

Our first application of Theorem 2.9 is the case 𝑚 = 4. Since 𝜙(4) = 2, so
asymptotically, there are half primes 𝑝 ≤ 𝑛 of the form of 𝑝 ≡ 1 (mod 4) and half
of the form of 𝑝 ≡ 3 (mod 4).

Let 𝑞 be a prime power, and 𝐹𝑞 the finite field of 𝑞 elements. Denote by 𝐹∗
𝑞 =

𝐹𝑞 \ {0}. An element 𝑎 ∈ 𝐹𝑞 is called quadratic if 𝑎 = 𝑏2 for some 𝑏 ∈ 𝐹𝑞 . A
quadratic element of 𝐹𝑝 is usually called a quadratic residue (mod 𝑝) when 𝑝 is a
prime number.

Let us define a function 𝜒(𝑥) on 𝐹𝑞 as

𝜒(𝑥) = 𝑥 (𝑞−1)/2.

This function is usually called the quadratic residue character of 𝐹𝑞 .

Lemma 2.5 If 𝑞 is an odd prime power, then

𝜒(𝑥) =


1 𝑥 is quadratic, 𝑥 ≠ 0,
0 𝑥 = 0,
−1 𝑥 is non-quadratic.

(2.2)

Furthermore, exactly half of elements of 𝐹∗
𝑞 are quadratic.

Proof. Let 𝑥 be an element of 𝐹∗
𝑞 . Clearly 𝜒(𝑥) = ±1 as

(𝜒(𝑥) − 1) (𝜒(𝑥) + 1) = 𝜒2 (𝑥) − 1 = 𝑥𝑞−1 − 1 = 0.

Let 𝜈 be a primitive element of 𝐹𝑞 , i.e.,

𝐹∗
𝑞 = {𝜈, 𝜈2, . . . , 𝜈𝑞−2, 𝜈𝑞−1 = 1}.

Note that 𝜈 is not quadratic as it is primitive, hence 𝜒(𝜈) = −1. Denote

𝑆0 = {𝜈2, 𝜈4, . . . , 𝜈𝑞−1 = 1}, and 𝑆1 = {𝜈, 𝜈3, . . . , 𝜈𝑞−2}.

Using the facts that 𝜒(𝜈) = −1 and 𝜒(𝜈𝑘) = 𝜒𝑘 (𝜈), we have 𝜒(𝑥) = 1 if and only if
𝑥 ∈ 𝑆0, as claimed. □
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2.4 Paley Graphs 35

Now, the Paley graph 𝑃𝑞 is defined as follows. Let 𝑞 ≡ 1 (mod 4) be a prime
power. The Paley graph 𝑃𝑞 is defined on 𝐹𝑞 , and two distinct vertices 𝑥 and 𝑦 of 𝐹𝑞
are adjacent in 𝑃𝑞 if and only if

𝜒(𝑥 − 𝑦) = (𝑥 − 𝑦) (𝑞−1)/2 = 1,

i.e., 𝑥 − 𝑦 is a non-zero quadratic element. Note that 𝜒(𝑥 − 𝑦) = 𝜒(𝑦 − 𝑥) since
𝜒(−1) = 1 by noticing that (𝑞 − 1)/2 is even as 𝑞 ≡ 1 (mod 4). As an example, it is
easy to verify that the Paley graph 𝑃5 is 𝐶5.

Let 𝐴 be an additive group 𝑆 an inverse-closed subset of 𝐴∗ = 𝐴 \ {0}. A graph,
called the Cayley graph with respect to 𝑆, is defined as follows. Its vertex set is 𝐴,
and distinct vertices 𝑢 and 𝑣 are adjacent if and only if 𝑢 − 𝑣 ∈ 𝑆. Clearly, a Paley
graph is a special Cayley graph with respect to the subset of non-zero quadratic
elements since the inverse of a non-zero quadratic element is also quadratic.

The strongly regular graphs were introduced by Bose (1963). A graph 𝐺 is said
to be a strongly regular graph with parameters 𝑛, 𝑑, 𝜆, 𝜇, denoted by 𝑠𝑟𝑔(𝑛, 𝑑, 𝜆, 𝜇),
if it has 𝑛 vertices, 𝑑-regular, and any pair of vertices have 𝜆 common neighbors
if they are adjacent, and 𝜇 common neighbors otherwise. For example, 𝐶5 is an
𝑠𝑟𝑔(5, 2, 0, 1). The following proposition tells that the complement of a strongly
regular graph is also strongly regular.

Proposition 2.2 If𝐺 is a strongly regular graph 𝑠𝑟𝑔(𝑛, 𝑑, 𝜆, 𝜇), then its complement
is also an 𝑠𝑟𝑔(𝑛, 𝑑1, 𝜆1, 𝜇1), where

𝑑1 = 𝑛 − 𝑑 − 1,
𝜆1 = 𝑛 − 2𝑑 + 𝜇 − 2,
𝜇1 = 𝑛 − 2𝑑 + 𝜆.

Proof. The value of 𝑑1 can be determined by 𝑑 + 𝑑1 = 𝑛 − 1. Let 𝑢 and 𝑣 be distinct
vertices of 𝐺. If they are non-adjacent, then |𝑁 (𝑢) ∪𝑁 (𝑣) | = 2𝑑 − 𝜇. The remaining
𝑛−2𝑑+𝜇−2 vertices are the common neighbors of 𝑢 and 𝑣 in𝐺, giving 𝜆1 as claimed.
If 𝑢 and 𝑣 are adjacent, then {𝑢, 𝑣} ⊆ 𝑁 (𝑢) ∪ 𝑁 (𝑣) and |𝑁 (𝑢) ∪ 𝑁 (𝑣) | = 2𝑑 − 𝜆 .
The remaining 𝑛 − 2𝑑 + 𝜆 vertices are common neighbors of 𝑢 and 𝑣 in 𝐺, yielding
𝜇1 as claimed. □

For vertex disjoint graphs 𝐺 and 𝐻, let 𝐺 ∪ 𝐻 be the graph on vertex set 𝑉 (𝐺) ∪
𝑉 (𝐻) and edge set 𝐸 (𝐺) ∪ 𝐸 (𝐻), which is called the union of 𝐺 and 𝐻. Let 𝑚𝐺 be
the union of 𝑚 copies of 𝐺. The union 𝑚𝐾𝑘 is an 𝑠𝑟𝑔(𝑚𝑘, 𝑘 − 1, 𝑘 − 2, 0). On the
other hand, if 𝐺 is an 𝑠𝑟𝑔(𝑛, 𝑘, 𝜆, 0), then 𝐺 is a union of complete graphs of the
same order. We sometimes exclude complete and empty graphs as an srg to avoid to
define 𝜇 and 𝜆, respectively. A relation among the parameters is as follows.

Proposition 2.3 If 𝐺 is an 𝑠𝑟𝑔(𝑛, 𝑑, 𝜆, 𝜇), then

𝑑 (𝑑 − 𝜆 − 1) = 𝜇(𝑛 − 𝑑 − 1).



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

36 2 Small Ramsey Numbers

Proof. Let 𝑣 be a vertex and let 𝑀 (𝑣) be the set of non-neighbors of 𝑣. Consider the
partition 𝑉 (𝐺) = {𝑣} ∪ 𝑁 (𝑣) ∪ 𝑀 (𝑣). By the definition, 𝑁 (𝑣) contains 𝑑 vertices,
and 𝑀 (𝑣) contains 𝑛 − 𝑑 − 1 vertices. Each vertex of 𝑁 (𝑣) is adjacent to 𝜆 vertices
in 𝑁 (𝑣), and hence 𝑑 − 𝜆 − 1 vertices in 𝑀 (𝑣). Each vertex in 𝑀 (𝑣) is adjacent to
𝜇 vertices in 𝑁 (𝑣). Counting the edges between 𝑁 (𝑣) and 𝑀 (𝑣) in two ways, the
required equality follows. □

A graph 𝐺 is called vertex-transitive if for any two vertices 𝑎 and 𝑏 of 𝐺, there
is an automorphism mapping 𝑎 to 𝑏, and it is called edge-transitive if for any two
edges 𝑎𝑏 and 𝑢𝑣 of 𝐺, there is an automorphism mapping 𝑎𝑏 to 𝑢𝑣.

Theorem 2.11 If 𝑞 ≡ 1 (mod 4) is a prime power, then the Paley graph 𝑃𝑞 is an

𝑠𝑟𝑔

(
𝑞,
𝑞 − 1

2
,
𝑞 − 5

4
,
𝑞 − 1

4

)
.

Furthermore, it is self-complementary, vertex-transitive and edge-transitive.

Proof. Lemma 2.5 implies that 𝑃𝑞 is (𝑞 − 1)/2-regular. Since
∑
𝑥 𝜒(𝑥) = 0, we have

that the number of common neighbors of two vertices 𝑎 and 𝑏 is∑︁
𝑥∈𝐹𝑞\{𝑎,𝑏}

1 + 𝜒(𝑥 − 𝑎)
2

·1 + 𝜒(𝑥 − 𝑏)
2

,

which equals

𝑞 − 2
4

− 𝜒(𝑎 − 𝑏)
2

+ 1
4

∑︁
𝑥∈𝐹𝑞\{𝑎,𝑏}

𝜒(𝑥 − 𝑎)𝜒(𝑥 − 𝑏).

Since 𝜒(𝑥 − 𝑎)𝜒(𝑥 − 𝑏) = 𝜒( 𝑥−𝑎
𝑥−𝑏 ) for 𝑥 ≠ 𝑏, we can write the last term as

1
4

∑︁
𝑥∈𝐹𝑞\{𝑎,𝑏}

𝜒

( 𝑥 − 𝑎
𝑥 − 𝑏

)
=

1
4

∑︁
𝑥∈𝐹𝑞\{0,1}

𝜒(𝑥) = −1
4
.

Thus the number of common neighbors of 𝑎 and 𝑏 is 𝑞−3
4 − 𝜒 (𝑎−𝑏)

2 , which is 𝑞−5
4 if

𝑎 and 𝑏 are adjacent and 𝑞−1
4 otherwise.

Fix 𝑎 ∈ 𝐹∗
𝑞 with 𝜒(𝑎) = −1, and define a map 𝜙0 as

𝜙0 : 𝑉 (𝑃𝑞) → 𝑉 (𝑃𝑞), 𝜙0 (𝑥) = 𝑎𝑥.

Note that the map 𝜙0 is an automorphism between 𝑃𝑞 and 𝑃𝑞 since 𝑥 and 𝑦 are
adjacent in 𝑃𝑞 if and only if 𝜒(𝑥 − 𝑦) = 1 which is equivalent to 𝜒(𝑎𝑥 − 𝑎𝑦) = −1,
i.e., 𝜙0 (𝑥) and 𝜙0 (𝑦) are non-adjacent in 𝑃𝑞 . Hence 𝑃𝑞 is self-complementary.

Moreover, it is easy to verify that the map 𝜙1 (𝑥) = 𝑎 + 𝑏 − 𝑥 is an automorphism
mapping 𝑎 to 𝑏, and the map 𝜙2 (𝑥) = 𝑢−𝑣

𝑎−𝑏 (𝑥 − 𝑏) + 𝑣 is an automorphism mapping
an edge 𝑎𝑏 to an edge 𝑢𝑣. Therefore, the Paley graph 𝑃𝑞 is vertex-transitive and
edge-transitive as desired. □
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2.5 Combination of Paley Graphs 37

We now can have an equality for 𝑟 (𝐵𝑛, 𝐵𝑛) for infinity many 𝑛, where 𝐵𝑛 = 𝐾2+𝐾𝑛
is an 𝑛-book. Note that the Paley graph 𝑃𝑞 with 𝑞 = 4𝑛 + 1 contains no 𝐵𝑛 and 𝑃𝑞
is self-complementary. This fact yields that 𝑟 (𝐵𝑛, 𝐵𝑛) ≥ 4𝑛 + 2 if 𝑞 = 4𝑛 + 1 is a
prime power, which together with the upper bound in Theorem 1.7 implies that

𝑟 (𝐵𝑛, 𝐵𝑛) = 4𝑛 + 2

when 4𝑛 + 1 is a prime power.

2.5 Combination of Paley Graphs

It is interesting to see the fact that the Paley graphs 𝑃5 and 𝑃17 are Ramsey graphs
for 𝑟 (3) and 𝑟 (4) by Greenwood and Gleason (1955). Unfortunately, no other Paley
graphs are found to be the “exact” Ramsey graphs. A result of Shearer (1986) and
independently Mathon (1987) was that if the Paley graph 𝑃𝑝 contains no 𝐾𝑘 , then

𝑟 (𝑘 + 1) ≥ 2𝑝 + 3. (2.3)

This gives the best lower bounds of 𝑟 (𝑘) for small 𝑘 (see Table 2.7) until now, except
for 𝑘 = 4, 5, 6, 8, see Greenwood and Gleason (1955), Exoo (1989), Kalbfleisch
(1965), and Burling and Reyner (1972), respectively. For 𝑘 = 5, we know that
43 ≤ 𝑟 (5) ≤ 48, where the lower bound is due to Exoo (1989) and the upper bound
is due to Angeltveit and McKay (2018) respectively.

In the following table, the entries in the first column are values of 𝑘 = 𝜔(𝑃𝑝) =
𝛼(𝑃𝑝); the second 𝑝1 and the third 𝑝2 are the smallest and largest prime 𝑝 such that
𝜔(𝑃𝑝) = 𝑘 , respectively; the fourth 𝑛 is the number of such primes 𝑝; and the last
two columns are the lower bounds obtained, in which the better one is listed only.

𝛼(𝑃𝑝) 𝑝1 𝑝2 𝑛 𝑟 (𝛼 + 1) ≥ 𝑝2 + 1 𝑟 (𝛼 + 2) ≥ 2𝑝2 + 3
2 5 5 1 𝑟 (3) ≥ 6
3 13 17 2 𝑟 (4) ≥ 18
4 29 37 2 𝑟 (5) ≥ 38
5 41 101 6 𝑟 (6) ≥ 102 𝑟 (7) ≥ 205
6 97 109 2
7 113 281 10 𝑟 (8) ≥ 282 𝑟 (9) ≥ 565
8 173 373 7
9 229 797 15 𝑟 (10) ≥ 798 𝑟 (11) ≥ 1597
10 557 709 3 𝑟 (12) ≥ 1421
11 433 1277 32 𝑟 (13) ≥ 2557
12 613 1493 13 𝑟 (14) ≥ 2989
13 853 2741 53 𝑟 (15) ≥ 5485
14 1373 2801 17 𝑟 (16) ≥ 5605
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38 2 Small Ramsey Numbers

Table 2.7 Independence numbers of small 𝑃𝑝

For vertex disjoint graphs 𝐺 and 𝐻, let 𝐻 + 𝐺 be a graph obtained from 𝐻 and
𝐺 by adding new edges to connect 𝐻 and 𝐺 completely. Since 𝐾𝑘+1 = 𝐾1 + 𝐾𝑘 ,
the following result implies the lower bound (2.3), in which 𝛿(𝐺) is the minimum
degree of 𝐺. This is slightly better than that by Lin, Li and Shen (2014).

Theorem 2.12 Let 𝑞 ≡ 1 (mod 4) be a prime power. If 𝐺 is a graph with 𝛿(𝐺) ≥ 1
and the Paley graph 𝑃𝑞 contains no 𝐺, then

𝑟 (𝐾1 + 𝐺) ≥ 2(𝑞 + 1) + 1.

We have the following result by considering the largest 𝐵𝑛 in 𝑃𝑞 when 𝑞 = 4𝑛+1.

Corollary 2.3 If 4𝑛 + 1 is a prime power, then 𝑟 (𝐾1 + 𝐵𝑛) ≥ 8𝑛 + 5.

In order to give a proof of Theorem 2.12, we need the following construction
due to Shearer (1986) and independently Mathon (1987). We will write (𝑢, 𝑣) for an
edge that connects vertices 𝑢 and 𝑣. Let 𝑃𝑞 and 𝑃′

𝑞 be two disjoint copies of Paley
graphs. Let𝑉,𝑉 ′ and 𝐸, 𝐸 ′ be their corresponding vertex and edge sets, respectively,
and let 𝜆, 𝜆′ be two additional vertices. We define a new graph 𝐻𝑞 with vertex set
{𝜆, 𝜆′} ∪𝑉 ∪𝑉 ′ and containing the edges

(𝜆, 𝑥), (𝜆′, 𝑥′) 𝑥 ∈ 𝑉 ;
(𝑥, 𝑦), (𝑥′, 𝑦′) (𝑥, 𝑦) ∈ 𝐸 ;

(𝑥, 𝑦′), (𝑥′, 𝑦) (𝑥, 𝑦) ∈ 𝐸.

✛

✚

✘

✙

✛

✚

✘

✙

❜
❜❜
❜❜

❜
❜❜
❜❜✘✘✘✘✘✘

❳❳❳❳❳❳

𝜆 𝜆′

𝑥
𝑦

𝑥′

𝑦′

𝑥
𝑦

𝑥′

𝑦′

𝑃𝑞 𝑃′
𝑞

❇
❇

✂
✂

❇
❇

✂
✂

Fig. 2.3 The graph 𝐻𝑞

Let us have the following property of the graph 𝐻𝑞 at first.

Lemma 2.6 Let 𝐻𝑞 be defined as above. For any vertex 𝑢 of 𝐻𝑞 , the neighborhood
of 𝑢 induces a subgraph that is isomorphic to the Paley graph 𝑃𝑞 .

Proof. The assertion holds clearly if the vertex 𝑢 is either 𝜆 or 𝜆′. Recall the definition
of the Paley graph 𝑃𝑞 ,𝑉 = 𝐹𝑞 , where 𝑞 = 4𝑛+1 is a prime power. Let 𝛽 be a primitive
element of 𝐹𝑞 . Since for any 𝑎, 𝑏 ∈ 𝑉 , the map 𝜓(𝑥) = 𝑎 + 𝑏 − 𝑥 is an automorphism
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2.5 Combination of Paley Graphs 39

mapping 𝑎 to 𝑏, we have that the Paley graph is vertex transitive. Therefore, it
suffices to verify the neighborhood of the vertex 0 ∈ 𝑉 in 𝐻𝑞 by symmetry. From
the definition of 𝐻𝑞 , the neighborhood of 0 is

𝑈 =

{
𝜆, 1, 𝛽2, . . . , 𝛽4𝑛−2; 𝛽′, 𝛽3′, . . . , 𝛽4𝑛−1′

}
.

Denote𝐻 [𝑈] by the subgraph induced by the vertices of𝑈 in𝐻𝑞 . Define an bijection
𝜑 from 𝑉 to𝑈 such that

𝜑(0) = 𝜆, 𝜑(𝛽2𝑖) = 1
𝛽2𝑖 and 𝜑(𝛽2𝑖+1) =

(
1

𝛽2𝑖+1

) ′
, 𝑖 = 0, 1, . . . , 2𝑛 − 1.

𝑃𝑞 (0, 𝛽2𝑖) (𝛽2𝑖 , 𝛽2 𝑗 ) (𝛽2𝑖+1, 𝛽2 𝑗+1) (𝛽2𝑖 , 𝛽2 𝑗+1)
𝐻 [𝑈] (𝜆, 1

𝛽2𝑖 ) ( 1
𝛽2𝑖 ,

1
𝛽2 𝑗 ) (( 1

𝛽2𝑖+1 )
′
, ( 1
𝛽2 𝑗+1 )

′) ( 1
𝛽2𝑖 , ( 1

𝛽2 𝑗+1 )
′)

Table 2.8 Four types of edges

Clearly, 𝜑 is an isomorphism from the Paley graph 𝑃𝑞 to𝐻 [𝑈] from the definition
of 𝐻𝑞 . e.g., 𝛽2𝑖 − 𝛽2 𝑗+1 is quadratic if and only if 1

𝛽2𝑖 − 1
𝛽2 𝑗+1 =

𝛽2 𝑗+1−𝛽2𝑖

𝛽2𝑖𝛽2 𝑗+1 is non-
quadratic by noting −1 = 𝛽2𝑛 is quadratic as 𝑞 = 4𝑛 + 1. This completes the proof of
Lemma 2.6. □

Proof of Theorem 2.12. Let 𝐻𝑞 be constructed as above with vertex set {𝜆, 𝜆′}∪𝑉∪
𝑉 ′. We aim to show that both 𝐻𝑞 and 𝐻𝑞 contain no copy of 𝐾1 + 𝐺 as a subgraph.
Lemma 2.6 implies that the neighborhood of any vertex of 𝐻𝑞 induces a subgraph
that is isomorphic to the Paley graph 𝑃𝑞 . Hence, 𝐻𝑞 contains no copy of 𝐾1 + 𝐺 as
a subgraph from the assumption that the Paley graph 𝑃𝑞 contains no copy of 𝐺. It
remains to verify that 𝐻𝑞 contains no copy of 𝐾1 + 𝐺.

Suppose to the contrary that 𝐻𝑞 contains a copy of 𝐾1 + 𝐺. Let 𝑢 be the 𝐾1 of
the 𝐾1 +𝐺, i.e., the center of 𝐾1 +𝐺. We claim 𝑢 ≠ 𝜆. Otherwise, 𝐺 is contained in
𝑉 ′ ∪ {𝜆′} completely. Note that 𝜆′ has no neighbor in 𝑉 ′, 𝐺 must be contained in 𝑉 ′

completely as 𝛿(𝐺) ≥ 1. However, this will lead to a contradiction since 𝑉 ′ induces
the Paley graph 𝑃𝑞 containing no copy of 𝐺 in 𝐻𝑞 . Similarly, 𝑢 ≠ 𝜆′.

Thus, we assume 𝑢 ∈ 𝑉 , say 𝑢 = 0 without loss of generality. From the definition
of 𝐻𝑞 , the neighborhood of 0 in 𝐻𝑞 is𝑊 ∪ {0′}, where

𝑊 =

{
𝛽, 𝛽3, . . . , 𝛽4𝑛−1;𝜆′, 1′, 𝛽2′, . . . , 𝛽4𝑛−2′

}
.

and denote 𝐻 [𝑊] by the subgraph induced by the vertices of 𝑊 in 𝐻𝑞 . Define an
bijection 𝜑 from 𝑉 to𝑊 such that

𝜑(0) = 𝜆′, 𝜑(𝛽2𝑖) =
(

1
𝛽2𝑖

) ′
and 𝜑(𝛽2𝑖+1) = 1

𝛽2𝑖+1 , 𝑖 = 0, 1, . . . , 2𝑛 − 1.
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40 2 Small Ramsey Numbers

Similarly, 𝜑 is an isomorphism from the Paley graph 𝑃𝑞 (= 𝑃𝑞) to 𝐻 [𝑊] from the
definition of𝐻𝑞 . e.g., 𝛽2𝑖−𝛽2 𝑗+1 is non-quadratic if and only if 1

𝛽2𝑖 − 1
𝛽2 𝑗+1 =

𝛽2 𝑗+1−𝛽2𝑖

𝛽2𝑖𝛽2 𝑗+1

is quadratic. i.e., (𝛽2𝑖 , 𝛽2 𝑗+1) is an edge in 𝑃𝑞 if and only if ( 1
𝛽2𝑖 ,

1
𝛽2 𝑗+1 ) is an edge in

𝐻𝑞 , equivalently, (( 1
𝛽2𝑖 )′, 1

𝛽2 𝑗+1 ) is an edge in 𝐻 [𝑊].
Now, note that, in 𝐻𝑞 , the neighborhood of the vertex 0′ is{

𝜆, 0, 1, 𝛽2, . . . , 𝛽4𝑛−2; 𝛽′, 𝛽3′, . . . , 𝛽4𝑛−1′
}
,

which is disjoint from 𝑊 . It follows that 𝐺 must be contained in 𝑊 completely as
𝛿(𝐺) ≥ 1. However, this is a contradiction since 𝐻 [𝑊] is isomorphic to the Paley
graph 𝑃𝑞 which contains no copy of 𝐺. The proof of Theorem 2.12 is complete. □

It is time to propose a problem concerning the asymptotic behavior of diagonal
Ramsey numbers 𝑟 (𝑘, 𝑘).

Problem 2.1 Prove or disprove that for any 𝜖 > 0 fixed, if 𝑘 is large, then

𝑟 (𝑘 + 1, 𝑘 + 1) ≥ (2 − 𝜖)𝑟 (𝑘, 𝑘).

Does the Paley graph give an exponential lower bound for 𝑟 (𝑘, 𝑘), or equivalently,
does 𝜔(𝑃𝑝) ≤ 𝐶 log 𝑝 hold? Let us define 𝑛(𝑝) for the minimum positive integer
with 𝜒(𝑛(𝑝)) = −1. Then the set {1, 2, · · · , 𝑛(𝑝)} induces a clique in 𝑃𝑝 , so we
obtain 𝑛(𝑝) ≤ 𝜔(𝑃𝑝). Assuming the Riemann hypothesis for all L-functions of real
characters, Ankeny (1952) gave

𝑛(𝑝) ≤ 𝐶 log2 𝑝.

So it is reasonable to believe that the order 𝜔(𝑃𝑝) is at most 𝑂 (log2 𝑝) or even
smaller. Montgomery (1971) showed that if the above Riemann hypothesis is true,
then for some constant 𝑐 > 0, there are infinitely many primes 𝑝 such that

𝑛(𝑝) ≥ 𝑐 log 𝑝 log log 𝑝.

Thus it is unlikely that 𝜔(𝑃𝑝) can be bounded from above by 𝐶 log 𝑝 for general
𝑝, and the situation of using 𝑃𝑞 is even worse, where 𝑞 = 𝑝𝑚 with 𝑚 ≥ 2, see the
next section. However, there is a gap between 𝑝1 and 𝑝2 in Table 2.6, and what we
need are bounds for 𝑝2. It seems likely that for sporadic values of 𝑝 the graphs 𝑃𝑝
give good lower bound for 𝑟 (𝑘, 𝑘). Thus it is very interesting to know whether or
not 𝜔(𝑃𝑝) ≤ 𝐶 log 𝑝 infinitely often.

2.6 Spectrum and Independence Number

To obtain more information on Paley graphs, we shall find some spectral bound for
independence numbers of regular graphs. This bound will be used also in Chapter
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2.6 Spectrum and Independence Number 41

10 to get the right order of the independence numbers of the graphs constructed by
algebraic method.

Let us begin with some basics on eigenvalues of adjacency matrix of graph 𝐺,
which are often called the eigenvalues of 𝐺. The list of distinct eigenvalues with
their multiplicities is called the spectrum of the graph. Clearly, the only eigenvalue
of an empty graph is zero. In this section, we admit that the order of each discussed
graph is at least two. So if 𝐺 is a 𝑑-regular and connected graph, then 𝑑 ≥ 1. The
following result is called Perron-Frobenius theorem.

Theorem 2.13 Let 𝐺 be a 𝑑-regular and connected graph. Then 𝑑 is an eigenvalue
of 𝐺 of multiplicity one, and |𝜆 | ≤ 𝑑 for any eigenvalue 𝜆 of 𝐺.

Proof. Let 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and let 𝐴 = (𝑎𝑖 𝑗 )𝑛×𝑛 be the adjacency matrix
of 𝐺. Clearly 𝑑 is an eigenvalue of 𝐴 associated with the all-1 eigenvector.

Let 𝜆 be an eigenvalue of 𝐴 associated with eigenvector 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 , and
let |𝑥𝑖 | = max 𝑗 |𝑥 𝑗 |. Then |𝑥𝑖 | > 0 and

|𝜆𝑥𝑖 | = |𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + · · · + 𝑎𝑖𝑛𝑥𝑛 | =

������ ∑︁
𝑣 𝑗 ∈𝑁 (𝑣𝑖 )

𝑥 𝑗

������ ≤ 𝑑 |𝑥𝑖 |.

Hence |𝜆 | ≤ 𝑑, and the equality holds only if 𝑥 𝑗 = 𝑥𝑖 for all 𝑣 𝑗 ∈ 𝑁 (𝑣𝑖). We can
iterate the argument to reach all coordinates of 𝑋 as𝐺 is connected. Now, let𝑌 be an
eigenvector associated with 𝑑. Then 𝑌 is a constant vector, and thus the dimension
of the space of eigenvectors associated with 𝑑 is one. However, the matrix 𝐴 is real
symmetric, so it has 𝑛 real eigenvalues (not necessarily distinct) and 𝑛 orthonormal
eigenvectors. Thus the multiplicity of eigenvalue 𝑑 is one. □

Let 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 be all eigenvalues of 𝐺. Then

𝑛∑︁
𝑖=1

𝜆𝑖 = 𝑇𝑟 (𝐴) = 0

and 𝜆𝑛 < 0 for a non-empty graph. An often used spectral bound for independence
number can be found in Lovász (1979) as follows.

Theorem 2.14 Let 𝐺 be a regular and connected graph of order 𝑛 and eigenvalues
𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛. Then

𝛼(𝐺) ≤ −𝜆𝑛
𝜆1 − 𝜆𝑛

𝑛.

Proof. Let 𝐴 be the adjacency matrix of 𝐺, which is real and symmetric. Let
𝑋1, 𝑋2, . . . , 𝑋𝑛 be the ortho-normal basis eigenvectors corresponding to𝜆1, 𝜆2, . . . , 𝜆𝑛,
respectively, where 𝑋1 = 1√

𝑛
(1, 1, . . . , 1)𝑇 . Let 𝑆 be an independent set of 𝐺 and 𝜒𝑆

its characteristic function, that is the 0-1 vector in which 1 indicates that the corre-
sponding vertex is contained in 𝑆. Suppose 𝜒𝑆 =

∑𝑛
𝑖=1 𝑐𝑖𝑋𝑖 . Since 𝑆 is independent,

we have
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42 2 Small Ramsey Numbers

𝜒𝑇𝑆 𝐴𝜒𝑆 =
∑︁

𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 = 0,

as if 𝑥𝑖 = 𝑥 𝑗 = 1, then 𝑎𝑖 𝑗 = 0. From the ortho-normality of 𝑋1, 𝑋2, . . . , 𝑋𝑛, we have

𝜒𝑇𝑆 𝐴𝜒𝑆 =

𝑛∑︁
𝑖=1

𝑐2
𝑖 𝜆𝑖 ,

𝑛∑︁
𝑖=1

𝑐2
𝑖 = 𝜒

𝑇
𝑆 𝜒𝑆 = |𝑆 |

and 𝑐1 = 𝜒𝑇
𝑆
𝑋1 = |𝑆 |/

√
𝑛. It thus follows that

0 = 𝜒𝑇𝑆 𝐴𝜒𝑆 =

𝑛∑︁
𝑖=1

𝑐2
𝑖 𝜆𝑖 = 𝜆1𝑐

2
1 +

𝑛∑︁
𝑖=2

𝑐2
𝑖 𝜆𝑖

≥ 𝜆1
|𝑆 |2
𝑛

+ 𝜆𝑛
𝑛∑︁
𝑖=2

𝑐2
𝑖 = 𝜆1

|𝑆 |2
𝑛

+ 𝜆𝑛
(
|𝑆 | − |𝑆 |2

𝑛

)
,

which implies that
|𝑆 | ≤ −𝜆𝑛

𝜆1 − 𝜆𝑛
𝑛,

as claimed. □

The above equality |𝑆 | = −𝜆𝑛𝑛/(𝜆1 − 𝜆𝑛) holds if and only if 𝜒𝑆 is a linear
combination of the eigenvectors 𝑋1 and 𝑋𝑛 or 𝜆2 = · · · = 𝜆𝑛.

The spectrum of a strongly regular graph is determined completely by its four
parameters as follows. As 𝜆 is used often to signify an eigenvalue, we change the
notation 𝑠𝑟𝑔(𝑛, 𝑑, 𝜆, 𝜇) to 𝑠𝑟𝑔(𝑛, 𝑑, 𝜇1, 𝜇2) to avoid interference.

Theorem 2.15 Let 𝐺 be a connected strongly regular graph 𝑠𝑟𝑔(𝑛, 𝑑, 𝜇1, 𝜇2) with
𝑛 ≥ 3. If 𝐺 is neither complete nor empty, then 𝜆1 = 𝑑 is an eigenvalue with
multiplicity 𝑚1 = 1, and any other eigenvalue 𝜆 (≠ 𝜆1) satisfies

𝜆2 + (𝜇2 − 𝜇1)𝜆 + (𝜇2 − 𝑑) = 0.

The equation has two distinct solutions 𝜆2 and 𝜆3 with 𝜆2 > 0 > 𝜆3, and 𝜆3 is an
eigenvalue. If 𝑑 + (𝑛 − 1)𝜆3 ≠ 0, then 𝜆2 is also an eigenvalue. Their multiplicities
𝑚2 and 𝑚3 can be determined by

𝑚2 + 𝑚3 = 𝑛 − 1, and 𝑑 + 𝑚2𝜆2 + 𝑚3𝜆3 = 0.

Proof. Let 𝐴 be the adjacency matrix of𝐺. Let 𝐼 and 𝐽 be the 𝑛×𝑛 identity matrix and
all-one matrix, respectively. By the definition of 𝐴 and the fact that 𝐴 is symmetric
with zeros on the main diagonal, the (𝑖, 𝑖)-entry of 𝐴2 is 𝑑 (𝑣𝑖) = 𝑑, which can be
represented by 𝑑𝐼. For 𝑖 ≠ 𝑗 , the (𝑖, 𝑗)-entry of 𝐴2 counts common neighbors of
vertices 𝑣𝑖 and 𝑣 𝑗 , so it is 𝜇1 or 𝜇2, which can be represented by 𝜇1𝐴 or 𝜇2 (𝐽− 𝐼−𝐴),
respectively. Also the regularity of 𝐺 can be represented by 𝐴𝐽 = 𝑑𝐽. So 𝐺 is an
𝑠𝑟𝑔(𝑛, 𝑑, 𝜇1, 𝜇2) is equivalent to

𝐴𝐽 = 𝑑𝐽, and 𝐴2 = (𝑑 − 𝜇2)𝐼 + (𝜇1 − 𝜇2)𝐴 + 𝜇2𝐽.
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2.6 Spectrum and Independence Number 43

From Perron-Frobenius Theorem, we have that 𝜆1 = 𝑑 is an eigenvalue of 𝐺 with
multiplicity 1 with eigenvector 1 = (1, 1, . . . , 1)𝑇 . Let 𝜆 ≠ 𝑑 be another eigenvalue
of 𝐺 and 𝑥 ∈ 𝑅𝑛 a corresponding eigenvector. Thus 𝐽𝑥 = 0 by noting 1𝑇𝑥 = 0
since eigenvectors corresponding to distinct eigenvalues of real symmetric matrix
are orthogonal. As 𝐴𝑥 = 𝜆𝑥 and 𝐴2𝑥 = 𝜆2𝑥, we obtain that

𝜆2𝑥 = (𝑑 − 𝜇2)𝑥 + (𝜇1 − 𝜇2)𝜆𝑥,

which implies that 𝜆 must satisfy that

𝜆2 + (𝜇2 − 𝜇1)𝜆 + (𝜇2 − 𝑑) = 0. (2.4)

The equation has two distinct solutions 𝜆2 and 𝜆3 (𝜆2 > 𝜆3) can be seen from the
fact

(𝜇2 − 𝜇1)2 + 4(𝑑 − 𝜇2) > 0

as 𝜇1 = 𝜇2 = 𝑑 is impossible. Note that

𝜆2 =
1
2

(
(𝜇1 − 𝜇2) +

√︃
(𝜇1 − 𝜇2)2 + 4(𝑑 − 𝜇2)

)
> 0.

Since the smallest eigenvalue of 𝐺 is negative, it follows that 𝜆3 is an eigenvalue.
Thus, if 𝑑 + (𝑛 − 1)𝜆3 ≠ 0, then the multiplicity of 𝜆3 cannot be 𝑛 − 1, and 𝐺 has
another eigenvalue, which must be 𝜆2. Also, their multiplicities 𝑚2 and 𝑚3 satisfy

1 + 𝑚2 + 𝑚3 = 𝑛, and 𝑇𝑟 (𝐴) = 𝑑 + 𝑚2𝜆2 + 𝑚3𝜆3 = 0,

which determine 𝑚2 and 𝑚3 completely. □

Lemma 2.7 If 𝑞 ≡ 1 (mod 4) is a prime power, then the spectrum of the Paley graph
𝑃𝑞 is as follows.

eigenvalue (𝑞 − 1)/2 (√𝑞 − 1)/2 −(√𝑞 + 1)/2
multiplicity 1 (𝑞 − 1)/2 (𝑞 − 1)/2

Proof. Perron-Frobenius Theorem yields 𝜆1 = 𝑑 = (𝑞 − 1)/2 with multiplicity 1.
Using 𝑑 = (𝑞 − 1)/2, 𝜇1 = (𝑞 − 5)/4 and 𝜇2 = (𝑞 − 1)/4, the equation (2.4) in the
last theorem turns out to be

𝜆2 + 𝜆 − 𝑞 − 1
4

= 0,

whose solutions are (√𝑞 − 1)/2 and −(√𝑞 + 1)/2. The multiplicities 𝑚2 and 𝑚3 of
the two eigenvalues are determined by

𝑚2 + 𝑚3 = 𝑞 − 1,
𝑞 − 1

2
+ 𝑚2

√
𝑞 − 1
2

− 𝑚3

√
𝑞 + 1
2

= 0,

giving 𝑚2 = 𝑚3 = (𝑞 − 1)/2 as claimed. □
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44 2 Small Ramsey Numbers

The following result explains why we only use Paley graphs whose order are
primes instead of prime powers for classic Ramsey numbers.

Theorem 2.16 Let 𝑞 = 𝑝2𝑚 ≡ 1 (mod 4) and let 𝑃𝑞 be the Paley graph. Then

𝛼(𝑃𝑞) =
√
𝑞 = 𝑝𝑚.

Proof. Since 𝑞 = 𝑝2𝑚 ≡ 1 (mod 4), 𝑝 is an odd prime. Note that if 𝑚 |𝑛, then there
is exactly one subfield of 𝐹 (𝑝𝑛) with 𝑝𝑚 elements, so 𝐹 (𝑝𝑚) can be viewed as
a subfield of 𝐹 (𝑝2𝑚). For any distinct 𝑥 and 𝑦 of this 𝐹 (𝑝𝑚), from the facts that
(𝑝𝑚 + 1)/2 is an integer and (𝑥 − 𝑦) 𝑝𝑚−1 = 1 as 𝑥 − 𝑦 ∈ 𝐹∗ (𝑝𝑚), we have

(𝑥 − 𝑦) (𝑞−1)/2 =

(
(𝑥 − 𝑦) 𝑝𝑚−1

) (𝑝𝑚+1)/2
= 1.

Hence 𝐹 (𝑝𝑚) is a clique of the graph 𝑃𝑞 implying that 𝛼(𝑃𝑞) = 𝜔(𝑃𝑞) ≥ √
𝑞.

Also, Theorem 2.14 gives the right upper bound for 𝛼(𝑃𝑞) as 𝜆1 = (𝑞 − 1)/2 and
𝜆𝑛 = −(√𝑞 + 1)/2. □

2.7 Exercises

1. Prove that 𝑟 (𝐶4, 𝐶4) = 6.

2. Give a Ramsey graph for 𝑟 (3, 4) from the proof of Theorem 2.1.

3. Prove that the Schur number 𝑠3 = 13.

4. The proof for 𝑠4 ≥ 44 can be a partition of [44] = {1, 2, . . . , 44} as

Set 1 1 3 5 15 17 19 26 28 40 42 44
Set 2 2 7 8 18 21 24 27 33 37 38 43
Set 3 4 6 13 20 22 23 25 30 32 39 41
Set 4 9 10 11 12 14 16 29 31 34 35 36

Can we prove the inverse avoiding exhausting method?

5. Show that the line graph of𝐾𝑛 with 𝑛 ≥ 4, denoted by𝑇 (𝑛), is an 𝑠𝑟𝑔(
(𝑛
2
)
, 2(𝑛−

2), 𝑛 − 2, 4). Using 𝑇 (6) and 𝑇 (7), show that 𝑟 (𝐵2, 𝐵5) = 16 and 𝑟 (𝐵4, 𝐵6) = 22.
(Rousseau-Sheehan, 1978)

6. For any distinct vertices 𝑥 and 𝑦 of the Paley graph 𝑃𝑝 , show that there are
exactly (𝑝 − 1)/4 vertices 𝑧 ∉ {𝑥, 𝑦} adjacent with 𝑥 and not to 𝑦.

7. Let 𝑃𝑝 be the Paley graph of order 𝑝 and 𝑘 = 𝜔(𝑃𝑝). Prove that 𝑟 (𝑘, 𝑘) ≥
(𝑝 + 3)/4 and 𝑟 (𝑘 + 1, 𝑘 − 1) ≥ (𝑝 − 1)/4.

8. Prove a general version of Schur’s theorem as follows. For every 𝑘 ≥ 1 and
𝑚 ≥ 2, there exists a positive integer 𝑁 such that for every partition of [𝑁] into 𝑘
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2.7 Exercises 45

classes, one of the classes contains 𝑚 (not necessarily distinct) numbers 𝑥1, . . . , 𝑥𝑚
such that 𝑥1 + · · · + 𝑥𝑚−1 = 𝑥𝑚. (Hint: 𝑁 = 𝑟𝑘 (𝑚)).

9.∗ Show that 𝑠𝑘 < 𝑒𝑘! by the original proof of Schur as follows.
(i) Let 𝑛0 = 𝑠𝑘 and let 𝜒 be a 𝑘-coloring of [𝑛0] such that there do not exist

𝑥, 𝑦 ∈ [𝑛0] such that 𝜒(𝑥) = 𝜒(𝑦) = 𝜒(𝑥 + 𝑦).
(ii) For some 𝑛1 with 𝑛0 ≤ 𝑘𝑛1, there are 𝑥0 < 𝑥1 < · · · < 𝑥𝑛1−1, which have the

same color, say 𝑐0.
(iii) Set 𝐴0 = {𝑥𝑖 − 𝑥0 : 1 ≤ 𝑖 < 𝑛1}. Then 𝐴0 ∩ 𝜒−1 (𝑐0) = ∅. For some 𝑛2 with

𝑛1 − 1 ≤ (𝑘 − 1)𝑛2, there are 𝑦0 < 𝑦1 < · · · < 𝑦𝑛2−1, which have the same color.
(iv) Continue this procedure until 𝑛𝑘 = 1. Prove 𝑛0 ≤ ∑𝑘−1

𝑖=0 𝑘!/𝑖! < 𝑒𝑘!.

10. Let 𝐵 = {𝑏1, . . . , 𝑏𝑛} be a set of nonzero integers. Then there is a sum-free
subset 𝐴 of 𝐵with |𝐴| > 𝑛/3. (Hints: Let 𝑝 = 3𝑘 +2 be a prime with 𝑝 > 2 max𝑖 |𝑏𝑖 |,
and let𝐶 = [𝑘 +1, 2𝑘 +1]. Then𝐶 is sum-free in cyclic group 𝑍𝑝 . Randomly choose
𝑥 ∈ [1, 𝑝 − 1] and define 𝑑𝑖 = 𝑥𝑏𝑖 (mod 𝑝). As 𝑥 ranges over [1, 𝑝 − 1], 𝑑𝑖 does
over 𝑍∗

𝑝 hence Pr(𝑑𝑖 ∈ 𝐶) = |𝐶 |/(𝑝 − 1) > 1/3. The expected number of 𝑏𝑖 such
that 𝑑𝑖 ∈ 𝐶 is more than 𝑛/3. There is an 𝑥, and a subset 𝐴 of 𝐵 with |𝐴| > 𝑛/3,
such that 𝑥𝑎 (mod 𝑝) ∈ 𝐶 for all 𝑎 ∈ 𝐴. Show 𝐴 is sum-free. (Erdős, 1965) )

11. (i) Let 𝐻 be a finite additive group. Prove that if 𝐻∗ can be partitioned into 𝑘
sum-free subsets, then 𝑟𝑘 (3) ≥ |𝐻 | + 1.

(ii) Prove 𝑟3 (3) ≥ 17 by partitioning (𝑍4
2 )

∗ into three sum-free subsets. (Hint:
view the elements of 𝐹 (24) in the proof of Greenwood and Gleason as binary
vectors).

12. Let 𝐺 be the set of distinct characters on a finite abelian group 𝐺. Note that
if 𝐺 is cyclic, then 𝐺 is isomorphic to 𝐺.

(i) Let 𝐺 = 𝐺1 × 𝐺2. Prove that 𝐺 is isomorphic to 𝐺1 × 𝐺2
(ii) Prove that if 𝐺 is a finite abelian group, then 𝐺 is isomorphic to 𝐺.
(iii) Let 𝐺 be the Klein group of four elements. Describe 𝐺.

13. Let 𝐺 be a 𝑑-regular connected graph of order 𝑛 with eigenvalues 𝑑 = 𝜆1 ≥
𝜆2 ≥ · · · ≥ 𝜆𝑛. If 𝜆 = max2≤𝑖≤𝑛 |𝜆𝑖 |, then 𝛼(𝐺) ≤ 𝜆𝑛/(𝜆1 + 𝜆), hence simply
𝛼(𝐺) < 𝑛𝜆/𝑑. (This is slightly weaker than Theorem 2.14.)

14. Prove that 𝑟 (𝑛, 𝑛) ≤ 𝑟 (𝐵𝑛−2,𝑛, 𝐵𝑛−2,𝑛).

15.∗ Erdős and Graham (See Chung and Graham, 1998) asked to show that for
fixed 𝑚 ≥ 2,

lim
𝑘→∞

𝑟𝑘 (𝐶2𝑚+1)
𝑟𝑘 (3)

= 0.

We know that 𝑟𝑘 (3) ≤ 𝑐 · 𝑘! for some constant 𝑐 > 0. Although we do not know
whether the above answer to the problem is positive or not, one can prove that
𝑟𝑘 (𝐶5) ≤

√
18𝑘𝑘! for all 𝑘 ≥ 3. (Hint: Li, 2009)
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Chapter 3
Basic Probabilistic Method

47© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 

Y. Li, Q. Lin, Elementary Methods of Graph Ramsey Theory, Applied Mathematical  

Sciences 211, https://doi.org/10.1007/978-3-031-12762-5_3 

The probabilistic method is a powerful tool for tackling problems in many areas
of mathematics, such as number theory, algebra, analysis, geometry, combinatorics,
and computer science, etc. Poineered by Erdős, the probabilistic method has been
widely used in combinatorics for more than eight decades. It is an art to design a
probability space for a non-random problem. The method works by showing that if
one chooses objects randomly from a specified class, the prescribed object has a pos-
itive probability to appear. The basic probabilistic methodmeans that by calculating
the expected value of a random variable. This chapter focus on the basic proba-
bilistic method such as vertices are labeled or picked randomly or semi-randomly.
In semi-random method, we shall use average that is the expectation in a uniform
probability space. Basic methods are effective in many cases as most random vari-
ables are concentrated around expectation. The frequently-used methods estimating
such concentration include Markov’s inequality and Chernoff bound, which will be
introduced in this chapter. We refer the reader to the book The Probabilistic Method
by Alon and Spencer (2016) for a systematical introduction.

3.1 Some Basic Inequalities

In this subsection, we state some basic inequalities that will be used in the calcula-
tions. The reader who is familiar with these inequalities could skip this subsection
directly. Throughout this book, we use “log” to denote the natural logarithm based
on 𝑒.

The following precise formula is the well-known Stirling formula.

Lemma 3.1 For 𝑛 ≥ 1,

𝑛! =
√
2𝜋𝑛

(𝑛
𝑒

)𝑛
exp

(
1

12𝑛 + 𝜃

)
, where 0 < 𝜃 = 𝜃𝑛 < 1.

In particular,

https://doi.org/10.1007/978-3-031-12762-5_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12762-5_3&domain=pdf
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48 3 Basic Probabilistic Method

√
2𝜋𝑛

(𝑛
𝑒

)𝑛
< 𝑛! <

√
2𝜋𝑛

(𝑛
𝑒

)𝑛
𝑒1/12𝑛,

and
𝑛! = (1 + 𝑜(1))

√
2𝜋𝑛

(𝑛
𝑒

)𝑛
>

(𝑛
𝑒

)𝑛
.

Lemma 3.2 For 𝑁 ≥ 𝑛 ≥ 1, (
𝑁

𝑛

)
≤ 𝑁𝑛

𝑛!
≤

(
𝑒𝑁

𝑛

)𝑛
.

If 𝑛 = 𝑜(
√
𝑁), then (

𝑁

𝑛

)
∼ 𝑁𝑛

𝑛!
.

Proof. The first two inequalities are immediate from Stirling’s formula. If 𝑛 = 𝑜(
√
𝑁),

then (
𝑁

𝑛

)/
𝑁𝑛

𝑛!
=
𝑁 (𝑁 − 1) · · · (𝑁 − 𝑛 + 1)

𝑁𝑛
= exp

(
𝑛−1∑︁
𝑖=1

log
(
1 − 𝑖

𝑁

))
= exp

[
−
𝑛−1∑︁
𝑖=1

𝑖

𝑁
+𝑂

(
(𝑛 − 1)3

𝑁2

)]
,

which will tend to 1 as 𝑛→ ∞, and so the desired asymptotical formula follows. □

Lemma 3.3 (i) For any 0 ≤ 𝑥 ≤ 1 and 𝑛 ≥ 0, (1 − 𝑥)𝑛 ≤ 𝑒−𝑛𝑥 .

(ii) If 𝑥 = 𝑥𝑛 → 0 and 𝑥2𝑛→ 0 as 𝑛→ ∞, then (1 − 𝑥)𝑛 ∼ 𝑒−𝑛𝑥 .

Proof. The first inequality is clear and for the second inequality, it suffices to note
that

log(1 − 𝑥) = −𝑥 + 𝑥
2

2
+ 𝑜(𝑥2),

completing the proof. □

Lemma 3.4 For any 𝜆 > 0,
𝑒𝜆 + 𝑒−𝜆

2
< 𝑒𝜆

2/2.

Proof. Note that for any 𝑥, we have 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + · · · , it follows that

𝑒𝜆 + 𝑒−𝜆
2

=

∞∑︁
𝑗=0

𝜆2 𝑗

(2 𝑗)! <
∞∑︁
𝑗=0

1
𝑗!

(
𝜆2

2

) 𝑗
= 𝑒𝜆

2/2,

where the inequality holds since (2 𝑗)! > 2 𝑗 𝑗! for all 𝑗 ≥ 2. □

A real-valued function 𝑓 (𝑥) is convex if for any 0 ≤ 𝜆 ≤ 1,
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3.1 Some Basic Inequalities 49

𝑓 (𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆 𝑓 (𝑥1) + (1 − 𝜆) 𝑓 (𝑥2).

From a geometrical point of view, the convexity of 𝑓 (𝑥) means that if we draw a line
through points (𝑥1, 𝑓 (𝑥1)) and (𝑥2, 𝑓 (𝑥2)), then the graph of the curve 𝑓 (𝑥) must lie
below that of this line for 𝑥 ∈ [𝑥1, 𝑥2].

The following is known as Jensen’s Inequality.

Lemma 3.5 If 0 ≤ 𝜆𝑖 ≤ 1,
∑𝑛
𝑖=1 𝜆𝑖 = 1 and 𝑓 (𝑥) is convex, then

𝑓

(
𝑛∑︁
𝑖=1

𝜆𝑖𝑥𝑖

)
≤

𝑛∑︁
𝑖=1

𝜆𝑖 𝑓 (𝑥𝑖).

Proof. We use induction on 𝑛. For 𝑛 = 2, it follows from the definition. So we assume
that the inequality holds for 𝑛, and prove it for 𝑛 + 1. It suffices to replace the sum of
the first two terms in

∑𝑛+1
𝑖=1 𝜆𝑖𝑥𝑖 by the term

(𝜆1 + 𝜆2)
(

𝜆1
𝜆1 + 𝜆2

𝑥1 +
𝜆2

𝜆1 + 𝜆2
𝑥2

)
,

and then apply the induction hypothesis. □

Jensen’s Inequality can be seen as a generalization of the following Cauchy-
Schwarz inequality.

Lemma 3.6 If 𝑥1, 𝑥2, . . . , 𝑥𝑛 are non-negative real numbers, then

𝑛∑︁
𝑖=1

𝑥2
𝑖 ≥

1
𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖

)2

.

Proof. Apply Lemma 3.5 with 𝑓 (𝑥) = 𝑥2 and 𝜆𝑖 = 1/𝑛 for 1 ≤ 𝑖 ≤ 𝑛. □

The following inequality on the arithmetic and geometric means can also be
deduced from Jensen’s Inequality.

Lemma 3.7 If 𝑥1, 𝑥2, . . . , 𝑥𝑛 are non-negative real numbers, then

1
𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
≥

(
𝑛∏
𝑖=1

𝑥𝑖

) 1
𝑛

.

Proof. We apply Lemma 3.5 with 𝑓 (𝑡) = 2𝑡 , 𝜆𝑖 = 1/𝑛 and 𝑡𝑖 = log2 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛
to obtain that

1
𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
=

𝑛∑︁
𝑖=1

𝜆𝑖 𝑓 (𝑡𝑖) ≥ 𝑓

(
𝑛∑︁
𝑖=1

𝜆𝑖𝑡𝑖

)
= 2

1
𝑛

∑𝑛
𝑖=1 𝑡𝑖 =

(
𝑛∏
𝑖=1

𝑥𝑖

) 1
𝑛

,

completing the proof. □
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50 3 Basic Probabilistic Method

3.2 A Lower Bound of 𝒓(𝒏, 𝒏)

The paper of Erdős (1947) is always considered as the first conscious application
of the probabilistic method with many remarkable results, although Szele (1943)
had applied the probabilistic method to a graph problem. Graph Ramsey theory is
always referred to as the birthplace of random graphs. In the original proof of the
exponent lower bound for 𝑟 (𝑛, 𝑛) in 1947, Erdős did not use the formal probabilistic
language. So his paper has been considered as an informal starting point of random
graphs. But in two papers published in 1959 and 1961, Erdős gave a lower bound
𝑐(𝑛/log 𝑛)2 for 𝑟 (3, 𝑛) and even wrote probabilities in the titles.

The results in this section are not currently best, but the proofs contain elementary
training for asymptotical computing. In some cases, we intentionally give the details
by showing how to obtain an optimal constant.

Theorem 3.1 For 𝑛 ≥ 3,
𝑟 (𝑛, 𝑛) > 𝑛

𝑒
√
2
2𝑛/2.

Proof. Let us color each edge of 𝐾𝑁 by red and blue randomly and independently,
where 𝑁 is a positive integer to be chosen. Let 𝑆 be a set of 𝑛 vertices and 𝐴𝑆 be the
event that 𝑆 is monochromatic. It follows that

Pr[𝐴𝑆] = 2
(
1
2

) (𝑛2)
= 21−(

𝑛
2) ,

as all
(𝑛
2
)
edges of 𝑆 must be colored the same. Consider the union of events ∪𝐴𝑆

over all 𝑛-sets on [𝑁]. We thus have

Pr ©­«
⋃

𝑆: |𝑆 |=𝑛
𝐴𝑆

ª®¬ ≤
∑︁

𝑆: |𝑆 |=𝑛
Pr[𝐴𝑆] =

(
𝑁

𝑛

)
21−(

𝑛
2) .

If this probability is less than one, then the complement event ∩𝑆𝐴𝑆 has positive
probability. Equivalently, there is a point in the probability space for which each
event 𝐴𝑆 does not appear, i.e., there exists a red/blue edge coloring of 𝐾𝑁 such that
there is no monochromatic 𝐾𝑛. Hence 𝑟 (𝑛, 𝑛) > 𝑁 .

It remains to find the maximum integer 𝑁 such that Pr[∪𝑆𝐴𝑆] < 1. From Stirling
formula, 𝑛! ≥

√
2𝜋𝑛

(
𝑛
𝑒

)𝑛, it follows that(
𝑁

𝑛

)
21−(

𝑛
2) ≤ 𝑁𝑛

𝑛!
21−(

𝑛
2) < 2

√
2𝜋𝑛

(
𝑒
√
2𝑁

𝑛2𝑛/2

)𝑛
.

Set 𝑁 = ⌊ 𝑛

𝑒
√
2
2𝑛/2⌋. We have that the fraction in the parenthesis and hence the

probability of ∪𝑆𝐴𝑆 is less than one. This implies that 𝑟 (𝑛, 𝑛) ≥ 𝑁 + 1 as desired. □
The original proof of Erdős (1947) used the counting argument: Let 𝑁 = ⌊2𝑛/2⌋.

Clearly, the number of graphs of 𝑁 vertices is 2(𝑁2 ) . (Here the vertices are distin-
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3.3 Pick Vertices Semi-Randomly 51

guishable.) Note that the number of different graphs containing a given complete
graph of order 𝑛 is clearly 2(𝑁2 )/2(𝑛2) as there are 2(𝑛2) subgraphs induced by these
fixed 𝑛 vertices. Thus the number of graphs of 𝑁 vertices containing a complete
graph of order 𝑛 is less than(

𝑁

𝑛

)
2(𝑁2 )

2(𝑛2)
<
𝑁𝑛

𝑛!
· 2(𝑁2 )

2(𝑛2)
<

2(𝑁2 )
2

,

which means that there exists a graph 𝐺 that contains no complete graph of or-
der 𝑛 and also no independence set of order 𝑛, i.e., there is a coloring without
monochromatic 𝐾𝑛. Therefore, we have that 𝑟 (𝑛, 𝑛) > ⌊2𝑛/2⌋.

3.3 Pick Vertices Semi-Randomly

Let us see an interesting example. In 1941, Turán proved a theorem giving a tight
bound on the maximum number of edges that a 𝐾𝑟 -free graph can have, which has
become the cornerstone theorem of extremal graph theory. Consequently, we have a
lower bound of the independence number of a graph 𝐺 that 𝛼(𝐺) ≥ 𝑁

1+𝑑 , where 𝑑 is
the average degree of 𝐺, for which a deterministic proof can be found in Exercises.

Theorem 3.2 Let 𝐺 = (𝑉, 𝐸) be a graph of order 𝑁 with degree sequence {𝑑 (𝑣) :
𝑣 ∈ 𝑉} and average degree is 𝑑. Then

𝛼(𝐺) ≥
∑︁
𝑣∈𝑉

1
1 + 𝑑 (𝑣) ≥ 𝑁

1 + 𝑑 .

Proof. Label all vertices in 𝑉 randomly by {1, 2, . . . , 𝑁}. Define a set

𝐼 = {𝑣 ∈ 𝑉 : ℓ(𝑣) < ℓ(𝑤) for any 𝑤 ∈ 𝑁 (𝑣)},

where ℓ(𝑣) is the label of 𝑣. Note that 𝐼 is a random set determined by ℓ. Let 𝑋𝑣 be
the indicator random variable for 𝑣 ∈ 𝐼 and let 𝑋 =

∑
𝑣∈𝑉 𝑋𝑣 . Clearly, 𝑋 = |𝐼 | and

its expectation

𝐸 (𝑋) =
∑︁
𝑣∈𝑉

𝐸 (𝑋𝑣) =
∑︁
𝑣∈𝑉

Pr[𝑣 ∈ 𝐼] =
∑︁
𝑣∈𝑉

1
1 + 𝑑 (𝑣) ,

where the last equality holds since 𝑣 ∈ 𝐼 if and only if 𝑣 is the least element among
𝑣 and its neighbors 𝑁 (𝑣). So there must be a labeling such that |𝐼 | ≥ 𝐸 (𝑋). Note
that 𝐼 is an independent set, it follows that 𝛼(𝐺) ≥ |𝐼 | and hence the first inequality
holds. For the second inequality, it follows from the fact that the function 𝑓 (𝑥) = 1

1+𝑥
is convex. □

In the following, we shall discuss more on the independence number for sparse
graphs. In 1980, Ajtai, Komlós and Szemerédi obtained a lower bound for the
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52 3 Basic Probabilistic Method

independence number of triangle-free graphs. The method used by them is now
called “semi-random method” or “nibble method” initialized by Rödl (1985), in
which they selected objects in many small “nibbles” rather than a big “bite”, and
then analyzed how the nibbles change the structure of the remainder.

Let us call a graph 𝐺 to be 𝐻-free if 𝐺 does not contain 𝐻 as a subgraph. Recall
the Ramsey number 𝑟 (𝐻, 𝐾𝑛) is the minimum integer 𝑁 such that any 𝐻-free graph
𝐺 of order 𝑁 satisfies that 𝛼(𝐺) ≥ 𝑛. So it is important to estimate the independence
numbers of graphs, in particular, that for 𝐻-free graphs.

A greedy algorithm to obtain an independent set is to put a vertex 𝑣 into the
independent set and then delete all neighbors of 𝑣, and repeat the process.

In order to produce a larger independent set by this algorithm, we hope to delete
less vertices and more edges in each step so that the remaining graph is large and
sparse. What a vertex 𝑣 should be chosen? To obtain some criterion, we define 𝑄(𝑣)
to be the number of edges that incident with a neighbor of 𝑣, and define

𝑄0 (𝑣) =
∑︁

𝑢∈𝑁 (𝑣)
𝑑 (𝑢).

Note that if we delete a vertex 𝑣 and its neighbors, we delete exactly 𝑄(𝑣) edges.

Lemma 3.8 For any vertex 𝑣 in a graph 𝐺,

𝑄(𝑣) ≤ 𝑄0 (𝑣),

and the equality holds if and only if 𝑁 (𝑣) contains no edge.

Let us have a property of 𝑄0 (𝑣).

Lemma 3.9 Let 𝐺 be a graph with vertex set 𝑉 . If 𝑑 is the average degree of 𝐺, then
the average value of 𝑄0 (𝑣) over 𝑣 ∈ 𝑉 is at least 𝑑2.

Proof. Let 𝑁 denote the order of 𝐺. Then

1
𝑁

∑︁
𝑣∈𝑉

𝑄0 (𝑣) =
1
𝑁

∑︁
𝑣∈𝑉

∑︁
𝑢∈𝑁 (𝑣)

𝑑 (𝑢) = 1
𝑁

∑︁
𝑢∈𝑉

𝑑 (𝑢)
∑︁

𝑣∈𝑁 (𝑢)
1

=
1
𝑁

∑︁
𝑢∈𝑉

𝑑2 (𝑢) ≥
(

1
𝑁

∑︁
𝑢∈𝑉

𝑑 (𝑢)
)2

= 𝑑2,

where we have used the convexity of the function 𝑓 (𝑥) = 𝑥2. □

Ajtai, Komlós and Szemerédi (1980) defined a vertex 𝑣 to be a groupie if the
average degree of its neighbors is at least the average degree of 𝐺. By Lemma
3.9, we know that every graph has a groupie since there is a vertex 𝑣 ∈ 𝑉 so that
𝑄0 (𝑣) − 𝑑 · 𝑑 (𝑣) ≥ 0 as the equality holds on average. By deleting a groupie and its
neighbors recursively, they proved that for any triangle-free graph 𝐺 of order 𝑁 and
average degree 𝑑,
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3.3 Pick Vertices Semi-Randomly 53

𝛼(𝐺) ≥ 𝑐𝑁 log 𝑑
𝑑

, (3.1)

where 𝑐 = 1/100.
Now, let 𝑁 = 𝑟 (3, 𝑛) − 1. Thus there is a triangle-free graph 𝐺 on 𝑁 vertices with

independence number at most 𝑛−1. Since each neighborhood of a triangle-free graph
is an independent set, we have 𝛼(𝐺) ≥ Δ(𝐺) ≥ 𝑑, and hence 𝑛 − 1 ≥ 𝑐𝑁

log(𝑛−1)
𝑛−1 .

Therefore,

𝑟 (3, 𝑛) = 𝑁 + 1 ≤
(
1
𝑐
+ 𝑜(1)

)
𝑛2

log 𝑛
.

This bound is much better than the bound 𝑟 (3, 𝑛) ≤
(𝑛+1

2
)
∼ 1

2𝑛
2, see Theorem 1.3.

We now look how Shearer (1983) found the vertex for triangle-free graphs, which
will give a better lower bound of the independence number for triangle-free graph
compared to (3.1).

Theorem 3.3 For any triangle-free graph 𝐺 with average degree 𝑑 > 1,

𝛼(𝐺) ≥ 𝑁 𝑓 (𝑑),

where 𝑓 (𝑥) = 𝑥 log 𝑥−𝑥+1
(𝑥−1)2 .

Proof. In order to find a larger independent set, the key step is to determine a vertex
𝑣, which together with 𝑁 (𝑣), will be deleted. We aim to find a function 𝑓 (𝑥) such
that

𝛼(𝐺) ≥ 𝑁 𝑓 (𝑑)

for a triangle-free graph 𝐺. Naturally, we assume that 𝑓 (𝑥) is positive, decreasing,
and more importantly, we hope that 𝑓 (𝑥) ≥ 𝑐

log 𝑥
𝑥

for some constant 𝑐 > 1/100
when 𝑥 is sufficiently large.

Let 𝑃(𝑣) = 𝑑 (𝑣) + 1 and recall 𝑄(𝑣) is the number of edges incident with a
neighbor of 𝑣. Let 𝐻 be the graph obtained from 𝐺 by deleting 𝑣 and its neighbors.
Note that we delete exactly 𝑃(𝑣) vertices and 𝑄(𝑣) = 𝑄0 (𝑣) edges since 𝐺 is
triangle-free. Thus 𝐻 has 𝑁 − 𝑃(𝑣) vertices and 𝑁𝑑/2 −𝑄(𝑣) edges. So its average
degree is

𝑑𝐻 =
𝑁𝑑 − 2𝑄(𝑣)
𝑁 − 𝑃(𝑣) .

By induction,
𝛼(𝐺) ≥ 1 + 𝛼(𝐻) ≥ 1 + (𝑁 − 𝑃(𝑣)) 𝑓 (𝑑𝐻 ).

We do not know which of 𝑑 and 𝑑𝐻 is bigger. However we can swap 𝑓 (𝑑𝐻 )
with 𝑓 (𝑑), if we further assume that 𝑓 (𝑥) is convex so that we can use the fact
𝑓 (𝑥) ≥ 𝑓 (𝑑) + 𝑓 ′ (𝑑) (𝑥 − 𝑑). Thus we have
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𝛼(𝐺) ≥ 1 + (𝑁 − 𝑃(𝑣)) 𝑓 (𝑑𝐻 )

≥ 1 + (𝑁 − 𝑃(𝑣))
(
𝑓 (𝑑) + 𝑓 ′ (𝑑)

(
𝑁𝑑 − 2𝑄(𝑣)
𝑁 − 𝑃(𝑣) − 𝑑

))
≥ 1 + 𝑁 𝑓 (𝑑) − 𝑃(𝑣) 𝑓 (𝑑) + 𝑓 ′ (𝑑) [(𝑁𝑑 − 2𝑄(𝑣)) − 𝑑 (𝑁 − 𝑃(𝑣))]
= 𝑁 𝑓 (𝑑) + 1 − 𝑃(𝑣) 𝑓 (𝑑) − (2𝑄(𝑣) − 𝑑𝑃(𝑣)) 𝑓 ′ (𝑑).

Denote
𝑅(𝑣) = 1 − 𝑃(𝑣) 𝑓 (𝑑) − (2𝑄(𝑣) − 𝑑𝑃(𝑣)) 𝑓 ′ (𝑑).

In order to find some vertex 𝑣 such that 𝑅(𝑣) ≥ 0, let us consider the average of 𝑅(𝑣)
as follows. Sine 1

𝑁

∑
𝑣 𝑄0 (𝑣) ≥ 𝑑2 by Lemma 3.9 and 𝑓 ′ (𝑥) ≤ 0, it follows that

1
𝑁

∑︁
𝑣

𝑅(𝑣) ≥ 1 − (𝑑 + 1) 𝑓 (𝑑) − (2𝑑2 − 𝑑 (𝑑 + 1)) 𝑓 ′ (𝑑)

= 1 − (𝑑 + 1) 𝑓 (𝑑) − 𝑑 (𝑑 − 1) 𝑓 ′ (𝑑).

Thus, the function 𝑓 (𝑥) should satisfy the following differential equation

𝑥(𝑥 − 1) 𝑓 ′ (𝑥) + (𝑥 + 1) 𝑓 (𝑥) = 1.

Solving this differential equation, we obtain that

𝑓 (𝑥) = 𝑥 log 𝑥 − 𝑥 + 1
(𝑥 − 1)2 .

Luckily enough, 𝑓 (𝑥) is positive, decreasing and convex as desired. □

Note that
𝑓 (𝑥) = 𝑥 log 𝑥 − 𝑥 + 1

(𝑥 − 1)2 ∼ log 𝑥
𝑥

as 𝑥 → ∞. If 𝑑 = 0, then we can take 𝑓 (𝑑) = 1; and if 0 < 𝑑 < 1, then we can take
𝑓 (𝑑) = 1/2 from Turán bound, see Theorem 3.2.

3.4 Independence Number of Sparse Graphs

In 1996, Li and Rousseau generalized Shearer’s result from triangle-free graphs to
locally sparse graphs.

Lemma 3.10 For 𝑚 ≥ 1 and 𝑥 ≥ 0, the function

𝑓𝑚 (𝑥) =
∫ 1

0

(1 − 𝑡)1/𝑚

𝑚 + (𝑥 − 𝑚)𝑡 𝑑𝑡

satisfies the differential equation
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3.4 Independence Number of Sparse Graphs 55

𝑥(𝑥 − 𝑚) 𝑓 ′𝑚 (𝑥) + (𝑥 + 1) 𝑓𝑚 (𝑥) = 1. (3.2)

Moreover, 𝑓𝑚 (𝑥) satisfies the following properties:

(1) 𝑓𝑚 (𝑥) is positive, decreasing, and convex.

(2) for all 𝑘 ≥ 0, (−1)𝑘 𝑓 (𝑘 )𝑚 (𝑥) > 0.

Proof. By differentiating under the integral and then integrating by parts, we have

𝑥(𝑥 − 𝑚) 𝑓 ′𝑚 (𝑥) = −𝑥(𝑥 − 𝑚)
∫ 1

0

(1 − 𝑡)1/𝑚𝑡

(𝑚 + (𝑥 − 𝑚)𝑡)2 𝑑𝑡

= 𝑥

∫ 1

0
(1 − 𝑡)1/𝑚𝑡 · 𝑑

𝑑𝑡

(
1

𝑚 + (𝑥 − 𝑚)𝑡

)
𝑑𝑡

= −𝑥
∫ 1

0

(
1 − 𝑡

𝑚(1 − 𝑡)

)
(1 − 𝑡)1/𝑚

𝑚 + (𝑥 − 𝑚)𝑡 𝑑𝑡

= −𝑥 𝑓𝑚 (𝑥) +
∫ 1

0

(1 − 𝑡)1/𝑚

𝑚

(
1

1 − 𝑡 −
𝑚

𝑚 + (𝑥 − 𝑚)𝑡

)
𝑑𝑡

= −𝑥 𝑓𝑚 (𝑥) + 1 − 𝑓𝑚 (𝑥).

Hence (3.2) follows. The complete monotonicity of 𝑓𝑚 (𝑥) can be seen by differen-
tiating under the integral. □

Corollary 3.1 For 0 ≤ 𝑥 ≤ 𝑚, 𝑓𝑚 (𝑥) ≤ 1/(1 + 𝑥); and for 𝑥 > 𝑚 ≥ 1,

𝑓𝑚 (𝑥) ≥
log(𝑥/𝑚) − 1

𝑥
.

Proof. The first statement follows from the differential equation (3.2) in Lemma 3.10
immediately since 𝑓 ′𝑚 (𝑥) < 0. For the case 𝑥 > 𝑚 ≥ 1, we have that

𝑓𝑚 (𝑥) ≥
∫ 1

0

(1 − 𝑡)𝑑𝑡
𝑚 + (𝑥 − 𝑚)𝑡 =

𝑥 log(𝑥/𝑚) − (𝑥 − 𝑚)
(𝑥 − 𝑚)2 >

log(𝑥/𝑚) − 1
𝑥

,

where the last inequality holds since for 𝑥 > 𝑚,

(2𝑚𝑥 − 𝑚2) log(𝑥/𝑚) − 𝑚(𝑥 − 𝑚) > 0.

This completes the proof. □

It is easy to see that the function log(𝑥/𝑚)−1
𝑥

is decreasing on 𝑚 ≥ 1 for any 𝑥 > 0,
and it is also decreasing on 𝑥 ≥ 𝑒2𝑚 for any 𝑚 ≥ 1.

Theorem 3.4 Let 𝐺 be a graph with 𝑁 vertices and average degree 𝑑. Let 𝑎 ≥ 0 be
an integer. If any subgraph induced by a neighborhood has maximum degree at most
𝑎, then

𝛼(𝐺) ≥ 𝑁 𝑓𝑎+1 (𝑑).
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56 3 Basic Probabilistic Method

Proof. We prove it by induction on 𝑁 . If 𝑁 ≤ 𝑎+2, then 𝑑 ≤ 𝑎+1. By Corollary 3.1,
we have 1/(𝑑 + 1) ≥ 𝑓𝑎+1 (𝑑). It follows from Turán’s theorem that 𝛼(𝐺) ≥ 𝑁

𝑑+1 ≥
𝑁 𝑓𝑎+1 (𝑑). So we suppose 𝑁 > 𝑎 + 2 hereafter. By the preceding argument, we may
also assume 𝑑 > 𝑎 + 1 since 𝑓𝑚 (𝑥) is decreasing on 𝑥.

Write 𝐺𝑣 for the subgraph induced by the neighborhood of 𝑣 in 𝐺. In case some
vertex 𝑣 of 𝐺 has degree 𝑁 − 1, again by Turán’s theorem, we have 𝛼(𝐺𝑣) ≥ 𝑁−1

𝑎+1
as the maximum degree of 𝐺𝑣 is at most 𝑎. It follows that

𝛼(𝐺) ≥ 𝛼(𝐺𝑣) ≥
𝑁 − 1
𝑎 + 1

≥ 𝑁

𝑎 + 2
= 𝑁 𝑓𝑎+1 (𝑎 + 1) ≥ 𝑁 𝑓𝑎+1 (𝑑),

where the equality can be seen from (3.2). So we suppose that the maximum degree
of 𝐺 is at most 𝑁 − 2.

Let 𝑉 be the vertex set of 𝐺. For each 𝑣 ∈ 𝑉 , let 𝑃(𝑣) = 𝑑 (𝑣) + 1 and recall 𝑄(𝑣)
is the number of edges incident with a neighbor of 𝑣. Note that 𝐺𝑣 contains at most
𝑎
2 𝑑 (𝑣) edges since the maximum degree of 𝐺𝑣 is at most 𝑎. So we have

𝑄(𝑣) ≥
∑︁

𝑢∈𝑁 (𝑣)
𝑑 (𝑢) − 𝑎

2
𝑑 (𝑣) = 𝑄0 (𝑣) −

𝑎

2
𝑑 (𝑣).

Consequently, by Lemma 3.9, the average value of 𝑄(𝑣) satisfies

1
𝑁

∑︁
𝑣∈𝑉

𝑄(𝑣) ≥ 𝑑2 − 𝑎𝑑

2
.

Set
𝑅(𝑣) = 1 − 𝑃(𝑣) 𝑓𝑎+1 (𝑑) − (2𝑄(𝑣) − 𝑑𝑃(𝑣)) 𝑓 ′𝑎+1 (𝑑).

Note that the coefficient of 𝑄(𝑣) is positive since 𝑓 ′
𝑎+1 (𝑑) < 0. Thus,

1
𝑁

∑︁
𝑣∈𝑉

𝑅(𝑣) ≥ 1 − (𝑑 + 1) 𝑓𝑎+1 (𝑑) +
(
(𝑑 + 1)𝑑 − 2𝑑2 + 𝑎𝑑

)
𝑓 ′𝑎+1 (𝑑)

= 1 − (𝑑 + 1) 𝑓𝑎+1 (𝑑) − 𝑑 (𝑑 − 𝑎 − 1) 𝑓 ′𝑎+1 (𝑑),

which equals 0 by noting (3.2).
Hence there exists a vertex 𝑣0 ∈ 𝑉 such that 𝑅(𝑣0) ≥ 0. Let 𝑅(𝑣0) = 𝑅̂, 𝑃(𝑣0) = 𝑃̂

and 𝑄(𝑣0) = 𝑄̂. Thus

𝑅̂ = 1 − 𝑃̂ 𝑓𝑎+1 (𝑑) + (𝑃̂𝑑 − 2𝑄̂) 𝑓 ′𝑎+1 (𝑑) ≥ 0.

Delete 𝑣0 and its neighbors from 𝐺, in view of that the maximum degree of 𝐺 is at
most 𝑁 −2, we obtain a nontrivial graph 𝐻 with 𝑁 − 𝑃̂ vertices and 𝑁𝑑/2− 𝑄̂ edges.
Note that any subgraph induced by a neighborhood of 𝐻 has maximum degree at
most 𝑎, so by induction hypothesis,

𝛼(𝐻) ≥ (𝑁 − 𝑃̂) 𝑓𝑎+1

(
𝑁𝑑 − 2𝑄̂
𝑁 − 𝑃̂

)
.
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Moreover, 𝑓𝑎+1 (𝑥) ≥ 𝑓𝑎+1 (𝑑) + 𝑓 ′𝑎+1 (𝑑) (𝑥 − 𝑑) for all 𝑥 ≥ 0 since 𝑓𝑎+1 (𝑥) is convex.
Consequently, a similar argument as in Theorem 3.3 yields that

𝛼(𝐺) ≥ 1 + 𝛼(𝐻) ≥ 1 + (𝑁 − 𝑃̂) 𝑓𝑎+1

(
𝑁𝑑 − 2𝑄̂
𝑁 − 𝑃̂

)
≥ 𝑁 𝑓𝑎+1 (𝑑).

This completes the proof. □

3.5 Upper Bounds for 𝒓(𝒎, 𝒏)

Now, we are able to improve the constant factor for the upper bounds of 𝑟 (𝑚, 𝑛) due
to Ajtai, Komlós and Szemerédi (1980).

Theorem 3.5 For each fixed 𝑚 ≥ 2,

𝑟 (𝑚, 𝑛) ≤ (1 + 𝑜(1)) 𝑛𝑚−1

(log 𝑛)𝑚−2 .

Proof. We will prove the assertion by induction on 𝑚. For 𝑚 = 2, it is trivial since
𝑟 (2, 𝑛) = 𝑛.

For 𝑚 = 3, let 𝐺 be the graph of order 𝑁 = 𝑟 (3, 𝑛) − 1 which contains no
triangles and 𝛼(𝐺) ≤ 𝑛 − 1. Since 𝐺 is triangle-free, each subgraph induced by the
neighborhood of any vertex is empty, and thus its average degree is zero. Let 𝑑 be
the average degree of 𝐺. Since each neighborhood of any vertex of 𝐺 induces an
independence set, we have 𝑛 − 1 ≥ 𝛼(𝐺) ≥ 𝑑. We apply Theorem 3.4 with 𝑎 = 0 to
obtain that

𝑛 − 1 ≥ 𝑁 𝑓1 (𝑑) ≥ 𝑁 𝑓1 (𝑛 − 1) ≥ 𝑁
log(𝑛 − 1) − 1

𝑛 − 1
.

Thus 𝑟 (3, 𝑛) − 1 < (𝑛−1)2

log 𝑛−1 , and it follows by 𝑟 (3, 𝑛) ≤ 𝑛2

log(𝑛/𝑒) for large 𝑛.
Suppose the statement holds for 2, 3, . . . , 𝑚. We proceed to the induction step.

Let 𝐺 be a graph of order 𝑁 = 𝑟 (𝑚 + 1, 𝑛) − 1 such that 𝐺 contains no 𝐾𝑚+1 and
𝛼(𝐺) ≤ 𝑛 − 1. Note that for each vertex 𝑣 of 𝐺, we have

• the degree of 𝑣 is at most 𝑟 (𝑚, 𝑛) − 1, and
• the maximum degree of𝐺𝑣 is at most 𝑟 (𝑚−1, 𝑛) −1, where𝐺𝑣 is the subgraph

induced by the neighborhood of 𝑣 in 𝐺.

Denote by 𝑑 = 𝑟 (𝑚, 𝑛)−1 and 𝑎 = 𝑟 (𝑚−1, 𝑛)−1. From the induction hypothesis,
we have that for any sufficiently small 𝜖 > 0, there exists an integer 𝑛0 such that for
all 𝑛 ≥ 𝑛0,

𝑟 (𝑚, 𝑛) ≤ (1 + 𝜖) 𝑛𝑚−1

(log 𝑛)𝑚−2 , and 𝑟 (𝑚 − 1, 𝑛) ≤ (1 + 𝜖) 𝑛𝑚−2

(log 𝑛)𝑚−3 .

Note that 𝑑 ≥ 𝑎 + 1, it follows from Theorem 3.4 and Corollary 3.1 that
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58 3 Basic Probabilistic Method

𝑛 > 𝛼(𝐺) ≥ 𝑁 𝑓𝑎+1 (𝑑) ≥ 𝑁
log(𝑑/(𝑎 + 1)) − 1

𝑑
.

Since the function 𝑓𝑎 (𝑥) is decreasing on 𝑥, we obtain that

𝑛 > 𝑁
log(𝑟 (𝑚, 𝑛)/𝑎) − 1

𝑟 (𝑚, 𝑛) ≥ 𝑁
log(𝑛/log 𝑛) − 1

(1 + 𝜖)𝑛𝑚−1/(log 𝑛)𝑚−2 ,

which implies that for large 𝑛,

𝑟 (𝑚 + 1, 𝑛) = 𝑁 + 1 ≤ (1 + 2𝜖) 𝑛𝑚

(log 𝑛)𝑚−1 ,

completing the proof. □

In the following, we will give another application. Let us list two simple facts at
first.

Lemma 3.11 For any graph 𝐺 with average degree 𝑑, there is a subgraph 𝐻 of 𝐺
such that 𝛿(𝐻) ≥ 𝑑/2.

Proof. Let 𝐺 be a graph of order 𝑁 with average degree 𝑑 = 𝑑 (𝐺). As the case
𝑑 = 0 is trivial, we may assume 𝑑 > 0. If 𝛿(𝐺) ≥ 𝑑/2, then we have nothing to
do. Otherwise, deleting a vertex with degree less than 𝑑/2 from 𝐺, then the average
degree of the resulting graph, denoted by 𝐻, satisfies

𝑑 (𝐻) ≥ 𝑁𝑑 − 𝑑
𝑁 − 1

= 𝑑 (𝐺).

Repeat the process, we can obtain a subgraph with minimum degree at least 𝑑/2 as
desired. □

Lemma 3.12 If a graph 𝐺 of order 𝑁 has edge number 𝑒(𝐺) > (𝑚 − 1)𝑁 , then 𝐺
contains every tree with 𝑚 edges.

Proof. Since the average degree of 𝐺 is greater than 2(𝑚 − 1), it follows that 𝐺
contains a subgraph 𝐻 with minimum degree 𝛿(𝐻) > 𝑚 − 1. Let 𝑇𝑚+1 be a tree of
𝑚 edges. We can embed 𝑇𝑚+1 into 𝐻 inductively. Suppose that we have embedded
𝑇𝑘 which is the subtree of 𝑇𝑚+1 into 𝐻 for 𝑘 < 𝑚 + 1. Note that each vertex of 𝑇𝑘 has
at least one neighbor outside 𝑇𝑘 , thus we can easily find a larger subtree of 𝑇𝑚+1 as
desired. □

Conjecture 3.1 (Erdős-Sós) If 𝐺 is a graph on 𝑁 vertices with edge number 𝑒(𝐺) >
𝑚−1

2 𝑁 , then 𝐺 contains every tree with 𝑚 edges.

Ajtai, Komlós, Simonovits and Szemerédi announced (unpublished) that the con-
jecture is true for sufficiently large 𝑚. This conjecture is true for stars and paths, and
also many special cases are verified to be true, we refer the reader to Bollobás and
Eldridge (1978), Sauer and Spencer (1978), Woźniak (1996), Fan (2013) and other
related references.
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Now we generalize Theorem 3.4 as follows. Note the condition that 𝑁 (𝑣) has a
maximum degree at most𝑚 controls the number of edges in 𝑁 (𝑣) which are counted
twice in summation

∑
𝑥∈𝑁 (𝑣) 𝑑 (𝑥). Now, the condition that 𝑁 (𝑣) contains no 𝑇𝑚+1

can do the same thing.

Theorem 3.6 Let 𝐺 be a graph with 𝑁 vertices and average degree 𝑑. If each
neighborhood of 𝐺 contains no 𝑇𝑚+1, then

𝛼(𝐺) ≥ 𝑁 𝑓2𝑚−1 (𝑑).

If 𝑇𝑚+1 is a star or a path, then 𝑓2𝑚−1 can be replaced by 𝑓𝑚.

We conclude this section and hence this chapter with a conjecture of Ajtai, Erdős,
Komlós and Szemerédi (1981), which says that the independence numbers of 𝐾𝑚-
free graphs have the lower bound similar to that of triangle-free graphs.

Conjecture 3.2 For each fixed integer 𝑚 ≥ 3, there exists a constant 𝑐 = 𝑐(𝑚) > 0
such that if 𝐺 is a 𝐾𝑚-free graph with order 𝑁 and average degree 𝑑 > 0, then

𝛼(𝐺) ≥ 𝑐𝑁 log 𝑑
𝑑

.

For 𝑚 = 3, it has been verified to be true by Ajtai, Komlós and Szemerédi (1980).
For general 𝑚 ≥ 4, Shearer (1995) proved that 𝛼(𝐺) ≥ 𝑐𝑁

log 𝑑
𝑑 log log 𝑑 for the graphs

described in the above conjecture. To confirm the conjecture, a factor log log 𝑑 in
the denominator needs to be taken away.

3.6 Odd Cycle versus Large 𝑲𝒏

We have proved the Turán bound 𝛼(𝐺) ≥ ∑
𝑣

1
1+𝑑 (𝑣) in Section 3.3, where we labeled

vertices randomly. Let us have another result proven in the similar way. Given a graph
𝐺 with vertex set 𝑉 , we set

𝑁𝑖 (𝑣) = {𝑤 ∈ 𝑉 : 𝑑 (𝑤, 𝑣) = 𝑖},

which consists of all vertices of distance 𝑖 from vertex 𝑣 in 𝐺, and denote 𝑑𝑖 (𝑣) =
|𝑁𝑖 (𝑣) |. Thus 𝑑0 (𝑣) = 1 and 𝑑1 (𝑣) = 𝑑 (𝑣). We do not distinguish the subset 𝑁𝑖 (𝑣)
and the subgraph of 𝐺 induced by 𝑁𝑖 (𝑣) when there is no danger of confusion. The
graph 𝐺 is called (𝑚, 𝑘)-colorable if 𝑁𝑖 (𝑣) is 𝑘-colorable for any vertex 𝑣 and any
𝑖 ≤ 𝑚, that is, there is an assignment of 𝑘 colors on vertices of 𝑁𝑖 (𝑣) so that no
two adjacent vertices receive the same color. The following result was first obtained
by Shearer (1995) for graphs that has a small odd girth, where the odd girth is the
minimum length of an odd cycle in a graph.

Theorem 3.7 Let 𝑚 ≥ 2 and 𝑘 ≥ 1 be integers. If 𝐺 is an (𝑚, 𝑘)-colorable graph
with vertex set 𝑉 , then
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60 3 Basic Probabilistic Method

𝛼(𝐺) ≥ 𝑐
(∑︁
𝑣∈𝑉

𝑑 (𝑣)1/(𝑚−1)

) (𝑚−1)/𝑚

,

where 𝑐 = 1
𝑘2(𝑚−1)/𝑚 is a constant.

Lemma 3.13 If 𝐺 is an (1, 𝑘)-colorable graph with vertex set 𝑉 , then

𝛼(𝐺) ≥ 1
𝑘

∑︁
𝑣∈𝑉

𝑑1 (𝑣)
1 + 𝑑1 (𝑣) + 𝑑2 (𝑣)

.

Proof. Randomly label the vertices of 𝐺 with a permutation of integers 1, 2, . . . , 𝑁 ,
where 𝑁 = |𝑉 |. Let 𝑋 be the set consists of all vertices 𝑣 such that the minimum
label of the vertices in {𝑣} ∪ 𝑁1 (𝑣) ∪ 𝑁2 (𝑣) is on some vertex in 𝑁1 (𝑣). Hence
the probability that 𝑋 contains a vertex 𝑣 is 𝑑1 (𝑣)

1+𝑑1 (𝑣)+𝑑2 (𝑣) , which implies that the
expected size of 𝑋 is

∑
𝑣∈𝑉

𝑑1 (𝑣)
1+𝑑1 (𝑣)+𝑑2 (𝑣) . It follows that for certain fixed permutation

of integers from 1 to 𝑁 , we have

|𝑋 | ≥
∑︁
𝑣∈𝑉

𝑑1 (𝑣)
1 + 𝑑1 (𝑣) + 𝑑2 (𝑣)

.

We aim to find an independent set in this 𝑋 of size at least |𝑋 |/𝑘 .
To this end, we define a relation 𝑅 on 𝑋 as follows. Let 𝑢, 𝑣 ∈ 𝑋 . Call 𝑢 and 𝑣 satisfy

the relation 𝑅 if the minimum label on {𝑢} ∪ 𝑁1 (𝑢) ∪ 𝑁2 (𝑢) is precisely the same
as that on the vertices in {𝑣} ∪ 𝑁1 (𝑣) ∪ 𝑁2 (𝑣). Clearly 𝑅 is an equivalence relation,
and thus 𝑋 can be partitioned into certain equivalence classes 𝑋1, 𝑋2, . . . , 𝑋𝑝 for
some positive integer 𝑝. For each 1 ≤ 𝑖 ≤ 𝑝, by the definition of relation 𝑅, all
vertices in 𝑋𝑖 share a neighbor 𝑣𝑖 in common, such that for any 𝑤𝑖 ∈ 𝑋𝑖 , the label of
𝑣𝑖 ∈ 𝑁1 (𝑤𝑖) is the minimum label on vertices in {𝑤𝑖} ∪ 𝑁1 (𝑤𝑖) ∪ 𝑁2 (𝑤𝑖). Hence
𝑋𝑖 ⊆ 𝑁1 (𝑣𝑖) and 𝑣𝑖 ≠ 𝑣 𝑗 for 𝑖 ≠ 𝑗 .

We claim that there is no edge between 𝑋𝑖 and 𝑋 𝑗 whenever 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝.
To justify it, assume to the contrary: some 𝑤𝑖 ∈ 𝑋𝑖 is adjacent to some 𝑤 𝑗 ∈ 𝑋 𝑗 .
Therefore, 𝑣𝑖𝑤𝑖𝑤 𝑗𝑣 𝑗 forms a path of length three. By the definition of 𝑋𝑖 , we see
that the label on 𝑣𝑖 is minimum among {𝑤𝑖} ∪ 𝑁1 (𝑤𝑖) ∪ 𝑁2 (𝑤𝑖) and hence it is less
than that on 𝑣 𝑗 since 𝑣 𝑗 ∈ 𝑁2 (𝑤𝑖). Similarly, by considering 𝑤 𝑗 , we have that the
label on 𝑣 𝑗 is less than that on 𝑣𝑖 , yielding a contradiction.

Since 𝑋𝑖 ⊆ 𝑁1 (𝑣𝑖) for each 1 ≤ 𝑖 ≤ 𝑝 is 𝑘-colorable, there is an independent
set 𝑌𝑖 in 𝑋𝑖 with |𝑌𝑖 | ≥ |𝑋𝑖 |/𝑘 . It follows from the above claim that ∪𝑝

𝑖=1𝑌𝑖 is an
independent set of size at least

∑𝑝

𝑖=1 |𝑋𝑖 |/𝑘 = |𝑋 |/𝑘 , as desired. □

Lemma 3.14 If 𝐺 is an (𝑚, 𝑘)-colorable graph with vertex set 𝑉 , then for any
1 ≤ ℓ ≤ 𝑚 + 1,

𝛼(𝐺) ≥ 1
2𝑘

∑︁
𝑣∈𝑉

1 + 𝑑1 (𝑣) + · · · + 𝑑ℓ−1 (𝑣)
1 + 𝑑1 (𝑣) + · · · + 𝑑ℓ (𝑣)

.

Proof. The proof goes along the same line as that of the preceding lemma, so we
only give a sketch here.
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Randomly label the vertices of 𝐺 with a permutation of the integers 1, 2, . . . , 𝑁 ,
where 𝑁 = |𝑉 |. Let 𝑋 be the set consists of all vertices 𝑣 such that the minimum label
on the vertices in ∪ℓ

𝑗=0𝑁 𝑗 (𝑣) lies in ∪ℓ−1
𝑗=0𝑁 𝑗 (𝑣). Thus for certain fixed permutation

of the integers from 1 to 𝑁 , we have

|𝑋 | ≥
∑︁
𝑣∈𝑉

1 + 𝑑1 (𝑣) + · · · + 𝑑ℓ−1 (𝑣)
1 + 𝑑1 (𝑣) + · · · + 𝑑ℓ (𝑣)

.

We aim to prove that there is an independent set in this 𝑋 of size at least |𝑋 |/(2𝑘).
To this end, define an equivalence relation 𝑅 on 𝑋 such that 𝑢 ∼ 𝑣 in 𝑅 if the

minimum label on the vertices in ∪ℓ
𝑗=0𝑁 𝑗 (𝑢) is precisely the same as that on the

vertices in ∪ℓ
𝑗=0𝑁 𝑗 (𝑣). Hence 𝑋 can be partitioned into certain equivalence classes

𝑋1, 𝑋2, . . . , 𝑋𝑝 for some integer 𝑝 ≥ 1. For each 1 ≤ 𝑖 ≤ 𝑝, suppose that 𝑣𝑖 possesses
the minimum label on the vertices in ∪ℓ

𝑗=0𝑁 𝑗 (𝑢) for any 𝑢 ∈ 𝑋𝑖 . It is clear that the
distance between each vertex in 𝑋𝑖 and 𝑣𝑖 is at most ℓ − 1 from the definition of 𝑋 .

Based on these 𝑣𝑖 , we can deduce that there is no edge between 𝑋𝑖 and 𝑋 𝑗
whenever 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝. Now partition each 𝑋𝑖 into subsets 𝑋𝑖, 𝑗 , 1 ≤ 𝑗 ≤ ℓ − 1,
such that the distance between every vertex in 𝑋𝑖, 𝑗 and 𝑣𝑖 is 𝑗 . Since each 𝑋𝑖, 𝑗
contains an independent set 𝑌𝑖, 𝑗 of size at least |𝑋𝑖, 𝑗 |/𝑘 , where 1 ≤ 𝑖 ≤ 𝑝 and
0 ≤ 𝑗 ≤ ℓ − 1, it follows that one of⋃

1≤𝑖≤𝑝

⋃
𝑜𝑑𝑑 𝑗

𝑌𝑖, 𝑗 and
⋃

1≤𝑖≤𝑝

⋃
𝑒𝑣𝑒𝑛 𝑗

𝑌𝑖, 𝑗

is an independent set of size at least 1
2𝑘 | ∪

𝑝

𝑖=1 ∪
ℓ−1
𝑗=0 𝑋𝑖, 𝑗 | =

|𝑋 |
2𝑘 . □

Now, we are ready to give a proof for Theorem 3.7.

Proof of Theorem 3.7. Applying Lemma 3.13 and Lemma 3.14 repeatedly,

𝛼(𝐺) ≥ 1
𝑘 (𝑚 − 1)

∑︁
𝑣∈𝑉

(
𝑑1 (𝑣)

1 + 𝑑1 (𝑣) + 𝑑2 (𝑣)
+ 1 + 𝑑1 (𝑣) + 𝑑2 (𝑣)

2(1 + 𝑑1 (𝑣) + 𝑑2 (𝑣) + 𝑑3 (𝑣))

+ · · · + 1 + 𝑑1 (𝑣) + · · · + 𝑑𝑚−1 (𝑣)
2(1 + 𝑑1 (𝑣) + · · · + 𝑑𝑚 (𝑣))

)
.

Since the arithmetic mean (𝑥1 + 𝑥2 + · · · + 𝑥𝑛)/𝑛 is no less than the geometric mean
𝑛
√
𝑥1𝑥2 · · · 𝑥𝑛 by Lemma 3.7, we obtain that

𝛼(𝐺) ≥ 1
𝑘2(𝑚−2)/(𝑚−1)

∑︁
𝑣∈𝑉

(
𝑑1 (𝑣)

1 + 𝑑1 (𝑣) + · · · + 𝑑𝑚 (𝑣)

)1/(𝑚−1)
.

By the condition that 𝑁𝑖 (𝑣) is 𝑘-colorable, there is an independent set in 𝑁𝑖 (𝑣) of
size 𝛼𝑖 (𝑣) ≥ 𝑑𝑖 (𝑣)/𝑘 . Moreover, since there is no edge between 𝑁𝑖 (𝑣) and 𝑁 𝑗 (𝑣)
whenever 𝑖 − 𝑗 ≡ 0 (mod 2), we can deduce that

2𝛼(𝐺) ≥ 1 + 𝛼1 (𝑣) + · · · + 𝛼𝑚 (𝑣) ≥
1
𝑘
(1 + 𝑑1 (𝑣) + · · · + 𝑑𝑚 (𝑣)).
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62 3 Basic Probabilistic Method

Therefore

𝛼(𝐺) ≥ 1
𝑘2(𝑚−2)/(𝑚−1)

∑︁
𝑣∈𝑉

(
𝑑1 (𝑣)

2𝑘𝛼(𝐺)

)1/(𝑚−1)
,

the desired statement follows. □

Erdős et al. (1978) proved that 𝑟 (𝐶2𝑚+1, 𝐾𝑛) ≤ 𝑐𝑛1+1/𝑚 for fixed𝑚 ≥ 1, where 𝑐 =
𝑐(𝑚) > 0 is a constant. Li and Zang (2001, 2003), and Sudkov (2002) independently
obtained that 𝑟 (𝐶2𝑚+1, 𝐾𝑛) ≤ 𝑐(𝑛𝑚+1/log 𝑛)1/𝑚. We shall discuss the upper bound
of Ramsey number 𝑟 (𝐶2𝑚, 𝐾𝑛) in Chapter 7.

Lemma 3.15 Let 𝑚 ≥ 1 be an integer. If a graph 𝐺 contains no 𝐶2𝑚+1, then 𝐺 is
(𝑚, 2𝑚 − 1)-colorable.

Proof. Let 𝐺 be defined on vertex set 𝑉 . We assume that 𝐺 is connected without
loss of generality. For a fixed vertex 𝑣 and any 𝑖 ≤ 𝑚, we need to verify that 𝑁𝑖 (𝑣)
is (2𝑚 − 1)-colorable, where 𝑁𝑖 (𝑣) is the vertex subset consists of all vertices of
distance 𝑖 from vertex 𝑣 in 𝐺. It is easy to see that there is a spanning tree 𝑇 of 𝐺
rooted at 𝑣 such that 𝑑𝑇 (𝑣, 𝑥) = 𝑑𝐺 (𝑣, 𝑥) for any vertex 𝑥 of 𝐺, namely, 𝑇 preserves
the distance from 𝑣 to any 𝑥. Embed 𝑇 on a plane such that there is no edges of 𝑇
crossing and label all vertices in a dictionary order.

For a fixed 𝑖, 1 ≤ 𝑖 ≤ 𝑚, suppose that 𝑁𝑖 (𝑣) = {𝑦1, 𝑦2, . . . } as labeled and
𝑑𝑖 (𝑣) = |𝑁𝑖 (𝑣) | ≥ 2𝑚 − 1. Consider the subgraph 𝐻𝑖 of 𝐺 induced by 𝑁𝑖 (𝑣), and
assign each edge of 𝐻𝑖 a direction from the end vertex of smaller index to the larger
one.

Claim For 1 ≤ 𝑖 ≤ 𝑚, 𝐻𝑖 contains no directed path of length 2𝑚 − 1.

Proof. Suppose that for some 1 ≤ 𝑖 ≤ 𝑚, 𝐻𝑖 contains a directed path of length
2𝑚 − 1 on vertices in order as 𝑦𝑘1 𝑦𝑘2 . . . 𝑦𝑘2𝑚 with 𝑘1 < 𝑘2 < · · · < 𝑘2𝑚. Let us
write 𝑣 𝑗 = 𝑦𝑘 𝑗 and let

𝑑∗ = max
1≤ 𝑗≤2𝑚−1

𝑑𝑇 (𝑣 𝑗 , 𝑣 𝑗+1) := 𝑑𝑇 (𝑣𝑠 , 𝑣𝑠+1).

From the construction of 𝑇 and the labeling of 𝑁1 (𝑣), . . . , 𝑁𝑖 (𝑣), we know that for
any pair 𝑟 and 𝑡 with 1 ≤ 𝑟 ≤ 𝑠 and 𝑠 + 1 ≤ 𝑡 ≤ 2𝑚,

𝑑∗ = 𝑑𝑇 (𝑣𝑟 , 𝑣𝑡 ).

Moreover, whatever the value of 𝑑∗, we would find a cycle 𝐶2𝑚+1 of 𝐺, which
would yield a contradiction as desired. For example, if 𝑑∗ = 2, then by noting that
𝑑𝑇 (𝑣1, 𝑣2𝑚) = 2 and there is a unique path in𝑇 , say 𝑣1𝑢𝑣2𝑚, connecting 𝑣1 and 𝑣2𝑚 of
length 𝑑∗ = 2, we obtain that 𝑢𝑣1𝑣2 . . . 𝑣2𝑚𝑢 form a𝐶2𝑚+1 in𝐺, which is impossible.
Generally, suppose that 𝑑∗ = 2ℎ for 1 ≤ ℎ ≤ 𝑚. Then 𝑑𝑇 (𝑣ℎ, 𝑣2𝑚−ℎ+1) = 2ℎ, and
hence the unique path of length 2ℎ in 𝑇 connecting 𝑣ℎ and 𝑣2𝑚−ℎ+1 and the path
𝑣ℎ . . . 𝑣2𝑚−ℎ+1 would form a 𝐶2𝑚+1 in 𝐺, which is impossible. □

We may suppose that 𝐻 is connected. Fix a vertex 𝑦0 ∈ 𝑁𝑖 (𝑣), and we assign
color ℓ to a vertex 𝑦 ∈ 𝑁𝑖 (𝑣) if the maximum length of the directed path between 𝑦
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and 𝑦0 in 𝑁𝑖 (𝑣) is ℓ. Clearly, any two adjacent vertices receive distinct colors. Note
that the maximum length of directed path in 𝑁𝑖 (𝑣) is at most 2𝑚 − 2, so we just use
colors of {0, 1, . . . , 2𝑚 − 2}, and thus 𝑁𝑖 (𝑣) is (2𝑚 − 1)-colorable. □

Now we give the upper bound for 𝑟 (𝐶2𝑚+1, 𝐾𝑛) for 𝑚 ≥ 2.

Theorem 3.8 Let 𝑚 ≥ 2 be a fixed integer. For all sufficiently large 𝑛,

𝑟 (𝐶2𝑚+1, 𝐾𝑛) ≤ 𝑐
𝑛1+1/𝑚

(log 𝑛)1/𝑚 ,

where 𝑐 = 𝑐(𝑚) > 0 is a constant.

Proof. Let 𝑁 = 𝑟 (𝐶2𝑚+1, 𝐾𝑛) − 1. Let 𝐺 be a 𝐶2𝑚+1-free graph on 𝑁 vertices
with 𝛼(𝐺) ≤ 𝑛 − 1. Suppose that 𝑁 > 𝑐 𝑛1+1/𝑚

(log 𝑛)1/𝑚 for some suitable constant
𝑐 > 0, we aim to find a contradiction. Let 𝑉 be the vertex set of 𝐺, and let
𝑑 = 𝑁1/(𝑚+1) (log 𝑁)𝑚/(𝑚+1) . Denote

𝑉0 = {𝑣 ∈ 𝑉 | 𝑑 (𝑣) < 𝑑},

and 𝑉1 = 𝑉 \𝑉0. In the following, 𝑐𝑖 = 𝑐𝑖 (𝑚) are all positive constants.

Case 1 |𝑉0 | > 𝑁/2.

Let 𝐺1 be the subgraph of 𝐺 induced by 𝑉0. Then the average degree of 𝐺1 is at
most 𝑑. For any vertex 𝑣 ∈ 𝑉0, the neighborhood 𝑁𝐺1 (𝑣) in 𝐺1 does not contain a
path of order 2𝑚, so Theorem 3.6 implies that for large 𝑛,

𝛼(𝐺) ≥ 𝑐1𝑁 log 𝑑
𝑑

≥ 𝑐2 (𝑁𝑚 log 𝑁)1/(𝑚+1)
> 𝑛.

Case 2 |𝑉1 | ≥ 𝑁/2.

By Theorem 3.7, we obtain that for large 𝑛,

𝛼(𝐺) ≥ 𝑐3

(∑︁
𝑣∈𝑉

𝑑 (𝑣)1/(𝑚−1)

) (𝑚−1)/𝑚

≥ 𝑐3

( ∑︁
𝑣∈𝑉1

𝑑 (𝑣)1/(𝑚−1)

) (𝑚−1)/𝑚

≥ 𝑐4𝑁
(𝑚−1)/𝑚𝑑1/𝑚 ≥ 𝑐5

(
𝑁𝑚 log 𝑁

)1/(𝑚+1)
> 𝑛,

completing the proof. □

The following proof is due to Sudakov (2002) that in fact contains a deterministic
algorithm.

The Second Proof of Theorem 3.8. Let

𝑁 =

⌊
𝑎𝑛1+1/𝑚

(log 𝑛)1/𝑚

⌋
, and 𝑑 = 𝑏𝑛1/𝑚 (log 𝑛) (𝑚−1)/𝑚.
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64 3 Basic Probabilistic Method

where 𝑎 = 𝑎(𝑚) and 𝑏 = 𝑏(𝑚) are constants to be chosen. Let 𝐺 be a graph of
order 𝑁 that contains no 𝐶2𝑚+1. We aim to verify that 𝛼(𝐺) ≥ 𝑛, which implies that
𝑟 (𝐶2𝑚+1, 𝐾𝑛) ≤ 𝑁 . Starting with 𝐺′ = 𝐺 and 𝐼 = ∅. If 𝐺′ has a vertex of degree
greater than 𝑑 we do the following iterative procedure, otherwise, we stop.

Pick a vertex 𝑣 with 𝑑 (𝑣) = 𝑑1 (𝑣) > 𝑑. Since

𝑑𝑚+1(𝑣) = 𝑑1 (𝑣)
𝑑2 (𝑣)
𝑑1 (𝑣)

· · · 𝑑𝑚+1 (𝑣)
𝑑𝑚 (𝑣)

≤ 𝑁,

there exists some 𝑖, 1 ≤ 𝑖 ≤ 𝑚, such that

𝑑𝑖+1 (𝑣)
𝑑𝑖 (𝑣)

≤
(
𝑁

𝑑

)1/𝑚
≤

(
𝑎𝑛

𝑏 log 𝑛

)1/𝑚
.

Take the smallest 𝑖 with this property. Note that 𝑑1 (𝑣) > (𝑁/𝑑)1/𝑚 and thus we have
𝑑𝑖 (𝑣)/𝑑𝑖−1 (𝑣) > (𝑁/𝑑)1/𝑚, so

𝑑𝑖−1 (𝑣)
𝑑𝑖 (𝑣)

<

(
𝑑

𝑁

)1/𝑚
< 1

for large 𝑛. By Lemma 3.15, 𝑁𝑖 (𝑣) is (2𝑚 − 1)-colorable hence it contains an
independent set 𝐼 ′ of size |𝐼 ′ | ≥ 𝑑𝑖 (𝑣)/(2𝑚 − 1). Enlarge 𝐼 to 𝐼 ∪ 𝐼 ′ and remove
𝑁𝑖−1 (𝑣) ∪ 𝑁𝑖 (𝑣) ∪ 𝑁𝑖+1 (𝑣) from 𝐺′. Note that

𝑑𝑖−1 (𝑣) + 𝑑𝑖 (𝑣) + 𝑑𝑖+1 (𝑣) =
(
𝑑𝑖−1 (𝑣)
𝑑𝑖 (𝑣)

+ 1 + 𝑑𝑖+1 (𝑣)
𝑑𝑖 (𝑣)

)
𝑑𝑖 (𝑣)

≤
(
2 +

(
𝑎𝑛

𝑏 log 𝑛

)1/𝑚
)
𝑑𝑖 (𝑣)

≤ (2𝑚 − 1)
(
2 +

(
𝑎𝑛

𝑏 log 𝑛

)1/𝑚
)
|𝐼 ′ |

= 𝐴|𝐼 ′ |

for any large 𝑛, where 𝐴 = (2𝑚 − 1) (2 + ( 𝑎𝑛
𝑏 log 𝑛 )

1/𝑚). Clearly all neighbors of 𝐼 ′
have been removed thus 𝐼 is an independent set after each step, and the ratio between
the number of removed vertices and |𝐼 | is at most 𝐴.

Let 𝐺1 = (𝑉1, 𝐸1) be a graph in the end of the process, and 𝐺2 = (𝑉2, 𝐸2) be
the graph induced by all removed vertices 𝑉2 = 𝑉 \ 𝑉1. We distinguish two cases
depending on |𝑉2 |.

Case 1 |𝑉2 | > 𝑁/2.

𝐺2 has an independent set 𝐼 of size at least

|𝐼 | > 𝑁/2
𝐴

≥ (1 − 𝑜(1))𝑛 𝑎

2(2𝑚 − 1)

(
𝑏

𝑎

)1/𝑚
> 𝑛
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for large 𝑛 if 𝑎 and 𝑏 satisfy

𝑎

2(2𝑚 − 1)

(
𝑏

𝑎

)1/𝑚
> 1 (3.3)

Case 2 |𝑉2 | ≤ 𝑁/2.

In this case, |𝑉1 | > 𝑁/2. Since no vertices in 𝐺1 has degree greater than 𝑑, so
the average degree of 𝐺1 is at most 𝑑, and each subgraph induced by a neighbor of
𝐺1 does not contain a path of length 2𝑚 − 1 since 𝐺1 does not contain 𝐶2𝑚+1. By
Theorem 3.6, we have

𝛼(𝐺) ≥ 𝛼(𝐺1) ≥
𝑁

2
log(𝑑/(2𝑚)) − 1

𝑑
≥ 𝑎

2𝑏𝑚
𝑛 > 𝑛

for large 𝑛 if 𝑎 and 𝑏 satisfy
𝑎

2𝑏𝑚
> 1. (3.4)

To obtain the desired constants 𝑎 and 𝑏, let us look at the case where the equality
holds for (3.3) and (3.4). Set 𝑎/𝑏 = 2𝑚 and 𝑎 = 2(2𝑚 − 1) (2𝑚)1/𝑚. To get what we
want, just perturb this solution a little bit, when 𝑎 and 𝑏 are slightly larger, such that
both (3.3) and (3.4) are satisfied. Thus for all sufficiently large 𝑛,

𝑟 (𝐶2𝑚+1, 𝐾𝑛) ≤ (1 + 𝑜(1))2(2𝑚 − 1) (2𝑚)1/𝑚
(
𝑛𝑚+1

log 𝑛

)1/𝑚
,

completing the proof. □

3.7 The First Two Moments

Let 𝑋 be a random variable, where 𝑋 takes {𝑎𝑖 |𝑖 = 1, 2, . . . }. The expected value
𝐸 (𝑋) of 𝑋 is defined to be

𝐸 (𝑋) =
∑︁
𝑖

𝑎𝑖 Pr(𝑋 = 𝑎𝑖).

Theorem 3.9 (Markov’s Inequality) Let 𝑋 be a nonnegative random variable. If
𝑎 > 0, then

Pr(𝑋 ≥ 𝑎) ≤ 𝐸 (𝑋)
𝑎

.

Proof. Suppose that {𝑎𝑖 |𝑖 = 1, 2, . . . } is the set of all values that 𝑋 takes. We have
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66 3 Basic Probabilistic Method

𝐸 (𝑋) =
∑︁
𝑖

𝑎𝑖 Pr(𝑋 = 𝑎𝑖) ≥
∑︁
𝑎𝑖≥𝑎

𝑎𝑖 Pr(𝑋 = 𝑎𝑖)

≥ 𝑎
∑︁
𝑎𝑖≥𝑎

Pr(𝑋 = 𝑎𝑖) = 𝑎 Pr(𝑋 ≥ 𝑎),

as required. □

Corollary 3.2 If a random variable 𝑋 only takes nonnegative integer values and
𝐸 (𝑋) < 1, then Pr(𝑋 ≥ 1) < 1. In particular, Pr(𝑋 = 0) > 0.

This is exactly what we used to obtain lower bounds of Ramsey numbers in the
last chapter, e.g. Theorem 3.1.

For a positive integer 𝑘 , the 𝑘th moment of a real-valued random variable 𝑋 is
defined to be 𝐸 (𝑋 𝑘), and so the first moment is simply the expected value. Denote
by 𝜇 = 𝐸 (𝑋), and define the variance of 𝑋 as 𝐸 ((𝑋 − 𝜇)2), which is denoted by 𝜎2.
A basic equality is as follows.

𝜎2 = 𝐸 ((𝑋 − 𝜇)2) = 𝐸 (𝑋2) − 𝜇2.

Also, we call
𝜎 =

√︃
𝐸 ((𝑋 − 𝜇)2)

as the standard deviation of 𝑋 .

Theorem 3.10 (Chebyshev’s Inequality) Let 𝑋 be a random variable. For any
𝑎 > 0,

Pr( |𝑋 − 𝜇 | ≥ 𝑎) ≤ 𝜎2

𝑎2 .

Proof. By Markov’s inequality,

Pr((𝑋 − 𝜇)2 ≥ 𝑎2) ≤ 𝐸 ((𝑋 − 𝜇)2))
𝑎2 .

The assertion follows since 𝜎2 = 𝐸 ((𝑋 − 𝜇)2). □

By importance, the second moment 𝐸 (𝑋2) is second to the first moment 𝐸 (𝑋).
The use of Chebyshev’s Inequality is always called the second moment method.

Lemma 3.16 (Second Moment Method) If 𝑋 is a random variable, then

Pr(𝑋 = 0) ≤ 𝜎2

𝜇2 =
𝐸 (𝑋2) − 𝜇2

𝜇2 ,

where 𝜇 = 𝐸 (𝑋). In particular, Pr(𝑋 = 0) → 0 if 𝐸 (𝑋2)/𝜇2 → 1.

Proof. By Chebyshev’s inequality,

Pr(𝑋 = 0) ≤ Pr( |𝑋 − 𝜇 | ≥ 𝜇) ≤ 𝜎2

𝜇2
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3.8 Chernoff Bounds 67

as desired. □

Intuitively, if 𝜎 grows more slowly than 𝜇 grows, than Pr(𝑋 = 0) → 0 since 𝜎
“pulls” 𝑋 close to 𝜇 thus far away from zero.

3.8 Chernoff Bounds

The Chebshev’s inequality is in fact the Markov’s inequality on random variable
|𝑋 − 𝜇 |. However, Chebshev’s inequality states the probability of a random variable
𝑋 apart from 𝐸 (𝑋) is bounded. When this is the case, we say that 𝑋 is concentrated.
A concentration bound is used to show that a random variable is very close to
its expected value with high probability, so it behaves approximately as one may
“expect” it to be.

Chernoff bounds, named after Herman Chernoff, gives exponentially decreasing
bounds on tail distributions of sums of independent random variables. They are
sharper bounds than the known first or second moment based tail bounds such as
Markov’s inequality or Chebyshev’s inequality, which only yield power-law bounds
on tail decay. But Chernoff bounds require the variables to be independent – a
condition that neither the Markov’s inequality nor the Chebyshev’s inequality require.

When 𝑆𝑛 is the sum of 𝑛 independent variables, each variable equals to 1 with
probability 𝑝 and −1 with probability 1 − 𝑝, respectively, the bound can be sharper.
Most of the results in this chapter may be found in, or immediately derived from, the
seminal paper of Chernoff (1952) while our proofs are self-contained. Recall a set
of random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 are said to be mutually independent if each 𝑋𝑖
is independent of any Boolean expression formed from other (𝑋 𝑗 )′𝑠.

In any form of the Chernoff bounds, we have the following assumption.

Assumption A: Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be mutually independent variables with the same
binomial distribution.

Set

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑋𝑖 .

All concentration bounds in the remaining part of this section are Chernoff bounds
of different forms, which estimate the probability of

Pr(𝑆𝑛 ≥ 𝑛(𝜇 + 𝛿)),

where 𝜇 = 𝐸 (𝑋𝑖). The symmetric bound on Pr(𝑆𝑛 ≤ 𝑛(𝜇 − 𝛿)) can be obtained
similarly.

Theorem 3.11 Under Assumption A, and suppose

Pr(𝑋𝑖 = 1) = Pr(𝑋𝑖 = −1) = 1
2
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68 3 Basic Probabilistic Method

for 𝑖 = 1, 2, . . . , 𝑛. For any 𝛿 > 0,

Pr(𝑆𝑛 ≥ 𝑛𝛿) < exp{−𝑛𝛿2/2}.

In particular, Pr(𝑆𝑛 ≥ 𝑎) < exp{−𝑎2/(2𝑛)} for any 𝑎 > 0.

Proof. Let 𝜆 > 0 be arbitrary. Clearly,

𝐸 (𝑒𝜆𝑋𝑖 ) = 𝑒𝜆 + 𝑒−𝜆
2

.

Therefore,

𝐸 (𝑒𝜆𝑆𝑛 ) = 𝐸 (𝑒𝜆𝑋1 )𝐸 (𝑒𝜆𝑋2 ) · · · 𝐸 (𝑒𝜆𝑋𝑛 )

=

(
𝑒𝜆 + 𝑒−𝜆

2

)𝑛
< 𝑒𝑛𝜆

2/2,

where the inequality follows by noticing Lemma 3.4. Thus, by Markov’s inequality,
we have that for all 𝜆 > 0,

Pr(𝑆𝑛 ≥ 𝑛𝛿) = Pr(𝑒𝜆𝑆𝑛 ≥ 𝑒𝜆𝑛𝛿) ≤ 𝐸 (𝑒𝜆𝑆𝑛 )
𝑒𝜆𝑛𝛿

< exp{𝑛(𝜆2/2 − 𝜆𝛿)}.

Setting 𝜆 = 𝛿, we obtain the desired result. □

Since 𝑋𝑖 is often an indicator variable of some random event, so 𝑋𝑖 takes 1 when
the event appears and 0 otherwise. The following form of Chernoff bound may be
used in more cases.

Theorem 3.12 Under Assumption A, and suppose

Pr(𝑋𝑖 = 1) = Pr(𝑋𝑖 = 0) = 1
2

for 𝑖 = 1, 2, . . . , 𝑛. For any 𝛿 > 0,

Pr(𝑆𝑛 ≥ 𝑛(1 + 𝛿)/2) < exp{−𝑛𝛿2/2}.

Namely, Pr(𝑆𝑛 ≥ 𝑛(1/2 + 𝛿) < exp{−2𝑛𝛿2}.

Proof. Set 𝑌𝑖 = 2𝑋𝑖 − 1 and 𝑇𝑛 =
∑𝑛
𝑖=1𝑌𝑖 = 2𝑆𝑛 − 𝑛. Then

Pr(𝑌𝑖 = 1) = Pr(𝑌𝑖 = −1) = 1
2
,

and {𝑌𝑖 |𝑖 = 1, 2, . . . , 𝑛} satisfies Assumption A. Note that 𝑆𝑛 ≥ 𝑛(1 + 𝛿)/2 if and
only if 𝑇𝑛 ≥ 𝑛𝛿. By Theorem 3.11,

Pr(𝑆𝑛 ≥ 𝑛(1 + 𝛿)/2) = Pr(𝑇𝑛 ≥ 𝑛𝛿) < exp{−𝑛𝛿2/2}

as claimed. □
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3.8 Chernoff Bounds 69

Under Assumption A, and suppose

Pr(𝑋𝑖 = 1) = 𝑝, and Pr(𝑋𝑖 = 0) = 1 − 𝑝

for 𝑖 = 1, 2, . . . , 𝑛. We say that the sum 𝑆𝑛 =
∑𝑛
𝑖=1 𝑋𝑖 has binomial distribution,

denoted by 𝐵(𝑛, 𝑝). Involved in Theorem 3.12 is the special binomial distribution
𝐵(𝑛, 1/2). For the general case, the calculation is slightly more complicated, but the
technique is the same. As usual, denote by 𝑞 for 1 − 𝑝.

Theorem 3.13 Under Assumption A, and suppose

Pr(𝑋𝑖 = 1) = 𝑝 and Pr(𝑋𝑖 = 0) = 𝑞

for 𝑖 = 1, 2, . . . , 𝑛. There exists 𝛿0 = 𝛿0 (𝑝) > 0 so that if 0 < 𝛿 < 𝛿0, then

Pr(𝑆𝑛 ≥ 𝑛(𝑝 + 𝛿)) < exp{−𝑛𝛿2/(3𝑝𝑞)}.

Proof. Denote 𝑎 = 𝑝 + 𝛿. By the same argument as in Theorem 3.11,

Pr(𝑆𝑛 ≥ 𝑛𝑎) = Pr(𝑒𝜆𝑆𝑛 ≥ 𝑒𝜆𝑛𝑎) ≤ 1
𝑒𝜆𝑛𝑎

𝐸 (𝑒𝜆𝑆𝑛 )

=
1

𝑒𝜆𝑛𝑎
(𝑝𝑒𝜆 + 𝑞)𝑛 = (𝑝𝑒𝜆(1−𝑎) + 𝑞𝑒−𝜆𝑎)𝑛

for all 𝜆 > 0. Let 𝑐 = 1 − 𝑎 = 𝑞 − 𝛿 > 0. Note that 𝑝𝑒𝜆(1−𝑎) + 𝑞𝑒−𝜆𝑎 is convex on 𝜆,
and so it attains the minimum value by taking 𝜆0 = log(𝑎𝑞/𝑐𝑝), i.e.,

min
𝜆>0

(𝑝𝑒𝜆𝑐 + 𝑞𝑒−𝜆𝑎) = 𝑒−𝜆0𝑎 (𝑝𝑒𝜆0 + 𝑞) =
(
𝑐𝑝

𝑎𝑞

)𝑎
𝑞

𝑐
=

( 𝑝
𝑎

)𝑎 ( 𝑞
𝑐

)𝑐
.

Note that
log(1 + 𝑥) = 𝑥 − 𝑥2

2
+ 𝑥

3

3
+𝑂 (𝑥4).

Recall 𝑎 = 𝑝 + 𝛿, it follows that for 0 < 𝛿 < 1 − 𝑝,

log
( 𝑝
𝑎

)𝑎
= (𝑝 + 𝛿) log

(
1 − 𝛿

𝑝 + 𝛿

)
= −𝛿 − 𝛿2

2(𝑝 + 𝛿) −
𝛿3

3(𝑝 + 𝛿)2 + 𝑜(𝛿3),

and

log
( 𝑞
𝑐

)𝑐
= (𝑞 − 𝛿) log

(
1 + 𝛿

𝑞 − 𝛿

)
= 𝛿 − 𝛿2

2(𝑞 − 𝛿) +
𝛿3

3(𝑞 − 𝛿)2 + 𝑜(𝛿3).

Adding them by terms, the first sum vanishes, and the second is
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70 3 Basic Probabilistic Method

−𝛿2

2

(
1

𝑝 + 𝛿 + 1
𝑞 − 𝛿

)
=
−𝛿2

2

(
1

𝑝(1 + 𝛿/𝑝) +
1

𝑞(1 − 𝛿/𝑞)

)
=
−𝛿2

2

(
1
𝑝𝑞

− (𝑞2 − 𝑝2)𝛿
𝑝2𝑞2 + 𝑜(𝛿)

)
=

−𝛿2

2𝑝𝑞
+ (𝑞 − 𝑝)𝛿3

2𝑝2𝑞2 + 𝑜(𝛿3),

and the third is

𝛿3

3

(
1

(𝑞 − 𝛿)2 − 1
(𝑝 + 𝛿)2

)
=
𝛿3

3

(
1
𝑞2 − 1

𝑝2 +𝑂 (𝛿)
)

=
−(𝑞 − 𝑝)𝛿3

3𝑝2𝑞2 + 𝑜(𝛿3).

Therefore, for sufficiently small 𝛿 > 0,

log
[( 𝑝
𝑎

)𝑎 ( 𝑞
𝑐

)𝑐]
=

−𝛿2

2𝑝𝑞
+ (𝑞 − 𝑝)𝛿3

6𝑝2𝑞2 + 𝑜(𝛿3) < −𝛿2

3𝑝𝑞
,

it follows that
Pr(𝑆𝑛 ≥ 𝑛(𝑝 + 𝛿)) < exp{−𝑛𝛿2/(3𝑝𝑞)},

completing the proof. □

From the above proof for 𝑝 > 𝑞 and Theorem 3.12 for 𝑝 = 𝑞 = 1/2, we see that
if 𝑝 ≥ 1/2, the bound can be improved slightly as

Pr(𝑆𝑛 > 𝑛(𝑝 + 𝛿)) < exp{−𝑛𝛿2/(2𝑝𝑞)}.

We now write out a symmetric form for Theorem 3.13, and omit those for Theorem
3.11 and Theorem 3.12.

Theorem 3.14 Under Assumption A, and suppose

Pr(𝑋𝑖 = 1) = 𝑝 and Pr(𝑋𝑖 = 0) = 𝑞

for 𝑖 = 1, 2, . . . , 𝑛. There exists 𝛿0 = 𝛿0 (𝑝) > 0 such that if 0 < 𝛿 < 𝛿0, then

Pr(𝑆𝑛 ≤ 𝑛(𝑝 − 𝛿)) < exp{−𝑛𝛿2/(3𝑝𝑞)}.

Therefore, Pr( |𝑆𝑛 − 𝑛𝑝 | > 𝑛𝛿)) < 2 exp{−𝑛𝛿2/(3𝑝𝑞)}.

From the proof of Theorem 3.13, we have

Pr(𝑆𝑛 ≥ 𝑛𝑎) ≤
(( 𝑝
𝑎

)𝑎 ( 𝑞
𝑐

)𝑐)𝑛
= exp

{
𝑛

(
𝑎 log

𝑝

𝑎
+ (1 − 𝑎) log

𝑞

1 − 𝑎

)}
,

where 𝑐 = 1 − 𝑎. Let 𝐻 (𝑥) signify the entropy function, i.e.
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3.8 Chernoff Bounds 71

𝐻 (𝑥) = 𝑥 log
𝑝

𝑥
+ (1 − 𝑥) log

𝑞

1 − 𝑥 , 0 < 𝑥 < 1.

Thus
Pr(𝑆𝑛 ≥ 𝑘) ≤ exp{𝑛𝐻 (𝑘/𝑛)},

which is valid also for 𝑘 = 𝑛𝑝 since 𝐻 (𝑝) = 0.

The following form of Chernoff bound was used by Beck (1983).

Theorem 3.15 Under Assumption A, and suppose

Pr(𝑋𝑖 = 1) = 𝑝 and Pr(𝑋𝑖 = 0) = 𝑞

for 𝑖 = 1, 2, . . . , 𝑛. If 𝑘 ≥ 𝑛𝑝, then

Pr(𝑆𝑛 ≥ 𝑘) ≤
(𝑛𝑝
𝑘

) 𝑘 ( 𝑛𝑞

𝑛 − 𝑘

)𝑛−𝑘
.

Consequently,

Pr(𝑆𝑛 ≥ 𝑘) ≤
(𝑛𝑝𝑒
𝑘

) 𝑘
.

Proof. The right hand side of the first inequality is just exp{𝑛𝐻 (𝑘/𝑛)}. For the
second inequality, simply note that( 𝑛𝑞

𝑛 − 𝑘

)𝑛−𝑘
≤

( 𝑛

𝑛 − 𝑘

)𝑛−𝑘
=

(
1 + 𝑘

𝑛 − 𝑘

)𝑛−𝑘
< 𝑒𝑘 .

Thus the required result follows. □

Recall that 𝑟𝑘 (𝐺) is the smallest integer 𝑁 such that in any 𝑘−coloring of edges
of 𝐾𝑁 , there is a monochromatic 𝐺. Chung and Graham (1975), and Erdős (1981)
proposed a problem to determine 𝑟𝑘 (𝐾𝑚,𝑛). We now give a lower bound for it as 𝑘
and 𝑚 are fixed and 𝑛 → ∞, in which

√︁
𝑛 log 𝑛 can be replaced by

√
𝑛 𝜔(𝑛), where

𝜔(𝑛) → ∞.

Theorem 3.16 Let 𝑘 and 𝑚 be fixed positive integers. There exists a constant 𝑐 =

𝑐(𝑘, 𝑚) > 0 such that
𝑟𝑘 (𝐾𝑚,𝑛) ≥ 𝑘𝑚𝑛 − 𝑐

√︁
𝑛 log 𝑛

for all large 𝑛.

Proof. Set 𝑁 = 𝑘𝑚𝑛 − 𝑐
√︁
𝑛 log 𝑛, where 𝑐 is a constant to be determined. Then

𝑛 =

(
1
𝑘𝑚

+
𝑐
√︁
𝑛 log 𝑛
𝑘𝑚𝑁

)
𝑁 > (𝑘−𝑚 + 𝛿𝑛)𝑁 = (𝑝 + 𝛿𝑛)𝑁,

where 𝑝 = 𝑘−𝑚 and 𝛿𝑛 = 𝑐

2𝑘2𝑚

√︃
log 𝑛
𝑛

. Let us color the edges of 𝐾𝑁+𝑚 with 𝑘 colors
randomly and independently, such that each edge is assigned in each color with
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72 3 Basic Probabilistic Method

probability 1/𝑘 . Consider a fixed color, say color 𝐴, and an arbitrary but fixed set𝑈
of 𝑚 vertices. Let 𝑣1, 𝑣2, . . . , 𝑣𝑁 be the 𝑁 vertices outside 𝑈. For each 𝑗 , define a
random variable 𝑋 𝑗 such that 𝑋 𝑗 = 1 if the edges between 𝑣 𝑗 and 𝑈 are all in color
𝐴 and 0 otherwise. Then Pr(𝑋 𝑗 = 1) = 𝑘−𝑚 = 𝑝. Set 𝑆𝑁 =

∑𝑁
𝑖=1 𝑋 𝑗 . Clearly 𝑆𝑁

has the binomial distribution 𝐵(𝑁, 𝑝) and the event 𝑆𝑁 ≥ 𝑛 means that there is a
monochromatic 𝐾𝑚,𝑛 in color 𝐴 (in which𝑈 is the 𝑚-vertex part). Hence

Pr(∃ monochromatic 𝐾𝑚,𝑛) ≤ 𝑘

(
𝑁 + 𝑚
𝑚

)
Pr(𝑆𝑁 ≥ 𝑛).

By virtue of Chernoff bound (Theorem 3.13)

Pr(𝑆𝑁 ≥ 𝑛) ≤ Pr(𝑆𝑁 ≥ (𝑝 + 𝛿𝑛)𝑁) ≤ exp{−𝑁𝛿2
𝑛/(3𝑝𝑞)}.

From the facts that

−𝑁𝛿
2
𝑛

3𝑝𝑞
∼ −𝑐2 log 𝑛

12𝑘𝑚 (𝑘𝑚 − 1)
and

𝑘

(
𝑁 + 𝑚
𝑚

)
= 𝑂 (𝑛𝑚) = 𝑂

(
𝑒𝑚 log 𝑛

)
,

we have that the probability that there exists monochromatic 𝐾𝑚,𝑛 tends to zero as
𝑁 → ∞ if 𝑐 ≥ 𝑘𝑚

√
12𝑚, which guarantees the existence of an edge-coloring of

𝐾𝑁+𝑚 with no monochromatic 𝐾𝑚,𝑛, implying that 𝑟𝑘 (𝐾𝑚,𝑛) > 𝑁 + 𝑚 for all large
𝑛. □

Let 𝐵 (𝑚)
𝑛 be the book graph that consists of 𝑛 copies of 𝐾𝑚+1 sharing a common

𝐾𝑚. The above result clearly implies that for fixed 𝑘, 𝑚 ≥ 1, there is a constant
𝑐 = 𝑐(𝑘, 𝑚) > 0 such that

𝑟𝑘 (𝐵 (𝑚)
𝑛 ) ≥ 𝑘𝑚𝑛 − 𝑐

√︁
𝑛 log 𝑛

for all large 𝑛.
Most cases to apply Chernoff bounds are in random graphs, some of which will

be discussed in the next chapter.

3.9 Exercises

1. Let 𝐵1, . . . , 𝐵𝑡 be a partition of a sample Ω. Adam’s Theorem states that for
every event 𝐴, Pr(𝐴) = ∑

𝑖 Pr(𝐴|𝐵𝑖) Pr(𝐵𝑖). Prove this theorem. Using it, show that
Pr(𝐴) ≤ max𝑖 Pr(𝐴|𝐵𝑖).

2. Prove that in the random graph space G(𝑛, 𝑝), it holds∑︁
𝐺: 𝑒∈𝐸 (𝐺)

Pr(𝐺) = 𝑝,
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3.9 Exercises 73

where 𝑒 is an fixed edge. Explain the equality for cases 𝑝 = 0, 1 and 1/2.

3. Show that the complement 𝐺 𝑝 of a random graph 𝐺 𝑝 is exactly 𝐺𝑞 , where
𝑞 = 1 − 𝑝. When we write 𝜔(𝐺 𝑝) = 𝛼(𝐺𝑞), what does it mean really?

4. Let 𝑣 be a fixed vertex of G(𝑛, 𝑝) and let 𝑑 (𝑣) be the degree of 𝑣. Compute the
probability of the event 𝑑 (𝑣) = 𝑘 and its expectation and variance.

5. For distinct vertices 𝑢 and 𝑣, show

Pr(𝑑 (𝑢) ≤ 𝑘1, 𝑑 (𝑣) ≤ 𝑘2) ≤ Pr(𝑑 (𝑢) ≤ 𝑘1) Pr(𝑑 (𝑣) ≤ 𝑘2).

6. Define 𝑓 (𝐺) = ∑
𝑣∈𝑉 (𝐺)

1
1+𝑑 (𝑣) . Prove that 𝛼(𝐺) ≥ 𝑓 (𝐺) by an algorithm as

follows. In each step we delete a vertex of maximum degree until no edge left. Let
𝐺1 be the subgraph from 𝐺 by deleting a vertex of maximum degree of 𝐺. Prove
𝑓 (𝐺1) ≥ 𝑓 (𝐺).

7. Prove that if the average degree 𝑑 of a graph 𝐺 on 𝑁 vertices satisfies that
0 < 𝑑 < 1, then 𝛼(𝐺) ≥ 𝑁/2.

8. Erdős and Sós (See Chung and Graham, 1998) asked to prove or disprove
that 𝑟 (3, 𝑛 + 1) − 𝑟 (3, 𝑛) = 𝑜(𝑛). This problem remains unresolved even with the
knowledge of Kim’s result on 𝑟 (3, 𝑛). Show that 𝑟 (3, 𝑛) < 𝑛2/log(𝑛/𝑒) for large 𝑛.

9. Show that 𝑟 (4, 𝑛) ≤ (1 + 𝑜(1))𝑟 (3, 𝑛)𝑛/log 𝑛. (Hint: Using Kim’s result that
𝑟 (3, 𝑛) ≥ 𝑐𝑛2/log 𝑛.)

10. Prove that there exists some constant 𝑐 > 0 such that if𝐺 is a regular graph𝐺
on 𝑛 vertices with girth at least 5, then its independence number is at least 𝑐

√
𝑛 log 𝑛.

11. Prove that if the conjecture of Erdős-Sós is true, then

𝑟 (𝑇1+𝑚, 𝑇1+𝑛) ≤ 𝑚 + 𝑛.

12.∗ Let𝐺 be a graph with 𝑁 vertices and average degree 𝑑. If each neighborhood
of 𝐺 contains no 𝑇𝑚+1, then 𝛼(𝐺) ≥ 𝑁 𝑓2𝑚−1 (𝑑).

13. In Section 3.6, we have used the fact that if 𝑎1, . . . , 𝑎𝑛 are positive numbers,
then 1

𝑛

∑𝑛
𝑖=1 𝑎𝑖 ≥

(
Π𝑛
𝑖=1𝑎𝑖

)1/𝑛. Prove this by considering the convexity of the function
𝑓 (𝑥) = 𝑒𝑥 .

14. Obtain the asymptotically optimal constants in Theorem 3.7.

15. Call a term 1/(1+ 𝑑𝑣) in 𝛼(𝐺) ≥ ∑
𝑣 1/(1+ 𝑑𝑣) as the ratio of independence.

Using this concept, explain Lemmas 3.13 and 3.14 intuitively. Furthermore, if 𝑁ℓ (𝑣)
is 𝑘-colorable for each vertex 𝑣, then

𝛼(𝐺) ≥ 1
𝑘

∑︁
𝑣∈𝑉

𝑑ℓ (𝑣)≠0

𝑑ℓ (𝑣)
𝑑ℓ−1 (𝑣) + 𝑑ℓ (𝑣) + 𝑑ℓ+1 (𝑣)

.
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74 3 Basic Probabilistic Method

16. Give a lower bound of the independence number 𝛼(𝐺) for triangle free graph.
(Hint: Similar to Lemma 3.13)

17. Let 𝑚 ≥ be a fixed integer and let 𝐺 be a graph of order 𝑁 and girth at least
2𝑚 + 2. Prove that 𝛼(𝐺) ≥ Ω((𝑁 log 𝑁)𝑚/(𝑚+1) ). (Hint: 𝑁𝑚 (𝑣) is an independent
set.)

18.∗ Use basic method to prove the following result. Let 𝐺 be a graph of order
𝑛 that contains at most 𝑛 triangles. Prove that there is an induced subgraph 𝐺0 of
𝐺 such that 𝐺0 is triangle-free and its order is at least 0.38𝑛 for large 𝑛. (Hint: Let
𝑐 =

√
3/3. Consider all subgraphs induced by 𝑐𝑛 vertices. The expected number of

triangles is at most asymptotically 𝑐3𝑛.)
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Chapter 4
Random Graph

The study of random graphs should go back to Erdős and Rényi (1947, 1959, 1960,
1961), in which they discovered that the random graphs were often useful in tackling
extremal problems in graph theory. Nowadays, random graph has become an active
area of research in graph theory and network science. In this chapter, we will give
an overview on random graphs. For a comprehensive understanding of random
graphs, we refer the reader to books such as Random Graphs by Bollobás (2001, 2nd
ed.), Random Graphs by Janson, Łuczak and Ruciński (2000), and Introduction to
Random Graphs by Frieze and Karoński (2016) as well as The Probabilistic Method
by Alon and Spencer (2016), a part of which introduces essentiality of the random
graphs.

4.1 Preliminary

For a family of graphs G = {𝐺1, 𝐺2, . . . , 𝐺𝑀 } with probabilities Pr(𝐺𝑖) for 𝑖 =
1, 2, . . . such that 0 ≤ Pr(𝐺𝑖) ≤ 1 and

∑
𝑖≥1 Pr(𝐺𝑖) = 1, we have a probability

space of random graphs with 𝐺𝑖 as basic events. Each 𝐺𝑖 is called a random graph
of G with probability Pr(𝐺𝑖). We shall consider the probability space that consists
of graphs on vertex set 𝑉 = [𝑁], where the vertices are distinguishable, and so the
edges are distinguishable, too. Note that the complete graph 𝐾𝑁 has(

𝑁

1

)
+

(
𝑁

2

)
2 + · · · +

(
𝑁

𝑘

)
2(

𝑘
2) + · · · +

(
𝑁

𝑁

)
2(

𝑁
2 )

subgraphs. The general term
(𝑁
𝑘

)
2(𝑘2) corresponds to subgraphs that have exactly 𝑘

vertices, and the last term
(𝑁
𝑁

)
2(𝑁2 ) corresponds to all spanning subgraphs.

Let us label all edges of 𝐾𝑁 on vertex set 𝑉 = [𝑁] as 𝑒1, 𝑒2, . . . , 𝑒𝑚, where
𝑚 =

(𝑁
2
)
. Note that the number of graphs on vertex set [𝑁] is 2𝑚 since the edges

are distinguishable. The space G(𝑁; 𝑝1, . . . , 𝑝𝑚) is defined for 0 ≤ 𝑝𝑖 ≤ 1 as
follows. It consists of all 2𝑚 spanning graphs on 𝑉 , in which each edge 𝑒𝑖 is selected

75© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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76 4 Random Graph

independently with probability 𝑝𝑖 . Write 𝑞 𝑗 = 1 − 𝑝 𝑗 and 𝐺 (𝑝1, . . . , 𝑝𝑚) for a
random element in G(𝑁; 𝑝1, . . . , 𝑝𝑚). For a specific graph 𝐻 in the space with
𝐸 (𝐻) = {𝑒 𝑗 : 𝑗 ∈ 𝑆}, where 𝑆 ⊆ [𝑚] is the index set of edges of 𝐻,

Pr(𝐺 (𝑝1, . . . , 𝑝𝑚) = 𝐻)) =
(
Π 𝑗∈𝑆 𝑝 𝑗

) (
Π 𝑗∉𝑆𝑞 𝑗

)
.

Note that the event 𝐺 (𝑝1, . . . , 𝑝𝑚) = 𝐻 is different from that 𝐺 (𝑝1, . . . , 𝑝𝑚)
is isomorphic to 𝐻 since the vertices and edges are distinguishable. We have that
G(𝑁; 𝑝1, . . . , 𝑝𝑚) is truly a probability space since∑︁
𝐻

Pr(𝐺 (𝑝1, . . . , 𝑝𝑚) = 𝐻)) =
∑︁
𝑆⊆[𝑚]

(
Π 𝑗∈𝑆 𝑝 𝑗

) (
Π 𝑗∉𝑆𝑞 𝑗

)
= Π𝑚𝑗=1 (𝑝 𝑗 + 𝑞 𝑗 ) = 1.

When 𝑝1 = · · · = 𝑝𝑚 = 𝑝, the probability space G(𝑁; 𝑝1, . . . , 𝑝𝑚) is written
as G(𝑁, 𝑝). In G(𝑁, 𝑝), the probability of a specific graph 𝐻 with 𝑘 edges is
𝑝𝑘 (1 − 𝑝)𝑚−𝑘 : each of the 𝑘 edges of 𝐻 has to be selected and none edges of 𝐻 is
allowed to be selected. We write 𝐺 (𝑁, 𝑝), or 𝐺 𝑝 for short, for a random graph in
G(𝑁, 𝑝),

Pr(𝐺 𝑝 = 𝐻) = 𝑝𝑒 (𝐻 )𝑞𝑚−𝑒 (𝐻 ) .

Now we have obtained a space of random graphs, and every graph invariant
becomes a random variable. For instant, the number of complete graphs of order 𝑘
in 𝐺, denoted by 𝑋𝑘 (𝐺), is a random variable on our space of random graphs. The
nature of such a random variable depends heavily on 𝑝.

In the space G(𝑁, 0), the probability that the empty graph 𝐾𝑁 appears is one,
and the probability that any other graph appears is zero. Similarly, in the space
G(𝑁, 1), the only graph that appears is 𝐾𝑁 . For other but these two extremal cases,
i.e. 0 < 𝑝 < 1, any graph on vertex set [𝑁] appears with a positive probability. In
particular, G(𝑁, 1/2) could be viewed as the space: it consists of all 2𝑚 graphs on
𝑉 = [𝑁], and the probability of any graph is equiprobable. This is just a classical
probability space. Thus 𝐺𝑁,1/2 is also obtained by picking any of the 2𝑚 graphs on
𝑉 = [𝑁] at random with probability 2−𝑚. As 𝑝 increases from 0 to 1, the random
graph 𝐺 𝑝 evolves from empty to full. It is worth remarking that 𝑝 = 𝑝(𝑁) is often
a function. No matter 𝑝 is fixed or not, we tend to be interested in what happens as
𝑁 → ∞.

In their original paper on random graphs in 1960, Erdős and Rényi used G(𝑁, 𝑒)
to denote the random graph with vertex set 𝑉 = [𝑁] and precisely 𝑒 edges. For
0 ≤ 𝑒 ≤ 𝑚 =

(𝑁
2
)

with 𝑒 fixed, the space G(𝑁, 𝑒) consists of all
(𝑚
𝑒

)
spanning

subgraphs with exactly 𝑒 edges: which can be turned into a probability space by
taking its elements to be equiprobable. Thus, write 𝐺𝑒 for a random graph in the
space G(𝑁, 𝑒), for a specific graph 𝐻 in the space, we have that

Pr[𝐺𝑒 = 𝐻] =
(
𝑚

𝑒

)−1
,
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4.1 Preliminary 77

where the event 𝐺𝑒 = 𝐻 means that 𝐺𝑒 is precisely 𝐻, but not only isomorphic to
𝐻 in general.

It is interesting, as expected, that for 𝑒 ∼ 𝑝
(𝑁

2
)

the spaces G(𝑁, 𝑒) and G(𝑁, 𝑝)
are close to each other as 𝑁 → ∞. In most proofs for existence, the calculations
are easier in G(𝑁, 𝑝) than in G(𝑁, 𝑒). So we will work on the probability model
G(𝑁, 𝑝) exclusively.

Another point of view may be convenient, in which one colors all edges of the
complete graph 𝐾𝑁 with probability 𝑝, randomly and independently. Thus random
graph 𝐺 𝑝 is viewed as a random coloring of edge set of 𝐾𝑁 . The coloring of edge
set of 𝐾𝑁 is also said a coloring of 𝐾𝑁 in short. Recall the definition of Ramsey
numbers, we can see why the relation between random method and Ramsey theory
is so natural and tight.

In many applications, we always need to consider the events that some certain
graphs were contained in random graphs. Let 𝐹 be a given graph on 𝑘 vertices, and
let 𝑆 ⊆ [𝑁] with |𝑆 | = 𝑘 . Let 𝐴𝑆 be the event that the subgraph induced by 𝑆 contains
𝐹 as a subgraph, then the event ∪𝑆𝐴𝑆 signifies that 𝐹 appears in 𝐺 𝑝 as a subgraph,
its probability is hard to calculate since the events 𝐴𝑆 have a complex interaction.
It is often to bound this probability from above by the expectation of the number of
copies of 𝐹 in the random graph. To get the expectation, let us look the number of
copies of 𝐹 in 𝐾𝑘 first. This is closely related to the automorphism group of 𝐹.

Recall a permutation (or a bijection) 𝜑 of 𝑉 (𝐹) is an automorphism of graph 𝐹
if 𝑢𝑣 ∈ 𝐸 (𝐹) if and only if 𝜑(𝑢)𝜑(𝑣) ∈ 𝐸 (𝐹) for any pair of vertices 𝑢 and 𝑣. It
is straightforward to verify the set of all automorphisms of 𝐹 forms a group, called
the automorphism group of 𝐹, and denoted by A(𝐹). Indeed, it is clear that the
identity permutation is an automorphism. If 𝜑 is an automorphism of 𝐹, then so is
its inverse 𝜑−1, and if 𝜓 is a second automorphism of 𝐹, then the product 𝜑𝜓 is
an automorphism. For example, A(𝐾𝑘) is the symmetric group 𝑆𝑘 of order 𝑘!, and
A(𝐶𝑘) is the dihedral group 𝐷𝑘 of order 2𝑘 , one can see Godsil and Royle (2001)
for details.

Theorem 4.1 If 𝐹 is a graph of order 𝑘 in which the vertices are labeled, then the
number of copies of 𝐹 such that no two copies are automorphism is 𝑘!/|A(𝐹) |.

Proof. Let {𝑣1, 𝑣2, . . . , 𝑣𝑘} be the set of labeled vertices. Certainly there are 𝑘!
labeling of 𝐹 from this set with some labeled graphs that may be automorphism.
Let 𝐹1, 𝐹2, . . . , 𝐹𝑘! be the labeled graphs obtained from 𝐹. Note that the relation
“𝐹𝑖 is automorphism to 𝐹𝑗” is an equivalence relation, hence each equivalence class
contains |A(𝐹) | elements, implying that there are 𝑘!/|A(𝐹) | equivalent classes in
total. This proves the theorem. □

For example, if we label the vertices of a star𝐾1, 3 as 1, 2, 3, 4, then any equivalence
class is uniquely determined by the label of its center. So there are 4 such classes,
and each class contains 6 copies of 𝐾1, 3 with the same label of the center.

In a random graph space G(𝑁, 𝑝), we need to consider the number of copies of
𝐹 in a labeled complete graph.
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78 4 Random Graph

Corollary 4.1 If 𝐹 is a graph of order 𝑘 , then the number of copies of 𝐹 in a labeled
complete graph of order 𝑘 is 𝑘!/|A(𝐹) |.

Let 𝐹 be a graph of order 𝑘 . Let 𝑆 ⊆ [𝑁] with |𝑆 | = 𝑘 and let 𝑋𝑆 be the number
of copies of 𝐹 on 𝑆. Then 𝑋 =

∑
𝑆 𝑋𝑆 is the number of copies of 𝐹 in 𝐺 𝑝 . We have

𝐸 (𝑋𝑆) =
𝑘!

|A(𝐹) | 𝑝
𝑒 (𝐹 ) ,

and
𝐸 (𝑋) =

(
𝑁

𝑘

)
𝑘!

|A(𝐹) | 𝑝
𝑒 (𝐹 ) =

(𝑁)𝑘
|A(𝐹) | 𝑝

𝑒 (𝐹 ) ,

where (𝑁)𝑘 = 𝑁 (𝑁 − 1) · · · (𝑁 − 𝑘 + 1) is the falling factorial.
Similar formulas hold for the number of induced subgraphs. Let 𝑌 be the number

of induced graph 𝐹 in 𝐺 𝑝 . Then

𝐸 (𝑌 ) = (𝑁)𝑘
|A(𝐹) | 𝑝

𝑒 (𝐹 )𝑞(
𝑘
2)−𝑒 (𝐹 ) .

Recall that 𝐴𝑆 signifies the event that the subgraph induced by 𝑆 in 𝐺 𝑝 contains
𝐹 as a subgraph, we have

Pr(𝐴𝑆) ≤
𝑘!

|A(𝐹) | 𝑝
𝑒 (𝐹 ) .

Hence

Pr(𝐹 ⊂ 𝐺 𝑝) = Pr(∪𝐴𝑆) ≤
(
𝑁

𝑘

)
𝑘!

|A(𝐹) | 𝑝
𝑒 (𝐹 ) =

(𝑁)𝑘
|A(𝐹) | 𝑝

𝑒 (𝐹 ) , (4.1)

where the upper bound is exactly 𝐸 (𝑋).
This can be seen also by the fact that 𝑋 takes only nonnegative integral values

and

Pr(∪𝐴𝑆) = Pr(𝑋 ≥ 1) =
∑︁
𝑖≥1

Pr(𝑋 = 𝑖)

≤
∑︁
𝑖≥1

𝑖 Pr(𝑋 = 𝑖) = 𝐸 (𝑋).

It seems to be necessary to point out that 𝐹 is not a random element in G(𝑁, 𝑝) and
the above discussion is about appearance of 𝐹 as a subgraph.

4.2 Lower Bounds for 𝒓(𝒎, 𝒏)

Recall that the lower bound of 𝑟 (𝑛, 𝑛) in Chapter 3 by Erdős, the proof in fact applies
the random graphs of G(𝑁, 1/2), which is a classical probability space as mentioned.
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4.2 Lower Bounds for 𝑟 (𝑚, 𝑛) 79

It is interesting to see that this space is the only one that counting argument works
since only G(𝑁, 1/2) is the classic probability space among G(𝑁, 𝑝).

In this section, we will give more lower bounds for classical Ramsey numbers
𝑟 (𝑚, 𝑛). Let us first give a lower bound for 𝑟 (𝑚, 𝑛) by simple applications of random
graphs.

Theorem 4.2 Let 𝑚, 𝑛 and 𝑁 be positive integers. If for some 0 < 𝑝 < 1,(
𝑁

𝑚

)
𝑝(

𝑚
2 ) +

(
𝑁

𝑛

)
(1 − 𝑝) (

𝑛
2) < 1,

then 𝑟 (𝑚, 𝑛) > 𝑁 .

Proof. Consider random graphs 𝐺 𝑝 in G(𝑁, 𝑝). Let 𝑆 be a set of 𝑚 vertices, and
𝐴𝑆 the event that 𝑆 induces a complete graph. Let 𝑇 be a set of 𝑛 vertices, and
𝐵𝑇 the event that 𝑇 induces an independent set. Similar to Theorem 3.1, we have
𝑟 (𝑚, 𝑛) > 𝑁 since Pr[(∪𝑆𝐴𝑆) ∪ (∪𝑇𝐵𝑇 )] < 1 from the assumption. □

The above result is ineffective in lower bounding of 𝑟 (3, 𝑛). We now examine the
lower bound of 𝑟 (4, 𝑛), and we aim to choose a suitable value of 𝑝 such that 𝑁 as
large as possible for large 𝑛. Let us first give an overview. Consider the condition in
Theorem 4.2, we roughly estimate

(𝑁
𝑛

)
as (𝑒𝑁/𝑛)𝑛, and (1− 𝑝) (𝑛2) as 𝑒−𝑝(𝑛2) , hence(𝑁

𝑛

)
(1 − 𝑝) (𝑛2) is roughly(

𝑒𝑁

𝑛

)𝑛
exp

{
−𝑝

(
𝑛

2

)}
=

(
𝑒𝑁

𝑛𝑒𝑝 (𝑛−1)/2

)𝑛
.

To get a better bound, we should balance two terms in the condition such that both
terms are less than 1/2. To this end, we should require that

𝑒𝑁

𝑛𝑒𝑝 (𝑛−1)/2 < 1.

So we may take 𝑝 =
𝑐1
𝑛

log 𝑁
𝑛

for some constant 𝑐1. On the other hand, we roughly
have (

𝑁

4

)
𝑝6 ∼ 1

24
𝑁4𝑝6 ∼ 1,

which implies that 𝑝 = 𝑐2 (1/𝑁)2/3 for some constant 𝑐2. Combining these two
expressions, we have 𝑁 > 𝑛𝑎 for some 𝑎 > 1. Thus we can take 𝑝 = 𝑐1

log 𝑛
𝑛

and
𝑁 ∼ 𝑐2 (𝑛/log 𝑛)3/2.

Formally, let 𝑝 = 𝑐1
log 𝑛
𝑛

and 𝑁 = ⌊𝑐2 (𝑛/log 𝑛)3/2⌋, where 𝑐1 and 𝑐2 are positive
constants to be chosen satisfying that 𝑐6

1𝑐
4
2 < 24. Then(

𝑁

4

)
𝑝6 <

𝑁4

24
𝑝6 ≤

𝑐6
1𝑐

4
2

24

( 𝑛

𝑛 − 1

)6
< 1
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80 4 Random Graph

for large 𝑛. For the second term, we have (1 − 𝑝) (𝑛2) < 𝑒−𝑝𝑛(𝑛−1)/2 = 𝑛−𝑐1𝑛/2 and
hence (

𝑁

𝑛

)
(1 − 𝑝) (

𝑛
2) <

(
𝑒𝑁

𝑛

)𝑛
𝑛−𝑐1𝑛/2 =

(
𝑒𝑁

𝑛1+𝑐1/2

)𝑛
,

which tends to zero if we take 𝑐1 ≥ 1. On the other hand, in order to take 𝑐2 as
large as possible with 𝑐6

1𝑐
4
2 < 24, we have to take 𝑐1 as small as possible. So we take

𝑐1 = 1.
Now, we may hope to optimize the constant 𝑐2. Since we need only 𝑐2 < 241/4,

it follows that 𝑐2 = 241/4 − 𝜖 will be ok. Thus we have

𝑟 (4, 𝑛) ≥ (241/4 − 𝑜(1))
(
𝑛

log 𝑛

)3/2
.

Hereafter we will choose 𝑝 with some foresight. For general 𝑚 ≥ 4, by taking
𝑝 = (𝑚 − 3) log 𝑛

𝑛
, a similar calculation as above yields that

𝑟 (𝑚, 𝑛) ≥ 𝑐
(
𝑛

log 𝑛

) (𝑚−1)/2
.

We have seen that the property of random graph 𝐺 𝑝 is sensitive with the value
of 𝑝. To ensure that 𝐺 𝑝 contains no 𝐾𝑚 (with a positive probability, more precisely,
or

(𝑁
𝑚

)
𝑝(𝑚2 ) is small), it is better to take smaller 𝑝. But it is better to take a bigger

𝑝 to ensure that there is no induced 𝐾𝑛 (i.e,
(𝑁
𝑛

)
(1 − 𝑝) (𝑛2) is small). Our task is to

balance both sides to obtain a larger 𝑁 as possible.

We shall improve the lower bounds for 𝑟 (𝑛, 𝑛) and 𝑟 (𝑚, 𝑛) obtained previously
by using the so called deletion method.

Theorem 4.3 We have
𝑟 (𝑛, 𝑛) ≥ (1 − 𝑜(1)) 𝑛

𝑒
2𝑛/2.

Proof. Consider the random graphs in G(𝑁, 1/2). For an 𝑛-set 𝑆, let 𝑋𝑆 be the
indicator that 𝑆 is a clique or an independent set, i.e.,

𝑋𝑆 =

{
1 if 𝑆 induces 𝐾𝑛 or 𝐾𝑛,
0 otherwise.

Let 𝐴𝑆 be the event that 𝑆 induces 𝐾𝑛 or 𝐾𝑛. We have

𝐸 [𝑋𝑆] = Pr[𝐴𝑆] = 2
(
1
2

) (𝑛2)
.

Let 𝑋 =
∑
𝑆: |𝑆 |=𝑛 𝑋𝑆 . Clearly, 𝑋 is the number of cliques or independent sets of size

𝑛. By linearity of expectation,
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𝐸 [𝑋] =
∑︁

𝑆: |𝑆 |=𝑛
𝐸 [𝑋𝑆] =

(
𝑁

𝑛

)
21−(𝑛2) .

Since there is a point in the probability space for which 𝑋 does not exceed its
expectation, it follows that there exists a graph with at most(

𝑁

𝑛

)
21−(𝑛2)

𝑛-sets such that every set induces a 𝐾𝑛 or a 𝐾𝑛. By deleting a vertex from each such
set, we have the remaining graph contains neither 𝐾𝑛 nor 𝐾𝑛. Thus

𝑟 (𝑛, 𝑛) > 𝑁 − 𝐸 (𝑋).

The rest of the proof is to find 𝑁 such that 𝑁 − 𝐸 (𝑋) as large as possible. By taking
𝑁 = ⌊ 𝑛2𝑛/2

𝑒
⌋, from the Stirling formula, we have(

𝑁

𝑛

)
21−(𝑛2) <

(
𝑒𝑁

𝑛

)𝑛
21−(𝑛2) < 2

(
𝑒
√

2𝑁
𝑛2𝑛/2

)𝑛
≤ 2𝑛/2+1,

which is 𝑜(𝑁). Thus 𝑟 (𝑛, 𝑛) ≥ (1 − 𝑜(1))𝑁 . □

Theorem 4.4 For any positive integer 𝑚, 𝑛 and 𝑁 , and any real number 0 < 𝑝 < 1,

𝑟 (𝑚, 𝑛) > 𝑁 −
(
𝑁

𝑚

)
𝑝(

𝑚
2 ) −

(
𝑁

𝑛

)
(1 − 𝑝) (

𝑛
2) .

Consequently, there exists a constant 𝑐 > 0 such that

𝑟 (𝑚, 𝑛) ≥ 𝑐
(
𝑛

log 𝑛

)𝑚/2

for all large 𝑛.

Proof. The first assertion is obvious. For the second, set 𝑁 = 𝑎( 𝑛
log 𝑛 )

𝑚/2 and

𝑝 = (𝑚 − 2) log 𝑛
𝑛

such that 𝑎 − (𝑚−2) (
𝑚
2 )

𝑚! 𝑎𝑚 > 0. Then

𝑁1 =

(
𝑁

𝑚

)
𝑝(

𝑚
2 ) ∼ (𝑚 − 2) (𝑚2 )𝑎𝑚

𝑚!

(
𝑛

log 𝑛

)𝑚/2
,

and
𝑁2 =

(
𝑁

𝑛

)
(1 − 𝑝) (

𝑛
2) <

(
𝑒𝑁

𝑛

)𝑛
𝑒−𝑝𝑛(𝑛−1)/2 =

(
𝑒𝑁

𝑛𝑚/2

)𝑛
→ 0.

So if 𝑐 < 𝑎 − (𝑚−2) (
𝑚
2 )

𝑚! 𝑎𝑚, then
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82 4 Random Graph

𝑟 (𝑚, 𝑛) ≥ 𝑁 − 𝑁1 − 𝑁2 > 𝑐

(
𝑛

log 𝑛

)𝑚/2
.

This completes the proof. □

In the next chapter, we will see further improvements by using Lovász Local
Lemma.

4.3 More Applications of Chernoff Bounds

As a natural application of Chernoff bound, we are concerned with the number of
edges in a random graph as follows.

Theorem 4.5 Let G(𝑛, 𝑝) be a random graph space. If 𝛿 = 𝛿(𝑛) > 0 and 𝑝 = 𝑝(𝑛) ∈
(0, 1] such that 𝑛𝛿2/𝑝 → ∞ as 𝑛→ ∞, then

lim
𝑛→∞

Pr
[
𝐺 𝑝 ∈ G(𝑛, 𝑝) : (𝑝 − 𝛿)

(
𝑛

2

)
≤ 𝑒(𝐺 𝑝) ≤ (𝑝 + 𝛿)

(
𝑛

2

)]
= 1.

Proof. For any edge 𝑒 in 𝐾𝑛, we define a random variable 𝑋𝑒 as 𝑋𝑒 = 1 if 𝑒 is an
edge of 𝐺 𝑝 and 𝑋𝑒 = 0 otherwise. Note that 𝑒(𝐺 𝑝) =

∑
𝑒 𝑋𝑒 and 𝐸 (𝑒(𝐺 𝑝)) = 𝑝

(𝑛
2
)

as 𝐸 (𝑋𝑒) = 𝑝, and the Chernoff bounds imply the claimed statement. □

An often used measure for sparseness of graphs is 𝐾𝑟 -freeness. However, there
are 𝐾3-free graphs whose chromatic number can be arbitrarily large, see Mycielski’s
construction (1955), in which the main idea is as follows. Let𝐺1 = 𝐾1 and𝐺2 = 𝐾2,
and generally let 𝐺𝑘 be the graph defined on {𝑣1, . . . , 𝑣𝑛}. Now we construct 𝐺𝑘+1
from 𝐺𝑘 by adding 𝑛 + 1 new vertices {𝑢1, . . . , 𝑢𝑛, 𝑣} and then for 1 ≤ 𝑖 ≤ 𝑛, join 𝑢𝑖
to 𝑣 and all neighbors of 𝑣𝑖 . It is not difficult to verify that 𝜔(𝐺𝑘) = 2 for all 𝑘 ≥ 2,
and the chromatic number 𝜒(𝐺𝑘+1) = 𝜒(𝐺𝑘) + 1 for all 𝑘 ≥ 1.

A more general measure for sparseness is to forbid subdivision. A suspended
path in graph 𝐺 is a path (𝑥0, 𝑥1, . . . , 𝑥𝑘) in which the inner vertices 𝑥1, . . . , 𝑥𝑘−1
have degree two in 𝐺. A graph 𝐻 is a subdivision of 𝐺 if 𝐻 is obtained from 𝐺 by
replacing edges of 𝐺 by suspended paths, that is to say, 𝐻 is obtained by adding
vertices on the edges of 𝐺.

Hajós conjectured that every graph 𝐺 with 𝜒(𝐺) ≥ 𝑟 contains a subdivision
of 𝐾𝑟 as a subgraph. This conjecture is trivial for 𝑟 = 2, 3, and it is confirmed by
Dirac (1952) for 𝑟 = 4, while it remains open for 𝑟 = 5, 6. Catlin (1979) disproved
the conjecture for 𝑟 ≥ 7 by a constructive proof, but the following disproof for
general cases by Erdős and Fajtlowicz (1981) is more powerful. Let 𝛾(𝐺) denote the
largest 𝑟 such that 𝐺 contains a subdivision of 𝐾𝑟 as a subgraph. Hajós conjecture is
equivalent to that 𝛾(𝐺) ≥ 𝜒(𝐺).
Theorem 4.6 Almost all graphs 𝐺 ∈ G(𝑛, 1/2) satisfy

𝜒(𝐺) ≥ 𝑛

2 log2 𝑛
, and 𝛾(𝐺) ≤

√
6𝑛.
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4.3 More Applications of Chernoff Bounds 83

Proof. Set 𝑘 = ⌊2 log2 𝑛⌋. Since the probability that there exists an independent set
of size at least 𝑘 satisfies

Pr(𝛼(𝐺) ≥ 𝑘) ≤
(
𝑛

𝑘

)
2−(𝑘2) <

(
𝑒
√

2𝑛
𝑘2𝑘/2

) 𝑘
= 𝑜(1)

and the fact 𝛼(𝐺)𝜒(𝐺) ≥ 𝑛 for any graph𝐺, the first statement follows immediately.
In the following, we focus on the second inequality. Set 𝑟 = ⌈

√
6𝑛⌉. Clearly

𝑛 ≤ 𝑟2/6. Note that there are (
𝑛

𝑟

)
≤

( 𝑒𝑛
𝑟

)𝑟
≤

( 𝑒𝑟
6

)𝑟
potential 𝐾𝑟 subdivisions, one for each 𝑟-element subset of 𝑉 (𝐺). Fix such a subset
𝑋 , we have that each subdivided edge of 𝑋 must use a vertex of 𝑉 (𝐺) \ 𝑋 and no
two subdivided edge use the same vertex. Since there are

(𝑟
2
)

suspended paths in a
subdivision, and at most 𝑛 − 𝑟 of them are of length two or more, which are “really”
subdivided edges, it follows that the number of edges induced by 𝑋 is at least(

𝑟

2

)
− (𝑛 − 𝑟) ≥

(
𝑟

2

)
+ 𝑟 − 𝑟2

6
≥ 2

3

(
𝑟

2

)
.

Note that the number of edges induced by 𝑋 , denoted by 𝑒(𝑋), has binomial distri-
bution 𝐵(𝑁, 1/2), where 𝑁 =

(𝑟
2
)
. From Theorem 3.12,

Pr(𝑒(𝑋) ≥ 𝑁 (1 + 𝛿)/2) ≤ exp{−𝑁𝛿2/2}.

By taking 𝛿 = 1/3 hence 2
3
(𝑟
2
)
=

(𝑟
2
)
(1 + 𝛿)/2, we obtain

Pr
(
𝑒(𝑋) ≥ 2

3

(
𝑟

2

))
≤ exp

{
−𝑁𝛿2/2

}
= exp

{
− 1

18

(
𝑟

2

)}
.

Thus, the probability that the random graph 𝐺 contains a subdivision of 𝐾𝑟 can be
upper bounded as follows.

Pr(𝛾(𝐺) ≥ 𝑟) ≤
∑︁
𝑋

Pr
(
𝑒(𝑋) ≥ 2

3

(
𝑟

2

))
≤

(
𝑛

𝑟

)
exp

{
− 1

18

(
𝑟

2

)}
≤

(
𝑟2 exp{−(𝑟 − 1)/36}

6

)𝑟
,

which tends to zero as 𝑛 tends to infinity. □

From the above result, Hajós conjecture failed badly since asymptotical almost
surely (a.a.s.) the graph 𝐺 in G(𝑛, 1/2) satisfies

𝜒(𝐺) − 𝛾(𝐺) ≥ 𝑛

2 log2 𝑛
−
√

6𝑛→ ∞
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84 4 Random Graph

as 𝑛→ ∞. Furthermore, the gap between the truth and the conjecture is large.

In the following, we give a lower bound for 𝑟 (3, 𝑛) due to Erdős (1961), which
is anther application of Chernoff bounds (Theorem 3.15). The following proof by
Conlon (Lectures on graph Ramsey theory) was written in a much different way
from the original one.

Theorem 4.7 There exists a constant 𝑐 > 0 such that for all large 𝑛,

𝑟 (3, 𝑛) ≥ 𝑐
(
𝑛

log 𝑛

)2
.

Proof. Let 𝑁 = 𝑐( 𝑛
log 𝑛 )

2. Let 𝑝 =
𝑎 log 𝑛
𝑛

, where 𝑎 will be chosen later. We color
the edges of 𝐾𝑁 red with probability 𝑝 and blue with probability 1 − 𝑝. This graph
may have many red triangles. However, let 𝐸 be a minimal set of red edges which,
if recolored blue, would give a triangle-free red graph. It suffices to show that with
high probability this recolored graph contains no blue 𝐾𝑛. Let 𝑅𝐸 be the subgraph
formed by the recolored red edges.

Applying Theorem 3.13 with 𝑝 =
𝑎 log 𝑛
𝑛

and 𝛿 = 𝑝, we obtain the probability
that there exists a vertex of degree greater than 2𝑝𝑁 is at most 𝑁𝑒−𝑁 𝛿2/(3𝑝𝑞) , which
tends to zero as 𝑛 goes to infinity. In the remaining of the proof, all probabilities
should be calculated conditional upon this event. However, for convenience, we will
ignore this complication by assuming that there are no vertices of degree greater
than 2𝑝𝑁 .

Let 𝑉 denote the vertex set of 𝐾𝑁 . For any given 𝑛-subset𝑊 ⊆ 𝑉 , let 𝐴𝑊 be the
event that the red subgraph induced by 𝑊 has an edge 𝑥𝑦 which is not contained
in any red triangle 𝑥𝑦𝑧 with 𝑧 ∈ 𝑉 \ 𝑊 . The critical thing to notice is that if a
graph satisfies 𝐴𝑊 , then any maximal triangle-free subgraph 𝐻 of the red graph 𝑅𝐸
(formed by recoloring edges) has blue complement which is not monochromatic on
𝑊 . To see this, suppose that 𝑥𝑦 is a recolored blue edge in𝑊 . Since 𝐻 is maximal,
the graph 𝐻 + 𝑥𝑦 must contain a red triangle 𝑥𝑦𝑧. But then, by property 𝐴𝑊 , 𝑧 must
be in𝑊 . So the assertion follows by noting that 𝑥𝑧 and 𝑦𝑧 are red. Therefore, we are
done if the event ∩𝑊 𝐴𝑊 occurs with positive probability, where the intersection is
taken over all𝑊 of size 𝑛.

We will try and estimate the probability Pr(𝐴𝑊 ), where 𝑊 is a subset of 𝑉 of
size 𝑛. If we can show that Pr(𝐴𝑊 ) ≤ 𝑛−𝑛, we will be done, since there are only(𝑁
𝑛

)
< ( 𝑒𝑁

𝑛
)𝑛 = ( 𝑒𝑐𝑛

log2 𝑛
)𝑛 sets 𝑊 of size 𝑛. We will prove the required inequality in

two steps. First, we will show that with high probability, most pairs in 𝑊 have no
common neighbors outside𝑊 . Then we shall prove that any given large set of pairs
of vertices from𝑊 must contain an edge.

Let 𝑑𝑖 = 𝑒2𝑖 𝑝𝑛/𝑖 and 𝑁𝑖 = 𝑛/𝑒2𝑖 . Let 𝑃𝑖 be the probability that at least 𝑁𝑖 vertices
in 𝑉 \𝑊 have at least 𝑑𝑖 neighbors in𝑊 .

Claim For all 1 ≤ 𝑖 ≤ log 𝑛, the probability 𝑃𝑖 ≤ 𝑛−2𝑛−1.
Proof. Let 𝑑𝑊 (𝑧) be the degree of the vertex 𝑧 ∈ 𝑉 \𝑊 in𝑊 . For each 𝑧 ∈ 𝑉 \𝑊 ,

the variable 𝑑𝑊 (𝑧) satisfies binomial distribution 𝐵(𝑛, 𝑝). So Theorem 3.15 implies
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4.3 More Applications of Chernoff Bounds 85

Pr
(
𝑑𝑊 (𝑧) ≥ 𝑒2𝑖 𝑝𝑛/𝑖

)
≤

(
𝑛𝑝𝑒

𝑒2𝑖 𝑝𝑛/𝑖

)𝑒2𝑖 𝑝𝑛/𝑖
=

(
𝑒2𝑖−1

𝑖

)−𝑒2𝑖 𝑝𝑛/𝑖
≤ 𝑒−𝑒

2𝑖 𝑝𝑛.

Thus
𝑃𝑖 ≤

(
𝑁

𝑁𝑖

)
𝑒−(𝑒2𝑖𝑎 log 𝑛)𝑁𝑖 < 𝑛3𝑛𝑒−2𝑖−𝑎𝑛 < 𝑛−2𝑛−1

as claimed. □

Therefore, adding over all 1 ≤ 𝑖 ≤ log 𝑛, we see that with probability at least
1 − 𝑛−2𝑛, there are at most 𝑁𝑖 vertices in 𝑉 \ 𝑊 which have 𝑑𝑖 neighbors in 𝑊 .
Moreover, note that, for 𝑖0 = (log 𝑛 − log log 𝑛)/2, 𝑑𝑖0 > 2𝑝𝑁 provided 𝑐 > 0 is
small. Our assumption that all vertices have degree at most 2𝑝𝑁 therefore implies
that there are no vertices with degree 𝑑𝑖0 in 𝑊 . Note that the number of vertices in
𝑉 \𝑊 have at most 𝑑1 neighbors in𝑊 is at most |𝑉 \𝑊 |. Hence, the number of pairs
of vertices in W which share a neighbor in 𝑉 \𝑊 is at most

𝑁

(
𝑑1
2

)
+
𝑖0−1∑︁
𝑖=2

𝑁𝑖−1

(
𝑑𝑖

2

)
≤𝑐

(
𝑛

log 𝑛

)2
50𝑎2 log2 𝑛 + 10𝑎2𝑛 log2 𝑛

𝑖0−1∑︁
𝑖=2

𝑒2𝑖

𝑖2

≤50𝑎2𝑐𝑛2 + 20𝑎2𝑛 log2 𝑛

(
𝑛

log 𝑛

)
4(log 𝑛)−2

≤50𝑎2𝑐𝑛2 + 80𝑎2𝑛

log 𝑛

which may be made as small as any 𝛿𝑛2, for 𝑐 sufficiently small depending on 𝑎 and
𝛿. Therefore, for 𝑐 small, at least (1 − 𝛿)

(𝑛
2
)

of the edges in𝑊 do not have common
neighbors in 𝑉 \𝑊 .

Note that the event 𝐴𝑊 appears means that all edges of 𝑊 share a common
neighbor 𝑧 ∈ 𝑉 \𝑊 . In order to force 𝐴𝑊 , those edges in 𝑊 having no common
neighbor in 𝑉 \𝑊 should not appear. But, for 𝛿 = 1/2 and 𝑎 = 12, there are at least
𝑛2/6 such edges, and so the probability that all of these edges don’t appear is at most

(1 − 𝑝)𝑛2/6 ≤ 𝑒−𝑝𝑛
2/6 = 𝑒−2𝑛 log 𝑛 = 𝑛−2𝑛.

Note that, since the edges within 𝑊 and the edges between 𝑉 \ 𝑊 and 𝑊 are
independent, this latter probability is independent of each of the 𝑃𝑖 . Therefore,

Pr(𝐴𝑊 ) ≤ 𝑛−2𝑛 + 𝑛−2𝑛 < 𝑛−𝑛,

completing the proof. □
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86 4 Random Graph

4.4 Properties of Random Graphs

A random graph is obtained by starting with a set of 𝑛 vertices and adding edges
between them at random. Different random graph models produce different prob-
ability distributions on graphs, for which the model in this text is classic. Erdős
and Rényi (1960) showed that for many monotone-increasing properties of random
graphs, graphs of size slightly less than a certain threshold are very unlikely to have
the property, whereas graphs with a few more edges are almost certainly to have it.
This is known as a phase transition. The second section is devoted to this topic, and
the last section covers some deeper discussion. The reader who is just concerned
with Ramsey theory could skip this chapter.

4.4.1 Some Behaviors of Almost All Graphs

Given a graph property 𝐴, it is often associated with a family 𝑄 of graphs as

𝑄 = 𝑄(𝐴) = {𝐺 : 𝐺 has 𝐴}.

Slightly abusing notation, we do not distinguish the property 𝐴 and the family 𝑄 if
there is no danger of confusion. We say that the graphs in G(𝑛, 𝑝) asymptotically
almost surely (a.a.s.) have property 𝑄 if

lim
𝑛→∞

Pr[𝐺 𝑝 ∈ 𝑄] = 1.

In this case we also say that a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) has property 𝑄. We begin with a
classical result of Erdős (1962) which states that almost all graphs seem to behave
strangely even though they are sparse. In the following, for a graph 𝐺 on vertex set
𝑉 and 𝑆 ⊆ 𝑉 , we denote 𝐺 [𝑆] by the subgraph of 𝐺 induced by 𝑆.

Theorem 4.8 For any 𝑘 ≥ 1, there exist positive constants 𝑐 = 𝑐(𝑘) and 𝜖 = 𝜖 (𝑘)
such that the graphs in G(𝑛, 𝑝) with 𝑝 = 𝑐/𝑛 a.a.s. satisfy that 𝜒(𝐺) ≥ 𝑘 , and yet
𝜒(𝐺 [𝑆]) ≤ 3 for any vertex subset 𝑆 with |𝑆 | ≤ 𝜖𝑛.

Proof. Let
𝐻 (𝑥) = − log

(
𝑥𝑥 (1 − 𝑥)1−𝑥

)
, 0 < 𝑥 < 1,

and let 𝑐 and 𝜖 be positive constants satisfying

𝑐 > 2𝑘2𝐻 (1/𝑘) and 𝑐3𝑒5𝜖 < 33. (4.2)

Set 𝑝 = 𝑐/𝑛 and Consider the random graph 𝐺 = 𝐺 𝑝 in G(𝑛, 𝑝). We will show that
a.a.s. the graphs in this space satisfy the conditions. If 𝛼(𝐺) ≥ 𝑛/𝑘 , then 𝜒(𝐺) ≤ 𝑘 .
Note that the probability that there exists an independent set of size at least 𝑛/𝑘 can
be upper bounded by
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4.4 Properties of Random Graphs 87(
𝑛

𝑛/𝑘

)
(1 − 𝑝) (

𝑛/𝑘
2 ) .

From Stirling formula, we estimate that(
𝑛

𝑛/𝑘

)
=

𝑛!
(𝑛/𝑘)!(𝑛 − 𝑛/𝑘)! ≤ exp{𝑛𝐻 (1/𝑘)},

and
(1 − 𝑝) (

𝑛/𝑘
2 ) ≤ exp

{
− 𝑝𝑛

2𝑘

( 𝑛
𝑘
− 1

)}
= exp

{
− 𝑐𝑛

2𝑘2 (1 − 𝑜(1))
}
.

Therefore, (
𝑛

𝑛/𝑘

)
(1 − 𝑝) (

𝑛/𝑘
2 ) ≤ exp

{
−𝑛

(
𝑐

2𝑘2 − 𝐻
(
1
𝑘

)
− 𝑜(1)

)}
,

which tends to zero from (4.2).
Now, suppose that there exists some set 𝑆 with at most 𝜖𝑛 vertices satisfying

that 𝜒(𝐺 [𝑆]) ≥ 4. Set 𝑡 = |𝑆 |, we claim that 𝐺 [𝑆] would have at least 3𝑡/2 edges.
Suppose that 𝑆 is a minimal such set. For any 𝑣 ∈ 𝑆, there would be a (proper)
3-coloring of 𝑆 \ {𝑣}. If 𝑣 has two or fewer neighbors in 𝐺 [𝑆] then it would be
extended to a 3-coloring of 𝑆. Hence the minimum degree of 𝐺 [𝑆] is at least 3 and
the claim follows. The probability that some 𝑡 ≤ 𝜖𝑛 vertices have at least 3𝑡/2 edges
is less than ∑︁

4≤𝑡≤ 𝜖 𝑛

(
𝑛

𝑡

) ( (𝑡
2
)

3𝑡/2

) ( 𝑐
𝑛

)3𝑡/2
.

Note that (
𝑛

𝑡

)
≤

( 𝑒𝑛
𝑡

) 𝑡
and

( (𝑡
2
)

3𝑡/2

)
≤

( 𝑒𝑡
3

)3𝑡/2
,

so we obtain that each term of the sum is at most( 𝑒𝑛
𝑡

) 𝑡 ( 𝑒𝑡
3

)3𝑡/2 ( 𝑐
𝑛

)3𝑡/2
=

(
𝑐3/2𝑒5/2𝑡1/2

33/2𝑛1/2

) 𝑡
.

Hence ∑︁
4≤𝑡≤𝑛1/4

(
𝑛

𝑡

) ( (𝑡
2
)

3𝑡/2

) ( 𝑐
𝑛

)3𝑡/2
≤ 𝑛1/4

(
𝑐3/2𝑒5/2𝑛1/4

33/2𝑛1/2

)4

= 𝑜(1).

Moreover, ∑︁
𝑛1/4<𝑡≤ 𝜖 𝑛

(
𝑛

𝑡

) ( (𝑡
2
)

3𝑡/2

) ( 𝑐
𝑛

)3𝑡/2
≤ 𝜖𝑛

(
𝑐3/2𝑒5/2

33/2 𝜖1/2
)𝑛1/4

= 𝑜(1)

by noting (4.2). Thus we have that a.a.s. no such set 𝑆 exists, which completes the
proof. □
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88 4 Random Graph

From the above theorem, we know that in random graphs, the neighbors of
average number vertices distribute evenly in every part of the vertex set. So their
clique numbers and independence numbers are relatively small, while their chromatic
numbers are large. For a graph 𝐺, the girth 𝑔(𝐺) is the smallest length of a cycle
in 𝐺. A historic result of Erdős (1959) states that both of 𝜒(𝐺) and 𝑔(𝐺) can be
arbitrarily large.

Theorem 4.9 For any fixed ℓ and 𝑘 , there exists a graph 𝐺 such that 𝑔(𝐺) > ℓ and
𝜒(𝐺) > 𝑘 .

Proof. Fix 0 < 𝜃 < 1/ℓ, and let 𝑝 = 𝑛𝜃−1. Consider the random graph 𝐺 in G(𝑛, 𝑝).
Let 𝑋 = 𝑋 (𝐺) be the number of cycles of length at most ℓ in 𝐺. Note that the
automorphism group A(𝐶𝑚) = 2𝑚 (see e.g. Godsil and Royle (2001)). Therefore,

𝐸 (𝑋) =
ℓ∑︁
𝑖=3

(𝑛)𝑖
2𝑖

𝑝𝑖 ≤
ℓ∑︁
𝑖=3

𝑛𝜃𝑖

2𝑖
= 𝑜(𝑛)

as 𝜃ℓ < 1, where (𝑛)𝑖 is the falling factorial 𝑛(𝑛 − 1) · · · (𝑛 − 𝑖 + 1). On the other
hand,

𝐸 (𝑋) =
∑︁
𝑖

𝑖 Pr(𝑋 = 𝑖) ≥ 𝑛

2
Pr(𝑋 ≥ 𝑛/2),

which implies that Pr(𝑋 ≥ 𝑛/2) = 𝑜(1) since 𝐸 (𝑋) = 𝑜(𝑛).
Set 𝑚 = 3𝑛1−𝜃 log 𝑛. It is easy to see that

Pr(𝛼(𝐺) ≥ 𝑚) ≤
(
𝑛

𝑚

)
(1 − 𝑝) (

𝑚
2 ) <

(
𝑛𝑒−𝑝 (𝑚−1)/2

)𝑚
= 𝑜(1).

Thus, there exists a graph 𝐺 of large order 𝑛 such that 𝑋 (𝐺) < 𝑛/2 and 𝛼(𝐺) < 𝑚.
By deleting a vertex from each cycle of length at most ℓ, we obtain a graph 𝐺∗ of
order at least 𝑛/2, which satisfies 𝑔(𝐺∗) > ℓ and 𝛼(𝐺∗) < 𝑚, which implies that

𝜒(𝐺∗) ≥ |𝑉 (𝐺∗ |
𝛼(𝐺∗) ≥ 𝑛/2

𝑚
≥ 𝑛𝜃

6 log 𝑛
> 𝑘,

completing the proof. □

4.4.2 Parameters of Random Graphs★

We are ready to discuss some parameters of random graph 𝐺 𝑝 for fixed 𝑝. It is easy
to see some parameters are concentrated around their expectations. The following
result was due to Shamir and Spencer (1987).

Theorem 4.10 If 𝐺 𝑝 ∈ G(𝑛, 𝑝), then

Pr
(
|𝜒(𝐺 𝑝) − 𝐸 (𝜒(𝐺 𝑝)) | > 𝜆

√
𝑛 − 1

)
< 2𝑒−𝜆

2/2.
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4.4 Properties of Random Graphs 89

Proof. Consider the vertex exposure martingale 𝑋1, . . . , 𝑋𝑛 on G(𝑛, 𝑝) with the
parameter 𝜒(𝐺). A single vertex can always be given a new color so Azuma’s
Inequality can apply. □

Similarly, we have

Pr
(
|𝜔(𝐺 𝑝) − 𝐸 (𝜔(𝐺 𝑝)) | > 𝜆

√
𝑛 − 1

)
< 2𝑒−𝜆

2/2,

and
Pr

(
|𝑒(𝐺 𝑝) − 𝐸 (𝑒(𝐺 𝑝)) | > 𝜆

√
𝑚

)
< 2𝑒−𝜆

2/2,

where 𝑚 =
(𝑛
2
)
. However, the proofs give no clue that what are these expectations.

Lemma 4.1 Let 0 < 𝑝 < 1, 𝑎 = 1/𝑝 and 𝜖 > 0 be fixed, and 𝑓 (𝑥) =
(𝑛
𝑥

)
𝑝(𝑥2) for

0 ≤ 𝑥 ≤ 𝑛. Define a positive integer 𝑘 such that

𝑓 (𝑘 − 1) > 1 ≥ 𝑓 (𝑘).

Then as 𝑛→ ∞, ⌈𝜔𝑛 − 𝜖⌉ ≤ 𝑘 ≤ ⌊𝜔𝑛 + 𝜖⌋ + 1 where

𝜔𝑛 = 2 log𝑎 𝑛 − 2 log𝑎 log𝑎 𝑛 + 2 log𝑎 (𝑒/2) + 1,

and 𝑓 (𝑘 − 4) > 𝑐( 𝑛
log𝑎 𝑛

)3 = 𝑛3−𝑜 (1) where 𝑐 > 0 is a constant.

Proof. It is easy to see that 𝑘 → ∞ and 𝑘 = 𝑜(
√
𝑛), thus by Stirling formula, we have

𝑓 (𝑘) =
(
𝑛

𝑘

)
𝑝(

𝑘
2) ∼ 𝑛𝑘

𝑘!
𝑝𝑘 (𝑘−1)/2 ∼ 1

√
2𝜋𝑘

( 𝑒𝑛
𝑘
𝑝 (𝑘−1)/2

) 𝑘
.

So if 𝛿 > 0 is fixed, then for all large 𝑛,

𝑒𝑛

𝑘
𝑝 (𝑘−1)/2 ≤ 1 + 𝛿

as 𝑓 (𝑘) ≤ 1. This is equivalent to that

𝑘 ≥ 2 log𝑎 𝑛 − 2 log𝑎 𝑘 + 2 log𝑎 𝑒 + 1 − 2 log𝑎 (1 + 𝛿).

Let us set 𝑘 ∼ 2 log𝑎 𝑛 first. Note that the difference between the right hand side in
the above inequality and 𝜔𝑛 is

2 log𝑎
2 log𝑎 𝑛
𝑘

− 2 log𝑎 (1 + 𝛿) → −2 log𝑎 (1 + 𝛿),

so 𝑘−𝜔𝑛 ≥ −2 log𝑎 (1+𝛿)+𝑜(1) ≥ −𝜖 if we take 𝛿 small enough. Hence 𝑘 ≥ 𝜔𝑛−𝜖 .
Similarly, from

𝑓 (𝑘 − 1) ∼ 1√︁
2𝜋(𝑘 − 1)

( 𝑒𝑛

𝑘 − 1
𝑝 (𝑘−2)/2

) 𝑘−1
,
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90 4 Random Graph

we have 𝑒𝑛
𝑘−1 𝑝

(𝑘−2)/2 ≥ 1, which gives

𝑘 ≤ 2 log𝑎 𝑛 − 2 log𝑎 (𝑘 − 1) + 2 log𝑎 𝑒 + 2.

Furthermore, by taking 𝑘 ∼ 2 log𝑎 𝑛 first, we obtain 𝑘 ≤ 𝜔𝑛 + 1+ 𝑜(1) ≤ 𝜔𝑛 + 𝜖 + 1,
the desired upper bound for 𝑘 follows.

Finally, note that

𝑓 (𝑘 − 2) > 𝑓 (𝑘 − 2)
𝑓 (𝑘 − 1) =

𝑘 − 1
𝑛 − 𝑘 + 2

𝑎𝑘−2 ∼ 𝑝2
𝑘

𝑛
𝑎𝑘 >

𝑐 𝑛

log 𝑛
,

the assertion for 𝑓 (𝑘 − 4) follows immediately. □

Lemma 4.2 For fixed 0 < 𝑝 < 1, 𝑎 = 1/𝑝 and 𝜖 > 0, a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies
that

𝜔(𝐺 𝑝) < ⌊𝜔𝑛 + 𝜖⌋ < 2 log𝑎 𝑛,

where 𝜔𝑛 = 2 log𝑎 𝑛 − 2 log𝑎 log𝑎 𝑛 + 2 log𝑎 (𝑒/2) + 1 is the same defined as in
Lemma 4.1.

Proof. Let 𝑋𝑟 be the number of 𝑟-cliques. Then

𝐸 (𝑋𝑟 ) = 𝑓 (𝑟) =
(
𝑛

𝑟

)
𝑝(

𝑟
2) ≤ 𝑛𝑟

𝑟!
𝑝𝑟 (𝑟−1)/2 <

1
√
2𝜋𝑟

( 𝑒𝑛
𝑟
𝑝 (𝑟−1)/2

)𝑟
.

We shall find some 𝑟 = 𝑟 (𝑛) → ∞ such that 𝐸 (𝑋𝑟 ) → 0. This is certainly true
if 𝑒𝑛𝑝 (𝑟−1)/2/𝑟 ≤ 1 (hence 𝑟 → ∞). The same argument in the proof of Lemma
4.1 applies that if 𝑟 = ⌈𝜔𝑛 + 𝜖⌉, then 𝐸 (𝑋𝑟 ) → 0, thus Pr[𝜔(𝐺 𝑝) ≥ 𝑟] → 0 and
Pr[𝜔(𝐺 𝑝) ≤ ⌊𝜔𝑛 + 𝜖⌋] → 1. □

Note that the above result can be stated as

Pr
(
𝜔(𝐺 𝑝) ≤ ⌈𝜔𝑛 + 𝜖⌉ − 1

)
→ 1 as 𝑛→ ∞.

For a property 𝑄, we say that graphs in G(𝑛, 𝑝) asymptotically almost surely
(a.a.s.) have property 𝑄 if

lim
𝑛→∞

Pr[𝐺 𝑝 ∈ 𝑄] = 1.

Matula (1970, 1972, 1976) was the first to notice that for fixed values of 𝑝 a.a.s.
𝐺 𝑝 ∈ G(𝑛, 𝑝) have clique numbers concentrated on (at most) two values,

⌊𝜔𝑛 − 𝜖⌋ ≤ 𝜔(𝐺 𝑝) ≤ ⌊𝜔𝑛 + 𝜖⌋ .

Results asserting this phenomenonwere proved byGrimmett andMcDiarmid (1975);
and these were further strengthened by Bollobás and Erdős (1976).

In order to reduce the difficulty of the proof and preserve the typical flavor, we
slightly weaken the above lower bound ⌊𝜔𝑛 − 𝜖⌋ by having its asymptotical form a
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4.4 Properties of Random Graphs 91

little bit later. Let us discuss the chromatic numbers first. A technical lemma is as
follows.

Lemma 4.3 Let 𝑘 be the integer defined in Lemma 4.1 and let ℓ = 𝑘 −4. Let𝑌 be the
maximum size of a family of edge-disjoint cliques of size ℓ in 𝐺 ∈ G(𝑛, 𝑝). We have

𝐸 (𝑌 ) ≥ 𝑐𝑛2

ℓ4 ,

where 𝑐 > 0 is a constant.

Proof. Let L denote the family of ℓ-cliques of 𝐺. By Lemma 4.1, we have

𝜇 = 𝐸 ( |L|) = 𝑓 (ℓ) =
(
𝑛

ℓ

)
𝑝(

ℓ
2) ≥ 𝑐1

(𝑛
ℓ

)3
.

Let 𝑊 denote the number of unordered pairs {𝐴, 𝐵} of ℓ-cliques of 𝐺 with 𝐴 ∼ 𝐵,
where 𝐴 ∼ 𝐵 signifies that 2 ≤ |𝐴 ∩ 𝐵| < ℓ. Let

Δ =
∑︁
𝐴∼𝐵

Pr(𝐴𝐵),

where the sum is taken over all ordered pairs {𝐴, 𝐵}. Thus 𝐸 (𝑊) = Δ/2 and

Δ =

(
𝑛

ℓ

) ℓ−1∑︁
𝑖=2

(
ℓ

𝑖

) (
𝑛 − ℓ
ℓ − 𝑖

)
𝑝2(ℓ2)−( 𝑖2) = 𝜇

ℓ−1∑︁
𝑖=2

(
ℓ

𝑖

) (
𝑛 − ℓ
ℓ − 𝑖

)
𝑝(

ℓ
2)−( 𝑖2) = 𝜇

ℓ−1∑︁
𝑖=2

𝑅𝑖 .

Setting 𝑎 = 1/𝑝, we have

𝑅𝑖+1
𝑅𝑖

=
(ℓ − 𝑖)2

(𝑖 + 1) (𝑛 − 2ℓ + 𝑖 + 1) 𝑎
𝑖 .

If 𝑖 is small, say bounded, then this ratio is 𝑂 ((log𝑎 𝑛)2/𝑛), and if 𝑖 is large, say
ℓ − 𝑖 = 𝑂 (1), then the ratio is at least

√
𝑛. It is increasing on 𝑖, so

Δ = 𝜇

ℓ−1∑︁
𝑖=2

𝑅𝑖 ≤ 2𝜇(𝑅2 + 𝑅ℓ−1),

where

𝑅2 =

(
ℓ

2

) (
𝑛 − ℓ
ℓ − 2

)
𝑝(

ℓ
2)−1 =

ℓ2 (ℓ − 1)2

2𝑝(𝑛 − ℓ + 2)(𝑛 − ℓ + 1) 𝜇 ≤ ℓ4

2𝑝𝑛2 𝜇,

and
𝑅ℓ−1 = ℓ(𝑛 − ℓ)𝑝(

ℓ
2)−(ℓ−1

2 ) ≤ 𝑛ℓ𝑝ℓ−1.

Thus
Δ ≤ 2𝜇

(
ℓ4

2𝑝𝑛2 𝜇 + 𝑛ℓ𝑝
ℓ−1

)
≤ 𝐶 𝜇2ℓ4

𝑛2 .
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92 4 Random Graph

Let C be a random subfamily of L defined by setting for each 𝐴 ∈ L,

Pr[𝐴 ∈ C] = 𝑝1,

where 0 < 𝑝1 < 1 will be determined. Then 𝐸 ( |C|) = 𝜇𝑝1. Let 𝑊 ′ be the number
of unordered pairs {𝐴, 𝐵} of ℓ-cliques in C with 𝐴 ∼ 𝐵. Then

𝐸 (𝑊 ′) = 𝐸 (𝑊)𝑝2
1 =

Δ𝑝2
1

2
.

Delete from C one set from each such pair {𝐴, 𝐵}. This yields a set C∗ of edge-
disjoint ℓ-cliques of 𝐺 and

𝐸 (𝑌 ) ≥ 𝐸 ( |C∗ |) ≥ 𝐸 ( |C|) − 𝐸 (𝑊 ′) = 𝜇𝑝1 −
Δ𝑝2

1
2
.

By choosing 𝑝1 =
𝜇

Δ
< 1, we have

𝐸 (𝑌 ) ≥ 𝜇2

2Δ
≥ 𝑐 𝑛2

ℓ4

as asserted. □

Theorem 4.11 (Bollobás) Let 0 < 𝑝 < 1, 𝑎 = 1/𝑝 be fixed, and let 𝑚 = ⌈𝑛/log2
𝑎 𝑛⌉.

Then a.a.s.𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies that each induced subgraph of order 𝑚 of𝐺 𝑝 has
a clique of size at least 𝑟 = 2 log𝑎 𝑛 − 7 log𝑎 log𝑎 𝑛.

Proof. Let 𝑆 be an 𝑚-set of vertices. We shall bound the probability that 𝑆 induces
no 𝑟-clique by 𝑒−𝑚1+𝛿 for all large 𝑛 (hence all large 𝑚), where 𝛿 > 0 is a constant.
So the probability that there exists an 𝑚-set with no 𝑟-clique is at most(

𝑛

𝑚

)
𝑒−𝑚

1+𝛿
<

( 𝑒𝑛
𝑚

)𝑚
𝑒−𝑚

1+𝛿
= exp

(
𝑚 log𝑒

𝑒𝑛

𝑚
− 𝑚1+𝛿

)
,

which goes to zero, and the assertion follows.
Let 𝑋 be the maximum number of pairwise edge-disjoint 𝑟-cliques sets in this

graph (induced by 𝑆), where edge-disjoint means they share at most one vertex.
We shall show that a.a.s. 𝑋 ≥ 1 holds. To do this, we invoke Azuma’s Inequality.
Consider the edge exposure martingale for 𝑋 that results from revealing 𝐺 one-edge
slot at a time. We have 𝑋0 = 𝐸 (𝑋) and 𝑋(𝑚2 ) = 𝑋 . Clearly the Lipschitz condition
|𝑋𝑖+1 − 𝑋𝑖 | ≤ 1 is satisfied, so Azuma’s Lemma gives

Pr(𝑋 = 0) ≤ Pr[𝑋 − 𝐸 (𝑋) ≤ −𝐸 (𝑋)]

= Pr

[
𝑋 − 𝐸 (𝑋) ≤ −𝜆

(
𝑚

2

)1/2
]

≤ 𝑒−𝜆
2/2 = exp

(
− 𝐸2 (𝑋)
𝑚(𝑚 − 1)

)
,
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4.4 Properties of Random Graphs 93

where 𝜆 = 𝐸 (𝑋)/
(𝑚

2
)1/2. Hence it suffices to find 𝛿 > 0 such that 𝐸2 (𝑋) ≥ 𝑚3+𝛿 for

all large 𝑛.
To this end, let 𝑡0 be the integer such that 𝑓 (𝑡0 − 1) > 1 ≥ 𝑓 (𝑡0), where 𝑓 (𝑥) =(𝑚

𝑥

)
𝑝(𝑥2) , and let 𝑡 = 𝑡0 − 4. Then by Lemma 4.1, we have

𝑡 ≥ 2 log𝑎 𝑚 − 2 log𝑎 log𝑎 𝑚 − 3 > 2 log𝑎 𝑛 − 7 log𝑎 log𝑎 𝑛,

so 𝑡 > 𝑟. Let 𝑇 be the maximum number of edge-disjoint cliques of size 𝑡, Then
𝐸 (𝑋) ≥ 𝐸 (𝑇) and 𝐸 (𝑇) ≥ 𝑐𝑚2/𝑡4 by Lemma 4.3, hence

𝐸 (𝑋) ≥ 𝑐𝑚2

𝑡4
∼ 𝑐𝑛2

16(log𝑎 𝑛)8 ,

implying that 𝐸2 (𝑋) ≥ 𝑛4−𝑜 (1) ≥ 𝑛3+𝛿 for any 1 > 𝛿 > 0 if 𝑛 is large, which
completes the proof. □

Theorem 4.12 (Bollobás) Let 0 < 𝑝 < 1 and 𝜖 > 0 be fixed. Denote 𝑏 = 1/𝑞 =

1/(1 − 𝑝). Then a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies that

𝑛

2 log𝑏 𝑛
≤ 𝜒(𝐺 𝑝) ≤ (1 + 𝜖) 𝑛

2 log𝑏 𝑛
.

Proof. The lower bound holds because a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies that 𝛼(𝐺 𝑝) ≤
2 log𝑏 𝑛 and 𝜒(𝐺)𝛼(𝐺) ≥ 𝑛. The upper bound follows from the above theorem,
which is applied for independent sets instead of cliques, because we can almost
always select independent set of size 2 log𝑏 𝑛 − 7 log𝑏 log𝑏 𝑛 until we have only
𝑛/log2

𝑏 𝑛 < (𝜖/2)𝑛/(2 log𝑏 𝑛) vertices left. We first use at most

𝑛

2 log𝑏 𝑛 − 7 log𝑏 log𝑏 𝑛
<

(
1 + 𝜖

2

) 𝑛

2 log𝑏 𝑛

colors, and then we can complete the coloring by using distinct new colors on each
of the remaining vertices. □

Let us remark that Achlioptas and Naor (2005) obtained a result on sparser
random graphs as follows. Given 𝑑 > 0, let 𝑘𝑑 be the smallest integer 𝑘 such that
𝑑 < 2𝑘 log 𝑘 . Then 𝜒(𝐺 𝑝) for almost all 𝐺 𝑝 ∈ G(𝑛, 𝑑/𝑛) is either 𝑘𝑑 or 𝑘𝑑 + 1.
This result improves an earlier result of Łuczak (1991) by specifying the form of 𝑘𝑑 .

Theorem 4.13 Let 0 < 𝑝 < 1 and 𝜖 > 0 be fixed. Then a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies
that

(1 − 𝜖)2 log𝑏 𝑛 ≤ 𝛼(𝐺 𝑝) < 2 log𝑏 𝑛.

Proof. The upper bound follows from Lemma 4.2, and the lower bound follows from
Theorem 4.12 and the fact that 𝛼(𝐺) ≥ 𝑛/𝜒(𝐺). □

Theorem 4.14 Let 0 < 𝑝 < 1 and 𝜖 > 0 be fixed. Then a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies
that

(1 − 𝜖)2 log𝑎 𝑛 ≤ 𝜔(𝐺 𝑝) < 2 log𝑎 𝑛.



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

94 4 Random Graph

Proof. This is the complement of Theorem 4.13. □

For some graph parameter 𝑓 (𝐺), we have seen that there is a function 𝑔(𝑛) such
that a.a.s. 𝐺 𝑝 ∈ G(𝑛, 𝑝) satisfies that

(1 − 𝜖)𝑔(𝑛) ≤ 𝑓 (𝐺 𝑝) ≤ (1 + 𝜖)𝑔(𝑛),

hence 𝑓 (𝐺) concentrate in a small range. We shall call the function 𝑔(𝑛) a threshold
for the parameter 𝑓 . We will discuss the threshold for probability 𝑝 = 𝑝(𝑛) instead
of fixed 𝑝, and will consider some other graph parameters in the next chapter.

4.4.3 Threshold Functions

For fixed 0 < 𝑝 ≤ 1, most graphs in G(𝑛, 𝑝) are dense. Bollobás (1988) proved that
the chromatic numbers 𝜒(𝐺 𝑝) for 𝐺 𝑝 ∈ G(𝑛, 𝑝) are concentrated at 𝑛/(2 log1/𝑞 𝑛),
where 𝑞 = 1− 𝑝. In this section, we investigate the concentration of edge probability
function 𝑝 = 𝑝(𝑛) associated with a property. We will see that random graphs in
G(𝑛, 𝑝) behave sensitively on 𝑝 = 𝑝(𝑛). A monumental discovery of Erdős and
Rényi (1960) was that many natural graph theoretic properties become true in a very
narrow range of 𝑝 = 𝑝(𝑛).

A property 𝑄 is said to be monotone increasing if 𝐺 has property 𝑄 implies that
any graph from 𝐺 by adding some new edges also has 𝑄. The monotone decreasing
property can be defined similarly. Thus the property of being connected is monotone
increasing and that of being triangle-free is monotone decreasing. Recall that a
property𝑄 is associated with a family of graphs. We say that this family of graphs is
monotone increasing if so is the property𝑄. Also we do not distinguish the property
and its associated family.

Lemma 4.4 Let 𝑄 be a monotone increasing property. For 𝐺 𝑝 ∈ G(𝑛, 𝑝), the
function Pr(𝐺 𝑝 ∈ 𝑄) is increasing on 𝑝.

Proof. Let 0 ≤ 𝑝1 (𝑛) < 𝑝2 (𝑛) ≤ 1. We shall verify

Pr(𝐺 𝑝1 ∈ 𝑄) ≤ Pr(𝐺 𝑝2 ∈ 𝑄).

Set 𝑝 = (𝑝2 − 𝑝1)/(1 − 𝑝1), then 𝑝2 = 𝑝 + 𝑝1 − 𝑝𝑝1. Choose 𝐺 ∈ G(𝑛, 𝑝) and
𝐺1 ∈ G(𝑛, 𝑝1), independently, and set 𝐺2 = 𝐺 ∪ 𝐺1. Namely 𝐺2 is a graph on
vertex set 𝑉 = [𝑛] with edge set 𝐸 (𝐺) ∪ 𝐸 (𝐺1), in which each edge 𝑒 appears with
probability

Pr(𝑒) = Pr(𝑒 ∈ 𝐸 (𝐺) ∪ 𝐸 (𝐺1)) = 𝑝 + 𝑝1 − 𝑝𝑝1 = 𝑝2

since the events that 𝑒 appears in 𝐸 (𝐺) and in 𝐸 (𝐺1) are independent. Thus 𝐺2 is
exactly a random graph of G(𝑛, 𝑝2). As 𝑄 is monotone increasing, we have that if
𝐺1 has 𝑄 then so does 𝐺2, and thus Pr(𝐺 𝑝1 ∈ 𝑄) ≤ Pr(𝐺 𝑝2 ∈ 𝑄) as claimed. □
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4.4 Properties of Random Graphs 95

Let 𝑄 be a monotone increasing property. Erdős and Rényi defined a function
𝑓 (𝑛) with 0 ≤ 𝑓 (𝑛) ≤ 1 as a threshold function for 𝑄 if

lim
𝑛→∞

Pr(𝐺 𝑝 ∈ 𝑄) =
{

0 if 𝑝 = 𝑓 (𝑛)/𝜔(𝑛),
1 if 𝑝 = 𝑓 (𝑛)𝜔(𝑛),

where 0 < 𝜔(𝑛) < 1/ 𝑓 (𝑛) is a function which tends to infinity, as slowly as desired.
For example, if 𝑓 (𝑛) = log 𝑛

𝑛
, we may assume that 0 < 𝜔(𝑛) < log log 𝑛. Note that if

𝑓 (𝑛) is a threshold function for 𝑄, then so is 𝑐 𝑓 (𝑛) for any constant 𝑐 > 0.
Clearly, the definition of 𝑓 (𝑛) being a threshold function for a monotone increas-

ing property 𝑄 is equivalent to

lim
𝑛→∞

Pr(𝐺 𝑝 ∈ 𝑄) =
{

0 if 𝑝 ≪ 𝑓 (𝑛),
1 if 𝑝 ≫ 𝑓 (𝑛),

where 𝑝 ≪ 𝑓 (𝑛) means 𝑝 = 𝑜( 𝑓 (𝑛)).
For obvious reason, the above threshold function is in fact a threshold probability

function. One can certainly define other threshold functions such as the threshold
edge function.

The definition of the threshold function for a monotone decreasing property is
similar. The definitions mean that whether or not 𝐺 𝑝 having a property 𝑄 changes
suddenly even though 𝑝 = 𝑝(𝑛) changes slightly in the moment.

Let 𝑋 = 𝑋 (𝐺) be a non-negative integral parameter of 𝐺. Since

Pr(𝑋 ≥ 1) =
∑︁
𝑘≥1

Pr(𝑋 = 𝑘) ≤ 𝐸 (𝑋),

it follows that 𝐸 (𝑋) → 0 implies that a.a.s. graphs in G(𝑛, 𝑝) satisfy 𝑋 = 0. And in
many cases 𝐸 (𝑋) → ∞ implies that a.a.s. graphs in G(𝑛, 𝑝) satisfy 𝑋 ≥ 1, which
can be shown by Chebyshev’s inequality often. For example, let 𝑋 be the number of
triangles in 𝐺 𝑝 ∈ G(𝑛, 𝑝). Then

𝐸 (𝑋) =
(
𝑛

3

)
𝑝3 ∼ 1

6
(𝑛𝑝)3.

As we will see in the next theorem that 𝑓 (𝑛) = 1/𝑛 truly is a threshold function
for triangle-containedness. Let 𝑝 = 𝛾/𝑛 and let 𝛾 → 0 or 𝛾 → ∞ signify 𝜔(𝑛) in
the denominator or in the numerator in the definition, respectively. When 𝛾 reaches
and passes 1, the structure of 𝐺 𝑝 changes radically. This is called the double jump
because the structure of 𝐺 𝑝 changes radically for 𝛾 ≪ 1, 𝛾 ∼ 1 and 𝛾 ≫ 1.

Let us recall the Second Moment Method in the last chapter.

Lemma 4.5 (Second Moment Method) If 𝑋 is a random variable, then

Pr(𝑋 = 0) ≤ 𝐸 (𝑋2) − 𝜇2

𝜇2 ,
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96 4 Random Graph

where 𝜇 = 𝐸 (𝑋). In particular, Pr(𝑋 = 0) → 0 if 𝐸 (𝑋2)/𝜇2 → 1.

A graph 𝐺 with average degree 𝑑 is called balanced if no subgraph of it has
average degree greater than 𝑑. Complete graphs, cycles and trees are all balanced.

Theorem 4.15 Let 𝐹 be a balanced graph with 𝑘 ≥ 2 vertices and ℓ ≥ 1 edges. If
𝑄 is a property that a graph contains 𝐹 as a subgraph, then 𝑛−𝑘/ℓ is a threshold
function for 𝑄.

Proof. To simplify the notation as before, we shall use 𝑝 =
𝛾

𝑛𝑘/ℓ
with 𝛾 → 0 and

𝛾 → ∞ to signify the function 𝜔(𝑛) in the denominator and numerator, respectively.
Let 𝑋 = 𝑋 (𝐺 𝑝) be the number of copies of 𝐹 contained in 𝐺 𝑝 ∈ G(𝑛, 𝑝). Denote
by 𝑎 for the number of graphs isomorphic to 𝐹 on fixed 𝑘 labeled vertices. As 𝐹 has
ℓ edges, we have

𝜇 = 𝐸 (𝑋) =
(
𝑛

𝑘

)
𝑎𝑝ℓ .

By noting the simple facts that 1 ≤ 𝑎 ≤ 𝑘! with 𝑘 and ℓ fixed, we have 𝐸 (𝑋) ≤
𝑛𝑘 𝑝ℓ = 𝛾ℓ and 𝐸 (𝑋) ∼ 𝑎

𝑘!𝑛
𝑘 𝑝ℓ = 𝑎

𝑘!𝛾
ℓ . Thus

𝑐1𝛾
ℓ ≤ 𝑐2𝑛

𝑘 𝑝ℓ ≤ 𝜇 = 𝐸 (𝑋) ≤ 𝛾ℓ ,

where 𝑐1 and 𝑐2 henceforth 𝑐𝑖 are positive constants.
When 𝛾 → 0 as 𝑛→ ∞, by Markov’s inequality,

Pr(𝐺 𝑝 ∈ 𝑄) = Pr(𝑋 ≥ 1) ≤ 𝐸 (𝑋) = 𝑜(1).

It remains to show that Pr(𝐺 𝑝 ∈ 𝑄) = Pr(𝑋 ≥ 1) → 1 when 𝛾 → ∞. We turn to
the Second Moment Method for help since the Markov’s inequality does not work
in this case.

For any 𝑘 labeled vertices in [𝑛], we have 𝑎 = 𝑘!/|A|, where A is the automor-
phism group of 𝐹. Hence there are 𝑎

(𝑛
𝑘

)
potential copies of 𝐹 on [𝑛]. Let

F = {𝐹1, 𝐹2, . . . }

denote the family of these copies. Denote by 𝐹𝑖 ∪ 𝐹𝑗 for the graph with vertex set
𝑉 (𝐹𝑖) ∪ 𝑉 (𝐹𝑗 ) and edge set 𝐸 (𝐹𝑖) ∪ 𝐸 (𝐹𝑗 ). The two critical observations are that
most pairs 𝐹𝑖 and 𝐹𝑗 have no vertices in common, and if they have 𝑠 ≥ 1 common
vertices and these 𝑠 vertices contains 𝑡 edges of 𝐹𝑗 , then 𝑡/𝑠 ≤ ℓ/𝑘 since 𝐹 is
balanced.

Let 𝑋𝑖 be the indicator function of 𝐹𝑖 . Then

𝐸 (𝑋𝑖) = Pr(𝑋𝑖 = 1) = Pr(𝐺 𝑝 ⊇ 𝐹𝑖).

Since 𝑋 =
∑
𝑖 𝑋𝑖 and 𝑋2

𝑖
= 𝑋𝑖 , we have

𝐸 (𝑋2) = 𝜇 +
∑︁
𝑖≠ 𝑗

𝐸 (𝑋𝑖𝑋 𝑗 ) = 𝜇 +
∑︁
𝑖≠ 𝑗

Pr(𝐺 𝑝 ⊇ 𝐹𝑖 ∪ 𝐹𝑗 ),
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4.4 Properties of Random Graphs 97

where the sum is taken over all ordered pairs 𝑖 and 𝑗 with 𝐹𝑖 , 𝐹𝑗 ∈ F . Set

𝐴0 =
∑︁

𝑖≠ 𝑗: 𝐸 (𝐹𝑖 )∩𝐸 (𝐹𝑗 )=∅
Pr(𝐺 𝑝 ⊇ 𝐹𝑖 ∪ 𝐹𝑗 ),

and for 𝑠 ≥ 1,

𝐴𝑠 =
∑︁
𝑖≠ 𝑗

{
Pr(𝐺 𝑝 ⊇ 𝐹𝑖 ∪ 𝐹𝑗 ) : |𝑉 (𝐹𝑖) ∩𝑉 (𝐹𝑗 ) | = 𝑠, 𝐸 (𝐹𝑖) ∩ 𝐸 (𝐹𝑗 ) ≠ ∅

}
.

We have 𝐸 (𝑋2) = 𝜇 + ∑𝑘
𝑠=0 𝐴𝑠 . Note that if 𝐸 (𝐹𝑖) ∩ 𝐸 (𝐹𝑗 ) = ∅, then

Pr(𝐺 𝑝 ⊇ 𝐹𝑖 ∪ 𝐹𝑗 ) = Pr(𝐺 𝑝 ⊇ 𝐹𝑖) Pr(𝐺 𝑝 ⊇ 𝐹𝑗 )

from the independency of the events. Thus,

𝐴0 =
∑︁

𝑉 (𝐹𝑖 )∩𝑉 (𝐹𝑗 )=∅
Pr(𝐺 𝑝 ⊇ 𝐹𝑖 ∪ 𝐹𝑗 )

=
∑︁

𝑉 (𝐹𝑖 )∩𝑉 (𝐹𝑗 )=∅
Pr(𝐺 𝑝 ⊇ 𝐹𝑖) Pr(𝐺 𝑝 ⊇ 𝐹𝑗 )

≤
(∑︁
𝑖

Pr(𝐺 𝑝 ⊇ 𝐹𝑖)
) (∑︁

𝑗

Pr(𝐺 𝑝 ⊇ 𝐹𝑗 )
)

= 𝐸2 (𝑋) = 𝜇2.

For 𝑠 ≥ 1, it is expected that 𝐴𝑠 is much less than 𝜇2. Fix 𝐹𝑖 , counting 𝐹𝑗 that has
𝑠 common vertices with 𝐹𝑖 , in which these 𝑠 common vertices contain 𝑡 edges of
𝐸 (𝐹𝑖) ∩ 𝐸 (𝐹𝑗 ) with 𝑡 ≤ 𝑠ℓ/𝑘 since 𝐹 is balanced, we have∑︁

𝑗: |𝑉 (𝐹𝑖 )∩𝑉 (𝐹𝑗 ) |=𝑠
Pr(𝐺 𝑝 ⊇ 𝐹𝑖 ∪ 𝐹𝑗 ) ≤

∑︁
𝑡≤𝑠ℓ/𝑘

(
𝑘

𝑠

) (
𝑛 − 𝑘
𝑘 − 𝑠

)
𝑝2ℓ−𝑡

≤ 𝑐3𝑛
𝑘−𝑠

∑︁
𝑡≤𝑠ℓ/𝑘

𝑝2ℓ−𝑡

since 𝑘, 𝑠, ℓ are fixed and 𝑡 is bounded. From the fact that there are 𝑎
(𝑛
𝑘

)
elements in

F , we obtain

𝐴𝑠 ≤ 𝑎
(
𝑛

𝑘

)
𝑐3𝑛

𝑘−𝑠
∑︁
𝑡≤𝑠ℓ/𝑘

𝑝2ℓ−𝑡 ≤ 𝑐4𝑛
2𝑘−𝑠

∑︁
𝑡≤𝑠ℓ/𝑘

𝑝2ℓ−𝑡

≤ 𝑐4 (𝑛𝑘 𝑝ℓ)2𝑛−𝑠
∑︁
𝑡≤𝑠ℓ/𝑘

𝑝−𝑡 ≤ 𝑐5𝛾
2ℓ𝑛−𝑠

𝑝𝑠ℓ/𝑘

=
𝑐5𝛾

2ℓ

(𝑛𝑝ℓ/𝑘)𝑠
=
𝑐5𝛾

2ℓ

𝛾𝑠ℓ/𝑘
≤ 𝑐6𝜇

2

𝛾𝑠ℓ/𝑘
,
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98 4 Random Graph

where we used the fact that 𝑛𝑘 𝑝ℓ , 𝛾ℓ and 𝜇 have the same order. So for 𝑠 ≥ 1, we
have 𝐴𝑠/𝜇2 ≤ 𝑐6/𝛾𝑠ℓ/𝑘 , and

𝐸 (𝑋2)
𝜇2 =

𝜇 + 𝐴0 +
∑𝑘
𝑠=1 𝐴𝑠

𝜇2 ≤ 1 + 1
𝜇
+

𝑘∑︁
𝑠=1

𝑐6

𝛾𝑠ℓ/𝑘
≤ 1 + 𝑜(1) + 𝑐7

𝛾ℓ/𝑘
.

Now the Second Moment Method (see Lemma 3.16) yields that

Pr(𝑋 = 0) ≤ Pr( |𝑋 − 𝜇 | ≥ 𝜇) ≤ 𝜎2

𝜇2 =
𝐸 (𝑋2) − 𝜇2

𝜇2 ≤ 𝑜(1) + 𝑐7

𝛾ℓ/𝑘
,

which tends to zero as 𝛾 → ∞. □

The original definition of threshold function 𝑓 (𝑛) of Erdős and Rényi comes
from 𝑝1 (𝑛) = 𝑓 (𝑛)/𝜔(𝑛) and 𝑝2 (𝑛) = 𝑓 (𝑛)𝜔(𝑛) hence

√︁
𝑝1 (𝑛)𝑝2 (𝑛) is a threshold

function, where 𝑝1/𝑝2 → 0. In many cases, it is just needed that 𝑝1 is slightly less
than 𝑝2. A more precise definition of threshold function is as follows.

Let 𝑄 be a monotone increasing property of graphs. A function 𝑝ℓ = 𝑝ℓ (𝑛) is
called a lower threshold function (ltf) if almost no graphs in G(𝑛, 𝑝ℓ) have 𝑄, and a
function 𝑝𝑢 = 𝑝𝑢 (𝑛) is called an upper threshold function (utf) if almost all graphs
in G(𝑛, 𝑝𝑢) have 𝑄.

A realistic situation is very interesting. In a conference, a pair of mathemati-
cians unknown each other can found a common mathematician friend. The distance
between two vertices 𝑥 and 𝑦 in 𝐺 is the length of a shortest path between them.
The diameter of a graph 𝐺, denoted 𝑑𝑖𝑎𝑚(𝐺), is the greatest distance between two
vertices of 𝐺. The following result called distance two theorem gives us a good
explanation for this small world phenomenon.

Theorem 4.16 For any function 𝜔(𝑛) → ∞ with 𝜔(𝑛) < log 𝑛, set

𝑝ℓ =

√︂
2 log 𝑛 − 𝜔(𝑛)

𝑛
, and 𝑝𝑢 =

√︂
2 log 𝑛 + 𝜔(𝑛)

𝑛
.

Then 𝑝ℓ and 𝑝𝑢 are ltf and utf for the property of graph having diameter two,
respectively.

Proof. Enumerate of all pairs of vertices {𝑢, 𝑣} of G(𝑛, 𝑝) as 𝑒1, 𝑒2, . . . , 𝑒𝑚 with
𝑚 =

(𝑛
2
)
. For 𝑒𝑘 = {𝑢, 𝑣}, let 𝑑 (𝑢, 𝑣) be the distance between 𝑢 and 𝑣. Define

𝑋𝑘 =

{
0 𝑑 (𝑢, 𝑣) ≤ 2,
1 otherwise,

and 𝑋 =
∑𝑚
𝑘=1 𝑋𝑘 . A non-complete graph 𝐺 has distance two if and only if 𝑋 = 0.

Since the event 𝑑 (𝑢, 𝑣) ≥ 3 for a pair of non-adjacent vertices is equivalent to that
none of other 𝑛 − 2 vertices is adjacent to both 𝑢 and 𝑣, it follows that

𝐸 (𝑋𝑘) = Pr(𝑋𝑘 = 1) = (1 − 𝑝) (1 − 𝑝2)𝑛−2.
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4.4 Properties of Random Graphs 99

Set 𝜇 = 𝐸 (𝑋), then

𝜇 = 𝐸 (𝑋) =
(
𝑛

2

)
(1 − 𝑝) (1 − 𝑝2)𝑛−2.

(i) Let 𝑝 = 𝑝𝑢 =
√︁
(2 log 𝑛 + 𝜔(𝑛))/𝑛.

Note that

𝜇 ∼ 𝑛2

2
(1 − 𝑝2)𝑛 ∼ 𝑛2

2
𝑒−𝑛𝑝

2
=

1
2
𝑒−𝜔 (𝑛) = 𝑜(1).

Thus Pr(𝑋 ≥ 1) ≤ 𝐸 (𝑋) → 0, i.e., a.a.s. graphs in G(𝑛, 𝑝) have diameter at most
two since almost no graph in G(𝑛, 𝑝) is complete.

(ii) Let 𝑝 = 𝑝ℓ =
√︁
(2 log 𝑛 − 𝜔(𝑛))/𝑛.

Suppose that 𝜔(𝑛) < log log 𝑛 without loss of generality. Consider

𝐸 (𝑋2) =
∑︁
𝑖, 𝑗

𝐸 (𝑋𝑖𝑋 𝑗 ) = 𝐴0 + 𝐴1 + 𝐴2,

where 𝐴𝑠 =
∑

|𝑒𝑖∩𝑒 𝑗 |=𝑠 𝐸 (𝑋𝑖𝑋 𝑗 ), i.e., the sum in which is taken over all pairs {𝑖, 𝑗}
with 𝑒𝑖 and 𝑒 𝑗 having 𝑠 vertices in common. Clearly

𝜇 = 𝐸 (𝑋) ∼ 𝑛2

2
(1 − 𝑝2)𝑛 ∼ 𝑛2

2
𝑒−𝑛𝑝

2
=
𝑒𝜔 (𝑛)

2
,

which will tend to infinity since 𝜔(𝑛) tends to infinity, and

𝐴0 =
∑︁

|𝑒𝑖∩𝑒 𝑗 |=0
𝐸 (𝑋𝑖𝑋 𝑗 ) ≤

(
𝑛

2

) (
𝑛 − 2

2

)
(1 − 𝑝)2 (1 − 𝑝2)2(𝑛−2) < 𝜇2.

Moreover,

𝐴2 =

𝑚∑︁
𝑘=1

𝐸 (𝑋𝑘) = 𝜇.

We now estimate 𝐴1 that should not be big since 𝐴0 counts most of pairs. For
𝑒𝑖 = {𝑢, 𝑣} and 𝑒 𝑗 = {𝑣, 𝑤} with |𝑒𝑖 ∩ 𝑒 𝑗 | = 1, we consider the probability of the
event 𝑑 (𝑢, 𝑣) ≥ 3 and 𝑑 (𝑣, 𝑤) ≥ 3. Applying Lemma 3.14 with 𝛿 = 𝑝/4, we have
that

Pr
(
|𝑁 (𝑣) | < 3𝑝𝑛

4

)
≤ exp

{
− 𝑛𝑝

48𝑞

}
< 𝑛−4.

This means that |𝑁 (𝑣) | ≥ 3𝑝𝑛
4 with high probability. Furthermore, the event

𝑑 (𝑢, 𝑣) ≥ 3 and 𝑑 (𝑣, 𝑤) ≥ 3 implies that both 𝑢 and 𝑤 are not adjacent to any
vertex of 𝑁 [𝑣]. Therefore, for fixed 𝑢, 𝑣 and 𝑤,
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100 4 Random Graph

Pr(𝑑 (𝑢, 𝑣) ≥ 3 and 𝑑 (𝑣, 𝑤) ≥ 3)

≤ 𝑛−4 + (1 − 𝑝)3𝑝𝑛/2 ≤ 𝑛−4 + 𝑒−3𝑛𝑝2/2

= 𝑛−4 + 𝑒−3 log 𝑛+3𝜔/2 = 𝑛−4 + 𝑛−3𝑒3𝜔/2.

It follows that

𝐴1 =
∑︁

|𝑒𝑖∩𝑒 𝑗 |=1
𝐸 (𝑋𝑖𝑋 𝑗 ) ≤ 3

(
𝑛

3

)
·
(
𝑛−4 + 𝑛−3𝑒3𝜔/2

)
< 1 + 2𝜇3/2.

Hence
𝜎2 = 𝐸 (𝑋2) − 𝜇2 = 𝐴0 + 𝐴1 + 𝐴2 − 𝜇2 < 1 + 2𝜇3/2 + 𝜇,

which and the Second Moment Method yield

Pr(𝑋 = 0) ≤ Pr( |𝑋 − 𝜇 | ≥ 𝜇) ≤ 𝜎2

𝜇2 = 𝑜(1),

proving that a.a.s. no graph in G(𝑛, 𝑝) has diameter two with 𝑝 = 𝑝ℓ . □

The further solution for diameter of random graphs is as follows. Let 𝑑 ≥ 2 be an
integer. If

𝑝 = 𝑛1/𝑑−1 (log(𝑛2/𝑥))1/𝑑 ,

then
Pr(diam(𝐺 𝑝) = 𝑑) → 𝑒−𝑥/2,

and
Pr(diam(𝐺 𝑝) = 𝑑 + 1) → 1 − 𝑒−𝑥/2

as 𝑛→ ∞. See Bollobás (2001) for details. The above limit distribution implies that

𝑝ℓ,𝑢 = 𝑛
1/𝑑−1 (2 log 𝑛 ± 𝜔(𝑛))1/𝑑

are ltf and utf of graphs being diameter 𝑑, respectively.
The diameter two graphs are of interest in graph Ramsey theory. Recall that a

graph 𝐹 is a Ramsey graph for 𝑟 (𝐺, 𝐻) if 𝐹 is of order 𝑟 (𝐺, 𝐻) − 1 such that 𝐹
contains no copy of 𝐺 and its complement 𝐹 contains no copy of 𝐻. Let 𝐺𝑛 be
a Ramsey graph of order 𝑛 = 𝑟 (3, 𝑘) − 1. Suppose that 𝐺𝑛 is edge maximal for
triangle-freeness. Then 𝐺𝑛 must be a graph with diameter two. Since the order of
𝑛 is 𝑘2/log 𝑘 , the maximum degree of 𝐺𝑛 is upper bounded by 𝑘 ≤ 𝑐

√︁
𝑛 log 𝑛. It is

likely that the minimum degree of 𝐺𝑛 has order
√︁
𝑛 log 𝑛 hence the order of its edge

density is
√︁

log 𝑛/𝑛 as that in the above theorem.

Problem 4.1 Let𝐺𝑛 be a Ramsey graph of order 𝑛 = 𝑟 (3, 𝑘)−1 that is edge maximal.
Determine the orders of the minimum and maximum degrees of 𝐺𝑛 as 𝑘 → ∞.

The following result gives threshold functions for the property of being connected.
A deeper version of the result will be given in the next section.
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4.4 Properties of Random Graphs 101

Theorem 4.17 Let 𝜔(𝑛) → ∞ be a function with 𝜔(𝑛) < log 𝑛. Set

𝑝ℓ =
log 𝑛 − 𝜔(𝑛)

𝑛
and 𝑝𝑢 =

log 𝑛 + 𝜔(𝑛)
𝑛

.

Then 𝑝ℓ and 𝑝𝑢 are ltf and utf for graphs in G(𝑛, 𝑝) with the property of being
connected, respectively.

Proof. Let 𝑄 be the family of connected graphs. Since 𝑄 is monotone increasing,
we may assume that 𝜔(𝑛) ≤ log log 𝑛 without loss of generality by Lemma 4.4.
Let 𝑋𝑘 = 𝑋𝑘 (𝐺) be the number of components of 𝐺 ∈ G(𝑛, 𝑝) that have exactly 𝑘
vertices.

(i) We first prove that 𝑝 = 𝑝ℓ is a ltf for 𝑄. Set 𝜇 = 𝐸 (𝑋1). Note that (1 − 𝑝)𝑛 ∼
𝑒−𝑛𝑝 since 𝑛𝑝2 → 0, it follows that

𝜇 = 𝐸 (𝑋1) = 𝑛(1 − 𝑝)𝑛−1 ∼ 𝑛𝑒−𝑛𝑝 = 𝑒𝜔 (𝑛) → ∞

as 𝑛 tends to infinity. This may indicate that Pr(𝑋1 = 0) → 0, which implies that
a.a.s. graphs have isolated vertices and hence they are disconnected. To this end, we
will use the Second Moment Method. We need to estimate the variance𝜎2 = 𝜎2 (𝑋1)
hence 𝐸 (𝑋2

1 ). First, note that

𝐸 [𝑋1 (𝑋1 − 1)] = 𝑛(𝑛 − 1) (1 − 𝑝)2𝑛−3,

which is the expected number of ordered pairs of isolated vertices. Indeed, there are
𝑛(𝑛 − 1) ordered pairs of vertices, and the vertices of each pair are isolated if and
only if they are neither adjacent each other nor adjacent to any other 𝑛 − 2 vertices,
which count 2𝑛 − 3 edges. Hence

𝐸 (𝑋2
1 ) = 𝐸 [𝑋1 (𝑋1 − 1)] + 𝐸 (𝑋1) = 𝜇 + 𝑛(𝑛 − 1) (1 − 𝑝)2𝑛−3.

We thus have

𝜎2 = 𝜎2 (𝑋1) = 𝐸 [(𝑋1 − 𝜇)2] = 𝐸 (𝑋2
1 ) − 𝜇

2

= 𝜇 + 𝑛(𝑛 − 1) (1 − 𝑝)2𝑛−3 − 𝑛2 (1 − 𝑝)2𝑛−2

≤ 𝜇 + 𝑝𝑛2 (1 − 𝑝)2𝑛−3.

Since 𝑝 = (log 𝑛−𝜔(𝑛))/𝑛 with log log 𝑛 ≥ 𝜔(𝑛) → ∞ and 1− 𝑝 ≤ 𝑒−𝑝 , we obtain

𝑝𝑛2 (1 − 𝑝)2𝑛−3 ≤ (1 + 𝑜(1)) (log 𝑛)𝑛𝑒−2𝑛𝑝

= (1 + 𝑜(1)) (log 𝑛)𝑛𝑒−2 log 𝑛+2𝜔 (𝑛)

= (1 + 𝑜(1)) log 𝑛
𝑛

𝑒2𝜔 (𝑛) → 0.

Thus
𝜎2 = 𝜎2 (𝑋1) ≤ 𝜇 + 1.
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102 4 Random Graph

This and the Second Moment Method give

Pr(𝐺 𝑝 ∈ 𝑄) ≤ Pr(𝑋1 = 0) ≤ Pr( |𝑋1 − 𝜇 | ≥ 𝜇) ≤ 𝜎2

𝜇2 → 0,

proving that 𝑝ℓ is a ltf for property of being connected.

(ii) Now let 𝑝 = 𝑝𝑢 = (log 𝑛 + 𝜔(𝑛))/𝑛. Note that if 𝐺 is not connected, then it
must contains a component of order at most ⌊𝑛/2⌋. So

Pr(𝐺 𝑝 ∉ 𝑄) = Pr

(⌊𝑛/2⌋∑︁
𝑘=1

𝑋𝑘 ≥ 1

)
≤ 𝐸

(⌊𝑛/2⌋∑︁
𝑘=1

𝑋𝑘

)
=

⌊𝑛/2⌋∑︁
𝑘=1

𝐸 (𝑋𝑘).

Note that if a set with 𝑘 vertices induces a component, then any vertex in it is not
adjacent to any vertex out of it. Thus

𝐸 (𝑋𝑘) ≤
(
𝑛

𝑘

)
(1 − 𝑝)𝑘 (𝑛−𝑘 ) ,

where we ignore the condition that the set is connected. Therefore,

Pr(𝐺 𝑝 ∉ 𝑄) ≤
⌊𝑛/2⌋∑︁
𝑘=1

(
𝑛

𝑘

)
(1 − 𝑝)𝑘 (𝑛−𝑘 ) .

Let us split the sum into two parts 𝑆1 and 𝑆2. Note that 𝑒𝑘𝑝 ≤ 1 + 𝜖 uniformly for
𝑘 ≤ 𝑛3/4, and 𝑛𝑒−𝑛𝑝 = 𝑒−𝜔 (𝑛)/𝑛, we have

𝑆1 =
∑︁

1≤𝑘≤𝑛3/4

(
𝑛

𝑘

)
(1 − 𝑝)𝑘 (𝑛−𝑘 ) ≤

∑︁
1≤𝑘≤𝑛3/4

( 𝑒𝑛
𝑘
𝑒−𝑛𝑝𝑒𝑘𝑝

) 𝑘
≤

∑︁
1≤𝑘≤𝑛3/4

(
(1 + 𝜖) 𝑒

1−𝜔 (𝑛)

𝑘

) 𝑘
≤

∑︁
1≤𝑘≤𝑛3/4

(
(1 + 𝜖)𝑒1−𝜔 (𝑛)

) 𝑘
≤ (1 + 𝑜(1)) (1 + 𝜖)𝑒1−𝜔 (𝑛) → 0.

Note that for 𝑛3/4 < 𝑘 ≤ 𝑛/2, we have
(𝑛
𝑘

)
≤ (𝑒𝑛/𝑘)𝑘 ≤ (𝑒𝑛1/4)𝑘 and

(1 − 𝑝)𝑘 (𝑛−𝑘 ) ≤ (1 − 𝑝)𝑘𝑛/2 ≤ 𝑒−𝑘𝑛𝑝/2 <
1
𝑛𝑘/2

,

hence
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4.4 Properties of Random Graphs 103

𝑆2 =
∑︁

𝑛3/4<𝑘≤⌊𝑛/2⌋

(
𝑛

𝑘

)
(1 − 𝑝)𝑘 (𝑛−𝑘 )

≤
∑︁

𝑛3/4<𝑘≤𝑛/2

(
𝑒

𝑛1/4

) 𝑘
≤ (1 + 𝑜(1))

(
𝑒

𝑛1/4

)𝑛3/4

→ 0.

Thus 𝑆1 + 𝑆2 → 0, proving that a.a.s. graphs in G(𝑛, 𝑝) are connected. □

4.4.4 Poisson Limit

In probability theory, we say that a random variable 𝑋 has Poisson distribution if it
takes non-negative integral values and Pr(𝑋 = 𝑘) = 𝜇𝑘

𝑘! 𝑒
−𝜇 for some constant 𝜇 > 0,

which is the expectation of 𝑋 (and the variance of 𝑋). An elementary fact states that
if 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 ∼ 𝐵(𝑛, 𝑝) and 𝑛𝑝 → 𝜇 as 𝑛 → ∞, then Pr(𝑋 = 𝑘) → 𝜇𝑘

𝑘! 𝑒
−𝜇. This

is because for fixed 𝑘 ,

Pr(𝑋 = 𝑘) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 ∼

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛

∼ 𝑛𝑘

𝑘!
𝑝𝑘𝑒−𝑛𝑝 → 𝜇𝑘

𝑘!
𝑒−𝜇 .

In the last section, in order to show that a.a.s. graphs in G(𝑛, 𝑝) are disconnected
for 𝑝 = (log 𝑛 − 𝜔(𝑛))/𝑛, we in fact have proved that a.a.s. graphs in G(𝑛, 𝑝) have
isolated vertices. Let 𝑋 be the number of isolated vertices in 𝐺 𝑝 of G(𝑛, 𝑝), where
𝑝 = (log 𝑛 + 𝑥)/𝑛. Then 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , where 𝑋𝑖 is the indicator of the 𝑖th vertex

being isolated. Define 𝑝′ = Pr(𝑋𝑖 = 1). Then

𝑝′ = (1 − 𝑝)𝑛−1 ∼ exp(−𝑛𝑝) = 𝑒−𝑥

𝑛
=
𝜇

𝑛
,

where 𝜇 = 𝑒−𝑥 , and so 𝑛𝑝′ → 𝜇. The distribution of 𝑋 is close to 𝐵(𝑛, 𝑝′) in the
sense that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are “almost” mutually independent, so we are expecting
that 𝑋 has limit Poisson distribution.

The approach to the Poisson paradigm introduced in this section is called Brun’s
sieve for its user T. Brun in number theory. Let us begin with a basic identity called
inclusion-exclusion formula.

In a probability space Ω, let 𝑋1, 𝑋2, . . . , 𝑋ℓ be 0-1 random variables and set

𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋ℓ .

As usual, denote by [ℓ] for {1, 2, . . . , ℓ}. Define 𝑆0 = 1 and
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104 4 Random Graph

𝑆𝑟 =
∑︁

{𝑖1 ,...,𝑖𝑟 }∈( [ℓ ]𝑟 )
Pr(𝑋𝑖1𝑋𝑖2 · · · 𝑋𝑖𝑟 = 1),

where
([ℓ ]
𝑟

)
denotes the set that consists of all 𝑟-subsets of [ℓ]. Note that the elements

of Ω satisfy 𝑋𝑖1𝑋𝑖2 · · · 𝑋𝑖𝑟 = 1 if and only if 𝑋𝑖1 = 1, 𝑋𝑖2 = 1, . . . , 𝑋𝑖𝑟 = 1, and 𝑆𝑟 = 0
for 𝑟 > ℓ. For general 𝑟 ,

𝑆𝑟 =
∑︁
𝜔∈Ω

(
𝑋 (𝜔)
𝑟

)
Pr(𝜔)

as an element 𝜔 of the sample space for which 𝑋 (𝜔) = 𝑡 contributes
(𝑡
𝑟

)
terms of the

defined 𝑆𝑟 above. Here and in what follows, we write the formulas appropriate for
finite sample space. Following the standard notation, we define the falling factorials
by (𝑋)0 = 1 and

(𝑋)𝑟 = 𝑋 (𝑋 − 1) · · · (𝑋 − 𝑟 + 1).

Then
𝑆𝑟 =

∑︁
𝜔∈Ω

(𝑋)𝑟
𝑟!

Pr(𝜔) = 𝐸 ((𝑋)𝑟 )
𝑟!

.

The quantity 𝐸 ((𝑋)𝑟 ) is called the 𝑟th factorial moment of 𝑋 .

Theorem 4.18 (Inclusion-Exclusion Formula) For each integer 𝑘 ≥ 0,

Pr(𝑋 = 𝑘) =
∑︁
𝑟≥0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

)
𝑆𝑘+𝑟 .

Moreover, for each integer 𝑚 ≥ 0,

2𝑚−1∑︁
𝑟=0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

)
𝑆𝑘+𝑟 ≤ Pr(𝑋 = 𝑘) ≤

2𝑚∑︁
𝑟=0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

)
𝑆𝑘+𝑟 .

Proof. It is easy to see

Pr(𝑋 = 0) = Pr(𝑋1 = 0, . . . , 𝑋ℓ = 0)
= 1 − Pr(∃ 𝑖, 𝑋𝑖 = 1) = 𝑆0 − 𝑆1 + 𝑆2 − · · · + (−1)ℓ𝑆ℓ .

For general 𝑘 , using

𝑆𝑘+𝑟 =
∑︁
𝜔∈Ω

(
𝑋 (𝜔)
𝑘 + 𝑟

)
Pr(𝜔),

and interchanging orders of the summation, we obtain∑︁
𝑟≥0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

)
𝑆𝑘+𝑟 =

∑︁
𝜔∈Ω

{∑︁
𝑟≥0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

) (
𝑋 (𝜔)
𝑘 + 𝑟

)}
Pr(𝜔).

For a fixed 𝜔 hence fixed 𝑋 = 𝑋 (𝜔), note that
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4.4 Properties of Random Graphs 105∑︁
𝑟≥0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

) (
𝑋

𝑘 + 𝑟

)
=

(
𝑋

𝑘

) ∑︁
𝑟≥0

(−1)𝑟
(
𝑋 − 𝑘
𝑟

)
.

If 𝑋 < 𝑘 , then all terms vanish. If 𝑋 = 𝑘 , then one term (𝑟 = 0) contributes and the
sum is 1. Finally, if 𝑋 > 𝑘 , the sum vanishes since∑︁

𝑟≥0
(−1)𝑟

(
𝑋 − 𝑘
𝑟

)
= (1 − 1)𝑋−𝑘 = 0.

Thus ∑︁
𝑟≥0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

) (
𝑋

𝑘 + 𝑟

)
=

{
1 if 𝑋 = 𝑘,

0 otherwise,

and ∑︁
𝑟≥0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

)
𝑆𝑘+𝑟 =

∑︁
𝜔∈Ω

𝛿𝑘 𝑋 (𝜔) Pr(𝜔) = Pr(𝑋 = 𝑘),

where 𝛿𝑖 𝑗 is the Kronecker delta. To verify the second result, note for all 𝑠 ≥ 0 and
𝑛 ≥ 1,

𝑠∑︁
𝑟=0

(−1)𝑟
(
𝑛

𝑟

)
= (−1)𝑠

(
𝑛 − 1
𝑠

)
,

which can be proved easily by induction on 𝑠, hence

𝑠∑︁
𝑟=0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

) (
𝑋

𝑘 + 𝑟

)
=

(
𝑋

𝑘

) 𝑠∑︁
𝑟=0

(−1)𝑟
(
𝑋 − 𝑘
𝑟

)
=


0 if 𝑋 < 𝑘,
1 if 𝑋 = 𝑘,

(−1)𝑠
(𝑋
𝑘

) (𝑋−𝑘−1
𝑠

)
if 𝑋 > 𝑘.

We thus have
𝑠∑︁
𝑟=0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

)
𝑆𝑘+𝑟 =

∑︁
𝜔∈Ω

{
𝑠∑︁
𝑟=0

(−1)𝑟
(
𝑘 + 𝑟
𝑟

) (
𝑋 (𝜔)
𝑘 + 𝑟

)}
Pr(𝜔)

=
∑︁

𝑋 (𝜔)=𝑘
Pr(𝜔) +

∑︁
𝑋 (𝜔)>𝑘

(−1)𝑠
(
𝑋

𝑘

) (
𝑋 − 𝑘 − 1

𝑠

)
Pr(𝜔)

=Pr(𝑋 = 𝑘) + (−1)𝑠
∑︁

𝑋 (𝜔)>𝑘

(
𝑋

𝑘

) (
𝑋 − 𝑘 − 1

𝑠

)
Pr(𝜔).

In the last line, elements 𝜔 with 𝑋 (𝜔) > 𝑘 make a positive or negative contribution
depending on whether 𝑠 is even or odd. □

Suppose that we have defined a sequence of probability spaces and that in the
space Ω = Ω𝑛 we have the preceding situation with ℓ = ℓ(𝑛). If 𝐸 ((𝑋)𝑟 ) → 𝜇𝑟
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106 4 Random Graph

as 𝑛 → ∞, then we can make a precise statement about the limiting distribution of
𝑋 =

∑ℓ
𝑖=1 𝑋𝑖 .

Theorem 4.19 (Poisson Limit) Suppose that there is a positive number 𝜇 such that

lim
𝑛→∞

𝑆𝑟 =
𝜇𝑟

𝑟!
,

equivalently lim𝑛→∞ 𝐸 ((𝑋)𝑟 ) = 𝜇𝑟 , for each fixed integer 𝑟 ≥ 0. Then

lim
𝑛→∞

Pr(𝑋 = 𝑘) = 𝜇𝑘

𝑘!
𝑒−𝜇 .

Namely, the limiting distribution of 𝑋 is Poisson with mean 𝜇.

Proof. Refer to the inequalities in the last theorem we have

1
𝑘!

2𝑚−1∑︁
𝑟=0

(−1)𝑟 𝐸 ((𝑋)𝑘+𝑟 )
𝑟!

≤ Pr(𝑋 = 𝑘) ≤ 1
𝑘!

2𝑚∑︁
𝑟=0

(−1)𝑟 𝐸 ((𝑋)𝑘+𝑟 )
𝑟!

.

Note that for fixed 𝑚, we can make the limit (as 𝑛→ ∞) term by term to get

1
𝑘!

2𝑚−1∑︁
𝑟=0

(−1)𝑟 𝜇
𝑘+𝑟

𝑟!
≤ lim
𝑛→∞

Pr(𝑋 = 𝑘) ≤ 1
𝑘!

2𝑚∑︁
𝑟=0

(−1)𝑟 𝜇
𝑘+𝑟

𝑟!
.

Since 𝑚 is arbitrary, the result follows. □

Theorem 4.20 For any fixed real number 𝑥, let

𝑝 =
log 𝑛 + 𝑥

𝑛
,

and let 𝑋 be the number of isolated vertices in a graph of G(𝑛, 𝑝). We have

lim
𝑛→∞

Pr[𝑋 = 𝑘] = 𝜇𝑘

𝑘!
𝑒−𝜇,

where 𝜇 = 𝑒−𝑥 . In particular, the limiting probability that graph in G(𝑛, 𝑝) has no
isolated vertices is exp(−𝑒−𝑥).

Proof. Define 𝑋𝑖 as the indicator that the vertex 𝑖 is an isolated vertex, and define
𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 . Then 𝑋 counts the number of isolated vertices in 𝐺 𝑝 ∈ G(𝑛, 𝑝) and

𝑆1 = 𝐸 (𝑋) = 𝑛(1 − 𝑝)𝑛−1 → 𝑒−𝑥

as 𝑛→ ∞. More generally,

𝑆𝑟 =

(
𝑛

𝑟

)
(1 − 𝑝)𝑟 (𝑛−𝑟 )+(

𝑟
2) ∼ 𝑛𝑟

𝑟!
(1 − 𝑝)𝑟𝑛 → 𝜇𝑟

𝑟!
,
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4.4 Properties of Random Graphs 107

where 𝜇 = 𝑒−𝑥 . The limiting distribution of 𝑋 follows from Poisson limit theorem
as desired. □

Corollary 4.2 If log 𝑛 ≥ 𝜔(𝑛) → ∞ as 𝑛 → ∞, then 𝑝ℓ =
log 𝑛−𝜔 (𝑛)

𝑛
and

𝑝𝑢 =
log 𝑛+𝜔 (𝑛)

𝑛
are ltf and utf for graphs in G(𝑛, 𝑝) having no isolated vertices,

respectively.

In the following, we shall show that for the same 𝑝 = (log 𝑛 + 𝑥)/𝑛,

lim
𝑛→∞

Pr(𝐺 𝑝 has no isolates) = lim
𝑛→∞

Pr(𝐺 𝑝 is connected) = exp(−𝑒−𝑥).

Thus, in almost every graph, when the last isolated vertex disappears, the graph 𝐺 𝑝

becomes connected in the evolution of random graph as 𝑥 increases. Sightly before
it becomes connected, a giant component with only a bounded number of vertices
outside has formed. In fact, the giant component consists of larger components and
the smaller components have great chances to survive.

Theorem 4.21 For any fixed real number 𝑥, let

𝑝 =
log 𝑛 + 𝑥

𝑛
,

and let 𝐴 denote the event that outside of at most one non-trivial component, all
vertices are isolated. We have

lim
𝑛→∞

Pr(𝐴) = 1

and
lim
𝑛→∞

Pr[𝐺 𝑝 is connected] = exp(−𝑒−𝑥).

Proof. We begin by identifying the following events in G(𝑛, 𝑝).

A: Outside of at most one non-trivial component, 𝐺 𝑝 has only isolated vertices.
B: 𝐺 𝑝 has no isolated vertices.
C: 𝐺 𝑝 is connected.

Then 𝐶 = 𝐴 ∩ 𝐵 and

Pr(𝐵) = Pr(𝐶) + Pr(𝐴 ∩ 𝐵).

To prove that Pr(𝐶) → exp(−𝑒−𝑥) as 𝑛 → ∞, it suffices to show that Pr(𝐴) → 0
since Pr(𝐵) → exp(−𝑒−𝑥) from Theorem 4.20.

Let 𝑋 ⊆ [𝑛] be the vertex set of the largest component of 𝐺 and let 𝑌 = 𝑉 \ 𝑋 .
We do not distinguish a vertex set and the subgraph induced by this set if there is no
danger of confusion. If 𝐴 holds, then for some 𝑋 ⊆ [𝑛] with |𝑋 | ≥ 2,

𝐸1: 𝑋 is connected;
𝐸2: 𝑌 contains at least one edge;
𝐸3: There is no edge between 𝑋 and 𝑌 .
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108 4 Random Graph

Note that these events are independent. Denote 𝑃𝑋, 𝑃𝑌 and 𝑃𝑋𝑌 by the proba-
bilities of the events 𝐸1, 𝐸2 and 𝐸3, respectively. Let |𝑋 | = 𝑘 and |𝑌 | = 𝑚 = 𝑛 − 𝑘 .
By distinguishing that 𝑘 ≤ ⌊𝑛/2⌋ or 𝑚 ≤ ⌊𝑛/2⌋, we have

Pr(𝐴) ≤
⌊𝑛/2⌋∑︁
𝑘=2

(
𝑛

𝑘

)
𝑃𝑋𝑃𝑋𝑌 +

⌊𝑛/2⌋∑︁
𝑚=2

(
𝑛

𝑚

)
𝑃𝑌𝑃𝑋𝑌 . (4.3)

To bound Pr(𝐴), we use the following facts:

1. 𝑃𝑋 ≤ 𝑘 𝑘−2𝑝𝑘−1;
2. 𝑃𝑌 = 1 − (1 − 𝑝) (𝑚2 ) ;
3. 𝑃𝑋𝑌 = (1 − 𝑝)𝑚𝑘 .

The first fact follows since 𝑋 must contain one of the 𝑘 𝑘−2 possible spanning trees.
Consider then the first term on the right hand side of (4.3), we have

⌊𝑛/2⌋∑︁
𝑘=2

(
𝑛

𝑘

)
𝑃𝑋𝑃𝑋𝑌 ≤

⌊𝑛/2⌋∑︁
𝑘=2

(
𝑛

𝑘

)
𝑘 𝑘−2𝑝𝑘−1 (1 − 𝑝)𝑘 (𝑛−𝑘 ) .

The term corresponding to any fixed 𝑘 ≥ 2 can be bounded from above as

𝑐1𝑛
𝑘 𝑝𝑘−1 (1 − 𝑝)𝑘𝑛 ≤ 𝑐1𝑛

𝑘 𝑝𝑘−1𝑒−𝑘𝑛𝑝 = 𝑐1𝑒
−𝑘𝑥 𝑝𝑘−1 → 0,

where 𝑐1 and henceforth 𝑐𝑖 are positive constants. For any 𝑘 ≤ 𝑛/2,

(1 − 𝑝)𝑛−𝑘 ≤ 𝑒−(𝑛−𝑘 ) 𝑝 ≤ 𝑒−𝑛𝑝/2 =
𝑒−𝑥/2
√
𝑛
.

Thus(
𝑛

𝑘

)
𝑘 𝑘−2𝑝𝑘−1 (1 − 𝑝)𝑘 (𝑛−𝑘 ) ≤

( 𝑒𝑛
𝑘

) 𝑘
𝑘 𝑘−2𝑝𝑘−1

(
𝑒−𝑥/2
√
𝑛

) 𝑘
=

1
𝑘2𝑝

(
𝑒𝑛𝑝

𝑒−𝑥/2
√
𝑛

) 𝑘
≤ 𝑛

log 𝑛 + 𝑥

(
𝑐2 log 𝑛
√
𝑛

) 𝑘
.

It follows that

⌊𝑛/2⌋∑︁
𝑘=2

(
𝑛

𝑘

)
𝑃𝑋𝑃𝑋𝑌 ≤ 𝑜(1) +

∑︁
𝑘≥4

𝑛

log 𝑛 + 𝑥

(
𝑐2 log 𝑛
√
𝑛

) 𝑘
→ 0

as 𝑛→ ∞.
Now set

𝐾 = ⌊ 4√𝑛⌋, and 𝑀 = ⌈2
√
𝑛 exp(1 − 𝑥/2)⌉,

we shall separate the second term on the right hand side of (4.3) into three parts by
𝐾 and 𝑀 . Using the facts that
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4.5 Exercises 109

𝑃𝑋𝑌 = (1 − 𝑝)𝑚(𝑛−𝑚) ≤ 𝑒−𝑚(𝑛−𝑚) 𝑝 ≤ 𝑒−𝑚𝑛𝑝/2 =

(
𝑒−𝑥/2
√
𝑛

)𝑚
for 𝑚 ≤ ⌊𝑛/2⌋ and

( 𝑛
𝑚

)
≤ (𝑒𝑛/𝑚)𝑚, we have

⌊𝑛/2⌋∑︁
𝑚=𝑀

(
𝑛

𝑚

)
𝑃𝑌𝑃𝑋𝑌 ≤

⌊𝑛/2⌋∑︁
𝑚=𝑀

(
𝑛

𝑚

)
𝑃𝑋𝑌 ≤

∑︁
𝑚≥𝑀

(
𝑒𝑛𝑒−𝑥/2

𝑚
√
𝑛

)𝑚
≤

∑︁
𝑚≥𝑀

1
2𝑚

=
1

2𝑀−1 → 0

since 𝑀 → ∞ as 𝑛 → ∞. On the other hand, if 𝑚 < 𝑀 , then we have 𝑒𝑚𝑝 ≤ 2 for
all large 𝑛 since 𝑚𝑝 ≤ 𝑀𝑝 → 0. Thus

𝑃𝑋𝑌 = (1 − 𝑝)𝑚(𝑛−𝑚) ≤ (𝑒−𝑛𝑝𝑒𝑚𝑝)𝑚 ≤
(
2𝑒−𝑥

𝑛

)𝑚
.

Consequently,

𝑀−1∑︁
𝑚=𝐾

(
𝑛

𝑚

)
𝑃𝑌𝑃𝑋𝑌 ≤

𝑀−1∑︁
𝑚=𝐾

(
𝑛

𝑚

)
𝑃𝑋𝑌 ≤

∑︁
𝑚≥𝐾

(2𝑒−𝑥)𝑚
𝑚!

→ 0

as 𝑛→ ∞ since the sum in the last line is the tail of a convergent series.
Finally, for all 𝑚 < 𝐾 ,

𝑃𝑌 ≤ 1 − (1 − 𝑝) (
𝐾
2 ) ,

which tends to zero uniformly on 𝑚 < 𝐾 , and it follows that

𝐾−1∑︁
𝑚=2

(
𝑛

𝑚

)
𝑃𝑌𝑃𝑋𝑌 = 𝑜

(
𝐾−1∑︁
𝑚=2

(
𝑛

𝑚

)
𝑃𝑋𝑌

)
≤ 𝑜

(∑︁
𝑚≥2

(2𝑒−𝑥)𝑚
𝑚!

)
,

which tends to zero. Combining these results, we obtain that Pr(𝐴) → 0, completing
the proof. □

Corollary 4.3 If log 𝑛 ≥ 𝜔(𝑛) → ∞ as 𝑛 → ∞, then 𝑝ℓ =
log 𝑛−𝜔 (𝑛)

𝑛
and 𝑝𝑢 =

log 𝑛+𝜔 (𝑛)
𝑛

are ltf and utf for graphs in G(𝑛, 𝑝) of being connected, respectively.

4.5 Exercises

1. Let 𝑝 = (1 − 𝜖) log 𝑛
𝑛

. How large can 𝑚 be such that almost every graph in
G(𝑛, 𝑝) has at least 𝑚 isolated vertices?

2. For 𝑛 ≥ 2 and 𝑝 ∈ [0, 1], show that if a graph 𝐻 with 𝑛 vertices and 𝑒(𝐻) =
⌊𝑝

(𝑛
2
)
⌋ or 𝑒(𝐻) = ⌈𝑝

(𝑛
2
)
⌉ , then𝐻 has the maximum probability to appear in G(𝑛, 𝑝).
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110 4 Random Graph

3. Show that 𝜒(𝐺𝑘+1) = 𝜒(𝐺𝑘) + 1 and 𝜔(𝐺𝑘) = 2 for 𝑘 ≥ 2, where 𝐺𝑘 is
defined from Mycielski’s construction.

4. For events 𝐴1, . . . , 𝐴𝑛, let 𝑎 =
∑𝑛
𝑖=1 Pr(𝐴𝑖) and 𝑏 =

∑
𝑖< 𝑗 Pr(𝐴𝑖 ∩ 𝐴 𝑗 ). Prove

that Pr(𝐴𝑖 · · · 𝐴𝑛) ≤ (𝑎 + 2𝑏)/𝑎2 − 1. (Hint: Let 𝑋 be the number of 𝐴𝑖’s that occur.
Show Pr(𝑋 = 0) ≤ 𝑎−2𝐸 [(𝑋 − 𝑎)2], and expand the right hand expression. (Lovász,
1979))

5. Let 𝑋1, . . . , 𝑋𝑛 be mutually independent 0-1 random variables such that Pr(𝑋𝑖 =
1) = 𝑝𝑖 , and let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 (mod 2). Prove that Pr(𝑋 = 1) = 1

2 [1 − Π𝑖 (1 − 2𝑝𝑖)].
(Hint: Set𝑌𝑖 = 1−2𝑋𝑖 and𝑌 = 𝑌1 · · ·𝑌𝑛, and observe that 𝐸 (𝑌 ) = 1−2 Pr(𝑌 = −1).

6. (i) Show that the probability that a fixed subset 𝑆 of G(𝑛, 1/2) is contained in
the neighborhood of a vertex is (𝑛 − |𝑆 |)2−|𝑆 | .

(ii) Show that almost every graph 𝐺 in G(𝑛, 1/2) has Δ(𝐺) ≥ 𝑛/2 +
√
𝑛 and

𝛿(𝐺) ≤ 𝑛/2 −
√
𝑛.

7. (i) In G(3, 1/2), let 𝑋𝑖 (𝐻) (0 ≤ 𝑖 ≤ 3) be defined as in Section 5.3, in which
we reveal 𝐺 𝑝 ∈ G(3, 1/2) one edge at a time. Prove that 𝑋0 (𝐻), 𝑋1 (𝐻), 𝑋2 (𝐻),
𝑋3 (𝐻) is a martingale.

(ii) In G(3, 1/2), let 𝑌𝑖 (𝐻) (0 ≤ 𝑖 ≤ 3) be defined as in Section 5.3, in which we
reveal 𝐺 𝑝 ∈ G(3, 1/2) one vertex at a time. Prove that 𝑌1 (𝐻), 𝑌2 (𝐻), 𝑌3 (𝐻) is a
martingale.

8. Explain that the neighbors of a vertex of a random graph are likely to be
“spreading” by Theorem 4.8.

9. Let 𝑘 > 0 be an integer, and let 𝑝 ≥ (6𝑘 log 𝑛)/𝑛. Prove that almost all graphs
in G(𝑛, 𝑝) have independence number less than 𝑛/(2𝑘).

10. Prove that if 𝑛𝑝 → 0 as 𝑛→ ∞, then almost all graphs in G(𝑛, 𝑝) are forests.
(Hint: Count the expected number of cycles and apply Markov’s inequality.)

11. Let 𝑓 (𝑘) be the minimum number of vertices in a triangle-free graph 𝐺 with
𝜒(𝐺) = 𝑘 . Compare the upper bounds from different assertions as follows.

(i) From the Mycielski construction mentioned in the excises of the last chapter;
(ii) By refining the proof of Theorem 4.9;

12. Prove that 𝑝 = 𝑛−1/𝜌(𝐻 ) is a threshold function for the appearance of 𝐻 as a
subgraph of 𝐺 𝑝 , where 𝜌(𝐻) = max{𝑒(𝐹)/|𝑉 (𝐹) | : 𝐹 ⊆ 𝐻}.

13.∗ Prove that for 𝑑 ≥ 2, if 𝑝 = 𝑛1/𝑑−1 (log(𝑛2/𝑥))1/𝑑 , then Pr(diam(𝐺 𝑝) =

𝑑) → 𝑒−𝑥/2. (Hint: Bollobás, 2001).
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Chapter 5
Lovász Local Lemma

When applying the probabilistic method, some typical ways are computing expec-
tation, estimating tails of probability and applying Lovász Local Lemma (Lovász,
born on 1948, recipient of the 1999 Wolf prize and the 2021 Abel prize), etc. In
particular, the Local Lemma allows one to relax the independence condition slightly
in applications, and so we can see improvements by Spencer (1977) on the lower
bounds of the classic Ramsey numbers given by Erdős (1947). We will also give an
overview of the Martingales and triangle-free process.

5.1 Lovász Local Lemma

In probability theory, if a large number of events are all independent of one another
and each has probability less than 1, then there is a positive (possibly small) prob-
ability that none of the events will occur. Lovász Local Lemma allows one to relax
the independence condition slightly, which is often used to give existence proofs.
Differing from the “a.a.s.” argument, we are concerned with the existence of an event
of small positive probability.

Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be the events in a probability space. In many combinatorial
applications such as a coloring of edges of 𝐾𝑁 , any 𝐴𝑖 is a “bad” event. We wish
that no “bad” event happens, namely

Pr

(
𝑛⋂
𝑖=1

𝐴𝑖

)
> 0 (5.1)

such that there is a point (a coloring) which is good. e.g., in the proof for the lower
bound of 𝑟 (𝑛, 𝑛), 𝐴𝑆 is the event that 𝑆 is monochromatic for an 𝑛-set 𝑆. The event
𝐴𝑆 is “bad” for us. Therefore, ∩𝐴𝑆 is the event that none of 𝑛-sets is monochromatic,
and Pr(∩𝐴𝑆) > 0 means that there must be a coloring in which no 𝑛-set induces a
monochromatic 𝐾𝑛.

It is a trivial fact that if

111© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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112 5 Lovász Local Lemma

𝑛∑︁
𝑖=1

Pr(𝐴𝑖) < 1,

then

Pr

(
𝑛⋂
𝑖=1

𝐴𝑖

)
= 1 − Pr

(
𝑛⋃
𝑖=1

𝐴𝑖

)
≥ 1 −

𝑛∑︁
𝑖=1

Pr(𝐴𝑖) > 0.

Also, if 𝐴1, . . . , 𝐴𝑛 are mutually independent, i.e., any 𝐴𝑖 is independent of any
Boolean function of all other 𝐴 𝑗 , and Pr(𝐴𝑖) = 𝑥𝑖 < 1 for 1 ≤ 𝑖 ≤ 𝑛, then

Pr

(
𝑛⋂
𝑖=1

𝐴𝑖

)
=

𝑛∏
𝑖=1

(1 − 𝑥𝑖) > 0.

The Local Lemma may be understood in terms of taking advantage of partial
independence of the events 𝐴1, 𝐴2, . . . , 𝐴𝑛 so that (5.1) can be ensured with far
weaker condition on the probabilities Pr(𝐴𝑖) than

∑𝑛
𝑖=1 Pr(𝐴𝑖) < 1.

The argument to follow uses conditional probability. Recall that for events 𝐴 and 𝐵
with Pr(𝐵) > 0, the conditional probability Pr(𝐴|𝐵) is given by Pr(𝐴|𝐵) = Pr(𝐴∩𝐵)

Pr(𝐵) .
Events 𝐴 and 𝐵 are called independent if Pr(𝐴|𝐵) = Pr(𝐴). So two events 𝐴 and

𝐵 are independent if and only if Pr(𝐴 ∩ 𝐵) = Pr(𝐴) Pr(𝐵), here we admit that an
event of zero probability is independent of any other event. Let us introduce a graph
to describe the dependency of events as follows.

Definition 5.1 (Dependency graph) Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be events in a probability
space. A graph 𝐷 defined on vertex set [𝑛] is called dependency graph for events
𝐴1, 𝐴2, . . . , 𝐴𝑛 if every event 𝐴𝑖 is independent of any Boolean function of these
events in {𝐴 𝑗 : 𝑗 ∉ 𝑁 [𝑖]}, where 𝑁 [𝑖] is the closed neighborhood of 𝑖 in 𝐷.

This graph must contain edges between the pairs of dependent events, and it contains
such edges only in most applications so the term dependency graph is after. The
original Local Lemma is as follows, see Erdős and Lovász (1975).

Theorem 5.1 Suppose that 𝑑 ≥ 1 and each of the events 𝐴1, 𝐴2, . . . , 𝐴𝑛 has prob-
ability 𝑝 or less, and each vertex in the dependency graph has degree at most 𝑑.
If

4𝑑𝑝 ≤ 1,

then Pr(∩𝑛
𝑖=1𝐴𝑖) > 0.

The following form of the Lovász Local Lemma is the general form, see Spencer
(1977).

Theorem 5.2 Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be events in a probability space. If there exist real
numbers 𝑥1, 𝑥2, . . . , 𝑥𝑛 such that 0 < 𝑥𝑖 < 1 and for 𝑖 = 1, 2, . . . , 𝑛,

Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗: 𝑖 𝑗∈𝐸 (𝐷) (1 − 𝑥 𝑗 ),

then Pr(∩𝑛
𝑖=1𝐴𝑖) ≥ Π𝑛

𝑖=1 (1 − 𝑥𝑖) > 0.
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5.1 Lovász Local Lemma 113

If 𝑖 is an isolated vertex in the dependency graph 𝐷, i.e., the neighborhood of 𝑖 in
𝐷 is empty, then we admit Π 𝑗∈∅ (1 − 𝑥 𝑗 ) = 1.

Proof of Theorem 5.2. For 𝑆 ⊂ [𝑛], set

C𝑆 =
⋂
𝑗∈𝑆

𝐴 𝑗 .

The desired result follows directly from the following claim.

Claim If 𝑖 ∉ 𝑆, then Pr(𝐴𝑖 |C𝑆) ≤ 𝑥𝑖 .

Proof. The proof is by induction on |𝑆 |. For |𝑆 | = 0, we admit C𝑆 = Ω, and so the
assertion is immediate from the hypothesis that

Pr(𝐴𝑖 |C𝑆) = Pr(𝐴𝑖 |Ω) = Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗: 𝑖 𝑗∈𝐸 (𝐷) (1 − 𝑥 𝑗 ) ≤ 𝑥𝑖 .

Now assume that |𝑆 | ≥ 1 and form a partition 𝑆 = (𝑆1, 𝑆2), where

𝑆1 = { 𝑗 ∈ 𝑆 : 𝑖 𝑗 ∈ 𝐸 (𝐷)} and 𝑆2 = 𝑆 \ 𝑆1.

Let us write Pr(𝐴𝑖 |C𝑆) as

Pr(𝐴𝑖 ∩ C𝑆)
Pr(C𝑆)

=
Pr(𝐴𝑖 ∩ C𝑆1 ∩ C𝑆2 )

Pr(C𝑆1 ∩ C𝑆2 )
=

Pr(𝐴𝑖 ∩ C𝑆1 |C𝑆2 )
Pr(C𝑆1 |C𝑆2 )

.

Since 𝐴𝑖 and C𝑆2 are independent, the numerator

Pr(𝐴𝑖 ∩ C𝑆1 |C𝑆2 ) ≤ Pr(𝐴𝑖 |C𝑆2 ) = Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗∈𝑆1 (1 − 𝑥 𝑗 ). (5.2)

In the following, we bound the denominator. If |𝑆1 | = 0, then

Pr(C𝑆1 |C𝑆2 ) = Pr(Ω|C𝑆2 ) = 1

and the claim follows. Otherwise, suppose 𝑆1 = { 𝑗1, 𝑗2, . . . , 𝑗𝑟 }, where 𝑟 ≥ 1. Let
D0,D1, . . . ,D𝑟 be the events defined recursively by

D0 = C𝑆2 , and D𝑘 = D𝑘−1 ∩ 𝐴 𝑗𝑘 for 𝑘 = 1, 2, . . . , 𝑟 .

They start withD0 = C𝑆2 and end withD𝑟 = C𝑆 . Note that for each 𝑘 = 0, 1, . . . , 𝑟−1,
the event D𝑘 has a form of C𝑇 for some set 𝑇 ⊆ 𝑆 \ { 𝑗𝑟 }. Thus |𝑇 | < |𝑆 |. Using the
induction hypothesis on C𝑇 repeatedly, we have
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114 5 Lovász Local Lemma

Pr(C𝑆1 |C𝑆2 ) =
Pr(C𝑆)
Pr(C𝑆2 )

=
Pr(D𝑟 )
Pr(D0)

=
Pr(D𝑟 )

Pr(D𝑟−1)
· · · Pr(D1)

Pr(D0)
= Pr(𝐴 𝑗𝑟 |D𝑟−1) · · · Pr(𝐴 𝑗1 |D0)
= (1 − Pr(𝐴 𝑗𝑟 |D𝑟−1)) · · · (1 − Pr(𝐴 𝑗1 |D0))
≥ (1 − 𝑥 𝑗𝑟 ) · · · (1 − 𝑥 𝑗1 )
= Π 𝑗∈𝑆1 (1 − 𝑥 𝑗 ). (5.3)

Combining (5.2) and (5.3), we have established the claim. □

Note that ∩𝑛
𝑖=𝑘+1𝐴𝑖 has a form of C𝑆 with 𝑘 ∉ 𝑆. In view of the claim just

established,

Pr(∩𝑛𝑖=1𝐴𝑖) = Pr(𝐴1 | ∩𝑛𝑖=2 𝐴𝑖) Pr(∩𝑛𝑖=2𝐴𝑖)
= Pr(𝐴1 | ∩𝑛𝑖=2 𝐴𝑖) Pr(𝐴2 | ∩𝑛𝑖=3 𝐴𝑖) · · · Pr(𝐴𝑛 |Ω)
= (1 − Pr(𝐴1 | ∩𝑛𝑖=2 𝐴𝑖)) · · · (1 − Pr(𝐴𝑛 |Ω))
≥ Π𝑛𝑖=1 (1 − 𝑥𝑖).

This completes the proof. □

The following is the symmetric form of the Local Lemma.

Corollary 5.1 Suppose that each of the events of 𝐴1, 𝐴2, . . . , 𝐴𝑛 has probability 𝑝 or
less, and each vertex in the dependence graph has degree at most 𝑑. If 𝑒(𝑑+1)𝑝 ≤ 1,
then Pr(∩𝑛

𝑖=1𝐴𝑖) > 0.

Proof. By taking 𝑥𝑖 = 1/(𝑑 + 1) for 1 = 1, 2, . . . , 𝑛, we shall show

Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗: 𝑖 𝑗∈𝐸 (𝐷) (1 − 𝑥 𝑗 ).

Since (1 − 1
𝑑+1 )

𝑑 > 1/𝑒 for 𝑑 ≥ 1, it follows that for any 𝑖 the right side is at least

1
𝑑 + 1

(
1 − 1

𝑑 + 1

)𝑑
>

1
𝑒(𝑑 + 1) ≥ 𝑝,

completing the proof. □

Note that the original condition 4𝑑𝑝 ≤ 1 can be implied by Corollary 5.1 as
4𝑑𝑝 ≥ 𝑒(𝑑 + 1)𝑝 for 𝑑 ≥ 3, and if 𝑑 = 1, 2, then 1

𝑑+1 (1 − 1
𝑑+1 )

𝑑 ≥ 𝑝.

We also need the following form of the Local Lemma due to Spencer (1977) who
used it to obtain the lower bound of 𝑟 (𝑚, 𝑛). This form is slightly more convenient
for some applications.

Corollary 5.2 Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be events in a probability space. If there exist
numbers 𝑦1, 𝑦2, . . . , 𝑦𝑛 such that for each 𝑖, 0 < 𝑦𝑖 Pr(𝐴𝑖) < 1, and

log 𝑦𝑖 ≥ −
∑︁

𝑗: 𝑖 𝑗∈𝐸 (𝐷)
log(1 − 𝑦 𝑗 Pr(𝐴 𝑗 )),
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5.1 Lovász Local Lemma 115

then Pr(∩𝑛
𝑖=1𝐴𝑖) > 0.

Proof. We may suppose that for each 𝑖 the probability Pr(𝐴𝑖) is positive. Let 𝑥𝑖 be as
in the general form of the Local Lemma and set 𝑦𝑖 = 𝑥𝑖/Pr(𝐴𝑖) for 𝑖 = 1, 2, . . . , 𝑛.
Thus the hypothesis of Lemma 5.2 that

Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗: 𝑖 𝑗∈𝐸 (𝐷) (1 − 𝑥 𝑗 )

will take the form
𝑦𝑖 ≥ Π 𝑗: 𝑖 𝑗∈𝐸 (𝐷)

1
1 − 𝑦 𝑗 Pr(𝐴 𝑗 )

.

The assertion follows by taking logarithms on both sides of the above inequality. □

Let us have an example to explain that for the Local Lemma, the dependency
graph 𝐷 may contain more edges other than these connecting pairs of dependent
events.

Let {1, 2, 3} be the vertex set of a 𝐾3, and let the probability space Ω consists
of all 2-coloring of the vertices, in which each vertex is colored in red or blue with
probability 1/2 randomly and independently. Clearly |Ω| = 8. For 𝑖 < 𝑗 , let 𝐴𝑖 𝑗
be the event that the edge {𝑖, 𝑗} is monochromatic. Note that Pr(𝐴12) = Pr(𝐴13) =
Pr(𝐴23) = 1/2, and

Pr(𝐴12𝐴13) = Pr(𝐴12𝐴23) = Pr(𝐴13𝐴23) =
1
4
.

Thus, events 𝐴12, 𝐴13 and 𝐴23 are pairwise independent. However, 𝐴12 is not indepen-
dent of 𝐴13𝐴23 since Pr(𝐴12𝐴13𝐴23) = 1

4 ≠ 1
8 . If we mistakenly use the Local Lemma

by letting 𝐸 (𝐷) = ∅, then we would set 𝑥𝑖 𝑗 = 1/2 with Pr(𝐴𝑖 𝑗 ) ≤ 𝑥𝑖 𝑗Π∅ (1 − 𝑥𝑘ℓ).
Thus we had a wrong conclusion that 𝜒(𝐾3) were at most two from that Pr(∩𝐴𝑖 𝑗 ) > 0.

Erdős and Spencer (1991) pointed out that the dependency graph 𝐷 can be
replaced by a graph 𝐹 on [𝑛] if 𝐹 satisfies that for each 𝑖 and each 𝑆 ⊆ [𝑛] \ 𝑁𝐹 [𝑖],

Pr(𝐴𝑖 | ∩ 𝑗∈𝑆 𝐴 𝑗 ) ≤ 𝑥𝑖Π 𝑗: 𝑖 𝑗∈𝐸 (𝐹 ) (1 − 𝑥 𝑗 ).

This condition contains conditional probabilities. To avoid to compute these proba-
bilities in applications and to have a slightly stronger form, we shall specify their idea
further. Let us have the following definitions first from Erdős and Spencer (1991).

A graph 𝐹 defined on [𝑛] is called lopsidependency graph (which is called as
negative dependency graph in Lu and Székely (2007)) for events 𝐴1, 𝐴2, . . . , 𝐴𝑛 if
for each 𝑖 ∈ [𝑛] and any set 𝑆 ⊆ [𝑛] \ 𝑁𝐹 [𝑖],

Pr(𝐴𝑖 | ∩ 𝑗∈𝑆 𝐴 𝑗 ) ≤ Pr(𝐴𝑖). (5.4)

It is convenient to say that the event ∩ 𝑗∈𝑆𝐴 𝑗 for 𝑆 ⊆ [𝑛] \ 𝑁𝐹 [𝑖] is negative to 𝐴𝑖 .
Note that a dependency graph is a lopsidependency graph, but the latter may

contain less edges, and the dependency graph in the Local Lemma can be replaced
by any lopsidependency graph.
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116 5 Lovász Local Lemma

Lemma 5.1 (Erdős-Spencer (1991)) Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be events with lopsidepen-
dency graph 𝐹. If there exist 𝑥1, 𝑥2, . . . , 𝑥𝑛 such that for each 𝑖, 0 < 𝑥𝑖 < 1 and

Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗: 𝑖 𝑗∈𝐸 (𝐹 ) (1 − 𝑥 𝑗 ), (5.5)

then Pr(∩𝑛
𝑖=1𝐴𝑖) > 0.

The following form is slightly more convenient for some applications.

Corollary 5.3 Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be events with lopsidependency graph 𝐹. If there
exist numbers 𝑦1, 𝑦2, . . . , 𝑦𝑛 such that for each 𝑖, 0 < 𝑦𝑖 Pr(𝐴𝑖) < 1, and

log 𝑦𝑖 ≥ −
∑︁

𝑗: 𝑖 𝑗∈𝐸 (𝐹 )
log(1 − 𝑦 𝑗 Pr(𝐴 𝑗 )),

then Pr(∩𝑛
𝑖=1𝐴𝑖) > 0.

Similar to that of Theorem 5.1, we have that the condition (5.5) can be replaced
by 𝑒(𝑑 + 1)𝑝 ≤ 1, where 𝑑 is the maximum degree of the lopsidependency graph,
and the original condition is 4𝑑𝑝 ≤ 1.

Since lopsidependency graphs are bipartite for most applications, the local lemma
with lopsidependency graph will be easier to apply.

Let us remark that the dependency of events can be described by a directed graph
instead of a graph. A directed graph 𝐷 on vertices [𝑛] is called directed dependency
graph for events 𝐴1, 𝐴2, . . . , 𝐴𝑛 if each event 𝐴𝑖 is mutually independent of the
events in {𝐴 𝑗 : 𝑗 ∉ 𝑁+ [𝑖]}, where 𝑁+ [𝑖] is the closed out-neighborhood of 𝑖. The
condition to guarantee Pr(∩𝐴𝑖) > 0 is that there exist 0 < 𝑥1, 𝑥2, . . . , 𝑥𝑛 < 1 such
that

Pr(𝐴𝑖) ≤ 𝑥𝑖Π 𝑗: (𝑖, 𝑗 ) ∈𝐸 (𝐷) (1 − 𝑥 𝑗 ),

where (𝑖, 𝑗) is the arc from 𝑖 to 𝑗 in directed dependency graph 𝐷 for the events.
Similarly, the lopsidependency graph in the Local Lemma can be replaced by a

directed lopsidependency graph. However, no matter using lopsidependency graph
or directed dependency graph in the Local Lemma, the idea is to reduce the edges
in the dependency graph.

5.2 Improved Lower Bounds for 𝒓(𝒎, 𝒏)

The Local Lemma has a lot of applications in many fields. The following theorem
of Spencer (1975) improves the bound of the classic Ramsey number 𝑟 (𝑛, 𝑛) from
deletion method by a factor

√
2.

Theorem 5.3 We have 𝑟 (𝑛, 𝑛) ≥ (1 − 𝑜(1))
√

2
𝑒
𝑛2𝑛/2.

Proof. Consider the random graph space G(𝑁, 1/2). For any 𝑆 ⊆ 𝑉 (𝐾𝑁 ) of size 𝑛,
let 𝐴𝑆 signify the event that “𝑆 is monochromatic”. Define a graph 𝐷 with vertex set
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5.2 Improved Lower Bounds for 𝑟 (𝑚, 𝑛) 117

consisting of all such 𝑆 and connect vertices 𝑆 and 𝑇 in 𝐷 if and only if |𝑆 ∩𝑇 | ≥ 2.
Note that the event 𝐴𝑆 is independent of any Boolean function of events 𝐴𝑇 ’s with
𝑇 not adjacent to 𝑆, and so 𝐷 is a dependency graph. Thus for any 𝑆, its degree 𝑑 in
𝐷 satisfies that

𝑑 = |{𝑇 : |𝑆 ∩ 𝑇 | ≥ 2}| <
(
𝑛

2

) (
𝑁

𝑛 − 2

)
.

Applying Corollary 5.1 with 𝑝 = Pr(𝐴𝑆) = 21−(𝑛2) , if 𝑒𝑝(𝑑+1) < 1, then Pr(∩𝐴𝑆) >
0. Thus 𝑟 (𝑛, 𝑛) > 𝑁 . So it remains to find a positive integer 𝑁 as large as possible
such that

𝑒

(
𝑛

2

) (
𝑁

𝑛 − 2

)
21−(𝑛2) < 1.

As we did before, the left hand side is less than

𝑒𝑛2

2

(
𝑒𝑁

𝑛 − 2

)𝑛−2 2
2𝑛(𝑛−1)/2 =

𝑒𝑛2

2

( 𝑛

𝑛 − 2

)𝑛−2
(

𝑒𝑁
√

2𝑛2𝑛/2

)𝑛−2
.

Indeed, for any 𝜖 > 0, if we take 𝑁 =

⌈
(1 − 𝜖)

√
2
𝑒
𝑛2𝑛/2

⌉
, then the above will tend to

zero as 𝑛 tends to infinity. □

The above improvement seems negligible in the light of the gap between the
upper and lower bounds, but this is the best lower bound we can do until now.
Indeed, this is not surprising since the dependencies between events in Theorem 5.3
are not rare compared to the number of events themselves. In the following, we will
see the first application of the general form of the Local Lemma by Spencer (1977),
which improves that obtained in Chapter 3 greatly. One can see that the dependencies
between events in the following result are rare when 𝑚 is fixed.

Theorem 5.4 Let 𝑚 ≥ 3 be a fixed integer. Then

𝑟 (𝑚, 𝑛) ≥ 𝑐
(
𝑛

log 𝑛

) (𝑚+1)/2
,

where 𝑐 = 𝑐(𝑚) > 0 is a constant.

Proof. We give the proof for𝑚 = 3 and remain the general case as an exercise. Color
the edges of 𝐾𝑁 in red and blue randomly and independently such that each edge is
colored red with probability 𝑝 and blue with probability 𝑞 = 1 − 𝑝, where 𝑁 and
𝑝 will be chosen later. For each set of three vertices 𝑇 , let 𝐴𝑇 be the event that 𝑇
induced a red triangle. Similarly, for each set of 𝑛 vertices 𝑆, let 𝐵𝑆 be the event that
𝑆 induced a blue 𝐾𝑛. It is clear that Pr(𝐴𝑇 ) = 𝑝3 and Pr(𝐵𝑆) = 𝑞(𝑛2) . Two events
are dependent if and only if the corresponding subgraphs have a pair of vertices in
common. Hence, each event 𝐴𝑇 is independent of any Boolean function but at most
3(𝑁 − 2) < 3𝑁 other 𝐴𝑇 ′ events and at most (𝑁)𝑛 < 𝑁𝑛 𝐵𝑆 events; each event 𝐵𝑆
is independent of any Boolean function but at most

(𝑛
2
)
(𝑁 − 2) < 𝑛2𝑁/2 𝐴𝑇 events

and at most 𝑁𝑛 other 𝐵𝑆′ events.
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118 5 Lovász Local Lemma

We aim to prove that there exist positive numbers 𝑎 and 𝑏 satisfying Corollary
5.3, namely, 𝑎𝑝3 < 1 and 𝑏𝑞(𝑛2) < 1 hold with 𝑦𝑖 = 𝑎 for each 𝐴𝑇 event and 𝑦 𝑗 = 𝑏
for each 𝐵𝑆 event. Specifically,

log 𝑎 ≥ −3𝑁 log(1 − 𝑎𝑝3) − 𝑁𝑛 log(1 − 𝑏𝑞(
𝑛
2) ), (5.6)

log 𝑏 ≥ −𝑛
2𝑁

2
log(1 − 𝑎𝑝3) − 𝑁𝑛 log(1 − 𝑏𝑞(

𝑛
2)). (5.7)

If such 𝑎 and 𝑏 are available, then there exists a red/blue edge-coloring of 𝐾𝑁 in
which there is neither red triangle nor blue 𝐾𝑛, implying 𝑟 (3, 𝑛) > 𝑁 . To this end,
set

𝑎 = 2, 𝑏 = exp(𝑛 log 𝑛), 𝑝 =
8 log 𝑛
𝑛

, and 𝑁 = 𝑐

(
𝑛

log 𝑛

)2
,

where 𝑐 ∈ (0, 1) is a constant to be chosen. Using the basic inequality 𝑞 = 1−𝑝 < 𝑒−𝑝
for 𝑝 > 0, we have

𝑁𝑛𝑏𝑞(
𝑛
2) ≤ 𝑁𝑛𝑏𝑒−𝑝(

𝑛
2) ≤ exp {−𝑛 log 𝑛} = 𝑜(1).

So 𝑏𝑞(𝑛2) = 𝑜(1) and log(1 − 𝑥) ∼ −𝑥 for 𝑥 = 𝑏𝑞(𝑛2) , and the common second term
in the right-hand side of (5.6) and (5.7)

−𝑁𝑛 log(1 − 𝑏𝑞(
𝑛
2) ) ∼ 𝑁𝑛𝑏𝑞(

𝑛
2) = 𝑜(1).

Clearly 𝑎𝑝3 = 𝑜(1) and so

−3𝑁 log(1 − 𝑎𝑝3) ∼ 3𝑎𝑁𝑝3 = 𝑜(1).

Thus (5.6) holds for all large 𝑛.
Finally, note that the first term of the right hand side of (5.7) is asymptotically

𝑛2𝑁

2
· 𝑎𝑝3 = 83𝑐𝑛 log 𝑛.

So (5.7) holds for large 𝑛 if we choose 𝑐 such that

1 > 83𝑐. (5.8)

The proof is complete. □

Erdős, Faudree, Rousseau and Schelp (1987), and Krivelevich (1995) generalized
Spencer’s lower bound from 𝐾𝑚 to a fixed graph 𝐻. Li and Zang (2003) generalized
it further to 𝑟 (𝐻,𝐺𝑛), where the order of 𝐺𝑛 is 𝑛 and 𝑒(𝐺𝑛) = 𝑛2−𝑜 (1) . Set

𝜌(𝐻) = 𝑒(𝐻) − 1
𝑣(𝐻) − 2

,
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where 𝑣(𝐻) and 𝑒(𝐻) are the order and the size of 𝐻, respectively. Sudakov (2008)
proved that for fixed graph 𝐻, there exists a constant 𝑐 > 0 depending only on 𝐻
such that every graph 𝐺 with 𝑚 edges,

𝑟 (𝐻,𝐺) ≥ 𝑐
(
𝑚

log𝑚

)𝜌(𝐻 )/(1+𝜌(𝐻 ) )
. (5.9)

We also give a generalization as follows, see Dong, Li and Lin (2009).

Theorem 5.5 Let 𝐻 be a fixed graph with 𝑣(𝐻) ≥ 3, and let 𝐺𝑛 be a graph of order
𝑛 with average degree 𝑑𝑛. For all large 𝑛,

𝑟 (𝐻,𝐺𝑛) ≥ 𝑐
(
𝑑𝑛

log 𝑑𝑛

)𝜌(𝐻 )
,

where 𝑐 = 𝑐(𝐻) > 0 is a constant.

The following gives lower bounds for 𝑟 (𝐾𝑡 ,𝑠 , 𝐾𝑛) and 𝑟 (𝐶𝑡 , 𝐾𝑛).
Corollary 5.4 For fixed 𝑡, 𝑠 ≥ 2, there exists a positive constant 𝑐 = 𝑐(𝑡, 𝑠) (or
𝑐 = 𝑐(𝑡)) such that

𝑟 (𝐾𝑡 ,𝑠 , 𝐾𝑛) ≥ 𝑐
(
𝑛

log 𝑛

) (𝑠𝑡−1)/(𝑠+𝑡−2)
,

𝑟 (𝐶𝑡 , 𝐾𝑛) ≥ 𝑐
(
𝑛

log 𝑛

) (𝑡−1)/(𝑡−2)
.

We can apply Corollary 5.3 to simplify the calculations of (5.6) and (5.7). Indeed,
we can define a lopsidependency graph 𝐹 by connecting the events of different types,
i.e., those 𝐴 type events and 𝐵 type events, that have common edges. Any pair of
events of the same type are positive each other and a pair of events of different types
that do not have common edges are independent. So we only need

log 𝑎 ≥ −𝑁𝑛 log(1 − 𝑏𝑞𝑒 (𝐺𝑛 ) ),
log 𝑏 ≥ −𝑒(𝐺𝑛)𝑁𝑚−2 log(1 − 𝑎𝑝𝑒 (𝐹 ) )

instead of (5.6) and (5.7).
Note that the lower bounds of (5.9) and that in Theorem 5.5 cannot replace each

other. To see this, let us assume that 𝐺𝑛 is a graph of order 𝑛, and 𝑚 = 𝑒(𝐺𝑛) =

Θ(𝑛1+𝑎) for some constant 𝑎 with 0 < 𝑎 ≤ 1. Then the lower bounds for 𝑟 (𝐹, 𝐺𝑛)
given by two theorems are

𝑐1

(
𝑛

(log 𝑛)1/𝑎

)𝑎𝜌
and 𝑐2

(
𝑛

(log 𝑛)1/(1+𝑎)

) (1+𝑎)𝜌
1+𝜌

,

respectively, where 𝜌 = 𝜌(𝐹). So which bound is stronger depends on whether
𝑎𝜌 > 1.
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120 5 Lovász Local Lemma

Now, let us see another application. A hypergraph H on vertex set 𝑉 ≠ ∅ is a
pair (𝑉, E), where the edge set E is a family of subsets of 𝑉 . We say a coloring
of the vertices of a hypergraph H is proper if no edge is monochromatic, and H
is said to be 𝑘-colorable if there exists a proper 𝑘-coloring for its vertices. Using
the original condition 4𝑑𝑝 ≤ 1, Erdős and Lovász (1975) proved that an 𝑟-uniform
hypergraph H is 2-colorable if each edge of H intersects at most 2𝑟−3 other edges.
As the first application of the Local Lemma, this result becomes a specific problem
in derandomization of the Local Lemma, see e.g. Beck (1991).

Theorem 5.6 Let 𝑟 ≥ 𝑘 ≥ 2 be integers. If each edge of a hypergraph H has at least
𝑟 vertices and every edge intersects at most 𝑘𝑟−1/4(𝑘 − 1)𝑟 other edges, then the
vertices of H can be 𝑘-colored such that each color meets each edge.

Proof. Let H be the hypergraph with vertex set𝑉 and edge set E, where𝑉 = [𝑛] and
E = {𝑒1, 𝑒2, . . . , 𝑒𝑚}. Let the probability space consist of all 𝑘-colorings of 𝑉 , in
which each vertex is colored by one of these 𝑘 colors with probability 1/𝑘 randomly
and independently. Let 𝐴𝑖 be the event that 𝑒𝑖 does not receive all colors. Clearly
Pr(𝐴𝑖) ≤ 𝑘 (1 − 1/𝑘)𝑟 . By assumption, the degree of the dependence graph of any
event satisfies that 𝑑 ≤ 𝑘𝑟−1/4(𝑘 − 1)𝑟 , and thus the original condition of the Local
Lemma can be applied as 4𝑑𝑝 ≤ 1. So the assertion follows. □

Before the above-mentioned result of Erdős and Lovász, a similar result had
appeared shown by basic probabilistic method as follows.

Theorem 5.7 (Erdős-Selfridge) Let H = (𝑉, E) be an 𝑟-uniform hypergraph. If
|E | < 2𝑟−1, then H is 2-colorable.

Proof. The basic probabilistic method gives

Pr(∪𝐴𝑒) ≤
∑︁

Pr(𝐴𝑒) =
|E |

2𝑟−1 < 1,

where 𝐴𝑒 is the event that the edge 𝑒 is monochromatic defined as that in the proof
of the last theorem. □

We can improve this result slightly as follows by using lopsidependency Local
Lemma. we leave it as an exercise.

Theorem 5.8 Let 𝑟 ≥ 𝑘 ≥ 2 be integers. If every edge of a hypergraph H has at
least 𝑟 vertices and every edge intersects at most 𝑘𝑟/4(𝑘 − 1)𝑟+1 − 1 other edges,
then the vertices of H can be 𝑘-colored such that each color meets each edge.

For 𝑘 = 2, the bound 𝑘𝑟/4(𝑘 − 1)𝑟+1 − 1 becomes 2𝑟−2 − 1 that is asymptotically
twice as the bound 2𝑟−3. The bound 𝑘𝑟−1/4(𝑘 − 1)𝑟 in Theorem 5.6 comes from the
proof by the original condition 4𝑑𝑝 ≤ 1, which can be improved as 𝑘𝑟/𝑒(𝑘 − 1)𝑟 − 1
by using condition 𝑒(𝑑 + 1)𝑝 ≤ 1. Hence the bound 𝑘𝑟/4(𝑘 − 1)𝑟+1 − 1 can be
improved as 𝑘𝑟/𝑒(𝑘 − 1)𝑟+1 − 𝑘/(𝑘 − 1).

We have seen that the probabilistic method has a lot of applications with much
better results than that by elementary combinatorial method. However, we shall see
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5.3 Martingales and Triangle-Free Process★ 121

some other methods have much success for some topics. Let us conclude this section
with two jokes given by Spencer (1994) to say that for many topics, unlike that
for Turán’s bound for independence number shown in previously, the probabilistic
method cannot provide “exact” results often. The problem that Spencer joked is seri-
ous. In order to have verisimilitude, we write the joked results as usual in “academic
language” but without indices.

The following results are due to Joker, who used the basic probabilistic method.

Theorem (Joker) Let 𝑆 and 𝑇 be nonempty sets. If |𝑇 | >
( |𝑆 |

2
)
, then there exists an

injection 𝑓 : 𝑆 → 𝑇 .

Proof. Consider the probability space consisting of all maps from 𝑆 to 𝑇 , in which
each map appears randomly and independently with the same probability. For any
unordered pair of points 𝑥 and 𝑦 of 𝑆, let 𝐴𝑥𝑦 signify the event 𝑓 (𝑥) = 𝑓 (𝑦). Since
for any fixed pair 𝑥 and 𝑦,

|{ 𝑓 : 𝑆 → 𝑇 : 𝑓 (𝑥) = 𝑓 (𝑦)}| = |𝑇 | |𝑆 |−1,

we have Pr(𝐴𝑥𝑦) = 1/|𝑇 | and

Pr
(
∪{𝑥,𝑦}⊆𝑆𝐴𝑥𝑦

)
≤

∑︁
{𝑥,𝑦}⊆𝑆

1
|𝑇 | =

1
|𝑇 |

(
|𝑆 |
2

)
< 1,

which implies that Pr(∩{𝑥,𝑦}⊆𝑆𝐴𝑥𝑦) > 0 and hence the desired injection exists. □

Later Joker amused himself by improving the above result by using the Local
Lemma. The new result is tight up to a multiplicative constant.

Theorem (Joker) Let 𝑆 and 𝑇 be nonempty sets. If |𝑇 | ≥ 2𝑒 |𝑆 |, then there exists an
injection 𝑓 : 𝑆 → 𝑇 .

Proof. The same as that for Joke 1 but apply the Local Lemma. In the dependence
graph, the vertex 𝐴𝑥𝑦 is adjacent to 𝐴𝑥𝑦′ with 𝑦′ ∈ 𝑆\{𝑦} and 𝐴𝑥′𝑦 with 𝑥′ ∈ 𝑆\{𝑥}.
Let 𝑑 = 2( |𝑆 | − 2), then the independence graph is 𝑑 regular, in which the event
𝐴𝑥𝑦 is mutually independent to all non-neighbors. As 𝑝 = 1/|𝑇 |, the condition
ensures 𝑒(𝑑 + 1)𝑝 < 1, and so the symmetric form of the Local Lemma gives that
Pr(∩{𝑥,𝑦}⊆𝑆𝐴𝑥𝑦) > 0, implying the existence of the desired injection. □

5.3 Martingales and Triangle-Free Process★

Most parameters of a random graph are concentrated around their expectations. To
describe such phenomena, martingale is a powerful tool, which may liberate us from
drudgery computations.

Let 𝑋 and 𝑌 be random variables on a probability space Ω. Given 𝑌 = 𝑦 with
Pr(𝑌 = 𝑦) > 0, we define a conditional expectation 𝐸 (𝑋 |𝑌 = 𝑦) as
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122 5 Lovász Local Lemma

𝐸 (𝑋 |𝑌 = 𝑦) =
∑︁
𝑥

𝑥 Pr(𝑋 = 𝑥 |𝑌 = 𝑦),

which depends on 𝑦. As 𝑌 is random, we have a new random variable

𝐸 (𝑋 |𝑌 ).

For an element 𝜔 ∈ Ω, if 𝑌 (𝜔) = 𝑦, then 𝐸 (𝑋 |𝑌 ) takes value 𝐸 (𝑋 |𝑌 = 𝑦) at 𝜔.

Lemma 5.2 𝐸 [𝐸 (𝑋 |𝑌 )] = 𝐸 [𝑋].

Proof. From the definition, we have

𝐸 [𝐸 (𝑋 |𝑌 )] =
∑︁
𝑦

𝐸 [𝑋 |𝑌 = 𝑦] Pr(𝑌 = 𝑦)

=
∑︁
𝑦

(∑︁
𝑥

𝑥 Pr[𝑋 = 𝑥 |𝑌 = 𝑦]
)

Pr(𝑌 = 𝑦)

=
∑︁
𝑥

𝑥

(∑︁
𝑦

Pr[𝑋 = 𝑥 |𝑌 = 𝑦] Pr(𝑌 = 𝑦)
)

=
∑︁
𝑥

𝑥 Pr(𝑋 = 𝑥) = 𝐸 (𝑋)

as asserted. □

A martingale is a sequence 𝑋0, 𝑋1, . . . , 𝑋𝑚 of random variables such that for
0 ≤ 𝑖 < 𝑚,

𝐸 (𝑋𝑖+1 |𝑋𝑖) = 𝑋𝑖 .

Namely, 𝐸 (𝑋𝑖+1 |𝑋𝑖 = 𝑥) = 𝑥 for any given 𝑋𝑖 = 𝑥.
Imagine one walks on a line randomly, at each step he moves one unit to the left

or right with probability 𝑝, or stands still with probability 1 − 2𝑝. Let 𝑋𝑖 be the
position of 𝑖 step. This is a martingale as the expected position after 𝑖 +1 steps equals
the actual position after 𝑖 steps.

Let us look at some martingales used in graph theory. The first is called the edge
exposure martingale on chromatic numbers, in which we reveal 𝐺 𝑝 one edge-slot
at a time. Let the random graph space G(𝑛, 𝑝) be the underlying probability space.
Set 𝑚 =

(𝑛
2
)
, and label the potential edges on vertex set [𝑛] by 𝑒1, 𝑒2, . . . , 𝑒𝑚 in any

manner. We define 𝑋0 (𝐻), 𝑋1 (𝐻), . . . , 𝑋𝑚 (𝐻) for a given graph 𝐻 on vertex set
[𝑛], which are random variables if 𝐻 is a random graph in G(𝑛, 𝑝). Let 𝑋0 (𝐻) =
𝐸 (𝜒(𝐺 𝑝)). For general 𝑖,

𝑋𝑖 (𝐻) = 𝐸 [𝜒(𝐺 𝑝) |𝑒 𝑗 ∈ 𝐺 𝑝 if and only if 𝑒 𝑗 ∈ 𝐻, 1 ≤ 𝑗 ≤ 𝑖] .

In other words, 𝑋𝑖 (𝐻) is the expected value of 𝐸 [𝜒(𝐺 𝑝)] under the condition that
the set of the first 𝑖 edges of 𝐺 𝑝 equals that of 𝐻 while the remaining edges are
not seen and considered to be random. Note that 𝑋0 is a constant 𝐸 (𝜒(𝐺 𝑝)) and
𝑋𝑚 = 𝜒(𝐻).
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5.3 Martingales and Triangle-Free Process★ 123

In Fig. 4.1, the probability space is G(3, 0.5), so 𝑋0 = 𝐸 (𝜒(𝐺 𝑝)) = 2, and
𝑋1 (𝐻) = 2.25 if 𝑒1 ∈ 𝐸 (𝐻), and 𝑋1 (𝐻) = 1.75 otherwise. Thus 𝐸 (𝑋1 |𝑋0) = 2 = 𝑋0.
The random variables 𝑋2 and 𝑋3 take 4 values and 8 values, respectively, and
𝐸 (𝑋𝑖+1 |𝑋𝑖) = 𝑋𝑖 for 𝑖 = 1, 2. e.g.

𝐸 (𝑋2 |𝑋1 = 2.25) = 1
4
(3 + 3 × 2), and 𝐸 (𝑋3 |𝑋2 = 2.5) = 1

2
(3 + 2).

Hence this is a martingale on the random space G(3, 0.5).

�
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Fig. 4.1 An edge exposure martingale

The second is called the vertex exposure martingale on chromatic numbers, in
which we reveal 𝐺 𝑝 one vertex-slot at a time. Let the random graph space G(𝑛, 𝑝)
be the underlying probability space. We define 𝑌1 = 𝐸 (𝜒(𝐺 𝑝)) and

𝑌𝑖 (𝐻) = 𝐸 [𝜒(𝐺 𝑝) |𝐸𝑖 (𝐺 𝑝) = 𝐸𝑖 (𝐻)],

where 𝐸𝑖 (𝐻) is the edge set induced by the vertex set {1, . . . , 𝑖}. In other words,
𝑌𝑖 (𝐻) is the expected value of 𝐸 [𝜒(𝐺 𝑝)] under the condition that the set of the edges
of 𝐺 𝑝 induced by the first 𝑖 vertices equals that of 𝐻 while the remaining edges are
not seen and considered to be random. Note that 𝑌1 is a constant 𝐸 (𝜒(𝐺 𝑝)) and
𝑌𝑛 = 𝜒(𝐻). Note that the vertex exposure martingale is a subsequence of the edge
exposure martingale.

In Fig. 4.2, the probability space is also G(3, 0.5), and 𝑌1 = 𝐸 (𝜒(𝐺 𝑝)) = 2, and
𝑌2 (𝐻) = 2.25 if 𝑒1 ∈ 𝐸 (𝐻), and 𝑌2 (𝐻) = 1.75 otherwise. Thus 𝐸 (𝑌2 |𝑌1) = 2 = 𝑋1.
The random variable 𝑌3 take 8 values, and similarly 𝐸 (𝑌3 |𝑌2) = 𝑌2. e.g. 𝐸 (𝑌3 |𝑌2 =

2.25) = (3 + 2 + 2 + 2)/4 = 2.25. Hence this is a martingale on the random space
G(3, 0.5).
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Fig. 4.2 A vertex exposure martingale

Lemma 5.3 If 𝑋 is a random variable with 𝐸 (𝑋) = 0 and |𝑋 | ≤ 1, then

𝐸 (𝑒𝑡𝑋) < 𝑒𝑡2/2

for all 𝑡 > 0.

Proof. For fixed 𝑡 ≥ 0, set

ℎ(𝑥) = 𝑒𝑡 + 𝑒−𝑡
2

+ 𝑒
𝑡 − 𝑒−𝑡

2
𝑦, −1 ≤ 𝑥 ≤ 1.

Note that the function 𝑓 (𝑥) = 𝑒𝑡 𝑥 is convex, and ℎ(𝑥) is a line through the point
(−1, 𝑓 (−1)) and (1, 𝑓 (1)) as 𝑓 (−1) = ℎ(−1) and 𝑓 (1) = ℎ(1), hence 𝑒𝑡 𝑥 ≤ ℎ(𝑥),
and

𝐸 (𝑒𝑡𝑋) ≤ 𝐸 (ℎ(𝑋)) = 𝑒𝑡 + 𝑒−𝑡
2

by noting that 𝐸 (𝑋) = 0, and thus the assertion follows by Lemma 3.4. □

Theorem 5.9 (Azuma’s Inequality) Let 𝑋0, 𝑋1, . . . , 𝑋𝑚 be a martingale with

|𝑋𝑖+1 − 𝑋𝑖 | ≤ 1

for all 0 ≤ 𝑖 < 𝑚. We have for any 𝜆 > 0,

Pr[𝑋𝑚 − 𝑋0 ≥ 𝜆
√
𝑚] < 𝑒−𝜆2/2,

and similarly, Pr[𝑋𝑚 − 𝑋0 ≤ −𝜆
√
𝑚] < 𝑒−𝜆2/2.
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5.3 Martingales and Triangle-Free Process★ 125

Proof. We may assume that 𝑋0 = 0 by translation. Set𝑌𝑖 = 𝑋𝑖−𝑋𝑖−1, 𝑖 = 1, 2, . . . , 𝑚.
Clearly, |𝑌𝑖 | ≤ 1 and 𝐸 (𝑌𝑖 |𝑋𝑖−1, . . . , 𝑋0) = 0 since 𝑋0, 𝑋1, . . . , 𝑋𝑚 is a martingale
from the assumption. Thus Lemma 5.3 yields that

𝐸 (𝑒𝑡𝑌𝑖 |𝑋𝑖−1, . . . , 𝑋0) < 𝑒𝑡
2/2

for any 𝑡 > 0. Therefore,

𝐸 (𝑒𝑡𝑋𝑚 ) = 𝐸
(
𝑒𝑡𝑋𝑚−1𝑒𝑡𝑌𝑚

)
= 𝐸

(
𝑒𝑡𝑋𝑚−1𝐸 (𝑒𝑡𝑌𝑚 |𝑋𝑚−1, . . . , 𝑋0)

)
≤ 𝑒𝑡2/2𝐸 (𝑒𝑡𝑋𝑚−1 ).

This and the induction gave 𝐸 (𝑒𝑡𝑋𝑚 ) ≤ 𝑒𝑚𝑡2/2. Using Markov’s Inequality, we obtain

Pr(𝑋𝑚 ≥ 𝜆
√
𝑚) = Pr(𝑒𝑡𝑋𝑚 ≥ 𝑒𝑡𝜆

√
𝑚) ≤ 𝐸 (𝑒𝑡𝑋𝑚 )

𝑒𝑡𝜆
√
𝑚

≤ 𝑒𝑚𝑡
2/2

𝑒𝑡𝜆
√
𝑚
.

Now the assertion follows by letting 𝑡 = 𝜆/
√
𝑚. □

A function 𝑓 of a graph parameter is said to satisfy the edge Lipschitz condition
if whenever 𝐻 and 𝐻′ differ in only one edge then | 𝑓 (𝐻) − 𝑓 (𝐻′) | ≤ 1. It satisfies
the vertex Lipschitz condition if whenever 𝐻 and 𝐻′ differ in only one vertex then
| 𝑓 (𝐻) − 𝑓 (𝐻′) | ≤ 1. e.g., the chromatic number 𝜒(𝐺) satisfies both Lipschitz
conditions.

Theorem 5.10 If 𝑓 satisfies the edge Lipschitz condition, then the corresponding
edge exposure martingale satisfies |𝑋𝑖+1 − 𝑋𝑖 | ≤ 1. If 𝑓 satisfies the vertex Lipschitz
condition, then the vertex exposure martingale satisfies |𝑋𝑖+1 − 𝑋𝑖 | ≤ 1.

Now we conclude this section with a simple application on the chromatic number
by Shamir and Spencer (1987) by using Azuma’s Inequality.

Theorem 5.11 For the random graph 𝐺 = 𝐺 (𝑛, 𝑝),

Pr[|𝜒(𝐺) − 𝜇 | > 𝜆
√
𝑛 − 1] < 2𝑒−𝜆

2/2,

where 𝜇 = 𝐸 (𝜒(𝐺)).

Proof. Consider the vertex exposure martingale 𝑋1, . . . , 𝑋𝑛 on𝐺 (𝑛, 𝑝) with 𝑓 (𝐺) =
𝜒(𝐺). A single vertex can always be given a new color so the vertex Lipschitz
condition applies. Now the assertion follows from the Azuma’s Inequality of Theorem
5.9 immediately. □

When 𝜆 → ∞ arbitrarily slowly, then this result shows that the distribution of
𝜒(𝐺) is “tightly concentrated” around its expectation.

It is often difficult to show the existence of small events. The Local Lemma is a
tool for such proof that improved most lower bounds from basic probabilistic method.
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126 5 Lovász Local Lemma

The key for the proof of the Local Lemma (see next chapter) itself is the conditional
probability. A revolutionary idea for finding the small events is also “conditional”. If
we know a certain condition in which the event is likely to appear, then the probability
for event is large under the condition. In other word, we try to switch a small event
to be a large one conditionally. However, we may encounter difficulties to finger the
conditional probability out.

Obtaining the right order of magnitude of 𝑟 (𝑚, 𝑛) even 𝑟 (3, 𝑛) was certainly a
challenge in decades. A celebrated result of Kim (1995) showed that the order of
𝑟 (3, 𝑛) is 𝑛2/log 𝑛, which was obtained again by Bohman (2009). They used different
analysis on the same random graph process, called the triangle-free process. For
general constrained graph process, see, e.g., Ruciński and Wormald (1992), Erdős,
Suen and Winkler (1995), Bollobás and Riordan (2000), and Osthus and Taraz
(2001).

The triangle-free process can be described as follows. We begin with the empty
graph, denoted by𝐺0, on 𝑁 vertices. At step 𝑖 we form the graph𝐺𝑖 by adding a new
edge to 𝐺𝑖−1 chosen uniformly at random from the collection of pairs of vertices
that neither appear as edges in𝐺𝑖−1 nor form triangles when added as edges to𝐺𝑖−1.
The process terminates at a maximal triangle-free graph 𝐺𝑀 , for which the random
variable 𝑀 is the number of edges of 𝐺𝑀 . Note that a maximal triangle-free graph
is connected and the number of edges in a triangle-free graph of order 𝑁 is at most
𝑁2/4 (see Chapter 7), we have

𝑁 − 1 ≤ 𝑀 ≤ 𝑁2

4
.

However, Bohman (2009) proved that a.a.s.

𝑐1𝑁
3/2√︁log 𝑁 ≤ 𝑀 ≤ 𝑐2𝑁

3/2√︁log 𝑁.

From a result in Chapter 3, we have that the independence numbers of such graphs
are at least Ω(

√︁
𝑁 log 𝑁). Remarkably, Kim and Bohman showed that a.a.s. the

independence numbers of such graphs are at most 𝑂 (
√︁
𝑁 log 𝑁), which implies that

𝑟 (3, 𝑛) ≥ Ω(𝑛2/log 𝑛).
Theorem 5.12 For some constant 𝑐 > 0,

𝑟 (3, 𝑛) ≥ 𝑐𝑛2

log 𝑛
.

Let us talk a bit more on the process employed by Bohman. For a set𝑉 , let𝑉 (2) be
the set of all pairs 𝑢, 𝑣 of𝑉 , which is the edge set of complete graph on𝑉 . The vertex
set of our complete graph of order 𝑁 is on [𝑁] = {1, 2, . . . , 𝑁}. In the evolution of
the triangle-free process, we shall track some random sets. Recall that𝐺𝑖 is the graph
given by the first 𝑖 edges selected by the process. The graph𝐺𝑖 partitions [𝑁] (2) into
three parts: 𝐸𝑖 , 𝑂𝑖 and 𝐶𝑖 . The set 𝐸𝑖 is simply the edge set of 𝐺𝑖 . A pair of [𝑁] (2)
is open, and in the set 𝑂𝑖 , if it can still be added as an edge without violating the
triangle-free condition. A pair of [𝑁] (2) is closed, and in the set 𝐶𝑖 , if it is neither an
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5.4 Exercises 127

edge in the graph nor open; that is, a pair 𝑒 = {𝑢, 𝑣} is in 𝐶𝑖 if 𝑒 ∉ 𝐸𝑖 ∪𝑂𝑖 and there
exists a vertex 𝑤 such that {𝑢, 𝑤}, {𝑣, 𝑤} ∈ 𝐸𝑖 . Note that 𝑒𝑖+1 is chosen uniformly
at random from 𝑂𝑖 . That is to say, each edge of 𝑂𝑖 has the same probability 1/|𝑂𝑖 |
to be chosen as 𝑒𝑖+1. We do not express this as Pr(𝑒𝑖+1 ∈ 𝑂𝑖) = 1/|𝑂𝑖 | since only
these edges in random set 𝑂𝑖 are available. We refer the reader to Kim (1995) and
Bohman (2008) for details.

Some improvements on the constant have been obtained. Bohman and Keevash
(2021), and independently Fiz Pontiveros, Griffiths and Morris (2020) improved the
lower bound to

𝑟 (3, 𝑛) ≥
(
1
4
− 𝑜(1)

)
𝑛2

log 𝑛
.

With more complicated analysis on 𝐾4-free process, Bohman (2009) also improved
the known lower bound of 𝑟 (4, 𝑛), and generally, Bohman and Keevash (2010)
obtained that

𝑟 (𝑚, 𝑛) ≥ 𝑐
(
𝑛

log 𝑛

) (𝑚+1)/2
(log 𝑛)1/(𝑚−2) , (5.10)

which improves the lower bound of 𝑟 (𝑚, 𝑛) obtained from the Local Lemma by a
factor (log 𝑛)1/(𝑚−2) .

5.4 Exercises

1. Use the example in the end of Section 5.1 to explain

(i) Pairwise independent events 𝐴1, . . . , 𝐴𝑛 are not necessarily mutually indepen-
dent.

(ii) Pairwise independent events 𝐴1, . . . , 𝐴𝑛 with Pr(𝐴𝑖) < 1 may not imply that
Pr(∩𝐴𝑖) > 0.

2. Using Lovász Local Lemma, give lower bounds for 𝑟𝑘 (𝐾𝑛) and 𝑟𝑘 (𝐾𝑛,𝑛),
compare them with that by basic probabilistic method.

3. Prove the lower bound in Theorem 5.4 by taking

𝑝 = 𝑐1𝑁
−2/(𝑚+1) , 𝑛 = 𝑐2𝑁

2/(𝑚+1) log 𝑁,

𝑎 = 𝑐3, 𝑏 = exp
{
𝑐4𝑁

2/(𝑚+1) log2 𝑁
}
,

where 𝑐𝑖 , 𝑖 = 1, . . . , 4, are constants such that the Local Lemma applies.

4. Let H = (𝑉, E) be a simple hypergraph. Prove that
∑
𝑣∈𝑉 𝑑 (𝑣) =

∑
𝑒∈E |𝑒 |,

and ∑︁
𝑣∈𝑉

𝑑2 (𝑣) =
∑︁
𝑒∈E

∑︁
𝑣∈𝑒

𝑑 (𝑣) =
∑︁
𝑒∈E

∑︁
𝑓 ∈E

|𝑒 ∩ 𝑓 |.
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128 5 Lovász Local Lemma

5.∗ Let 𝑟 ≥ 2 be integers. Prove that if every edge of a hypergraph H has at least
𝑟 vertices and every edge intersects at most 2𝑟−2 − 1 other edges, then the vertices
of H can be two colored such that each color meets each edge. (Hint: Using Lemma
5.1)
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Chapter 6
Constructive Lower Bounds

129© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 

Y. Li, Q. Lin, Elementary Methods of Graph Ramsey Theory, Applied Mathematical  

Sciences 211, https://doi.org/10.1007/978-3-031-12762-5_6 

To compare the lower bounds obtained from probabilistic method previously, we will
take a look at the lower bounds of the classic Ramsey numbers from the constructive
method. In this chapter, we shall introduce a disproof of a conjecture of Borsuk
in geometry and related properties of intersecting hypergraphs. The result on the
conjecture of Borsuk reveals a general idea in Ramsey theory that exceptions appear
only in cases of small sizes. Recently, Conlon and Ferber (2021) made improvements
on the lower bounds of multicolor classic Ramsey numbers 𝑟𝑘 (𝑡) for 𝑘 ≥ 3, which
will be introduced in the last section.

6.1 Constructive Lower Bounds for 𝒓(𝒔, 𝒕)

In this section, let us pay attention to non-diagonal constructive lower bounds for
𝑟 (𝑠, 𝑡). The first constructive lower bound

𝑟 (3, 𝑡) ≥ Ω(𝑡3/2) (6.1)

was found byAlon (1994). Some years later, Codenotti, Pudlák andResta (2000) gave
the same constructive lower bound by using an algebraic argument. Subsequently,
Alon and Pudlák (2001) generalized the construction of Codenotti, Pudlák and
Resta (2000) to give polynomial lower bounds for 𝑟 (𝑠, 𝑡) with the exponent of the
polynomials increasing with 𝑠. i.e.,

𝑟 (𝑠, 𝑡) ≥ exp
{
𝜖
√︁
log 𝑠/log log 𝑠 · log 𝑡

}
.

For 𝑠 = 4, 5, 6, the constructive lower bounds were improved by Kostochka, Pudlák
and Rödl (2010). We will give a combinatorial proof of the lower bound of (6.1) by
Kostochka, Pudlák and Rödl (2010).

Let 𝐺 be a graph. The superline graph, denoted by 𝐻𝐺 , of 𝐺 is constructed as
follows. The vertices of 𝐻𝐺 are the edges of 𝐺, and 𝑒 𝑓 is an edge in 𝐻𝐺 if 𝑒 and

https://doi.org/10.1007/978-3-031-12762-5_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12762-5_6&domain=pdf
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130 6 Constructive Lower Bounds

𝑓 are disjoint edges of 𝐺 and there exists an edge 𝑔 of 𝐺 that connects an end of 𝑒
with an end of 𝑓 (i.e., if the edges 𝑒, 𝑔 and 𝑓 form a path in 𝐺).

Lemma 6.1 For every triangle-free graph 𝐺 and its superline graph 𝐻𝐺 , 𝛼(𝐻𝐺) ≤
𝛼(𝐺).

Proof. Let 𝐴 be an independent set in 𝐻𝐺 , which is a matching in 𝐺. Let 𝐵 be the
set of vertices in 𝐺 of the edges in 𝐴. Then the subgraph 𝐺 [𝐵] of 𝐺 induced by 𝐵
has no triangles and does not contain paths of length 3. So, the components of 𝐺 [𝐵]
are stars, hence 𝐺 [𝐵] has an independent set of size |𝐴|. □

A projective plane of order 𝑞, denoted by 𝑃𝐺 (2, 𝑞), consists of a set 𝑋 of 𝑞2+𝑞+1
elements called points, and a family L of subsets of 𝑋 called lines, satisfying the
following properties:

(P1) Every line has 𝑞 + 1 points.
(P2) Any pair of distinct points lie on a unique line.

Lemma 6.2 A projective plane of order 𝑞 has the properties as follows.

(P3) Any point lies on 𝑞 + 1 lines.
(P4) There are 𝑞2 + 𝑞 + 1 lines.
(P5) Any two lines meet at a unique point.

Proof. To prove (P3), we fix a point 𝑥 ∈ 𝑋 . There are 𝑞(𝑞+1) points different from 𝑥,
each line through 𝑥 contains 𝑞 further points, and there are no other overlaps between
these lines (apart from 𝑥). So 𝑞(𝑞 + 1) points of 𝑋 \ {𝑥} are partitioned equally into
parts by these lines. Therefore there must be 𝑞 + 1 lines through 𝑥 with no remaining
point.

To show (P4), let us count the number of the pairs (𝑥, 𝐿) with 𝑥 ∈ 𝐿 in two ways.
Since each line contains 𝑞 + 1 points and each point lies on 𝑞 + 1 lines from (P3), we
obtain |L|(𝑞 + 1) = (𝑞2 + 𝑞 + 1) (𝑞 + 1). So |L| = 𝑞2 + 𝑞 + 1.

Finally, we show (P5). From the property (P2), any two lines meet at most one
point. Suppose that there are two lines 𝐿1 and 𝐿2 that have no point in common, and
we fix a point 𝑥 ∈ 𝐿1. From the property (P3), there are 𝑞 lines different from 𝐿1
that contain 𝑥. Therefore, by the pigeonhole principle, one of these 𝑞 lines contains
at least two points of 𝐿2 as each line has 𝑞 + 1 points. This leads to a contradiction
to (P2). □

We now have the following modification of the superline graph construction.
Let 𝐺 be a bipartite graph with bipartition of vertices (𝑈,𝑉) and let ≺ be a linear
ordering of the edges of𝐺. We denote by 𝐻≺

𝐺
the graph whose vertices are the edges

of 𝐺 and a pair {𝑢𝑣, 𝑢′𝑣′}, with 𝑢 ≠ 𝑢′ ∈ 𝑈 and 𝑣 ≠ 𝑣′ ∈ 𝑉 is an edge in 𝐻≺
𝐺

if
either 𝑢𝑣 ≺ 𝑢′𝑣′ and 𝑢𝑣′ is an edge in 𝐺 or 𝑢′𝑣′ ≺ 𝑢𝑣 and 𝑢′𝑣 is an edge in 𝐺. (In
particular, 𝐻≺

𝐺
is a subgraph of 𝐻𝐺 .)

Lemma 6.3 For every bipartite graph 𝐺 on 𝑛 vertices, every bipartition of 𝐺 and
every ordering ≺ of its edges, 𝛼(𝐻𝐺) < 𝑛.



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

6.2 Constructive Lower Bounds for 𝑟 (𝑡 ) 131

Proof. Let 𝐴 be a set of 𝑛 edges of 𝐺. Then 𝐴 contains a cycle. Let

(𝑢0, 𝑣0, 𝑢1, 𝑣1, . . . , 𝑢𝑘−1, 𝑣𝑘−1, 𝑢0)

be a cycle formed by some edges in 𝐴. Then for some 0 ≤ 𝑖 < 𝑘 , 𝑢𝑖𝑣𝑖 ≺ 𝑢𝑖+1𝑣𝑖+1
(where we count 𝑖 + 1 modulo 𝑘). Hence {𝑢𝑖𝑣𝑖 , 𝑢𝑖+1𝑣𝑖+1} is an edge in 𝐻𝐺 , which
proves that 𝐴 is not an independent set. □

Proof of (6.1). Let 𝐺𝑞 be the incidence graph of the classical projective plane
𝑃𝐺 (2, 𝑞) with 𝑞2 + 𝑞 + 1 points and 𝑞2 + 𝑞 + 1 lines (by Lemma 6.2 (P4)), where
𝑞 is a prime power. Thus 𝐺𝑞 is a regular bipartite graph of degree 𝑞 + 1. Let ≺ be
an arbitrary ordering of the edges of 𝐺𝑞 . We use the graphs 𝐻≺

𝐺𝑞
. The following

properties can be easily verified:

1. 𝐻≺
𝐺𝑞

has (𝑞 + 1) (𝑞2 + 𝑞 + 1) vertices.

2. 𝐻≺
𝐺𝑞

is triangle-free.

Indeed, if 𝑝1𝑙1 ≺ 𝑝2𝑙2 ≺ 𝑝3𝑙3 would form a triangle, then (𝑝1, 𝑙3, 𝑝2, 𝑙2) would
be a 𝐶4 in 𝐺𝑞 .

3. The largest independent set in 𝐻≺
𝐺𝑞

has size at most 𝑞2 + 𝑞 + 1, by Lemma 6.3.

Therefore, the lower bound (6.1) follows. □

6.2 Constructive Lower Bounds for 𝒓(𝒕)

Attempts have been made over the years to construct Ramsey graphs with small
cliques and independent sets. Abbott (1972) gave Ramsey graph of order 𝑛 by
a recursive construction with cliques and independence sets of size 𝑐𝑛log 2/log 5.
Nagy (1972) gave a construction reducing the size to 𝑐𝑛1/3. The breakthrough by
Frankl (1977) gave the Ramsey graph of order 𝑛 with cliques and independent
sets of size smaller than 𝑛𝜖 for any 𝜖 > 0. This result was further improved to
𝑒𝑐 (log 𝑛)3/4 (log log 𝑛)1/4 in Chung (1981) by using different construction. The current
best construction by Frankl and Wilson (1981) implies that there exist Ramsey graphs
of order 𝑛 with cliques and independent sets of size at most 𝑒𝑐 (log 𝑛 log log 𝑛)1/2 , hence
yielding a super-multiplicative lower bound. It would be a challenge to give a lower
bound for 𝑟2 (𝑡) of the form (1 + 𝜖)𝑡 for some 𝜖 > 0, which is a problem proposed by
Erdős.

Recall a hypergraph H on vertex set 𝑉 ≠ ∅ is a pair (𝑉, E), where the edge set
E is a family of subsets of 𝑉 . All hypergraphs are simple, that is to say, there is no
loop and any pair of edges are distinct as subsets of 𝑉 (no multiedges). We assume
that 𝑒 ≠ ∅ for all 𝑒 ∈ E. Let 𝑉 (𝑟 ) be the set of all 𝑟-subsets of 𝑉 . If E ⊆ 𝑉 (𝑟 ) ,
then the hypergraph is called 𝑟-uniform. So a graph is a 2-uniform hypergraph. The
hypergraph (𝑉,𝑉 (𝑟 ) ) is called complete, denoted by 𝐾 (𝑟 )

𝑛 , where 𝑛 = |𝑉 |. We shall
write 𝐾 (2)

𝑛 for 𝐾𝑛 as usual.
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132 6 Constructive Lower Bounds

Proposition 6.1 If vectors 𝑥1, 𝑥2, . . . , 𝑥𝑚 are linearly independent in a linear space,
then 𝑚 is at most the dimension of the space.

In the following result, the vertex set consists of all residents in a town, named
Oddtown, and edge set consists of all clubs in the town. The citizens form these
clubs by some rules, from which the name of the town came. These rules are a bit
odd, see Berlekamp (1969).

Theorem 6.1 (Odd-town-theorem) If a hypergraph H = (𝑉, E) has the following
properties:

(i) |𝑒 | is odd for all 𝑒 ∈ E,
(ii) |𝑒 ∩ 𝑓 | is even for all 𝑒, 𝑓 ∈ E with 𝑒 ≠ 𝑓 ,

then |E | ≤ |𝑉 |.

Proof. Assume |𝑉 | = 𝑛 and E = {𝑒1, 𝑒2, . . . , 𝑒𝑚}. Define a 0-1 vector

𝑒𝑖 = (𝑒𝑖1, 𝑒𝑖2, . . . , 𝑒𝑖𝑛),

where 𝑒𝑖 𝑗 = 1 if the vertex 𝑣 𝑗 ∈ 𝑒𝑖 and 0 otherwise. Then all these row vectors form
an 𝑚 × 𝑛 matrix 𝑀 , which is the incidence matrix of H . Since all 𝑒𝑖 are elements
of the linear space of 𝑛-dimensional vectors over the field 𝐹2 = {0, 1}, the inner
product of 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) is

𝑥 · 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2 + · · · + 𝑥𝑛𝑦𝑛.

Then the two conditions can be nicely expressed by

𝑒𝑖 · 𝑒 𝑗 =
{

1 if 𝑖 = 𝑗 ,

0 if 𝑖 ≠ 𝑗 .

We claim that 𝑒1, 𝑒2, . . . , 𝑒𝑚 are linear independent. Indeed, assume

𝜆1𝑒1 + 𝜆2𝑒2 + · · · + 𝜆𝑚𝑒𝑚 = 0,

where 𝜆𝑖 ∈ 𝐹2 for 1 ≤ 𝑖 ≤ 𝑚. It is clear that 𝜆𝑖 = 0 by multiplying both sides of the
above equation by 𝑒𝑖 . Therefore, the conclusion 𝑚 ≤ 𝑛 follows from Proposition 6.1
immediately. □

We will use the following result by Fisher (1940).

Theorem 6.2 (Fisher Inequality) Let H = (𝑉, E) be a hypergraph. If there is an
integer 𝜆 ≥ 0 such that any pair of distinct edges 𝑒 and 𝑓 of H satisfy |𝑒 ∩ 𝑓 | = 𝜆,
then

|E | ≤ |𝑉 |.

Proof. Let |𝑉 | = 𝑛 and E = {𝑒1, 𝑒2, . . . , 𝑒𝑚}. If 𝜆 = 0, then it is trivial to see
𝑚 ≤ 𝑛. If 𝜆 ≥ 1 and there is an edge, say 𝑒𝑚, with |𝑒𝑚 | = 𝜆, then 𝑒𝑚 ⊆ 𝑒𝑖 and
𝑒𝑖 ∩ 𝑒 𝑗 = 𝑒𝑚 for any 𝑖 ≠ 𝑗 . Set 𝑒′

𝑖
= 𝑒𝑖 \ 𝑒𝑚, and denote E′ = {𝑒′1, 𝑒

′
2, . . . , 𝑒

′
𝑚−1},
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6.2 Constructive Lower Bounds for 𝑟 (𝑡 ) 133

we obtain a hypergraph H ′ = (𝑉 \ 𝑒𝑚, E′) which satisfies the condition in case 1.
Thus 𝑚 − 1 ≤ 𝑛 − 𝜆. It follows that 𝑚 ≤ 𝑛.

In the following, we assume that 𝜆 ≥ 1 and any edge contains at least 𝜆 + 1
vertices. In the proof of Oddtown-theorem, 𝑒𝑖 is viewed as a row vector of the
incidence matrix of H . But now we consider 𝑒𝑖 as an element of the linear space of
𝑛-dimensional vectors over 𝑅 (real numbers). In this space, the inner product will be

𝑒𝑖 · 𝑒 𝑗 =
{
𝜆 + 𝜇𝑖 if 𝑖 = 𝑗 ,

𝜆 if 𝑖 ≠ 𝑗 ,

where 𝜇𝑖 = |𝑒𝑖 | − 𝜆 ≥ 1 is an integer.

Claim 𝑒1, 𝑒2, . . . , 𝑒𝑚 are linearly independent.

Proof. Assume
𝛼1𝑒1 + 𝛼2𝑒2 + · · · + 𝛼𝑚𝑒𝑚 = 0,

where each 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑚 is a real number. Taking the inner product of both sides
by 𝑒𝑖 , we have

𝜆(𝛼1 + 𝛼2 + · · · + 𝛼𝑚) + 𝛼𝑖𝜇𝑖 = 0.

Setting 𝛽 =
∑𝑚
𝑗=1 𝛼 𝑗 , we obtain 𝜆𝛽 + 𝛼𝑖𝜇𝑖 = 0, which yields

𝛼𝑖 = − 𝜆
𝜇𝑖
𝛽.

Summing both sides of the above equation over 1 ≤ 𝑖 ≤ 𝑚, we get

𝛽 = −𝜆 ©­«
𝑚∑︁
𝑗=1

1
𝜇 𝑗

ª®¬ 𝛽,
implying that 𝛽 = 0 since otherwise the signs of both sides would be different.
Therefore 𝛼1 = 𝛼2 = · · · = 𝛼𝑚 = 0 and the proof of the claim is complete. □

Now the desired inequality 𝑚 ≤ 𝑛 follows from the above claim and Proposition
6.1 immediately. □

It is easy to give a lower bound of form 𝑐𝑛2 for 𝑟 (𝑛, 𝑛), but it is not trivial to
give a lower bound of the form 𝑐𝑛3. The following is a constructive lower bound for
𝑟 (𝑛, 𝑛) due to Nagy (1972), which is much weaker than 𝑐𝑛2𝑛/2 that given by using
the probabilistic method. However, the construction itself is interesting.

Corollary 6.1 For any integer 𝑛 ≥ 4, 𝑟 (𝑛, 𝑛) >
(𝑛−1

3
)
.

Proof. Associate each vertex of complete graph 𝐾(𝑛−1
3 ) with an edge of 𝐾 (3)

𝑛−1. Color

an edge 𝑥𝑦 of 𝐾(𝑛−1
3 ) by red if the corresponding edges 𝑒𝑥 and 𝑒𝑦 of 𝐾 (3)

𝑛−1 intersect
in one element, otherwise (𝑒𝑥 and 𝑒𝑦 intersect in zero or two elements) color 𝑥𝑦 by
blue. The Fisher inequality implies that there are at most 𝑛 − 1 such edges 𝑒 in 𝐾 (3)

𝑛−1
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134 6 Constructive Lower Bounds

that satisfy the above property, which corresponds to a red clique of order at most
𝑛 − 1, so there is no red 𝐾𝑛. Similarly, the Oddtown-theorem implies that there is no
blue 𝐾𝑛. Thus the claimed lower bound follows. □

Now we shall try to obtain a super-polynomial lower bound for 𝑟 (𝑛, 𝑛). In the
above proofs of Theorem 6.1 and Theorem 6.2, the linear spaces are spaces of
vectors. For some cases the linear spaces are spaces of functions. For example, the
set of functions 𝑓 : Ω → 𝐹, where Ω is an arbitrary set and 𝐹 is a field, forms
such a space. The dimension of the space is |Ω| as follows. Another example is
that consisting of all homogeneous polynomials of degree 𝑘 in 𝑛 variables over a
field. The dimension of this space is

(𝑛+𝑘−1
𝑘

)
, which can be seen as the 𝑘-repeatable

combinations of 𝑛-element sets. Specifically, if 𝑛 = 𝑘 = 3,

𝑥3, 𝑦3, 𝑧3, 𝑥2𝑦, 𝑥𝑦2, 𝑥2𝑧, 𝑥𝑧2, 𝑦2𝑧, 𝑦𝑧2, 𝑥𝑦𝑧

form a basis, which consists of 10 polynomials of degree 3.
To check the linear independence in spaces of functions, we may need the follow-

ing propositions.

Proposition 6.2 (Diagonal Criterion) For 1 ≤ 𝑖 ≤ 𝑚, let 𝑓𝑖 : Ω → 𝐹 be functions.
If 𝑎 𝑗 ∈ Ω are elements satisfy that

𝑓𝑖 (𝑎 𝑗 )
{
≠ 0 if 𝑖 = 𝑗

= 0 if 𝑖 ≠ 𝑗 ,

then 𝑓1, 𝑓2, . . . , 𝑓𝑚 are linearly independent.

Proposition 6.3 (Triangular Criterion) For 1 ≤ 𝑖 ≤ 𝑚, let 𝑓𝑖 : Ω → 𝐹 be
functions. If 𝑎 𝑗 ∈ Ω are elements satisfy that

𝑓𝑖 (𝑎 𝑗 )
{
≠ 0 if 𝑖 = 𝑗

= 0 if 𝑖 < 𝑗 ,

then 𝑓1, 𝑓2, . . . , 𝑓𝑚 are linearly independent.

In order to generalize Odd-town Theorem, we shall introduce a definition as
follows. For a set 𝐿 of integers and integers 𝑝, 𝑠, we shall write

𝑠 ∈ 𝐿 (mod 𝑝)

if 𝑠 = ℓ (mod 𝑝) for some ℓ ∈ 𝐿. The negation of this statement will be written as
𝑠 ∉ 𝐿 (mod 𝑝).

The following result is due to Deza, Frankl and Singhi (1983), which is a gener-
alization of the corresponding result (Corollary 6.2) of Ray-Chaudhuri and Wilson
(1975).

Theorem 6.3 Let 𝑝 be a prime and let 𝐿 be a set of integers. If H = (𝑉, E) is a
hypergraph with |𝑉 | = 𝑛 and E = {𝑒1, 𝑒2, . . . , 𝑒𝑚} satisfying
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6.2 Constructive Lower Bounds for 𝑟 (𝑡 ) 135

|𝑒𝑖 | ∉ 𝐿 (mod 𝑝) for 1 ≤ 𝑖 ≤ 𝑚,
|𝑒𝑖 ∩ 𝑒 𝑗 | ∈ 𝐿 (mod 𝑝) for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚,

then

𝑚 ≤
(
𝑛

0

)
+

(
𝑛

1

)
+ · · · +

(
𝑛

|𝐿 |

)
=

|𝐿 |∑︁
𝑖=0

(
𝑛

𝑖

)
.

Proof. The proof is due to Alon, Babai, Suzuki (1991). Define a polynomial 𝐹 (𝑥, 𝑦) :
𝐹𝑛𝑝 × 𝐹𝑛𝑝 → 𝐹𝑝 as

𝐹 (𝑥, 𝑦) = Πℓ∈𝐿 (𝑥 · 𝑦 − ℓ)

in 2𝑛 variables: 𝑥, 𝑦 ∈ 𝐹𝑛𝑝 , which are 𝑛-dimentional vectors with coordinates from
the 𝑝-element field 𝐹𝑝 , where 𝑥 · 𝑦 is the inner product, and the integers in 𝐿 are
viewed as elements of 𝐹𝑝 . Let 𝑦𝑖 ∈ 𝐹𝑛𝑝 be the incidence vector of 𝑒𝑖 (1 ≤ 𝑖 ≤ 𝑚).
Define 𝑓𝑖 : 𝐹𝑛𝑝 → 𝐹𝑝 such that

𝑓𝑖 (𝑥) = 𝐹 (𝑥, 𝑦𝑖).

The condition of the theorem ensures

𝑓𝑖 (𝑦 𝑗 )
{
≠ 0 if 𝑖 = 𝑗 ,

= 0 if 𝑖 ≠ 𝑗 .

This shows that the restricted 𝑓1, 𝑓2, . . . , 𝑓𝑚 are linearly independent from the di-
agonal criterion. These equations remain true if the domain of 𝑓𝑖 is restricted to
Ω = {0, 1}𝑛 ⊆ 𝐹𝑛𝑝 , where {0, 1} is a subset of 𝐹𝑝 hence Ω is a subset of 𝐹𝑛𝑝 .

A polynomial in 𝑛 variables is called multilinear if its degree in each variable is
at most one. In {0, 1}, 𝑥2

𝑖
= 𝑥𝑖 for each variable (that takes values 0 or 1 only) and

thus every polynomial 𝑓𝑖 : Ω → 𝐹𝑝 is multilinear. Note that the degree of such a
polynomial is at most |𝐿 |, so the dimension of the space consisting of all multilinear
polynomials is (

𝑛

0

)
+

(
𝑛

1

)
+ · · · +

(
𝑛

|𝐿 |

)
=

|𝐿 |∑︁
𝑖=0

(
𝑛

𝑖

)
,

which is an upper bound of 𝑚. □

Let us remark that if 𝐿 = {0} and 𝑝 = 2, the above theorem implies that the
number of clubs in Oddtown is at most 1+𝑛, slightly weaker than that obtained from
Oddtown-theorem.

Unlike that in Theorem 6.3, the hypergraph in the following corollary of Ray-
Chaudhuri and Wilson (1975) should be uniform, and the intersecting size is not
considered in modular form.

Corollary 6.2 Let 𝐿 be a set of integers. If H = (𝑉, E) is a uniform hypergraph with
|𝑉 | = 𝑛 and E = {𝑒1, 𝑒2, . . . , 𝑒𝑚} satisfying

|𝑒𝑖 ∩ 𝑒 𝑗 | ∈ 𝐿 for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚,
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136 6 Constructive Lower Bounds

then

𝑚 ≤
(
𝑛

0

)
+

(
𝑛

1

)
+ · · · +

(
𝑛

|𝐿 |

)
=

|𝐿 |∑︁
𝑖=0

(
𝑛

𝑖

)
.

Proof. Assume that H is 𝑡-uniform. Select a prime 𝑝 > 𝑡 and set

𝐿′ = 𝐿 \ {𝑡}.

If 𝑡 ∉ 𝐿, then we can apply Theorem 6.3 to 𝐿′ by noting |𝑒𝑖 | = 𝑡 ∉ 𝐿′ for each
1 ≤ 𝑖 ≤ 𝑚 and |𝑒𝑖 ∩ 𝑒 𝑗 | ∈ 𝐿 = 𝐿′ for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚. If 𝑡 ∈ 𝐿, then since 𝑝 > 𝑡,
we can also have that for each 1 ≤ 𝑖 ≤ 𝑚, |𝑒𝑖 | = 𝑡 ∉ 𝐿′ (mod 𝑝) and |𝑒𝑖 ∩ 𝑒 𝑗 | ∈ 𝐿
implying |𝑒𝑖 ∩ 𝑒 𝑗 | ∈ 𝐿′ (mod 𝑝) for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚. It follows from Theorem
6.3 that

𝑚 ≤
(
𝑛

0

)
+

(
𝑛

1

)
+ · · · +

(
𝑛

|𝐿′ |

)
as desired. □

Note that the above corollary can be viewed as a generalization of Fisher Inequality
for uniform hypergraphs by taking 𝐿 = {𝜆}.

We now have a constructive super-polynomial lower bound for diagonal Ramsey
number 𝑟2 (𝑡).
Construction Let 𝑝 be a prime and let 𝑛 > 2𝑝2, and let 𝑉 be a set of size 𝑛. Define
a complete graph 𝐾𝑁 of order 𝑁 =

( 𝑛
𝑝2−1

)
, whose vertex set is𝑉 (𝑝2−1) , i.e., the edge

set of 𝐾 (𝑝2−1)
𝑛 . Color an edge {𝑒, 𝑓 } of 𝐾𝑁 by red if |𝑒 ∩ 𝑓 | ≠ 𝑝 − 1 (mod 𝑝), and

blue otherwise. □

If 𝐾𝑚 is a monochromatic red clique, then we set 𝐿 = {0, 1, . . . , 𝑝 − 2}. For any
vertex 𝑒 of 𝐾𝑚, as |𝑒 | = 𝑝2 − 1 we obtain |𝑒 | = 𝑝 − 1 (mod 𝑝), and so |𝑒 | ∉ 𝐿

(mod 𝑝). Moreover, any pair of distinct vertices 𝑒 and 𝑓 satisfy |𝑒∩ 𝑓 | ∈ 𝐿 (mod 𝑝)
as the edge {𝑒, 𝑓 } is red hence |𝑒 ∩ 𝑓 | ≠ 𝑝 − 1. So Theorem 6.3 yields

𝑚 ≤
(
𝑛

0

)
+

(
𝑛

1

)
+ · · · +

(
𝑛

𝑝 − 1

)
< 2

(
𝑛

𝑝 − 1

)
,

where the last inequality follows from induction on 𝑝.
If 𝐾𝑚 is a monochromatic blue clique, then we set

𝐿 = {(𝑝 − 1), 𝑝 + (𝑝 − 1), . . . , (𝑝 − 2)𝑝 + (𝑝 − 1)}.

From the construction, any pair of distinct vertices 𝑒 and 𝑓 of𝐾𝑚 satisfy |𝑒∩ 𝑓 | = 𝑝−1
(mod 𝑝). Thus |𝑒 ∩ 𝑓 | ∈ 𝐿, and Corollary 6.2 implies 𝑚 < 2

( 𝑛
𝑝−1

)
.

Note that for 𝑝 = 2, this construction is exactly what is given by Nagy in the proof
of Corollary 6.1.

Let 𝑡 = 2
( 𝑛
𝑝−1

)
. Then

( 𝑛
𝑝2−1

)
> 𝑐𝑡 𝑝+1 for all large 𝑛, where 𝑐 = 𝑐𝑝 > 0 is a

constant depending only on 𝑝. So for any fixed 𝑝, we have
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6.2 Constructive Lower Bounds for 𝑟 (𝑡 ) 137

𝑟2 (𝑡) > 𝑐𝑡 𝑝+1.

Basing on the above construction, Frankl-Wilson (1981) obtained the following
super-polynomial lower bound for 𝑟2 (𝑡).

Theorem 6.4 Let 𝜔(𝑡) = log2 𝑡/(4 log log 𝑡). For any 𝜖 > 0 and large 𝑡,

𝑟2 (𝑡) > exp{(1 − 𝜖)𝜔(𝑡)}.

Proof. Let 𝑛 = 𝑝3 and let 𝑝 be the largest prime such that 2
( 𝑝3

𝑝−1
)
< 𝑡. From

Construction 1, there is no monochromatic 𝐾𝑡 . For any 𝜖 > 0 and large 𝑡, using the
Prime Number Theorem and elementary estimate of

( 𝑝3

𝑝−1
)

by Stirling formula, we
obtain that

(1 − 𝜖) log 𝑡
4 log log 𝑡

≤ 𝑝 ≤ (1 + 𝜖) log 𝑡
4 log log 𝑡

.

An easy calculation confirms that the number of vertices of the complete graph
satisfies (

𝑝3

𝑝2 − 1

)
≥ exp{(1 − 𝜖)𝜔(𝑡)}

as desired. □

As a complete 𝑟-uniform hypergarph on vertex set 𝑉 is 𝐾 (𝑟 )
𝑛 = (𝑉,𝑉 (𝑟 ) ), we will

write a 𝑟-uniform hypergraph H on 𝑉 as H ⊆ 𝐾
(𝑟 )
𝑛 in the sence that the edge set

of H is a subset of 𝑉 (𝑟 ) . Note that the number of edges of a 𝑟-uniform complete
hypergraph 𝐾 (2𝑝−1)

4𝑝−1 is (
4𝑝 − 1
2𝑝 − 1

)
∼ 24𝑝−1√︁

2𝜋𝑝

as 𝑝 → ∞. The following result says that forbidding a single intersecting size 𝑝 − 1
in this hypergraph, the number of edges must decrease significantly.

Corollary 6.3 (Omitted Intersection Theorem) Let 𝑝 be a prime. If hypergraph
H ⊆ 𝐾 (2𝑝−1)

4𝑝−1 satisfies that no pair of edges of H intersect in exactly 𝑝−1 elements,
then the number of edges of H is less than

2
(
4𝑝 − 1
𝑝 − 1

)
< 1.75484𝑝−1.

Proof. Set 𝐿 = {0, 1, . . . , 𝑝 − 2}. For any 𝑒𝑖 ∈ E, since |𝑒𝑖 | = 2𝑝 − 1, we obtain that
|𝑒𝑖 | ∉ 𝐿 (mod 𝑝). For 𝑒𝑖 , 𝑒 𝑗 ∈ E with 𝑒𝑖 ≠ 𝑒 𝑗 , we have |𝑒𝑖 ∩ 𝑒 𝑗 | ≠ 𝑝 − 1, which
implies that |𝑒𝑖 ∩ 𝑒 𝑗 | ∈ 𝐿 (mod 𝑝). Hence H satisfies the conditions of Theorem
6.3, it follows that

|E | ≤
𝑝−1∑︁
𝑖=0

(
4𝑝 − 1
𝑖

)
< 2

(
4𝑝 − 1
𝑝 − 1

)
< (1.7548)4𝑝−1,
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where the second inequality is an exercise. □

Using Omitted Intersection Theorem, one can construct a graph 𝐻𝑝 for a prime 𝑝
by associating its vertices with edges of 𝐾 (2𝑝−1)

4𝑝−1 , in which two vertices are adjacent
if and only if the corresponding edges of 𝐾 (2𝑝−1)

4𝑝−1 intersect in exactly 𝑝 − 1 vertices.
The order of 𝐻𝑝 is

(4𝑝−1
2𝑝−1

)
. Omitted Intersection Theorem gives an upper bound for

the independence number of 𝐻𝑝 as

𝛼(𝐻𝑝) < 2
(
4𝑝 − 1
𝑝 − 1

)
< (1.7548)4𝑝−1

since any hypergraph with more than 2
(4𝑝−1
𝑝−1

)
edges must contain two edges 𝑒 and 𝑓

such that |𝑒 ∩ 𝑓 | = 𝑝 − 1. Therefore, we obtain that

𝜒(𝐻𝑝) ≥
|𝑉 (𝐻𝑝) |
𝛼(𝐻𝑝)

=

(4𝑝−1
2𝑝−1

)
𝛼(𝐻𝑝)

> (1.1397)4𝑝−1.

We will apply this graph to disprove a conjecture in the next section.

6.3 A Conjecture of Borsuk

The essential concept in Ramsey theory is that exceptions occur in small size of the
structures. Sometimes the size can be the dimension of a linear space. This is exactly
the case we shall discuss in this section. These small size cases may have bigger
effect since they are more concrete, which is possible to lead to an error.

In 1933, Borsuk conjectured that every set in real space 𝑅𝑑 can be partitioned into
𝑑 + 1 sets of smaller diameters. Borsuk’s paper is famous as it proved an important
conjecture of Ulam and contains the Borsuk’s conjecture of himself.

The conjecture has been proved for 𝑑 = 1, 2, 3 and also for all 𝑑 if the set is
special, like centrally symmetric, having smooth surface.

Let 𝑓 (𝑑) be the minimum integer such that every set in 𝑅𝑑 can be partitioned
into 𝑓 (𝑑) sets of smaller diameter. Borsuk’s conjecture was 𝑓 (𝑑) ≤ 𝑑 + 1. An upper
bound as 𝑓 (𝑑) ≤ (

√︁
3/2 + 𝑜(1))𝑑 was obtained by Schramm (1988). This bound

looks quite weak compared with the Borsuk’s conjecture, but it suddently seemed
reasonable when Kahn and Kalai (1992) constructed a set giving that 𝑓 (𝑑) > 1.2

√
𝑑 .

It is not only dramatic but also very interesting as the set of counterexample contains
just only finite points in 𝑅𝑑 .

Theorem 6.5 If 𝑝 is a prime and 𝑑 =
(4𝑝−1

2
)
, then

𝑓 (𝑑) > (1.1397)
√

2𝑑 > (1.2)
√
𝑑 .
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6.3 A Conjecture of Borsuk 139

Proof. Let 𝑝 be a prime and 𝑑 = 𝑑 (𝑝) =
(4𝑝−1

2
)
. The Kahn-Kalai hypergraph 𝐾 (𝑑)

is defined as follows. Let 𝑉 be the vertex set of 𝐾 (2𝑝−1)
4𝑝−1 with |𝑉 | = 4𝑝 − 1. Let each

pair of distinct vertices 𝑥, 𝑦 ∈ 𝑉 associate with a vertex 𝑎𝑥𝑦 of 𝐾 (𝑑). That is to say,
the vertex set of the hypergraph 𝐾 (𝑑) is

𝑉 (𝐾 (𝑑)) = {𝑎𝑥𝑦 : 𝑥, 𝑦 ∈ 𝑉, 𝑥 ≠ 𝑦},

which can be viewed as the edge set of complete graph on 𝑉 . We admit 𝑎𝑥𝑦 = 𝑎𝑦𝑥

for 𝑥 ≠ 𝑦. The edges of 𝐾 (𝑑) are associated with the edges of 𝐾 (2𝑝−1)
4𝑝−1 in 𝑉 (2𝑝−1) as

follows. If 𝑒 ∈ 𝑉 (2𝑝−1) , then an edge 𝐴𝑒 of 𝐾 (𝑑) is defined as

𝐴𝑒 = {𝑎𝑥𝑦 : 𝑥 ∈ 𝑒, 𝑦 ∈ 𝑉 \ 𝑒}.

That is to say, 𝐴𝑒 is defined by the pairs of𝑉 “split by 𝑒”. Note that𝑉 \𝑒 is not an edge
of 𝐾 (2𝑝−1)

4𝑝−1 for any edge 𝑒, so 𝐴𝑒 = 𝐴 𝑓 if and only if 𝑒 = 𝑓 for 𝑒, 𝑓 ∈ 𝑉 (2𝑝−1) . Note
that 𝐾 (𝑑) has 𝑑 =

(4𝑝−1
2

)
vertices and

(4𝑝−1
2𝑝−1

)
edges, and it is a 2𝑝(2𝑝 − 1)-uniform

hypergraph.
Let K(𝑑) be the representation of 𝐾 (𝑑) in 𝑅𝑑 , each of which is a column vector

for a fixed edge 𝐴𝑒 in the incidence matrix. Since 𝐾 (𝑑) is 2𝑝(2𝑝 − 1)-uniform, the
distance of the points representing 𝐴𝑒1 and 𝐴𝑒2 is√︂

2
(
2𝑝(2𝑝 − 1) − |𝐴𝑒1 ∩ 𝐴𝑒2 |

)
Therefore the maximum distance, which is the diameter ofK(𝑑), is realized between
two points of K(𝑑) if and only if

|𝐴𝑒1 ∩ 𝐴𝑒2 | = min
{
|𝐴𝑒 ∩ 𝐴𝑒′ | : 𝑒, 𝑒′ ∈ 𝑉 (2𝑝−1)

}
:= 𝜇.

Claim |𝐴𝑒1 ∩ 𝐴𝑒2 | = 𝜇 if and only if |𝑒1 ∩ 𝑒2 | = 𝑝 − 1.

Proof. In fact, |𝐴𝑒1 ∩ 𝐴𝑒2 | is the number of pairs of 𝑉 split by both 𝑒1 and 𝑒2. It
depends only on |𝑒1 ∩ 𝑒2 |. Assume |𝑒1 ∩ 𝑒2 | = 𝑥 with 0 ≤ 𝑥 ≤ 2𝑝 − 2. Then

𝜇 = min
𝑥

{
𝑥(𝑥 + 1) + (2𝑝 − 1 − 𝑥)2} .

It is easy to check that this expression has minimum as 𝑥 = 𝑝 − 3/4 on real numbers
hence it does as 𝑥 = 𝑝 − 1 on integers, which proves the claim. □

Using the claim, the partition of K(𝑑) into sets of smaller diameter is equivalent
to partition the edges of 𝐾 (𝑑) into classes without intersection of size 𝑝 − 1, and the
number of the classes is clearly at least 𝜒(𝐻𝑝), where 𝐻𝑝 is the graph defined in the
last section. From the properties of 𝐻𝑝 , we have

𝑓 (𝑑) ≥ 𝜒(𝐻𝑝) > (1.1397)4𝑝−1 > (1.1397)
√

2𝑑 > (1.2)
√
𝑑 ,
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140 6 Constructive Lower Bounds

where the third inequality holds as 4𝑝 − 1 >
√︃

2
(4𝑝−1

2
)
=
√

2𝑑. This completes the
proof. □

6.4 Intersecting Hypergraphs★

This section contains more results on the size of edge set of a hypergraph with
conditions concerning the intersections of the edges. A hypergraph is called inter-
secting if any pair of edges intersect. An extremal hypergraphH = (𝑉, E) oppositive
to intersecting condition is that the edges are pairwise disjoint, which trivially has
|E | ≤ |𝑉 |. Changing the condition as that no pair of edges are comparable under in-
clusion, Sperner (1928) obtained a totally nontrivial result. We shall mention several
classical results in extremal set theory, for which the readers can find more details in
some standard textbooks, e.g., Bollobás (1986) or Lovász (1979).

A hypergraph H = (𝑉, E) is called a Sperner hypergraph if no edge of H is a
subset of another. A Sperner hypergraph is also called an antichain with respect to
the partial order of inclusion.

Theorem 6.6 (Sperner’s Theorem) If H = (𝑉, E) is a Sperner hypergraph with
|𝑉 | = 𝑛, then

|E | ≤
(
𝑛

⌊𝑛/2⌋

)
.

Proof. The assertion can be seen from the next result by the fact that the function(𝑛
𝑥

)
is maximized at 𝑥 = ⌊𝑛/2⌋. □

A stronger result is as follows, called LYM-inequality after its authors Lubell
(1966), Yamamoto (1954), and Meshalkin (1963).

Theorem 6.7 (LYM-inequlity) IfH = (𝑉, E) is a Sperner hypergraph with |𝑉 | = 𝑛,
then ∑︁

𝑒∈E

1( 𝑛
|𝑒 |

) ≤ 1.

Proof. The following proof is due to Lubell (1966), called Lubell’s Permutation
Method. In order to avoid the trivial case, we assume that no edge is empty. Suppose
that 𝑉 = {1, 2, . . . , 𝑛}. For any subset 𝑒 of 𝑉 , let us associate it with a set 𝑃(𝑒) of
permutations 𝜎 = (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) such that

𝑒 = {𝜎(1), . . . , 𝜎( |𝑒 |)},

where the set equality means the initial segment of 𝜎 is a permutation of elements
in 𝑒. Then 𝑃(𝑒) is the set of such permutations 𝜎. The number of such permutations
is

|𝑃(𝑒) | = |𝑒 |!(𝑛 − |𝑒 |)!.
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6.4 Intersecting Hypergraphs★ 141

Observe that the Sperner condition is equivalent to that the sets 𝑃(𝑒) are pairwise
disjoint for 𝑒 ∈ E. Hence we have∑︁

𝑒∈E
|𝑃(𝑒) | =

∑︁
𝑒∈E

|𝑒 |!(𝑛 − |𝑒 |)! ≤ 𝑛!,

follows by the inequality as desired. □

Second proof for Theorem 6.7. The second proof can be viewed as a probabilistic
version of the first. We still assume that no edge is empty. Choose a permutation 𝜎
of 𝑉 = {1, 2, . . . , 𝑛} randomly and uniformly, and associate it with a family A𝜎 of
subsets of 𝑉 as

A𝜎 = {{𝜎(1)}, {𝜎(1), 𝜎(2)}, . . . , {𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)}},

which contains 𝑛 segments of 𝜎 beginning from 𝜎(1). Define a random variable

𝑋 = |E ∩ A𝜎 |,

and 𝑋𝑒 as the indicator for 𝑒 ∈ A𝜎 . Then 𝑋 =
∑
𝑒∈E 𝑋𝑒 and

𝐸 (𝑋𝑒) = Pr[𝑒 ∈ A𝜎] =
1( 𝑛
|𝑒 |

)
as A𝜎 contains precisely one set of size |𝑒 |, which is distributed uniformly among
all sets of size |𝑒 |. Thus

𝐸 (𝑋) =
∑︁
𝑒∈E

1( 𝑛
|𝑒 |

) .
For each 𝜎, every pair of subsets in A𝜎 are comparable under the inclusion. The
Sperner condition ensures that 𝑋 = |E ∩ A𝜎 | ≤ 1, following by 𝐸 (𝑋) ≤ 1 as
desired. □

The second classical result we shall mention concerns 𝑡-uniform hypergraphs
without disjoint pairs of edges. An easy way to obtain such an edge set is to fix a
vertex and take all edges containing it. However, Erdős, Ko, and Rado (1961) proved
that we cannot do it better for 𝑡 ≤ 𝑛/2.

Theorem 6.8 (EKR Theorem) If H = (𝑉, E) is an 𝑡-uniform hypergraph with
|𝑉 | = 𝑛 and 𝑡 ≤ 𝑛/2, in which any pair of edges intersect, then

|E | ≤
(
𝑛 − 1
𝑡 − 1

)
.

Proof. The proof is due to Katona (1972), called Katona’s Cyclic Permutation
Method. Set

𝑉 = {0, 1, . . . , 𝑛 − 1}.

Let 𝜎 be a fixed permutation of 𝑉 and for 0 ≤ 𝑖 ≤ 𝑛 − 1, set 𝐴(𝑖) = {𝜎(𝑖), 𝜎(𝑖 +
1), . . . , 𝜎(𝑖 + 𝑡 − 1)}, where addition is modulo 𝑛.
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142 6 Constructive Lower Bounds

Claim E contains at most 𝑡 such sets 𝐴(𝑖) where 0 ≤ 𝑖 ≤ 𝑛 − 1.

Proof. Suppose 𝐴(ℓ) ∈ E. There are precisely 2𝑡 − 2 of 𝐴(𝑖) other than 𝐴(ℓ) that
intersect 𝐴(ℓ), i.e.,

𝐴(ℓ − 𝑡 + 1), . . . , 𝐴(ℓ), . . . , 𝐴(ℓ + 𝑡 − 1).

Clearly, these sets can be arranged into 𝑡 − 1 pairs of nonintersecting sets, and E can
contain at most one member of each of these pairs, proving the claim. □

Put all vertices in a cycle. Image that every vertex being a guest is seated around a
big round table with 𝑛 seats. In each particular seating arrangement there are exactly
𝑛 contiguous intervals of length 𝑡. Let us associate each such interval with a 𝑡-set of
𝑉 , which consists of the vertices in this interval.

It is clear by symmetry that each 𝑡-set is associated with the same number of
contiguous intervals, i.e., in the same number of seating arrangements. On the other
hand, at each seating arrangement, at most a 𝑡/𝑛 fraction of the intervals can be
formed to associate the edges of E by the claim. Hence the number of edges of E is
at most a 𝑡/𝑛 fraction of the total 𝑡-sets of 𝑉 , and so

|E | ≤ 𝑡

𝑛

(
𝑛

𝑡

)
=

(
𝑛 − 1
𝑡 − 1

)
,

proving the assertion. □

Second proof for Theorem 6.8. The above proof has a probabilistic version. Choose
a permutation 𝜎 of 𝑉 and 𝑖 ∈ 𝑉 randomly, uniformly and independently. Define a
random set

𝐴 = 𝐴(𝜎, 𝑖) = {𝜎(𝑖), 𝜎(𝑖 + 1), . . . , 𝜎(𝑖 + 𝑡 − 1)},

where addition is modulo 𝑛. The above claim can be employed to bound the condi-
tional probability as Pr(𝐴 ∈ E|𝜎) ≤ 𝑡/𝑛, hence

Pr(𝐴 ∈ E) =
∑︁
𝜎

Pr(𝐴 ∈ E|𝜎) ≤ 𝑡

𝑛
.

However, 𝐴 is uniformly chosen from all subsets of size 𝑡, so

|E |(𝑛
𝑡

) = Pr(𝐴 ∈ E) ≤ 𝑡

𝑛
,

which follows by

|E | ≤ 𝑡

𝑛

(
𝑛

𝑡

)
=

(
𝑛 − 1
𝑡 − 1

)
as desired. □

A hypergarph H = (𝑉, E) is called a sunflower with 𝑚 petals if |E | = 𝑚 and

𝑒1 ∩ 𝑒2 = ∩𝑒∈E𝑒
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6.4 Intersecting Hypergraphs★ 143

for any pair of distinct edges 𝑒1 and 𝑒2 in E. The common intersection is called the
kernel. Note that a hypergraph with pairwise disjoint edges (with empty kernel) is a
sunflower.

The third result we shall mention in this section asserts that if an 𝑡-uniform
hypergraph has many edges, it must contain a sunflower with specified size, regardless
of size of 𝑉 . The following result is due to Erdős and Rado (1960).

Theorem 6.9 (Sunflower Theorem) Let H = (𝑉, E) be a 𝑡-uniform hypergraph. If
|E | > 𝑡!(𝑠 − 1)𝑡 , then H contains a sunflower with 𝑠 petals.

Proof. Induction on 𝑡. For 𝑡 = 1, the hypergraph has more than 𝑠 − 1 edges, which
are at least 𝑠 vertices (1-unform edges). Thus we have a sunflower with 𝑠 petals and
empty kernel.

We then assume that 𝑡 ≥ 2 and the assertion is true for 𝑡−1. Let T = {𝑒1, . . . , 𝑒𝑚}
be a maximal family of pairwise disjoint edges of H .

Case 1 𝑚 ≥ 𝑠.

These 𝑚 edges form a sunflower with 𝑚 ≥ 𝑠 edges and empty kernel, and we are
done.

Case 2 𝑚 < 𝑠.

Let 𝐴 = ∪𝑚
𝑖=1𝑒𝑖 . Then |𝐴| = 𝑡𝑚 ≤ 𝑡 (𝑠 − 1). By the maximality of the family T ,

every edge of H intersects some member in T , hence it intersects 𝐴. So there is a
vertex 𝑥 ∈ 𝐴, which is contained in at least

|E |
|𝐴| >

𝑡!(𝑠 − 1)𝑡
𝑡 (𝑠 − 1) = (𝑡 − 1)!(𝑠 − 1)𝑡−1

edges ofH . Let us delete 𝑥 from these edges and consider the hypergraph with vertex
set 𝑉 and edges sets

{𝑒 \ {𝑥} : 𝑒 ∈ E, 𝑥 ∈ 𝑒}.

This is a (𝑡 − 1)-uniform hypergraph. By the induction hypothesis, this hypergraph
contains a sunflower with 𝑠 petals, say {𝑒1 \ {𝑥}, . . . , 𝑒𝑠 \ {𝑥}}. Thus we obtain a
sunflower in H with 𝑠 petals {𝑒1, . . . , 𝑒𝑠}, proving the assertion. □

The conditions in the following theorem are concerning the intersections between
two uniform hypergraphs, which have the same vertex set and same number of edges.
We call these hypergraphs to be cross intersecting.

Theorem 6.10 (Bollobás, 1965) If hypergraph (𝑉, E) is 𝑠-uniform with E =

{𝑒1, 𝑒2, . . . , 𝑒𝑚}, and (𝑉, F ) is 𝑡-uniform with F = { 𝑓1, 𝑓2, . . . , 𝑓𝑚}, which sat-
isfy

(i) 𝑒𝑖 ∩ 𝑓𝑖 = ∅ for 𝑖 = 1, · · · , 𝑚;
(ii) 𝑒𝑖 ∩ 𝑓 𝑗 ≠ ∅ for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚,

then
𝑚 ≤

(
𝑠 + 𝑡
𝑠

)
.
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144 6 Constructive Lower Bounds

Proof. This is a corollary of the next theorem. □

The proof of the next result is due to Lovász (1977), in which two hypergraphs
are called skew cross intersecting.
Theorem 6.11 If hypergraph (𝑉, E) is 𝑠-uniform with E = {𝑒1, 𝑒2, . . . , 𝑒𝑚}, and
(𝑉, F ) is 𝑡-uniform with F = { 𝑓1, 𝑓2, . . . , 𝑓𝑚}, which satisfy

(i) 𝑒𝑖 ∩ 𝑓𝑖 = ∅ for 𝑖 = 1, . . . , 𝑚;
(ii) 𝑒𝑖 ∩ 𝑓 𝑗 ≠ ∅ for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,

then
𝑚 ≤

(
𝑠 + 𝑡
𝑠

)
.

Proof. We need a well known fact from linear algebra as follows. Let 𝑆1, 𝑆2, . . . , 𝑆ℓ
be 𝑠-dimensional linear subspaces of 𝑅𝑠+1. Then

∪ℓ𝑖=1𝑆𝑖 ≠ 𝑅
𝑠+1.

Associate each vertex 𝑣 ∈ 𝑉 with a vector in 𝑌 (𝑣) ∈ 𝑅𝑠+1 as

𝑌 (𝑣) = (𝑦1 (𝑣), 𝑦2 (𝑣), . . . , 𝑦𝑠+1 (𝑣)) ∈ 𝑅𝑠+1

so that the set of obtained vectors will be in general position, namely, any 𝑠 + 1 of
them will be linearly independent. This can be done as follows. The first 𝑠 + 1 can
be placed easily. Suppose that we have placed 𝑛 ≥ 𝑠 + 1 vertices. Then any 𝑠 of
them must span a linear subspace of dimension 𝑠. Denote by 𝑆1, 𝑆2, . . . , 𝑆ℓ for these
subspaces, where ℓ =

(𝑛
𝑠

)
. From the mentioned fact, we have 𝑧 ∈ 𝑅𝑠+1 \ ∪ℓ

𝑖=1𝑆𝑖 . It
is easy to see that any 𝑠 vectors, which are associated to 𝑠 vertices that have placed,
and 𝑧 are independent. Then a new vertex in 𝑉 is associated with the vector 𝑧 and
any 𝑠 + 1 of these 𝑛 + 1 vectors are independent.

Define polynomials 𝑔1, 𝑔2, . . . , 𝑔𝑚 in 𝑠 + 1 variables 𝑥1, 𝑥2, . . . , 𝑥𝑠+1 as

𝑔𝑖 (𝑋) = Π𝑣∈ 𝑓𝑖 (𝑋 · 𝑌 (𝑣))
= Π𝑣∈ 𝑓𝑖 (𝑥1𝑦1 (𝑣) + 𝑥2𝑦2 (𝑣) + · · · + 𝑥𝑠+1𝑦𝑠+1 (𝑣)),

where 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑠+1). Then 𝑔𝑖 (𝑋) is a real homogeneous polynomial of
degree 𝑡, and 𝑔𝑖 (𝑋) = 0 if and only if there is some 𝑣 ∈ 𝑓𝑖 such that 𝑌 (𝑣) ⊥ 𝑋 .

The set of vectors {𝑌 (𝑣) : 𝑣 ∈ 𝑒 𝑗 } generates a subspace of dimension 𝑠 since
|𝑒 𝑗 | = 𝑠 and the vectors are in general position. Let 𝐴 𝑗 be the subspace and let 𝑎 𝑗 be
a nonzero vector with 𝑎 𝑗 ⊥ 𝐴 𝑗 . From the fact that the vectors𝑌 (𝑣) are in the general
position, we know that 𝐴 𝑗 does not contain any𝑌 (𝑣) with 𝑣 ∉ 𝑒 𝑗 , namely𝑌 (𝑣) ∈ 𝐴 𝑗
if and only if 𝑣 ∈ 𝑒 𝑗 . This means

𝑔𝑖 (𝑎 𝑗 )
{
≠ 0 if 𝑖 = 𝑗 ,

= 0 if 𝑖 < 𝑗 .

For example, 𝑔1 (𝑎1) ≠ 0 since otherwise there is some 𝑣 ∈ 𝑓1 such that 𝑎1 ⊥ 𝑌 (𝑣).
From an expression of 𝑌 (𝑣) = 𝜆𝑎1 + 𝑎 for some 𝜆 ∈ 𝑅 and 𝑎 ∈ 𝐴1 since 𝑎1 ⊥ 𝐴1
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implying that 𝑎1 and 𝐴1 spanning 𝑅𝑠+1, we get 𝜆 = 0 since 𝑎1 ⊥ 𝑎. It follows that
𝑌 (𝑣) = 𝑎 ∈ 𝐴1, implying 𝑣 ∈ 𝑒1, which contradicts to the condition 𝑒1 ∩ 𝑓1 = ∅.
It is clear 𝑔1 (𝑎𝑖) = 0 for 𝑖 ≥ 2 as 𝑎𝑖 is orthogonal to the vectors associated to the
elements in 𝑓1 ∩ 𝑒𝑖 .

From the Triangular Criterion we know that 𝑔1, 𝑔2, . . . , 𝑔𝑚 are linearly indepen-
dent. Therefore 𝑚 is at most the dimension of the space of homogenous polynomials
of degree 𝑡 in 𝑠 + 1 variables, so

𝑚 ≤
(
𝑠 + 1 + 𝑡 − 1

𝑡

)
=

(
𝑠 + 𝑡
𝑡

)
=

(
𝑠 + 𝑡
𝑠

)
,

completing the proof. □

It is noteworthy that Erdős and Rado originally called sunflowers Δ-systems, but
the term “sunflower” was coined by Deza and Frankl (1981) and is now more widely
used. Erdős and Rado (1960) also conjectured that the bound in Theorem 6.9 can be
drastically improved.

Conjecture 6.1 Let 𝑠 ≥ 3. There exists a constant 𝑐 = 𝑐(𝑠) such that any 𝑡-uniform
hypergraph H of size at least 𝑐𝑡 contains a sunflower with 𝑠 petals.

Kostochka (1997) proved that there is a constant 𝑐 > 0 such that any 𝑡-uniform
hypergraph of size at least 𝑐𝑡! · (log log log 𝑡/log log 𝑡)𝑡 must contain a sunflower
with 3 petals. Fukuyama (2018+) claimed an improved bound of 𝑡 (3/4+𝑜 (1) )𝑡 for
𝑠 = 3. Recently, Alweiss, Lovett, Wu and Zhang (2021+) show that for any 𝑠 ≥ 3,
any 𝑡-uniform hypergraph of size at least (log 𝑡) (1+𝑜 (1) )𝑡 must contain a sunflower
with 𝑠 petals. This makes a big step towards the conjecture.

6.5 Lower Bounds of 𝒓𝒌 (𝒕) for 𝒌 ≥ 3

We know that Erdős (1947) obtained the following lower bound by using probabilistic
method.

𝑟 (𝑡) > 2𝑡/2.

The best lower bound by Spencer (1975) is 𝑟 (𝑡) > (1 − 𝑜(1))
√

2
𝑒

√
2
𝑡
, see Theorem

5.3. Similarly, we have that 𝑟3 (𝑡) > 3𝑡/2. Generally, Lefmann (1987) observed that

𝑟𝑘1+𝑘2 (𝑡) − 1 ≥ (𝑟𝑘1 (𝑡) − 1) (𝑟𝑘2 (𝑡) − 1). (6.2)

Indeed, we can blow up a 𝑘1-edge-coloring of 𝐾𝑟𝑘1 (𝑡 )−1 with no monochromatic 𝐾𝑡
so that each vertex set has order 𝑟𝑘2 (𝑡) − 1 and then color each of these copies of
𝑟𝑘2 (𝑡) −1 separately with the other 𝑘2 colors so that there is again no monochromatic
𝐾𝑡 . By using the bounds 𝑟 (𝑡) − 1 ≥ 2𝑡/2 and 𝑟3 (𝑡) − 1 ≥ 3𝑡/2, we can repeatedly
apply this observation to conclude that

𝑟3𝑘 (𝑡) > 3𝑘𝑡/2, 𝑟3𝑘+1 (𝑡) > 2𝑘3(𝑘−1)𝑡/2, and 𝑟3𝑘+2 (𝑡) > 2𝑡/23𝑘𝑡/2.
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146 6 Constructive Lower Bounds

Recently, Conlon and Ferber (2021) improves the above general lower bounds
𝑟𝑘 (𝑡) for each fixed 𝑘 ≥ 3 via a construction which is partly deterministic and partly
random, in which the improvements are exponential in large 𝑡. The deterministic
part shares some characteristics with a construction of Alon and Krivelevich (1997),
in which the authors consider a graph whose vertices are vectors over a finite field
where adjacency is determined by the value of their scalar product, while randomness
comes in through both random coloring and random sampling.

Theorem 6.12 For any prime 𝑞, 𝑟𝑞+1 (𝑡) > 2𝑡/2𝑞3𝑡/8+𝑜 (𝑡 ) .

Proof. Let 𝑞 be a prime. Suppose 𝑡 ≠ 0 (mod 𝑞) and let 𝑉 ⊆ 𝐹𝑡𝑞 be the set
consisting of all (row) vectors 𝑣 ∈ 𝐹𝑡𝑞 for which

∑𝑡
𝑖=1 𝑣

2
𝑖
= 0 (mod 𝑞), noting that

𝑞𝑡−2 ≤ |𝑉 | ≤ 𝑞𝑡 . Here the lower bound follows from observing that we may pick
𝑣1, . . . , 𝑣𝑡−2 arbitrarily and, since every element in 𝐹𝑞 can be written as the sum
of two squares, there must then exist at least one choice of 𝑣𝑡−1 and 𝑣𝑡 such that
𝑣2
𝑡−1 + 𝑣

2
𝑡 = −∑𝑡

𝑖=1 𝑣
2
𝑖
.

We will first color all the pairs
(𝑉

2
)

and then define a coloring of 𝐸 (𝐾𝑛) by
restricting our attention to a random sample of 𝑛 vertices in 𝑉 . Formally:

Coloring all pairs in
(𝑉

2
)
. For every pair 𝑢𝑣 ∈

(𝑉
2
)
, we define its color 𝜒(𝑢𝑣)

according to the following rules:

(1) If 𝑢 · 𝑣 = 𝑖 (mod 𝑞) and 𝑖 ≠ 0, then set 𝜒(𝑢𝑣) = 𝑖.
(2) If 𝑢 · 𝑣 = 0 (mod 𝑞), choose 𝜒(𝑢𝑣) ∈ {𝑞, 𝑞 + 1} uniformly at random,

independently of all other pairs.

Mapping [𝑛] into 𝑉 . Take a random injective map 𝑓 : [𝑛] → 𝑉 and define the
color of every edge 𝑖 𝑗 as 𝜒( 𝑓 (𝑖) 𝑓 ( 𝑗)).

Our goal is to upper bound the orders of the cliques in each color class.

Colors 1 ≤ 𝑖 ≤ 𝑞 − 1. There are no 𝑖-monochromatic cliques of order larger than
𝑡 for any 1 ≤ 𝑖 ≤ 𝑞 − 1. Indeed, suppose that 𝑣1, . . . , 𝑣𝑠 form an 𝑖-monochromatic
clique. We will try to show that they are linearly independent and, therefore, that
there are at most 𝑡 of them. To this end, suppose that

𝑢 :=
𝑠∑︁
𝑗=1
𝛼 𝑗𝑣 𝑗 = 0

and we wish to show that 𝛼 𝑗 = 0 (mod 𝑞) for all 𝑗 .
Let 𝛽 = (𝑣1, . . . , 𝑣𝑠)𝑇 . Observe that since 𝑣 𝑗 · 𝑣 𝑗 = 0 (mod 𝑞) for all 𝑗 (our

ground set 𝑉 consists only of such vectors) and 𝑣𝑘 · 𝑣 𝑗 = 𝑖 (mod 𝑞) for each 𝑘 ≠ 𝑗 ,
by considering all the products 𝑢 · 𝑣 𝑗 , we obtain that 𝑖𝐽 − 𝑖𝐼 = 𝛽𝛽𝑇 , where 𝐽 is the
𝑠× 𝑠 all 1 matrix and 𝐼 is the 𝑠× 𝑠 identity matrix. Thus the vector 𝛼 = (𝛼1, . . . , 𝛼𝑠)𝑇
is a solution to

𝑀𝛼 = 0

with 𝑀 = 𝑖𝐽 − 𝑖𝐼 since 𝛽𝑇𝛼 = 0. In particular, we obtain that the eigenvalues of 𝑀
(over 𝑍) are 𝑖(𝑠 − 1) with multiplicity 1 and −𝑖 with multiplicity 𝑠 − 1. Therefore,
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if 𝑠 ≠ 1 (mod 𝑞), the matrix is also non-singular over 𝑍𝑞 , implying that 𝛼 = 0, as
required. On the other hand, if 𝑠 = 1 (mod 𝑞), we can apply the same argument
with 𝑣1, . . . , 𝑣𝑠−1 to conclude that 𝑠 − 1 ≤ 𝑡. But, we cannot have 𝑠 − 1 = 𝑡, since
this would imply that 𝑡 = 0 (mod 𝑞), contradicting our assumption. Therefore, we
may also conclude that 𝑠 ≤ 𝑡 in this case.

Colors 𝑞 and 𝑞 + 1. We call a subset 𝑋 ⊆ 𝑉 a potential clique if |𝑋 | = 𝑡 and
𝑢 · 𝑣 = 0 (mod 𝑞) for all 𝑢, 𝑣 ∈ 𝑋 . Given a potential clique 𝑋 , we let 𝑀𝑋 be the 𝑡 × 𝑡
matrix whose rows consist of all the vectors in 𝑋 . Observe that 𝑀𝑋 ·𝑀𝑇

𝑋
= 0, where

we use the fact that each vector is self-orthogonal. First we wish to count the number
of potential cliques and later we will calculate the expected number of cliques that
survive after we color randomly and restrict to a random subset of order 𝑛.

Suppose that 𝑋 is a potential clique and let 𝑟 := rank(𝑋) be the rank of the vectors
in this clique. Since rank(𝑀𝑇

𝑋
) ≤ 𝑡 − rank(𝑀𝑋) by noting the vectors in 𝑀𝑇

𝑋
satisfy

𝑀𝑋 · 𝑥 = 0, it follows that 𝑟 ≤ 𝑡/2. By assuming that the first 𝑟 elements are linearly
independent, the number of ways to build a potential clique 𝑋 of rank 𝑟 is upper
bounded by (

𝑟−1∏
𝑖=0

𝑞𝑡−𝑖

)
· 𝑞 (𝑡−𝑟 )𝑟 = 𝑞𝑡𝑟−(

𝑟
2)+𝑡𝑟−𝑟2

= 𝑞2𝑡𝑟− 3𝑟2
2 + 𝑟2 .

Indeed, suppose that we have already chosen the vectors 𝑣1, . . . , 𝑣𝑠 ∈ 𝑋 for some
𝑠 < 𝑟. Then, letting 𝑀𝑠 be the 𝑠 × 𝑡 matrix with the 𝑣𝑖 as its rows, we need to choose
𝑣𝑠+1 such that 𝑀𝑠 ·𝑣𝑠+1 = 0. Since the rank of 𝑀𝑠 is assumed to be 𝑠, there are exactly
𝑞𝑡−𝑠 choices for 𝑣𝑠+1 in 𝐹𝑡𝑞 and, therefore, at most that many choices for 𝑣𝑠+1 ∈ 𝑉 .
If, instead, 𝑠 ≥ 𝑟 , then we need to choose a vector 𝑣𝑠+1 ∈ span{𝑣1, . . . , 𝑣𝑟 } and there
are at most 𝑞𝑟 such choices in 𝑉 .

Now observe that the function 2𝑡𝑟 − 3𝑟2

2 + 𝑟
2 appearing in the exponent of the

expression above is increasing up to 𝑟 = 2𝑡
3 + 1

6 , so the maximum occurs at 𝑡/2
since 𝑟 ≤ 𝑡/2. Therefore, by plugging this into our estimate and summing over all
possible ranks, we see that the number 𝑁𝑡 of potential cliques in𝑉 is upper bounded
by 𝑞5𝑡2/8+𝑜 (𝑡2 ) .

The probability that a potential clique becomes monochromatic after the random
coloring is 21−(𝑡2) . Denote by

𝑛 = 2𝑡/2𝑞3𝑡/8+𝑜 (𝑡 ) .

Suppose now that 𝑝 is such that 𝑝 |𝑉 | = 2𝑛 and observe that 𝑝 = 𝑛𝑞−𝑡+𝑂 (1) . If we
choose a random subset of 𝑉 by picking each 𝑣 ∈ 𝑉 independently with probability
𝑝, the expected number of monochromatic potential cliques in this subset is

𝑝𝑡21−(𝑡2)𝑁𝑡 ≤ 𝑞−𝑡
2+𝑜 (𝑡2 )𝑛𝑡2− 𝑡22 +𝑜 (𝑡2 )𝑞

5𝑡2
8 +𝑜 (𝑡2 ) =

(
2− 𝑡2 𝑞−

3𝑡
8 +𝑜 (𝑡 )𝑛

) 𝑡
<

1
2
.

Since our random subset will also contain more than 𝑛 elements with probability
at least 1/2 from Chernoff bound, there exists a choice of coloring and a choice of
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148 6 Constructive Lower Bounds

subset of order 𝑛 such that there is no monochromatic potential clique in this subset.
This completes the proof. □

Theorem 6.12 implies that

𝑟3 (𝑡) > 27𝑡/8+𝑜 (𝑡 ) and 𝑟4 (𝑡) > 2𝑡/233𝑡/8+𝑜 (𝑡 ) .

Consequently, we can apply (6.2) to obtain that for each 𝑘 ≥ 2,

𝑟𝑘 (𝑡) >
(
2

7𝑘
24 +𝑐

) 𝑡−𝑜 (𝑡 )
,

where 𝑐 > 0 is a constant. Modifying the construction of that by Conlon and Ferber
(2021), Wigderson (2021) further improved the lower bounds 𝑟𝑘 (𝑡) for each fixed
𝑘 ≥ 3 as follows.

Theorem 6.13 For each 𝑘 ≥ 2, 𝑟𝑘 (𝑡) > (2 3𝑘
8 − 1

4 )𝑡−𝑜 (𝑡 ) .

6.6 Exercises

1. Let H = (𝑉, E) be a simple hypergraph of order 𝑛 such that |𝑒∩ 𝑓 | ≤ 𝑡 for any
pair of distinct edges 𝑒 and 𝑓 . Prove that

∑
𝑒 |𝑒 | ≤ 𝑛 + 𝑡

(𝑚
2
)
, where 𝑚 is the number

of edges.

2. Let 𝑋 =
∑
𝑖=1𝑚 𝐴𝑖 be a partition of a finite set 𝑋 into 𝑚 subsets, and let

𝑎 = |𝑋 |/𝑚. Prove that for every 1 ≤ 𝑏 ≤ 𝑎, at least (1 − 𝑏/𝑎) |𝑋 | elements of 𝑋
belong to subsets of size at least 𝑎/𝑏. How many elements of 𝑋 belong to subsets of
size at most 𝑎𝑏? (Hint: 𝑚(𝑎/𝑏) ≤ |𝑋 |/𝑏.)

3. Prove the dual of Fisher Inequality as follows. Assume that H = (𝑉, E) is a
simple hypergraph such that each pair of vertices is contained in exactly 𝜆 edges,
then |E | ≥ |𝑉 |.

4. Generalize Odd-town Theorem for “mod 𝑝 town” or even “mod 𝑝𝑘 town”.

5. Prove that the dimension of homogeneous polynomials of degree 𝑘 in 𝑛 vari-
ables is

(𝑛+𝑘−1
𝑘

)
.

6. Prove the inequality
∑𝑝−1
𝑖=0

(4𝑝−1
𝑖

)
≤ 2

(4𝑝−1
𝑝−1

)
.

7.∗ Let 𝑛 ≤ 2𝑟 and let 𝐴1, . . . , 𝐴𝑚 be a family of 𝑟-element subsets of [𝑛] such
that 𝐴𝑖 ∪ 𝐴 𝑗 ≠ [𝑛] for all 𝑖, 𝑗 . Show that 𝑚 ≤ (1 − 𝑟/𝑛)

(𝑛
𝑘

)
. (Hint: Apply EKR to

𝐴𝑖 .)
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Chapter 7
Turán Number and Related Ramsey Number

Paul Turán (August 18, 1910–September 26, 1976) was a Hungarian mathematician
who worked primarily in number theory. As his long collaborator, Paul Erdős wrote
of Turán, “In 1940–1941 he created the area of extremal problems in graph theory
which is now one of the fastest-growing subjects in combinatorics.” The field is
known more briefly today as extremal graph theory. Turán’s best-known result in
this area is known as Turán’s theorem, which gives an upper bound on the number
of edges in a 𝐾𝑘-free graph. He is also known for the Kövári-Sós-Turán theorem
upper bounding the number of edges of bipartite graphs containing no 𝐾𝑡 ,𝑠 as a
subgraph. For any graph 𝐺 with chromatic number 𝜒(𝐺) ≥ 3, the asymptotic
formula of Turán number of 𝐺 is known from the well-known Erdős-Stone theorem
(1946) which is a fundamental theorem in extremal graph theory, see also Erdős and
Siminovits (1966), and Siminovits (1968). However, the Turán numbers for most
complete bipartite graphs and even cycles are not very well understood. For a survey,
we would like to refer the reader to Füredi and Simonovits (2013). In this chapter,
we will see that for a bipartite graph 𝐵, the Turán number of 𝐵 is tightly related to
the Ramsey numbers involving 𝐵.

7.1 Turán Numbers for Non-Bipartite Graphs

Given a graph 𝐻, the Turán number 𝑒𝑥(𝑛, 𝐻) is the maximum number of edges of a
graph 𝐺 on 𝑛 vertices that does not contain 𝐻 as a subgraph.

Suppose 𝜒(𝐻) = 𝑘 ≥ 3 and let 𝑛 =
∑𝑘−1
𝑖=1 𝑛𝑖 such that |𝑛𝑖 − 𝑛 𝑗 | ≤ 1 for

1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Thus 𝑛𝑖 is either ⌊ 𝑛
𝑘−1 ⌋ or ⌈ 𝑛

𝑘−1 ⌉. Let 𝐾𝑛1 ,...,𝑛𝑘−1 be the balanced
complete (𝑘 − 1)-partite graph with the 𝑖th part of size 𝑛𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1. We call
such graph 𝐾𝑛1 ,...,𝑛𝑘−1 the Turán graph, denoted by 𝑇𝑘−1 (𝑛). Let 𝑡𝑘−1 (𝑛) be the edge
number of the Turán graph 𝑇𝑘−1 (𝑛).

Assume that 𝑛1 = ⌊ 𝑛
𝑘−1 ⌋ and 𝑛 = 𝑛1 (𝑘 − 1) + 𝑟, where 0 ≤ 𝑟 < 𝑘 − 1. Hence, in

the Turán graph 𝑇𝑘−1 (𝑛), there are 𝑟 parts of size 𝑛1 + 1 and 𝑘 − 1 − 𝑟 parts of size
𝑛1. Now we can verify that
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150 7 Turán Number and Related Ramsey Number

𝑡𝑘−1 (𝑛) =
(
𝑛

2

)
−
𝑘−1∑︁
𝑖=1

(
𝑛𝑖

2

)
=

(𝑘 − 2)𝑛2

2(𝑘 − 1) − 𝑟 (𝑘 − 1 − 𝑟)
2(𝑘 − 1) .

So we have that for 𝑛 ≥ 𝑘 ,

𝑘 − 2
𝑘 − 1

(
𝑛

2

)
≤ 𝑡𝑘−1 (𝑛) ≤

(𝑘 − 2)𝑛2

2(𝑘 − 1) .

Clearly,
𝑒𝑥(𝑛, 𝐻) ≥ 𝑡𝑘−1 (𝑛)

since the Turán graph does not contain 𝐻 by noting 𝜒(𝐻) = 𝑘 .

We begin with a slightly less precise theorem with a proof extended from Mantel’s
ingenious argument for 𝑘 = 3 in 1907.

Theorem 7.1 Let 𝑛 and 𝑘 be positive integers with 𝑘 ≥ 2. Then

𝑡𝑘−1 (𝑛) ≤ 𝑒𝑥(𝑛;𝐾𝑘) ≤
(𝑘 − 2)𝑛2

2(𝑘 − 1) .

Furthermore both inequalities become equalities if 𝑛 is a multiple of 𝑘 − 1.

Proof. The first inequality follows from the fact that the Turán graph does not contains
𝐾𝑘 , and the second is equivalent to show that if a graph𝐺 of order 𝑛 contains no 𝐾𝑘 ,
then 𝑒(𝐺) ≤ (𝑘−2)𝑛2

2(𝑘−1) . Assign to each vertex 𝑣 ∈ 𝑉 (𝐺) a weight 𝑤(𝑣) ≥ 0 so that∑
𝑣∈𝑉 (𝐺) 𝑤(𝑣) = 1. Let

𝑆(𝑤) =
∑︁

𝑢𝑣∈𝐸 (𝐺)
𝑤(𝑢)𝑤(𝑣),

where the sum is taken over unordered pairs of end vertices of all edges.
Suppose that 𝑤 has been chosen so as to maximize 𝑆 as 𝑆max. Then for 𝑢𝑣 ∉ 𝐸 (𝐺)

we may claim that we can make choice such that either 𝑤(𝑢) = 0 or 𝑤(𝑣) = 0. To
see this, we suppose that ∑︁

𝑥∈𝑁 (𝑢)
𝑤(𝑥) ≥

∑︁
𝑦∈𝑁 (𝑣)

𝑤(𝑦). (7.1)

Then
𝑆(𝑤) = 𝑤(𝑢)

∑︁
𝑥∈𝑁 (𝑢)

𝑤(𝑥) + 𝑤(𝑣)
∑︁

𝑦∈𝑁 (𝑣)
𝑤(𝑦) + 𝑆1,

where 𝑆1 is independent of 𝑤(𝑢) and 𝑤(𝑣). If (7.1) is not an equality, we could
increase 𝑤(𝑢) by some amount, and decrease 𝑤(𝑣) by the same amount, and 𝑆 would
increase, this is impossible. If (7.1) is an equality, we increase 𝑤(𝑢) to 𝑤(𝑢) +𝑤(𝑣),
and decrease𝑤(𝑣) to zero. This claim means that the vertices 𝑥 with𝑤(𝑥) > 0 belong
to some clique of 𝐺. Label all these positive weights as 𝑤1, 𝑤2, . . . , 𝑤𝑡 , where 𝑡 is
the order of the clique. Then
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7.1 Turán Numbers for Non-Bipartite Graphs 151

𝑆(𝑤) =
∑︁
𝑖< 𝑗

𝑤𝑖𝑤 𝑗 =
1
2


(
𝑡∑︁
𝑖=1

𝑤𝑖

)2

−
𝑡∑︁
𝑖=1

𝑤2
𝑖

 =
1
2

(
1 −

𝑡∑︁
𝑖=1

𝑤2
𝑖

)
with

∑𝑡
𝑖=1 𝑤𝑖 = 1. From Cauchy-Schwarz inequality,

1 =

𝑡∑︁
𝑖=1

𝑤𝑖 · 1 ≤

√√√ 𝑡∑︁
𝑖=1

𝑤2
𝑖

𝑡∑︁
𝑖=1

1 =

√√√
𝑡

𝑡∑︁
𝑖=1

𝑤2
𝑖
,

we get the minimum value of
∑𝑡
𝑖=1 𝑤

2
𝑖

to be 1/𝑡 when all 𝑤𝑖’s are equal, and so

𝑆max =
𝑡 − 1
2𝑡

.

On the other hand, by assigning𝑤(𝑥) = 1/𝑛 to each vertex 𝑥 of𝐺 we get 𝑆 = 𝑒(𝐺)/𝑛2,
it follows that

𝑒(𝐺)
𝑛2 ≤ 𝑡 − 1

2𝑡
≤ 𝑘 − 2

2(𝑘 − 1)
since 𝑡 ≤ 𝑘 − 1. The desired upper bound follows.

If 𝑛 is a multiple of 𝑘 − 1, then 𝑡𝑘−1 (𝑛) = (𝑘 − 2)𝑛2/(2(𝑘 − 1)) hence both
inequalities in the theorem become equalities. □

The following is the well known Turán’s Theorem, which generalizes Mantel’s
ingenious argument for 𝑘 = 3 in 1907. When 𝑛 is not a multiple of 𝑘 − 1, the first
inequality in Theorem 7.1 becomes an equality, but the second is not.

Theorem 7.2 Let 𝑘 and 𝑛 be integers with 𝑘 ≥ 2. If 𝑛 = 𝑠(𝑘 − 1) + 𝑟 , where
0 ≤ 𝑟 < 𝑘 − 1, then

𝑒𝑥(𝑛, 𝐾𝑘) = 𝑡𝑘−1 (𝑛) =
(𝑘 − 2)𝑛2

2(𝑘 − 1) − 𝑟 (𝑘 − 1 − 𝑟)
2(𝑘 − 1) .

Furthermore, if a graph with 𝑛 vertices and 𝑒𝑥(𝑛, 𝐾𝑘) edges that contains no 𝐾𝑘 ,
then it is the Turán graph.

Proof. We may assume that 𝑘 ≥ 3 since it is trivial for 𝑘 = 2. We shall use induction
on 𝑠 = ⌊𝑛/(𝑘 − 1)⌋. The case 𝑠 = 0 corresponds to 𝑛 = 𝑟 < 𝑘 − 1, and in this case
it is obvious since 𝑒𝑥(𝑛, 𝐾𝑘) =

(𝑛
2
)
. The equality holds if and only if the graph is

𝐾𝑛. Now we assume that 𝑠 ≥ 1 and 𝐺 is a graph with 𝑛 = 𝑠(𝑘 − 1) + 𝑟 vertices that
contains no 𝐾𝑘 . It suffices to prove 𝑒(𝐺) ≤ 𝑡𝑘−1 (𝑛).

We may assume that 𝐺 has the maximum possible number of edges subject to
this condition. Thus 𝐺 must contain 𝐾𝑘−1 as a subgraph, otherwise we could add an
edge to 𝐺 and the resulting graph would still contain no 𝐾𝑘 . Pick such a 𝐾𝑘−1 on
vertex set 𝑋 , let 𝑌 = 𝑉 (𝐺) \ 𝑋 . Let 𝐺 [𝑌 ] denote the subgraph of 𝐺 induced by 𝑌 . It
is clear that 𝐺 [𝑌 ] has 𝑛 − 𝑘 + 1 = (𝑠 − 1) (𝑘 − 1) + 𝑟 vertices, and so by induction,
the number of edges of 𝐺 [𝑌 ] satisfies
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152 7 Turán Number and Related Ramsey Number

𝑒(𝐺 [𝑌 ]) ≤ 𝑡𝑘−1 (𝑛 − 𝑘 + 1) = (𝑘 − 2) (𝑛 − 𝑘 + 1)2

2(𝑘 − 1) − 𝑟 (𝑘 − 1 − 𝑟)
2(𝑘 − 1)

= 𝑡𝑘−1 (𝑛) − (𝑘 − 2) (𝑛 − 𝑘 + 1) −
(
𝑘 − 1

2

)
.

Moreover, since 𝐺 contains no 𝐾𝑘 , we have that no vertex in 𝑌 is adjacent to all
vertices of 𝑋 . Thus

𝑒(𝐺) ≤ 𝑒(𝐺 [𝑌 ]) + (𝑘 − 2) (𝑛 − 𝑘 + 1) +
(
𝑘 − 1

2

)
≤ 𝑡𝑘−1 (𝑛),

completing the induction step.
Now if𝐺 has 𝑡𝑘−1 (𝑛) edges, then each vertex in𝑌 must be adjacent to 𝑘−2 vertices

of 𝑋 . Moreover, an inductive argument shows that 𝐺 [𝑌 ] must have 𝑡𝑘−1 (𝑛 − 𝑘 + 1)
edges which induces the Turán graph 𝑇𝑘−1 (𝑛 − 𝑘 + 1) with parts

𝑌1, 𝑌2, . . . , 𝑌𝑘−1.

If some vertex 𝑦 ∈ 𝑌𝑖 does not adjacent to the vertex 𝑥 ∈ 𝑋 , then all vertices of 𝑌𝑖
would not adjacent to the vertex 𝑥 ∈ 𝑋 . Indeed, if some vertex 𝑦𝑖 ∈ 𝑌𝑖 is adjacent to
𝑥, then each vertex in 𝑌 𝑗 for 𝑗 ≠ 𝑖 would not adjacent to all 𝑋 \ 𝑥 since otherwise
for some 𝑦 𝑗 ∈ 𝑌 𝑗 , {𝑦𝑖 , 𝑦 𝑗 } ∪ 𝑋 \ 𝑥 will induce a 𝐾𝑘 . It follows that each vertex in 𝑌 𝑗
for 𝑗 ≠ 𝑖 must be adjacent to 𝑥, now we can easily get a 𝐾𝑘 . Consequently, 𝐺 is the
Turán graph. □

For the case 𝑘 = 3 of the above theorem, we have an amusing proof as follows. If
a graph 𝐺 = (𝑉, 𝐸) of order 𝑛 contains no 𝐾3, then any adjacent vertices 𝑢 and 𝑣 do
not have neighbor in common, so

𝑑 (𝑢) + 𝑑 (𝑣) ≤ 𝑛.

From the fact that ∑︁
𝑢𝑣∈𝐸

(𝑑 (𝑢) + 𝑑 (𝑣)) =
∑︁
𝑥∈𝑉

𝑑2 (𝑥),

in which each 𝑑 (𝑥) is counted 𝑑 (𝑥) times over 𝑁 (𝑥), so we have∑︁
𝑥∈𝑉

𝑑2 (𝑥) ≤ 𝑛|𝐸 |.

Now Cauchy-Schwarz inequality implies that

|𝐸 | ≥ 1
𝑛

∑︁
𝑥∈𝑉

𝑑2 (𝑥) ≥
(
1
𝑛

∑︁
𝑥∈𝑉

𝑑 (𝑥)
)2

=

(
2|𝐸 |
𝑛

)2
=

4|𝐸 |2
𝑛2 .

Therefore, 𝑒𝑥(𝑛, 𝐾3) ≤ max
𝐺: |𝐺 |=𝑛

{|𝐸 |} ≤ 𝑛2/4 follows as desired.
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7.1 Turán Numbers for Non-Bipartite Graphs 153

For any graph 𝐻 with 𝜒(𝐻) = 𝑘 , we have 𝑒𝑥(𝑛, 𝐻) ≥ 𝑡𝑘−1 (𝑛), and so a graph 𝐹
with 𝑛 vertices and 𝑡𝑘−1 (𝑛) edges may not contain 𝐻 or 𝐾𝑘 as a subgraph. However,
adding one more edge to 𝐹 will force it to contain a 𝐾𝑘 . A deep result of Erdős and
Stone (1946) states that if 𝜖 > 0 is fixed, then 𝜖𝑛2 more edges ensure that 𝐹 contains
not only a 𝐾𝑘 , but a complete 𝑘-partite graph 𝐾𝑘 (𝑡) with each part of size 𝑡 for some
large 𝑡. The Erdős-Stone theorem is a fundamental theorem in extremal graph theory,
see also in Erdős and Siminovits (1966) or Siminovits (1968). In particular, we have
the following the result.
Theorem 7.3 For any fixed graph 𝐻 with 𝜒(𝐻) = 𝑘 ≥ 2,

𝑒𝑥(𝑛, 𝐻) =
(
𝑘 − 2
𝑘 − 1

+ 𝑜(1)
) (
𝑛

2

)
.

Sharpening the result of Erdős and Stone (1946), Bollobás and Erdős (1973)
proved that the speed of 𝑡 → ∞ can be at least Ω(log 𝑛).
Theorem 7.4 For integer 𝑘 ≥ 2 and 𝜖 > 0, there is an integer 𝑛0 = 𝑛0 (𝑘, 𝜖) such
that if 𝐹 is a graph of order 𝑛 ≥ 𝑛0 with edge number

𝑒(𝐹) ≥
(
𝑘 − 2
𝑘 − 1

+ 𝜖
) (
𝑛

2

)
,

then 𝐹 contains a 𝐾𝑘 (𝑡) for some 𝑡 ≥ 𝜖 log 𝑛
2𝑘 (𝑘−2)! .

Lemma 7.1 For any integer 𝑘 ≥ 2 and 0 < 𝜖 < 1, there is an integer 𝑛0 = 𝑛0 (𝑘, 𝜖)
such that if 𝐹 is a graph of order 𝑛 ≥ 𝑛0 with minimum degree

𝛿(𝐹) ≥
(
𝑘 − 2
𝑘 − 1

+ 𝜖
)
𝑛,

then 𝐹 contains a 𝐾𝑘 (𝑡) for some 𝑡 ≥ 𝜖 log 𝑛
2𝑘−2 (𝑘−2)! .

Proof. We use the induction on 𝑘 ≥ 2. Suppose to the contrary that the assertion is
not valid for 𝑘 = 2, then there is a graph 𝐹 with 𝑛 vertices and 𝛿(𝐹) ≥ 𝜖𝑛 that does
not contain a 𝐾2 (𝑡) with 𝑡 = ⌈𝜖 log 𝑛⌉. We say that a set 𝑆 is covered by a vertex 𝑥
if 𝑥 is adjacent to every vertex in 𝑆. Every vertex of 𝐹 covers at least

(𝜖 𝑛
𝑡

)
sets of 𝑡

vertices, and no set of 𝑡 vertices is covered by 𝑡 vertices. Therefore,

𝑛

(
𝜖𝑛

𝑡

)
≤ (𝑡 − 1)

(
𝑛

𝑡

)
.

This inequality is invalid for 𝑡 = ⌈𝜖 log 𝑛⌉ with large 𝑛, since then

(𝑡 − 1)
(𝑛
𝑡

)
𝑛
(𝜖 𝑛
𝑡

) <
(𝑡 − 1)𝑛𝑡

𝑛(𝜖𝑛)𝑡 (1 − 1/(𝜖𝑛)) · · · (1 − (𝑡 − 1)/(𝜖𝑛))

<
𝑡

𝑛𝜖 𝑡 (1 − 𝑡/(𝜖𝑛))𝑡 <
2𝑡
𝑛𝜖 𝑡

≤ 2𝑡
𝑛

(
1
𝜖

)2𝜖 log 𝑛
→ 0,
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154 7 Turán Number and Related Ramsey Number

where we use the fact that (1− 𝑡/(𝜖𝑛))𝑡 → 1. This contradiction proves the assertion
for 𝑘 = 2. Now we assume that the assertion is valid for 𝑘 , and we will show that it
also holds for 𝑘 + 1.

Let 𝐹 be a graph on vertex set 𝑉 with |𝑉 | = 𝑛 and 𝛿(𝐹) ≥ ( 𝑘−1
𝑘

+ 𝜖)𝑛. Note that
the existence of such a graph 𝐹 implies 0 < 𝜖 < 1/𝑘 . Since

𝛿(𝐹) ≥
(
𝑘 − 1
𝑘

+ 𝜖
)
𝑛 >

(
𝑘 − 2
𝑘 − 1

+ 1
𝑘 (𝑘 − 1)

)
𝑛,

by the induction hypothesis,𝐹 contains a𝐾𝑘 (𝑡′) on vertex set 𝑋 with 𝑡′ = ⌈𝑐(𝑘) log 𝑛⌉
vertices in each vertex class, where

𝑐(𝑘) = 1/(𝑘 (𝑘 − 1))
2𝑘−2 (𝑘 − 2)!

=
1

2𝑘−2 𝑘!
.

Let 𝑒(𝑆1, 𝑆2) be the number of edges between the sets 𝑆1 and 𝑆2, and denote

𝑌 =

{
𝑣 ∈ 𝑉 \ 𝑋 : 𝑒({𝑣}, 𝑋) ≥

(
𝑘 − 1
𝑘

+ 𝜖
2

)
|𝑋 |

}
.

Claim |𝑌 | ≥ 𝜖𝑛.

Proof. To see this, let us consider 𝑒(𝑋,𝑉 \𝑋). Clearly, each vertex in 𝑋 is adjacent
to at least 𝛿(𝐹) − |𝑋 | + 1 vertices in 𝑉 \ 𝑋 , so

𝑒(𝑋,𝑉 \ 𝑋) > |𝑋 |
((
𝑘 − 1
𝑘

+ 𝜖
)
𝑛 − |𝑋 |

)
.

Also, for a vertex 𝑣 ∈ 𝑉 \ (𝑋 ∪𝑌 ), it is adjacent to at most ( 𝑘−1
𝑘

+ 𝜖
2 ) |𝑋 | vertices in

𝑋 , so we obtain that

𝑒(𝑋,𝑉 \ 𝑋) ≤ |𝑋 | |𝑌 | + (𝑛 − |𝑋 | − |𝑌 |)
(
𝑘 − 1
𝑘

+ 𝜖
2

)
|𝑋 |

< |𝑋 | |𝑌 | + (𝑛 − |𝑌 |)
(
𝑘 − 1
𝑘

+ 𝜖
2

)
|𝑋 |.

The above lower and upper bounds of 𝑒(𝑋,𝑉 \ 𝑋) give that

(2 − 𝑘𝜖) |𝑌 | + 2𝑘 |𝑋 | > 𝑘𝜖𝑛.

Note that |𝑋 | = 𝑘𝑡′. Thus, for large 𝑛,

|𝑌 | ≥ 𝑘𝜖𝑛 − 2𝑘2𝑡′

2 − 𝑘𝜖 >
𝑘𝜖𝑛

2
≥ 𝜖𝑛

as claimed. □

Now, set
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𝑡 =

⌈
𝜖 log 𝑛

2𝑘−1 (𝑘 − 1)!

⌉
≤

⌈
𝑘𝜖𝑡′

2

⌉
.

Note that ⌈(
𝑘 − 1
𝑘

+ 𝜖
2

)
|𝑋 |

⌉
=

⌈
(𝑘 − 1)𝑡′ + 𝑘𝜖

2
𝑡′
⌉
≥ (𝑘 − 1)𝑡′ + 𝑡.

That is to say, each vertex in𝑌 is adjacent to at least (𝑘 −1)𝑡′ + 𝑡 vertices in 𝑋 , which
implies that each such vertex covers at least one 𝐾𝑘 (𝑡) in existing 𝐾𝑘 (𝑡′). Since there
are

(𝑡 ′
𝑡

) 𝑘
such 𝐾𝑘 (𝑡) in this 𝐾𝑘 (𝑡′), it follows on average that there must exist a 𝐾𝑘 (𝑡)

covered by |𝑌 |/
(𝑡 ′
𝑡

) 𝑘
vertices of 𝑌 .

Note that
(𝑡 ′
𝑡

)
≤ (𝑒𝑡′/𝑡)𝑡 from Stirling formula, and 𝑡/(𝑒𝑡′) > 𝜖/𝑒,

|𝑌 |(𝑡 ′
𝑡

) 𝑘 ≥ 𝜖𝑛
( 𝑡
𝑒𝑡′

) 𝑡 𝑘
≥ 𝜖𝑛

( 𝜖
𝑒

) 𝑡 𝑘
≥ 𝜖𝑛 exp

(
𝑘𝜖 log 𝑛 log(𝜖/𝑒)

2𝑘−1 (𝑘 − 1)!

)
> 𝑡

for large 𝑛, hence we can get a subgraph 𝐾𝑘+1 (𝑡) in 𝐹, completing the induction step
and hence the proof. □

The condition on the minimum degree of a graph can be weakened to that on the
number of edges of a graph.

Lemma 7.2 Let 𝑐, 𝜖 be positive real numbers and let 𝑛 > 3/𝜖 be an integer. If 𝐹 is
a graph with 𝑛 vertices and at least (𝑐 + 𝜖)

(𝑛
2
)

edges, then it contains a subgraph 𝐻
with 𝑛′ ≥ 𝜖1/2𝑛 vertices and 𝛿(𝐻) ≥ 𝑐𝑛′.

Proof. The condition 𝑒(𝐹) ≥ (𝑐 + 𝜖)
(𝑛
2
)

implies that 0 < 𝜖 < 𝑐 + 𝜖 ≤ 1. If the
assertion is not valid, then there is a sequence of graphs {𝐺𝑖 : ℓ ≤ 𝑗 ≤ 𝑛}, where
ℓ = ⌊𝜖1/2𝑛⌋ and the order of 𝐺 𝑗 is 𝑗 , such that

𝐺 = 𝐺𝑛 ⊇ 𝐺𝑛−1 ⊇ · · · ⊇ 𝐺ℓ+1 ⊇ 𝐺ℓ

and the only vertex of𝐺 𝑗 not in𝐺 𝑗−1 has degree less than 𝑐 𝑗 in𝐺 𝑗 for 𝑛 ≥ 𝑗 ≥ ℓ+1.
Therefore,

𝑒(𝐺ℓ) > (𝑐 + 𝜖)
(
𝑛

2

)
−

𝑛∑︁
𝑗=ℓ+1

𝑐 𝑗 = 𝜖

(
𝑛

2

)
+ 𝑐

(
ℓ + 1

2

)
− 𝑐𝑛 > 𝜖

(
𝑛

2

)
>

(
ℓ

2

)
,

by noting ℓ = ⌊𝜖1/2𝑛⌋, 0 < 𝜖 < 1 and 𝑛 ≥ 3/𝜖 . This is a contradiction. □

Proof of Theorem 7.4. If 𝑛 > 3/𝜖 , then Lemma 7.2 implies that 𝐹 contains a
subgraph 𝐻 of order 𝑛′ ≥ 𝜖1/2𝑛 and 𝛿(𝐻) ≥ ( 𝑘−2

𝑘−1 + 𝜖
2 )𝑛

′. Now Lemma 7.1 implies
that for large 𝑛, 𝐹 contains a 𝐾𝑘 (𝑡) with

𝑡 ≥ (𝜖/2) log 𝑛′

2𝑘−2 (𝑘 − 2)!
≥ 𝜖 log 𝑛

2𝑘 (𝑘 − 2)!
,



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

156 7 Turán Number and Related Ramsey Number

as desired. □

7.2 Turán Numbers for 𝑲𝒕,𝒔

The situation of Turán numbers for bipartite graphs is totally different. If the chro-
matic number 𝜒(𝐻) = 2, then it only gives that 𝑒𝑥(𝑛, 𝐻) = 𝑜(𝑛2) from Section
7.1. We have also encountered Turán number in Chapter 3, in which a conjecture of
Erdős-Sós is equivalent to 𝑒𝑥(𝑛, 𝑇𝑚) ≤ 𝑚−1

2 𝑛 for any tree 𝑇 with 𝑚 edges.
The following result of Kövári, Sós and Turán (1954) used the well-known double

counting method.

Theorem 7.5 For any positive integers 𝑡 and 𝑠 with 𝑡 ≤ 𝑠,

𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) ≤
1
2

(
(𝑠 − 1)1/𝑡𝑛2−1/𝑡 + (𝑡 − 1)𝑛

)
.

Proof. Let𝐺 be a graph of order 𝑛 that contains no 𝐾𝑡 , 𝑠. We say that a set is covered
by a vertex 𝑣 if 𝑣 is joined to every vertex of the set. Since 𝐺 does not contain 𝐾𝑡 , 𝑠,
every 𝑡-set (i.e., a set with 𝑡 elements) is covered by at most 𝑠−1 vertices. Therefore,
if 𝐺 has degree sequence 𝑑1, 𝑑2, . . . , 𝑑𝑛, then

𝑛∑︁
𝑖=1

(
𝑑𝑖

𝑡

)
≤ (𝑠 − 1)

(
𝑛

𝑡

)
.

For fixed 𝑡 ≥ 1, define a function on real variable 𝑥 as(
𝑥

𝑡

)
=

{
𝑥 (𝑥−1) ·· · (𝑥−𝑡+1)

𝑡! if 𝑥 ≥ 𝑡 − 1,
0 otherwise.

Let 𝑑 denote the average degree of 𝐺. Since
(𝑥
𝑡

)
is convex, we have

𝑛

(
𝑑

𝑡

)
≤

𝑛∑︁
𝑖=1

(
𝑑𝑖

𝑡

)
≤ (𝑠 − 1)

(
𝑛

𝑡

)
.

We may assume that 𝑛 ≥ 𝑑 ≥ 𝑡, and hence

𝑛𝑑 (𝑑 − 1) · · · (𝑑 − 𝑡 + 1) ≤ (𝑠 − 1)𝑛(𝑛 − 1) · · · (𝑛 − 𝑡 + 1),

which implies that(
𝑑 − 𝑡 + 1
𝑛 − 𝑡 + 1

) 𝑡
≤ 𝑑 (𝑑 − 1) · · · (𝑑 − 𝑡 + 1)
𝑛(𝑛 − 1) · · · (𝑛 − 𝑡 + 1) ≤ 𝑠 − 1

𝑛
.

It follows that 𝑑 − 𝑡 + 1 ≤ (𝑠 − 1)1/𝑡𝑛−1/𝑡 (𝑛 − 𝑡 + 1). Thus we have
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7.2 Turán Numbers for 𝐾𝑡,𝑠 157

𝑒(𝐺) = 𝑛𝑑

2
≤ 1

2

(
(𝑠 − 1)1/𝑡𝑛2−1/𝑡 + (𝑡 − 1)𝑛

)
as claimed. □

We shall improve the upper bound for 𝑒𝑥(𝑛, 𝐶4) in the above theorem slightly.
The following result due to Kövári, Sós and Turán (1954) (independently Reiman
(1958)) is slightly better than that obtained above for the case 𝑠 = 𝑡 = 2.

Theorem 7.6 For any positive integer 𝑛,

𝑒𝑥(𝑛, 𝐶4) ≤
𝑛

4
(1 +

√
4𝑛 − 3) = 1

2
𝑛3/2 + 𝑛

4
−𝑂 (𝑛1/2).

Proof. Let 𝐺 be a graph of order 𝑛 containing no 𝐶4. Hence∑︁
𝑣∈𝑉 (𝐺)

(
𝑑 (𝑣)

2

)
≤

(
𝑛

2

)
,

that is
∑
𝑣∈𝑉 (𝐺) 𝑑 (𝑣) (𝑑 (𝑣)−1) ≤ 𝑛(𝑛−1). As the function 𝑥(𝑥−1) is convex, we have

𝑛𝑑 (𝑑−1) ≤ 𝑛(𝑛−1), where 𝑑 is the average degree of𝐺. Hence 𝑑 ≤ (1+
√

4𝑛 − 3)/2,
yielding an upper bound for 𝑛𝑑/2 as required. □

Let us turn to the problem of Zarankiewicz which is closely related to Turán
number. Denote by 𝐺 (𝑚, 𝑛) for a bipartite graph with 𝑚 vertices in the first class
and 𝑛 vertices in the second. We shall signify the fact that 𝐾𝑠, 𝑡 is a subgraph of
𝐺 (𝑚, 𝑛) with 𝑠 vertices in the first class and 𝑡 in the second by saying that 𝐾 (𝑠, 𝑡 ) is
contained in 𝐺 (𝑚, 𝑛). In other word, we consider the orders of the vertex classes of
the bipartite graphs. Note that when 𝐺 (𝑚, 𝑛) does not contain 𝐾 (𝑠, 𝑡 ) , it may contain
𝐾 (𝑡 , 𝑠) . However, when 𝑡 is a constant or 𝑡 ≤ 𝑠, we always write the complete 𝑡 × 𝑠
bipartite graph as 𝐾𝑡 , 𝑠 instead of 𝐾𝑠, 𝑡 . For example, we write a star as 𝐾1, 𝑠.

Define Zarankiewicz number 𝑧(𝑚, 𝑛; 𝑠, 𝑡) to be the maximum number of edges
in a bipartite graph 𝐺 (𝑚, 𝑛) which does not contain 𝐾 (𝑠, 𝑡 ) . We always assume that
𝑡 ≤ 𝑠 in this chapter and do not assume which is larger between 𝑚 and 𝑛. We shall
write 𝑧(𝑛; 𝑠) for 𝑧(𝑛, 𝑛; 𝑠, 𝑠).

The original problem of Zarankiewicz (1951) was asking what is 𝑧(𝑛, 𝑛; 3, 3) for
3 ≤ 𝑛 ≤ 6. The argument in the proof of Theorem 7.5 can be applied to obtain that
for 𝑡 ≤ 𝑠,

𝑧(𝑚, 𝑛; 𝑠, 𝑡) ≤ (𝑠 − 1)1/𝑡𝑛𝑚1−1/𝑡 + (𝑡 − 1)𝑚. (7.2)

Lemma 7.3 For any positive integers 𝑛, 𝑠 and 𝑡,

𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) ≤
1
2
𝑧(𝑛, 𝑛; 𝑠, 𝑡).

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph with |𝑉 | = 𝑛 and |𝐸 | = 𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) edges that
does not contain 𝐾𝑡 , 𝑠. Construct a bipartite graph 𝐻 as follows. Take two disjoint
copies of 𝑉 , say
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158 7 Turán Number and Related Ramsey Number

𝑉 ′ = {𝑣′1, . . . , 𝑣
′
𝑛} and 𝑉 ′′ = {𝑣′′1 , . . . 𝑣

′′
𝑛 }.

The graph 𝐻 has bipartition (𝑉 ′, 𝑉 ′′), and 𝑣′
𝑖
𝑣′′
𝑗

is an edge of 𝐻 if and only if 𝑣𝑖𝑣 𝑗
is an edge of 𝐺. Note that 𝑣′

𝑖
and 𝑣′′

𝑖
are not connected. Clearly 𝑑𝐺 (𝑣𝑖) = 𝑑𝐻 (𝑣′𝑖) =

𝑑𝐻 (𝑣′′𝑖 ), thus 𝑒(𝐻) = 2𝑒(𝐺). We know that 𝐻 does not contain 𝐾𝑡 , 𝑠 since 𝐺 is
𝐾𝑡 , 𝑠-free. So 𝑧(𝑛, 𝑛; 𝑠, 𝑡) ≥ 𝑒(𝐻) = 2𝑒(𝐺). □

For fixed 𝑠 ≥ 𝑡 ≥ 2 and large 𝑛, the asymptotic form of the upper bound of
Theorem 7.5 is

𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) ≤
(
1
2
+ 𝑜(1)

)
(𝑠 − 1)1/𝑡𝑛2−1/𝑡 .

This result has not been improved for more than a half century. Füredi (1996(a)) did
it for fixed 𝑠 ≥ 𝑡 ≥ 3.

Theorem 7.7 If 𝑚 ≥ 𝑠, 𝑛 ≥ 𝑡 and 𝑠 ≥ 𝑡 are positive integers, then

𝑧(𝑚, 𝑛; 𝑠, 𝑡) ≤ (𝑠 − 𝑡 + 1)1/𝑡𝑛𝑚1−1/𝑡 + 𝑡𝑛 + 𝑡𝑚2−2/𝑡 ,

and hence

𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) ≤
1
2

(
(𝑠 − 𝑡 + 1)1/𝑡𝑛2−1/𝑡 + 𝑡𝑛 + 𝑡𝑛2−2/𝑡

)
.

Proof ★. The case 𝑡 = 1 is trivial, and 𝑡 = 2 is known from the upper bound (7.2). So
we assume 𝑠 ≥ 𝑡 ≥ 3. Let 𝐺 = 𝐺 (𝑚, 𝑛) be a bipartite graph with bipartition

𝑉 = {1, 2, . . . , 𝑚} and 𝑉 ′ = {1′, 2′, . . . , 𝑛′},

which does not contain 𝐾 (𝑠, 𝑡 ) . Fix 𝑡 − 2 vertices 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑡−2 ≤ 𝑚 in 𝑉 .
Consider all 𝑡-subsets of 𝑁 (𝑖1) ∩ · · · ∩𝑁 (𝑖𝑡−2) in𝑉 ′. Any such set 𝑇 in𝑉 ′ is covered
by at most 𝑠 − 𝑡 + 1 further more vertices of V as 𝐺 contains no 𝐾 (𝑠, 𝑡 ) . We thus
obtain ∑︁

𝑘≠𝑖1 , · · · ,𝑖𝑡−2

(
|𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) ∩ 𝑁 (𝑘) |

𝑡

)
≤ (𝑠 − 𝑡 + 1)

(
|𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) |

𝑡

)
where the first summation is taken over 𝑘 ≠ 𝑖1, . . . , 𝑖𝑡−2. We now need the following
lemma in which the function

(𝑥
𝑡

)
on 𝑥 is defined in the proof of Theorem 7.5.

Lemma 7.4 Let 𝑝, 𝑡 ≥ 1 be integers, and let 𝑐, 𝑥0, 𝑥1, . . . , 𝑥𝑡 ≥ 0 be real numbers. If

𝑝∑︁
𝑖=1

(
𝑥𝑖

𝑡

)
≤ 𝑐

(
𝑥0
𝑡

)
,

then
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7.2 Turán Numbers for 𝐾𝑡,𝑠 159

𝑝∑︁
𝑖=1

𝑥𝑖 ≤ 𝑥0𝑐
1/𝑡 𝑝1−1/𝑡 + (𝑡 − 1)𝑝.

Proof. Let𝜎 =
∑𝑝

𝑖=1 𝑥𝑖 . We suppose𝜎 > (𝑡−1)𝑝. From the convexity of the function(𝑥
𝑡

)
, we have 𝑝

(𝜎/𝑝
𝑡

)
≤ ∑𝑝

𝑖=1
(𝑥𝑖
𝑡

)
. Hence

𝑝

𝑐
≤ 𝑥0 (𝑥0 − 1) · · · (𝑥0 − 𝑡 + 1)

(𝜎/𝑝) (𝜎/𝑝 − 1) · · · (𝜎/𝑝 − 𝑡 + 1) ≤
(

𝑥0
𝜎/𝑝 − 𝑡 + 1

) 𝑡
,

the desired inequality follows immediately. □

Now, applying the above lemma with 𝑝 = 𝑚 − 𝑡 + 2, 𝑐 = 𝑠 − 𝑡 + 1, and 𝑥0 =

|𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) |, we have∑︁
𝑘≠𝑖1 ,...,𝑖𝑡−2

|𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) ∩ 𝑁 (𝑘) |

≤ (𝑠 − 𝑡 + 1)1/𝑡 (𝑚 − 𝑡 + 2)1−1/𝑡 |𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) |
+ (𝑡 − 1) (𝑚 − 𝑡 + 2).

Summing up both sides over 𝑖1, . . . , 𝑖𝑡−2, the left hand side is∑︁
𝑖1<· · ·<𝑖𝑡−2

∑︁
𝑘≠𝑖1 , · · · ,𝑖𝑡−2

|𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) ∩ 𝑁 (𝑘) | = (𝑡 − 1)
𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 1

)
.

For the right hand side, since∑︁
𝑖1<· · ·<𝑖𝑡−2

|𝑁 (𝑖1) ∩ · · · ∩ 𝑁 (𝑖𝑡−2) | =
𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 2

)
,

it follows that

(𝑡 − 1)
𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 1

)
≤ (𝑠 − 𝑡 + 1)1/𝑡 (𝑚 − 𝑡 + 2)1−1/𝑡

𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 2

)
+ (𝑡 − 1) (𝑚 − 𝑡 + 2)

(
𝑚

𝑡 − 2

)
.

We will derive a lower bound for the left-hand side of the above inequlity. Let 𝑦 𝑗
denote 𝑑 ( 𝑗 ′). For 𝑦𝑖 , 𝑦 𝑗 ≥ 𝑡 − 2, one has

[𝑦𝑖 (𝑦𝑖 − 1) · · · (𝑦𝑖 − (𝑡 − 3)) − 𝑦 𝑗 (𝑦 𝑗 − 1) · · · (𝑦 𝑗 − (𝑡 − 3))]
× [(𝑦𝑖 − (𝑡 − 2)) − (𝑦 𝑗 − (𝑡 − 2))] ≥ 0,

which yields
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160 7 Turán Number and Related Ramsey Number[(
𝑦𝑖

𝑡 − 2

)
−

(
𝑦 𝑗

𝑡 − 2

)]
[(𝑦𝑖 − (𝑡 − 2)) − (𝑦 𝑗 − (𝑡 − 2))] ≥ 0.

Therefore (
𝑦𝑖

𝑡 − 2

)
(𝑦 𝑗 − (𝑡 − 2)) +

(
𝑦 𝑗

𝑡 − 2

)
(𝑦𝑖 − (𝑡 − 2))

≤
(
𝑦𝑖

𝑡 − 2

)
(𝑦𝑖 − (𝑡 − 2)) +

(
𝑦 𝑗

𝑡 − 2

)
(𝑦 𝑗 − (𝑡 − 2))

=(𝑡 − 1)
[(

𝑦𝑖

𝑡 − 1

)
+

(
𝑦 𝑗

𝑡 − 1

)]
.

Adding up over pairs {𝑦𝑖 , 𝑦 𝑗 } = {𝑑 (𝑖′), 𝑑 ( 𝑗 ′)} for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have

©­«
𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 2

)ª®¬ ©­«
𝑛∑︁
𝑗=1

(𝑑 ( 𝑗 ′) − (𝑡 − 2))ª®¬ ≤ 𝑛(𝑡 − 1)
𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 1

)
.

Combining this with what obtained, we have

1
𝑛

©­«
𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 2

)ª®¬ ©­«
𝑛∑︁
𝑗=1

(𝑑 ( 𝑗 ′) − (𝑡 − 2))ª®¬
≤ (𝑠 − 𝑡 + 1)1/𝑡 (𝑚 − 𝑡 + 2)1−1/𝑡

𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 2

)
+ (𝑡 − 1) (𝑚 − 𝑡 + 2)

(
𝑚

𝑡 − 2

)
.

Thus
𝑛∑︁
𝑗=1

𝑑 ( 𝑗 ′) − 𝑛(𝑡 − 2) ≤ (𝑠 − 𝑡 + 1)1/𝑡 (𝑚 − 𝑡 + 2)1−1/𝑡𝑛

+ (𝑡 − 1) (𝑚 − 𝑡 + 2)
𝑛
( 𝑚
𝑡−2

)∑𝑛
𝑗=1

(𝑑 ( 𝑗′ )
𝑡−2

) .
Note that 𝑒(𝐺) = ∑𝑛

𝑗=1 𝑑 ( 𝑗 ′), we have

𝑒(𝐺) ≤ (𝑠 − 𝑡 + 1)1/𝑡𝑛𝑚1−1/𝑡 + 𝑡𝑛 + 𝑡𝑚
𝑛
( 𝑚
𝑡−2

)∑𝑛
𝑗=1

(𝑑 ( 𝑗′ )
𝑡−2

) .
If the last fraction is at most 𝑚1−2/𝑡 , we are done. Otherwise, we have
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7.2 Turán Numbers for 𝐾𝑡,𝑠 161

𝑛∑︁
𝑗=1

(
𝑑 ( 𝑗 ′)
𝑡 − 2

)
<

𝑛

𝑚1−2/𝑡

(
𝑚

𝑡 − 2

)
.

Applying Lemma 7.4 with 𝑝 = 𝑛, 𝑐 = 𝑛/𝑚1−2/𝑡 , 𝑥0 = 𝑚, and 𝑥𝑖 = 𝑑 (𝑖′), and
replacing 𝑡 by 𝑡 − 2, we obtain that

𝑛∑︁
𝑗=1

𝑑 ( 𝑗 ′) < 𝑚
(

𝑛

𝑚1−2/𝑡

)1/(𝑡−2)
𝑛1−1/(𝑡−2) + (𝑡 − 3)𝑛 = 𝑛𝑚1−1/𝑡 + (𝑡 − 3)𝑛,

so 𝑒(𝐺) ≤ 𝑛𝑚1−1/𝑡 + (𝑡 − 3)𝑛, the desired result follows. □

Corollary 7.1 For any fixed integers 𝑠 ≥ 𝑡 ≥ 1,

𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) ≤
(
1
2
+ 𝑜(1)

)
(𝑠 − 𝑡 + 1)1/𝑡𝑛2−1/𝑡 .

Recall that the 𝑘-color Ramsey number 𝑟𝑘 (𝐺) is the minimum integer 𝑁 such
that any 𝑘-color of edges of 𝐾𝑁 contains a monochromatic 𝐺. We now discuss a
relation between 𝑒𝑥(𝑛, 𝐺) and 𝑟𝑘 (𝐺), where 𝐺 is a bipartite graph. Note that if
𝑒𝑥(𝑛, 𝐺) ≤ (𝑐 + 𝑜(1)) 1

2𝑛
2−1/𝑡 for some constants 𝑐 > 0 and 𝑡 ≥ 1, then 𝐺 must be a

bipartite graph.

Theorem 7.8 If 𝑒𝑥(𝑛, 𝐺) ≤ (𝑐 + 𝑜(1)) 1
2𝑛

2−1/𝑡 where 𝑐 > 0 and 𝑡 ≥ 1 are fixed, then

𝑟𝑘 (𝐺) ≤ (1 + 𝑜(1)) (𝑐𝑘)𝑡

as 𝑘 → ∞.

Proof. Setting 𝑛 = 𝑟𝑘 (𝐺) − 1. Thus there exists a 𝑘-coloring of edges of 𝐾𝑛 such
that there is no monochromatic 𝐺. By considering each subgraph induced by edges
in a single color and the definition of Turán number, we have(

𝑛

2

)
≤ 𝑘 𝑒𝑥(𝑛, 𝐺) ≤ (𝑐 + 𝑜(1)) 𝑘

2
𝑛2−1/𝑡 ,

which yields 𝑛 ≤ (1 + 𝑜(1)) (𝑐𝑘)𝑡 as required. □

Corollary 7.2 For any fixed integers 𝑠 and 𝑡 with 𝑠 ≥ 𝑡 ≥ 2,

𝑟𝑘 (𝐾𝑡 , 𝑠) ≤ (1 + 𝑜(1)) (𝑠 − 𝑡 + 1)𝑘 𝑡 . (𝑘 → ∞)

The idea of the proof of the following result is due to Alon, see Chung and Graham
(1999).

Theorem 7.9 If for large 𝑛, 𝑒𝑥(𝑛, 𝐺) ≥ 𝑐1𝑛
2−1/𝑡 , where 𝑐1 > 0 is a constant and

𝑡 ≥ 1 is a fixed integer, then there exists a constant 𝑐2 > 0 such that
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162 7 Turán Number and Related Ramsey Number

𝑟𝑘 (𝐺) ≥ 𝑐2
(
𝑘

log 𝑘

) 𝑡
as 𝑘 → ∞.

Proof. Set 𝑐2 = (𝑐1/𝑡)𝑡 and 𝑛 = ⌊𝑐2 (𝑘/log 𝑘)𝑡⌋. Let 𝐻 denote a graph on 𝑛 vertices
with 𝑒(𝐻) = 𝑒𝑥(𝑛, 𝐺) edges containing no 𝐺. Let 𝐻1, 𝐻2, . . . , 𝐻𝑘 be 𝑘 copies of 𝐻
placed randomly and independently in the complete graph 𝐾𝑛 on 𝑛 vertices. For each
edge of 𝐾𝑛, the probability that the edge is not covered by any graph 𝐻𝑖 is precisely

𝑝 =

(
1 − 𝑒(𝐻)

/(
𝑛

2

)) 𝑘
.

If
(𝑛
2
)
𝑝 < 1, then there is a choice of placing these 𝐻𝑖 so that their union covers all

edges of 𝐾𝑛. By referring each edge in 𝐻𝑖 as one in color 𝑖, then any edge of 𝐾𝑛 is
colored in at least one color. Keep one color for each edge and delete other colors if
the edge got more than one colors, then the edges of 𝐾𝑛 are colored by 𝑘 colors, and
there is no monochromatic 𝐺. Thus 𝑟𝑘 (𝐺) > 𝑛. Now we have

𝑒(𝐻)(𝑛
2
) >

2𝑒(𝐻)
𝑛2

≥ 2𝑐1𝑛2−1/𝑡

𝑛2
=

2𝑐1
𝑛1/𝑡

≥ 2𝑐1 log 𝑘
𝑐
1/𝑡
2 𝑘

= 2𝑡
log 𝑘
𝑘

.

This and the fact 1 − 𝑥 < 𝑒−𝑥 for 𝑥 > 0 imply that(
1 − 𝑒(𝐻)

/(
𝑛

2

)) 𝑘
≤

(
1 − 2𝑡

log 𝑘
𝑘

) 𝑘
≤

(
1
𝑘

)2𝑡
,

which yields (
𝑛

2

)
𝑝 ≤

𝑐22
2

(
𝑘

log 𝑘

)2𝑡 ( 1
𝑘

)2𝑡
→ 0

as 𝑘 → ∞. This completes the proof. □

It is a widespread belief that the order 𝑛2−1/𝑡 in the upper bound of 𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠)
is sharp if 𝑠 ≥ 𝑡 are fixed and 𝑛 → ∞. If so, then the order of 𝑟𝑘 (𝐾𝑡 , 𝑠) is between
( 𝑘
log 𝑘 )

𝑡 and 𝑘 𝑡 from the above results. However, when we have a construction to give
a lower bound of form 𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠) ≥ 𝑐1𝑛

2−1/𝑡 , we often get a lower bound of form
𝑟𝑘 (𝐾𝑡 , 𝑠) ≥ 𝑐2𝑘 𝑡 , see the forthcoming sections.

7.3 Erdős-Rényi Graph

The starting point of a problem involving complete bipartite graph is usually 𝐶4 =

𝐾2,2. We begin with a construction of a graph by Erdős and Rényi (1962) (one can
see also Erdős, Rényi and Sós (1966) or Brown (1966)), which contains no 𝐶4. This
will lead to a tight lower bound for 𝑒𝑥(𝑛, 𝐶4).
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7.3 Erdős-Rényi Graph 163

Let 𝐹 = 𝐹𝑞 be the Galois field with 𝑞 elements. Define an equivalence relation ≡
on (𝐹3)∗ = 𝐹3 \{(0, 0, 0)} by letting (𝑎1, 𝑎2, 𝑎3) ≡ (𝑏1, 𝑏2, 𝑏3) if there is an element
𝜆 ∈ 𝐹∗ = 𝐹 \ {0} such that (𝑎1, 𝑎2, 𝑎3) = 𝜆(𝑏1, 𝑏2, 𝑏3). Let ⟨𝑎1, 𝑎2, 𝑎3⟩ denote the
equivalence class containing (𝑎1, 𝑎2, 𝑎3), and let 𝑉 be the set of all equivalence
classes.

Now, we define the Erdős-Rényi graph 𝐸𝑅𝑞 on vertex set𝑉 , in which two distinct
vertices ⟨𝑎1, 𝑎2, 𝑎3⟩ and ⟨𝑥1, 𝑥2, 𝑥3⟩ are adjacent if and only if

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0.

This definition is clearly compatible, i.e., it does not depend on the choice of repre-
sentative elements of the equivalence classes. It is trivial to see that

|𝑉 | = 𝑞3 − 1
𝑞 − 1

= 𝑞2 + 𝑞 + 1.

For a vertex 𝐴 = ⟨𝑎1, 𝑎2, 𝑎3⟩, since 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0 has 𝑞2 − 1 solutions
forming 𝑞 + 1 vertices,

𝑑 (𝐴) =
{
𝑞 if 𝑎2

1 + 𝑎
2
2 + 𝑎

2
3 = 0,

𝑞 + 1 otherwise.

We now come to the point to see the most important fact on 𝐸𝑅𝑞 .

Theorem 7.10 The graph 𝐸𝑅𝑞 contains no 𝐶4.

Proof. Let ⟨𝑎1, 𝑎2, 𝑎3⟩ and ⟨𝑏1, 𝑏2, 𝑏3⟩ be distinct vertices. From the definition of
𝐸𝑅𝑞 , the vectors (𝑎1, 𝑎2, 𝑎3) and (𝑏1, 𝑏2, 𝑏3) are linearly independent. Therefore,
the equation system {

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0,
𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 = 0,

has exactly 𝑞 − 1 solutions forming only one vertex. So the assertion follows. □

Let 𝑛 = 𝑞2 + 𝑞 + 1 and let 𝑒(𝐸𝑅𝑞) be the number of edges of 𝐸𝑅𝑞 . Then, as
𝑞 → ∞,

𝑒𝑥(𝑛, 𝐶4) ≥ 𝑒(𝐸𝑅𝑞) ∼
1
2
𝑞(𝑞2 + 𝑞 + 1) ∼

(
1
2
+ 𝑜(1)

)
𝑛3/2.

This together with Theorem 7.5 established by Kövári, Sós and Turán (1954) yield
that

𝑒𝑥(𝑛, 𝐶4) ∼
(
1
2
+ 𝑜(1)

)
𝑛3/2.

Now let us associate the graph 𝐸𝑅𝑞 with a more general construction, which is a
(𝑞 + 1)-uniform hypergraph (𝑋,L) called projective plane. However, the members
in L are called lines, and the order of such a plane does not mean the cardinality of
𝑋 .
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Fig. 8.1 The Fano plane

164 7 Turán Number and Related Ramsey Number

Recall a projective plane of order 𝑞, denoted by 𝑃𝐺 (2, 𝑞), consists of a set 𝑋 of
𝑞2 + 𝑞 + 1 elements called points, and a family L of subsets of 𝑋 called lines, having
the following properties:

(P1) Every line has 𝑞 + 1 points.
(P2) Any pair of distinct points lie on a unique line.

The only possible projective plane of order 𝑞 = 1 is a triangle. The unique
projective plane of order 𝑞 = 2 is the famous Fano plane. It contains 7 points, 7
lines, in which each line has 3 points, see Fig 8.1.

We restate the additional properties of projective planes as follows, and one can
see the proof in Lemma 6.2.

Lemma 7.5 A projective plane of order 𝑞 has the properties as follows.

(P3) Any point lies on 𝑞 + 1 lines.
(P4) There are 𝑞2 + 𝑞 + 1 lines.
(P5) Any two lines meet at a unique point.

A nice property of projective planes is their duality. Let (𝑋,L) be a projective
plane of order 𝑞, and let 𝑀 = (𝑚𝑥,𝐿) be its incidence matrix, in which the rows
and columns correspond to points and lines. Each row and column of 𝑀 has exactly
(𝑞 + 1) 1′s, and any two rows and any two columns share exactly one 1.

Return to the graph 𝐸𝑅𝑞 , whose vertex set is 𝑉 consisting of 𝑞2 + 𝑞 + 1 points
(equivalence classes in (𝐹3

𝑞)∗). Let ⟨𝑎1, 𝑎2, 𝑎3⟩ be a point of 𝑉 which has been
defined as above. Define a line 𝐿 (𝑎1, 𝑎2, 𝑎3) to be the set of all points ⟨𝑥1, 𝑥2, 𝑥3⟩ in
𝑉 (not vectors (𝑥1, 𝑥2, 𝑥3) in (𝐹3

𝑞)∗ ) for which

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0.

It is easy to see that the definition for lines is compatible, and each line contains
exactly 𝑞+1 points. Note that some lines 𝐿 (𝑎1, 𝑎2, 𝑎3) contain point ⟨𝑎1, 𝑎2, 𝑎3⟩ and
some do not. Any pair of distinct points ⟨𝑥1, 𝑥2, 𝑥3⟩ and ⟨𝑦1, 𝑦2, 𝑦3⟩ lie on a unique
line 𝐿 (𝑎1, 𝑎2, 𝑎3) with {

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0,
𝑎1𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3 = 0.

Therefore, we obtain a projective plane (𝑉,L), where L consists of all lines defined
as above. This projective plane is usually denoted by 𝑃𝐺 (2, 𝑞). Some authors use
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7.3 Erdős-Rényi Graph 165

𝑃𝐺 (2, 𝑞) to signify the Erdős-Rényi graph or a bipartite graph, whose bipartition
are points and lines, in which a point is adjacent to a line if and only if the point is
contained in the line.

No projective plane of order non-prime power is known to exist, and it is conjec-
tured that there is none. It is known that there is no projective plane of order 6, 10 or
14. It is not known whether there is a projective plane of order 12.

The following result gives the exact expression of the edge number 𝑒(𝐸𝑅𝑞) for
𝑞 = 𝑝𝑚, where 𝑝 is a prime and 𝑚 is odd. In fact, the assertion holds for any prime
power 𝑞.

Lemma 7.6 Let 𝑞 = 𝑝𝑚, where 𝑝 is a prime and 𝑚 is odd. There are precisely 𝑞2 −1
non-zero solutions (𝑥1, 𝑥2, 𝑥3) of the equation

𝑥2
1 + 𝑥

2
2 + 𝑥

2
3 = 0

in 𝐹𝑞 , and hence precisely 𝑞+1 vertices in 𝐸𝑅𝑞 incident with loops. In particular, the
eigenvalues of 𝐸𝑅𝑞 are 𝑞 + 1, ±√𝑞 with multiplicity 1, and (𝑞2 + 𝑞)/2 respectively.

Proof. Label the vertex set of 𝐸𝑅𝑞 as

𝑉 (𝐸𝑅𝑞) = {𝐴, 𝐵, · · · , 𝑋, · · · , 𝑌 , · · · , 𝑍}

in some order. We write 𝑋 ⊥ 𝑌 if and only if 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 = 0, where
𝑋 = ⟨𝑥1, 𝑥2, 𝑥3⟩ and 𝑌 = ⟨𝑦1, 𝑦2, 𝑦3⟩. Let 𝑛 = 𝑞2 + 𝑞 + 1 and define an 𝑛 × 𝑛 real
matrix 𝑀 = (𝑚𝑖 𝑗 ) by

𝑚𝑖 𝑗 =

{
1 if 𝑋 ⊥ 𝑌,
0 otherwise,

where 𝑋 and 𝑌 represent the 𝑖th vertex and the 𝑗 th vertex, respectively. We admit
𝑚𝑖𝑖 = 1 if 𝑋 ⊥ 𝑋 , that is, 𝑋 lies on the conic 𝑥2

1 + 𝑥
2
2 + 𝑥

2
3 = 0. All that remains to

show is that
𝑡𝑟 (𝑀) = 𝑞 + 1,

where 𝑡𝑟 (𝑀) = ∑𝑛
𝑖=1 𝑚𝑖𝑖 is the trace of 𝑀 . We know that the trace equals the sum of

eigenvalues.

Fact 1 Any row of 𝑀 contains precisely 𝑞 + 1 ones hence 𝑞 + 1 is an eigenvalue
of 𝑀 .

Fact 2 For 𝑖 ≠ 𝑗 , there is exactly one column with 1 in both the 𝑖th row and the
𝑗 th row. Namely, 𝑀𝑖 · 𝑀 𝑗 = 1, where 𝑀𝑖 and 𝑀 𝑗 are the 𝑖th row and the 𝑗 th row of
𝑀 , respectively.

Proof. Suppose that 𝑋 and 𝑌 represent (the vertices) the 𝑖th row and the 𝑗 th row,
respectively. Then there is a unique (vertex) row, say the 𝑘th row, corresponding to
the solution (𝑤1, 𝑤2, 𝑤3) to the equation system{

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 = 0,
𝑦1𝑤1 + 𝑦2𝑤2 + 𝑦3𝑤3 = 0.
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166 7 Turán Number and Related Ramsey Number

That is to say, 𝑚𝑖𝑘 = 𝑚 𝑗𝑘 = 1. Note that 𝑀 is symmetric, so we see that only in the
𝑘th column, the elements in both the 𝑖th row and the 𝑗 th row are 1. □

Using these two facts and the symmetry of 𝑀 , we have

𝑀2 =

©­­­­«
𝑞 + 1 1 · · · 1 1

1 𝑞 + 1 · · · 1 1
...

...

1 1 · · · 1 𝑞 + 1

ª®®®®¬
= 𝑞𝐼 + 𝐽,

where 𝐼 is the identity matrix and 𝐽 is the all-ones-matrix. It is easy to see 𝐽 has the
eigenvalues 𝑛 = 𝑞2 + 𝑞 + 1 with multiplicity 1 and 0 with multiplicity 𝑛− 1 = 𝑞2 + 𝑞.
It follows that 𝑀2 has the eigenvalues 𝑞 +𝑛 = (𝑞 +1)2 with multiplicity 1 and 𝑞 with
multiplicity 𝑛 − 1 = 𝑞2 + 𝑞.

Let 𝜆1, . . . , 𝜆𝑛 be eigenvalues of 𝑀 . Therefore, 𝜆1 = 𝑞+1 as 𝑞+1 is an eigenvalue
of 𝑀 with multiplicity 1 from Perron-Frobenius Theorem, and 𝜆𝑖 = ±√𝑞 for 𝑖 =
2, . . . , 𝑛. Let 𝑠 and 𝑡 be the numbers of eigenvalues of 𝑀 equal to √

𝑞 and −√𝑞,
respectively. Thus 𝑠 + 𝑡 = 𝑛 − 1 and

𝑡𝑟 (𝑀) = (𝑞 + 1) + (𝑠 − 𝑡)√𝑞.

Since the trace is an integer, we must have 𝑠 = 𝑡 = (𝑛− 1)/2 = (𝑞2 + 𝑞)/2 and hence
𝑡𝑟 (𝑀) = 𝑞 + 1. □

The following result follows easily.

Theorem 7.11 For any odd prime power 𝑞, 𝑒(𝐸𝑅𝑞) = 1
2𝑞(𝑞 + 1)2.

Proof. By Lemma 7.6, we obtain that

𝑒(𝐸𝑅𝑞) =
1
2

(
(𝑞 + 1) (𝑞2 + 𝑞 + 1) − (𝑞 + 1)

)
=

1
2
𝑞(𝑞 + 1)2

as required. □
Let 𝑛 = 𝑞2 + 𝑞 + 1. Hence 𝑞 = (

√
4𝑛 − 3 − 1)/2 and

𝑒𝑥(𝑛, 𝐶4) ≥
1
4
(𝑛 − 1) (1 +

√
4𝑛 − 3).

This is very close to the upper bound 𝑒𝑥(𝑛, 𝐶4) ≤ 1
4𝑛(1 +

√
4𝑛 − 3) obtained in

Theorem 7.6. We will show the lower bound gives the quality for infinite many
𝑛 = 𝑞2 + 𝑞 + 1 in the next section.

Let us have one more property of graph 𝐸𝑅𝑞 .

Lemma 7.7 All vertices of degree 𝑞 in graph 𝐸𝑅𝑞 are independent.

Proof. Suppose that ⟨𝑎1, 𝑎2, 𝑎3⟩ and ⟨𝑏1, 𝑏2, 𝑏3⟩ are distinct vertices of degree 𝑞
in 𝐸𝑅𝑞 . Then the vectors (𝑎1, 𝑎2, 𝑎3) and (𝑏1, 𝑏2, 𝑏3) are linearly independent in
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7.3 Erdős-Rényi Graph 167

𝐹3. Therefore, the dimension of the subspace 𝑆 of 𝐹3 consisting of all solutions
(𝑥1, 𝑥2, 𝑥3) to the equation system{

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0,
𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 = 0

is one. If ⟨𝑎1, 𝑎2, 𝑎3⟩ and ⟨𝑏1, 𝑏2, 𝑏3⟩ are adjacent, then both (𝑎1, 𝑎2, 𝑎3) and
(𝑏1, 𝑏2, 𝑏3) would be in 𝑆, a contradiction. □

Among all graphs of the same order that contain no 𝐶4, the extremal graphs for
𝑒𝑥(𝑛;𝐶4) have the largest average degree. So they are expected to give good lower
bounds for 𝑟 (𝐶4, 𝐾1, 𝑛) if they are near regular. The following results are due to
Parsons (1975).

Lemma 7.8 Let 𝑞 be a prime power. Then

𝑟 (𝐶4, 𝐾1, 𝑞2 ) ≥ 𝑞2 + 𝑞 + 1,

𝑟 (𝐶4, 𝐾1, 𝑞2+1) ≥ 𝑞2 + 𝑞 + 2.

Proof. The graph 𝐸𝑅𝑞 has 𝑞2 + 𝑞 + 1 vertices. It contains no 𝐶4 and its minimum
degree is 𝑞, so the maximum degree of 𝐸𝑅𝑞 is 𝑞2. This proves the second lower
bound in the lemma.

For the first lower bound, let 𝑣 be a vertex of degree 𝑞 in the graph 𝐸𝑅𝑞 , by
Lemma 7.7, each neighbor of 𝑣 has degree 𝑞 + 1. Deleting the vertex 𝑣, we obtain a
graph with 𝑞2+𝑞 vertices and minimum degree 𝑞, so its complement has a maximum
degree 𝑞2 − 1. This proves the first lower bound. □

Lemma 7.9 Let 𝑛 ≥ 2 be an integer. Then

𝑟 (𝐶4, 𝐾1,𝑛) ≤ 𝑛 +
√
𝑛 − 1 + 2.

Proof. Let 𝑁 = 𝑟 (𝐶4, 𝐾1,𝑛) − 1 and let 𝐺 be a graph of order 𝑁 that contains
no 𝐶4 and its complement 𝐺 has the maximum degree at most 𝑛 − 1. Note that
𝑟 (𝐶4, 𝐾1,2) = 4 and 𝑟 (𝐶4, 𝐾1,3) = 6, so we suppose that 𝑛 ≥ 3 and 𝑁 ≥ 5. The
fact Δ(𝐺) ≤ 𝑛 − 1 implies that for any vertex 𝑣 of 𝐺, 𝑑 (𝑣) ≥ 𝑁 − 𝑛. Since the fact
𝐺 ⊉ 𝐶4 implies that for any distinct vertices 𝑢 and 𝑣 of 𝐺, |𝑁 (𝑢) ∩ 𝑁 (𝑣) | ≤ 1, we
thus have ∑︁

𝑤∈𝑉 (𝐺)

(
𝑑 (𝑤)

2

)
≤

(
𝑁

2

)
. (7.3)

This and 𝑑 (𝑤) ≥ 𝑁 − 𝑛 give

𝑁2 − 2(𝑛 + 1)𝑁 + 𝑛2 + 𝑛 + 1 ≤ 0. (7.4)

The above inequality becomes an equality if and only if 𝐺 is regular with degree
𝑁 − 𝑛 and any pair of vertices have exactly one common neighbor. We now need
the following result known as “the Friendship Theorem” of Erdős, Rényi and Sós
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168 7 Turán Number and Related Ramsey Number

(1966). Call the graph 𝐹𝑘 = 𝐾1 + 𝑘𝐾2 a Friendship graph or a 𝑘-fan, which consists
of 𝑘 triangles with a vertex in common.

Lemma 7.10 (Friendship Theorem) Let 𝐺 be a graph with 𝑁 vertices such that
any pair of vertices is joined by exactly one path of length two in𝐺. Then 𝑁 = 2𝑘 +1
and 𝐺 = 𝐹𝑘 .

Return to our current proof. If the inequality (7.3) is an equality, then by Lemma
7.10, 𝐺 = 𝐹𝑛, but 𝐺 is regular, contradicting to 𝑛 ≥ 3. So this is not the case and
hence the inequality (7.4) is strict, which implies that

𝑁2 − 2(𝑛 + 1)𝑁 + 𝑛2 + 𝑛 + 2 ≤ 0,

yielding 𝑟 (𝐶4, 𝐾1,𝑛) = 𝑁 + 1 ≤ 𝑛 +
√
𝑛 − 1 + 2. □

Theorem 7.12 Let 𝑞 be a prime power. Then

𝑟 (𝐶4, 𝐾1, 𝑞2 ) = 𝑞2 + 𝑞 + 1,

𝑟 (𝐶4, 𝐾1, 𝑞2+1) = 𝑞2 + 𝑞 + 2.

Proof. The first assertion follows from Lemma 7.8 and Lemma 7.9. However, the
second assertion needs more careful analysis, we refer the reader to Parsons (1975)
for details for this case. □

Recently, there are more exact values on Ramsey numbers of 𝐶4 versus stars that
were obtained, see two papers of Zhang, Chen and Cheng (2017).

7.4 Exact Values of 𝒆𝒙(𝒏, 𝑪4) and 𝒛(𝒏; 2)

In the last section, we have obtained that 𝑒𝑥(𝑛, 𝐶4) ∼ 𝑛3/2/2 and hence 𝑧(𝑛; 2) ∼
𝑛3/2. It is hopeless to find all exact values of 𝑒𝑥(𝑛, 𝐶4) and 𝑧(𝑛; 2) because of
the difficulty of constructions for the lower bounds and estimating for exact upper
bounds. However, it is possible to be lucky to find such values for infinitely many 𝑛.

Let us begin with 𝑧(𝑛; 2). The following result is due to Alon and Spencer (1992),
in which the definition of the projective plane was introduced in the last section.

Theorem 7.13 Let 𝑞 be an integer. If there exists a projective plane (𝑋,L) of order
𝑞, then

𝑧(𝑛; 2) = (𝑞2 + 𝑞 + 1) (𝑞 + 1).

Proof. Denote 𝑛 = 𝑞2 + 𝑞 + 1, which is the number of points in 𝑋 . Define a bipartite
graph 𝐺𝑃 with bipartition (𝑋,L) by letting 𝑥 ∈ 𝑋 be adjacent to 𝐿 ∈ L if and only
if the point 𝑥 is on the line 𝐿. As two points cannot lie on two lines, we have 𝐺𝑃
contains no 𝐶4, and so 𝑧(𝑛; 2) ≥ 𝑒(𝐺𝑃). Hence the lower bound follows by noting
𝑒(𝐺𝑃) = (𝑞2 + 𝑞 + 1) (𝑞 + 1).
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Now, let 𝐺 be a bipartite graph on partition (𝑇, 𝐵) containing no 𝐶4, where
|𝑇 | = |𝐵| = 𝑛 = 𝑞2 + 𝑞 + 1. We shall show that 𝑒(𝐺) ≤ (𝑞2 + 𝑞 + 1) (𝑞 + 1). Let
𝑏1, 𝑏2 be a uniformly selected pair of distinct vertices of 𝐵. For 𝑡 ∈ 𝑇 , let 𝑁 (𝑡) be
the neighborhood of 𝑡 and 𝑑 (𝑡) = |𝑁 (𝑡) |. For a fixed 𝑡 ∈ 𝑇 , let 𝐼𝑡 be the indicator
random variable for 𝑡 being adjacent to both 𝑏1 and 𝑏2, and let 𝑋 =

∑
𝑡∈𝑇 𝐼𝑡 . Since 𝑡

is adjacent to both 𝑏1 and 𝑏2 if and only if both 𝑏1 and 𝑏2 are chosen from 𝑁 (𝑡), we
obtain that

𝐸 [𝑋] =
∑︁
𝑡∈𝑇

𝐸 [𝐼𝑡 ] =
∑︁
𝑡∈𝑇

(
𝑑 (𝑡)

2

)/(
𝑛

2

)
.

Note that 𝑋 is the number of vertices 𝑡 ∈ 𝑇 adjacent to both 𝑏1 and 𝑏2, thus 𝑋 ≤ 1
as 𝐺 contains no 𝐶4. Let 𝑑 = 1

𝑛

∑
𝑡∈𝑇 𝑑 (𝑡) be the average degree. Convexity of the

function
(𝑦
2
)

gives ∑︁
𝑡∈𝑇

(
𝑑 (𝑡)

2

)/(
𝑛

2

)
≥ 𝑛

(
𝑑

2

)/(
𝑛

2

)
where the equality holds if and only if all vertices of 𝑇 have the same degree. Now

1 ≥ max 𝑋 ≥ 𝐸 [𝑋] ≥ 𝑛
(
𝑑

2

)/(
𝑛

2

)
,

hence
𝑑 (𝑑 − 1) ≤ 𝑛 − 1,

yielding

𝑒(𝐺) = 𝑛𝑑 ≤ 𝑛
1 +

√︁
1 + 4(𝑛 − 1)

2
= (𝑞2 + 𝑞 + 1) (𝑞 + 1)

as desired. □

We then turn to find exact values of 𝑒𝑥(𝑛, 𝐶4) for 𝑛 = 𝑞2 + 𝑞 + 1, which will
be 1

2𝑞(𝑞 + 1)2 slightly smaller than 1
2 𝑧(𝑛; 2) that we just obtained. Recall that the

Erdős-Rényi graph 𝐸𝑅𝑞 has 𝑛 = 𝑞2 + 𝑞 + 1 vertices and 𝑞(𝑞 + 1)2/2 edges, which
together with the upper bound obtained in Theorem 7.6 give

1
4
(𝑛 − 1) (1 +

√
4𝑛 − 3) ≤ 𝑒𝑥(𝑛, 𝐶4) ≤

1
4
𝑛(1 +

√
4𝑛 − 3)

when 𝑛 = 𝑞2 + 𝑞 + 1, i.e.,

1
2
𝑞(𝑞 + 1)2 ≤ 𝑒𝑥(𝑛, 𝐶4) ≤

1
2
(𝑞2 + 𝑞 + 1) (𝑞 + 1).

Erdős, Rényi and Sós (1966) proved that the second inequality is strict, and Erdős
(1966) conjectured that the first inequality is an equality. This conjecture was con-
firmed by Füredi (1996(c)), who obtained a partial answer for 𝑞 = 2𝑘 in 1983.

Theorem 7.14 Let 𝑞 > 13 be a prime power. If 𝑛 = 𝑞2 + 𝑞 + 1, then



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

170 7 Turán Number and Related Ramsey Number

𝑒𝑥(𝑛, 𝐶4) =
1
2
𝑞(𝑞 + 1)2.

To avoid some burden with extra background for the proof, we only introduce the
proof of Füredi for the special case where 𝑞 is a power of 2.

Lemma 7.11 Let 𝑞 ≥ 2 be an even integer. If𝐺 is a𝐶4-free graph of order 𝑞2 +𝑞 +1
and Δ(𝐺) ≤ 𝑞 + 1, then any vertex of degree 𝑞 + 1 is adjacent to at least one vertex
of degree of 𝑞 or less. Consequently,𝐺 has at least 𝑞 + 1 vertices of degree 𝑞 or less.

Proof. Let 𝑣 ∈ 𝑉 (𝐺) be a vertex with 𝑑 (𝑣) = 𝑞 + 1. In the subgraph of 𝐺 induced
by 𝑁 (𝑣), there is no vertex with degree two or more, thus

|𝐸 (𝑁 (𝑣)) | ≤
⌊
𝑞 + 1

2

⌋
=
𝑞

2

as 𝑞 is even. Noticing that any pair of vertices in 𝑁 (𝑣) have the unique neighbor 𝑣 in
common in𝐺, and𝑉 (𝐺) \𝑁 [𝑣] contains 𝑞2 −1 vertices, where 𝑁 [𝑣] = 𝑁 (𝑣) ∪ {𝑣},
we have ∑︁

𝑥∈𝑁 (𝑣)
𝑑 (𝑥) ≤ 𝑑 (𝑣) + 2|𝐸 (𝑁 (𝑣)) | + |𝑉 (𝐺) \ 𝑁 [𝑣] |

≤ (𝑞 + 1) + 𝑞 + (𝑞2 − 1) = (𝑞 + 1)2 − 1.

Thus there exists at least one vertex 𝑥 ∈ 𝑁 (𝑣) with 𝑑 (𝑥) ≤ 𝑞 as claimed. Set
𝑆 = {𝑥 ∈ 𝑉 (𝐺) : 𝑑 (𝑥) ≤ 𝑞}. Note that any vertex of degree 𝑞 + 1 is adjacent to at
least one vertex of 𝑆 from what just proved, we get⋃

𝑥∈𝑆
𝑁 [𝑥] = 𝑉 (𝐺).

Thus (𝑞 + 1) |𝑆 | ≥ 𝑞2 + 𝑞 + 1, impling that |𝑆 | ≥ 𝑞 + 1 as desired. □

Lemma 7.12 Let 𝑞 be an integer. If 𝐺 is a 𝐶4-free graph of order 𝑞2 + 𝑞 + 1 and
Δ(𝐺) ≥ 𝑞 + 2, then 𝑒(𝐺) ≤ 𝑞(𝑞 + 1)2/2.

Proof. Set
𝑉 = 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛},

where 𝑛 = 𝑞2 + 𝑞 + 1, and 𝑑 (𝑣1) = Δ ≥ 𝑞 + 2. Since 𝐺 contains no 𝐶4, we obtain that

|𝑁 (𝑣𝑖) \ 𝑁 (𝑣1) | ≥ |𝑁 (𝑣𝑖) | − 1 = 𝑑 (𝑣𝑖) − 1

for 2 ≤ 𝑖 ≤ 𝑛. Then
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𝑛 − Δ

2

)
= (number of pairs of 𝑉 \ 𝑁 (𝑣1))

≥
∑︁

2≤𝑖≤𝑛
(number of pairs of 𝑁 (𝑣𝑖) ∩ (𝑉 \ 𝑁 (𝑣1))

≥
∑︁

2≤𝑖≤𝑛

(
𝑑 (𝑣𝑖) − 1

2

)
.

Suppose to the contrary that 𝑒(𝐺) > 𝑞(𝑞 + 1)2/2. Since 𝑞(𝑞 + 1)2/2 is an integer,
we must have 𝑒(𝐺) ≥ 𝑞(𝑞 + 1)2/2 + 1, i.e., 2𝑒(𝐺) ≥ (𝑛 − 1) (𝑞 + 1) + 2. By Jensen’s
inequality, we have(

𝑛 − Δ

2

)
≥ (𝑛 − 1)

(∑
2≤𝑖≤𝑛 (𝑑 (𝑣𝑖) − 1)/(𝑛 − 1)

2

)
= (𝑛 − 1)

(
[2𝑒(𝐺) − (𝑛 − 1) − Δ]/(𝑛 − 1)

2

)
≥ (𝑛 − 1)

(
[(𝑛 − 1)𝑞 + 2 − Δ]/(𝑛 − 1)

2

)
.

This yields

(𝑛 − 1) (𝑛 − Δ) (𝑛 − Δ − 1)
≥[(𝑛 − 1)𝑞 + 2 − Δ] [(𝑛 − 1) (𝑞 − 1) + 2 − Δ] . (7.5)

Note that the fact Δ𝑞 > (𝑞 + 2)𝑞 − 1 = 𝑛 + 𝑞 − 2 implies

(𝑞 + 1) (𝑛 − Δ) < (𝑛 − 1)𝑞 + 2 − Δ,

and the fact Δ(𝑞 − 1) ≥ (𝑞 + 2) (𝑞 − 1) = 𝑛 − 3 does

𝑞(𝑛 − Δ − 1) ≤ (𝑛 − 1) (𝑞 − 1) + 2 − Δ.

Multiplying the left-hand sides and the right-hand sides of both above inequalities,
respectively, we have an inequality contradicting to (7.5). □

Proof of Theorem 7.14 for 𝑞 = 2𝑘 . The Erdős-Rényi graph 𝐸𝑅𝑞 gives that
𝑒𝑥(𝑛, 𝐶4) ≥ 𝑞(𝑞 + 1)2/2. On the other hand, if 𝐺 is a 𝐶4-free graph of order
𝑛 = 𝑞2+𝑞+1 with 𝑞 a power of 2, by Lemma 7.12, we may assume thatΔ(𝐺) ≤ 𝑞+1.
Thus, by Lemma 7.11, there are at least 𝑞 + 1 vertices of degree 𝑞 or less. Hence

2𝑒(𝐺) ≤ (𝑞 + 1)𝑛 − (𝑞 + 1) = 𝑞(𝑞 + 1)2,

the desired equality follows immediately. □

For any positive integer 𝑛 = 𝑞2 + 𝑞 + 1 where 𝑞 is a prime power, Theorem 7.6
and Theorem 7.14 imply that
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172 7 Turán Number and Related Ramsey Number

𝑒𝑥(𝑛, 𝐶4) =
1
2
𝑛3/2 + 𝑛

4
−𝑂 (𝑛1/2).

A conjecture of Erdős states that for all large 𝑛,

𝑒𝑥(𝑛, 𝐶4) =
1
2
𝑛3/2 + 𝑛

4
+ 𝑜(𝑛1/2).

However, this conjecture does not hold in general. Indeed, Ma and Yang (2021) have
proved that there exist some real 𝜖 > 0 and a positive density of integers 𝑛 such that

𝑒𝑥(𝑛, 𝐶4) ≤
1
2
𝑛3/2 +

(
1
4
− 𝜖

)
𝑛.

Here 𝜖 would be taken as any positive real less than 0.0375.
Let us return to the graphs forbidding 𝐶4 by considering the Ramsey numbers

of 𝐶4 in many colors. The following construction of Lazebnik and Woldar (2000)
yields a lower bound for 𝑟𝑘 (𝐶4), in which the equality holds for 𝑘 = 2 and 𝑘 = 3.
Any monochromatic graph in the construction yields a lower bound for 𝑒𝑥(𝑛, 𝐶4).

Theorem 7.15 If 𝑘 is a prime power, then

𝑟𝑘 (𝐶4) ≥ 𝑘2 + 2.

Proof. Let 𝐹𝑘 be the field of 𝑘 elements and let 𝑉 = 𝐹𝑘 × 𝐹𝑘 . Any vertex 𝑣 ∈ 𝑉
can be written as a vector (𝑣1, 𝑣2), which is distinct to the set {𝑣1, 𝑣2}. Let 𝑢 be an
additional vertex out of 𝑉 . We shall color the edges of 𝐾𝑘2+1 on vertex set 𝑉 ∪ {𝑢}
with 𝑘 colors so that there is no monochromatic 𝐶4. We will do so for all edges in 𝑉
first. Let 𝑒 = {(𝑎1, 𝑎2), (𝑏1, 𝑏2)} be an edge with both end vertices in 𝑉 . We assign
𝑒 with the color 𝛼, where

𝛼 = 𝑎1𝑏1 + 𝑎2 + 𝑏2.

We claim that there is no monochromatic𝐶4. Since otherwise, suppose that (𝑎1, 𝑎2),
(𝑏1, 𝑏2), (𝑐1, 𝑐2), and (𝑑1, 𝑑2) are four consecutive (distinct) vertices of a𝐶4 in some
color 𝛼. Thus

𝛼 = 𝑎1𝑏1 + 𝑎2 + 𝑏2 = 𝑏1𝑐1 + 𝑏2 + 𝑐2

= 𝑐1𝑑1 + 𝑐2 + 𝑑2 = 𝑑1𝑎1 + 𝑑2 + 𝑎2,

yielding (𝑎1 − 𝑐1) (𝑏1 − 𝑑1) = 0. So either 𝑎1 = 𝑐1 or 𝑏1 = 𝑑1, which imply either
(𝑎1, 𝑎2) = (𝑐1, 𝑐2) or (𝑏1, 𝑏2) = (𝑑1, 𝑑2), a contradiction.

It remains to color the edges of form {𝑢, 𝑣} with 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉 . For such an
edge, we assign it with color 𝑣1, the first coordinate of 𝑣. Suppose that there is a
monochromatic 𝐶4 in color 𝛼, which must contain the vertex 𝑢. Let (𝛼, 𝑎2), (𝑏1, 𝑏2)
and (𝛼, 𝑐2) be the other three vertices in the 𝐶4. We have that

𝛼 = 𝛼𝑏1 + 𝑎2 + 𝑏2 = 𝛼𝑏1 + 𝑏2 + 𝑐2.
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7.5 Constructions with Forbidden 𝐾2,𝑠 173

Thus 𝑎2 = 𝑐2, which implies that the vertices (𝛼, 𝑎2) and (𝛼, 𝑐2) are identical, a
contradiction. This completes the proof. □

Combining the above Theorem and the upper bound obtained in Corollary 7.2,
we obtain the asymptotic formula of 𝑟𝑘 (𝐶4) as follows.

Theorem 7.16 As 𝑘 → ∞, 𝑟𝑘 (𝐶4) ∼ 𝑘2.

7.5 Constructions with Forbidden 𝑲2,𝒔

The following construction is due to Füredi (1996(b)), and see also Axenovich,
Füredi and Mubayi (2000) with slightly different, which gives lower bounds for
𝑟𝑘 (𝐾2, 𝑠+1) and 𝑒𝑥(𝑛, 𝐾2, 𝑠+1).

Theorem 7.17 For any fixed integer 𝑠 ≥ 1, 𝑟𝑘 (𝐾2, 𝑠+1) ∼ 𝑠 𝑘2 as 𝑘 → ∞.

Proof. The desired upper bound is in the last Chapter. We need to show that

𝑟𝑘 (𝐾2, 𝑠+1) ≥ (1 − 𝑜(1))𝑠 𝑘2

as 𝑘 → ∞. Let 𝑞 be a prime power such that 𝑘 = (𝑞 − 1)/𝑠 is an integer. Set
𝑛 = (𝑞 − 1)2/𝑠 = 𝑠𝑘2. We will color all edges of 𝐾𝑛 with slightly more than 𝑘 colors
such that there is no monochromatic 𝐾2, 𝑠+1.

Let 𝐹 = 𝐹𝑞 be the 𝑞-element finite field, and let ℎ ∈ 𝐹 be an element of order 𝑠,
and

𝐻 = {1, ℎ, . . . , ℎ𝑠−1}.

Denote the cosets of 𝐻 by
𝐻1, 𝐻2, . . . , 𝐻𝑘 ,

which partition 𝐹∗ = 𝐹 \ {0}. We introduce an equivalence relation “ ≡′′ in 𝐹∗ × 𝐹∗

as (𝑎1, 𝑎2) ≡ (𝑥1, 𝑥2) if (𝑎1, 𝑎2) = ℎ𝑡 (𝑥1, 𝑥2) for some ℎ𝑡 ∈ 𝐻. The equivalence class
represented by (𝑎1, 𝑎2) is denoted by ⟨𝑎1, 𝑎2⟩. Let 𝑉 be the set of all equivalence
classes and 𝑛 = |𝑉 | = (𝑞 − 1)2/𝑠 = 𝑠𝑘2. Consider the complete graph 𝐾𝑛 with
vertex set 𝑉 . Color the edge joining two vertices ⟨𝑎1, 𝑎2⟩ and ⟨𝑥1, 𝑥2⟩ with color 𝑖
if 𝑎1𝑥1 + 𝑎2𝑥2 ≠ 0 and 𝑎1𝑥1 + 𝑎2𝑥2 ∈ 𝐻𝑖 . Clearly the definition for the coloring is
compatible with the equivalence class, that is to say, 𝑎1𝑥1 + 𝑎2𝑥2 ∈ 𝐻𝑖 , (𝑎1, 𝑎2) ≡
(𝑏1, 𝑏2) and (𝑥1, 𝑥2) ≡ (𝑦1, 𝑦2) imply 𝑏1𝑦1 + 𝑏2𝑦2 ∈ 𝐻𝑖 . Note that the edges of form
{⟨𝑎1, 𝑎2⟩, ⟨𝑥1, 𝑥2⟩} with 𝑎1𝑥1 + 𝑎2𝑥2 = 0 are still uncolored.

Let 𝐺𝑖 denote the graph induced by all edges in color 𝑖. We shall show that
𝐺𝑖 contains no 𝐾2, 𝑠+1. Let ⟨𝑎1, 𝑎2⟩ and ⟨𝑏1, 𝑏2⟩ be a pair of distinct vertices, and
consider the equation system {

𝑎1𝑥1 + 𝑎2𝑥2 = 𝑢,

𝑏1𝑥1 + 𝑏2𝑥2 = 𝑣.
(7.6)
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174 7 Turán Number and Related Ramsey Number

We claim the system has at most one solution (𝑥1, 𝑥2) for every 𝑢, 𝑣 ∈ 𝐻𝑖 . Indeed,
the solution is unique if the determinant of the system is not 0. Otherwise, there
exists 𝜆 ∈ 𝐹∗ such that (𝑏1, 𝑏2) = 𝜆(𝑎1, 𝑎2). If the system (7.6) has solution (𝑥1, 𝑥2),
then 𝜆𝑢 = 𝑣 hence 𝜆 = 𝑣/𝑢 ∈ 𝐻, contradicting to the fact that (𝑎1, 𝑎2) and (𝑏1, 𝑏2)
are not equivalent. Finally, there are 𝑠2 possibilities for 𝑢, 𝑣 ∈ 𝐻𝑖 in (7.6). The set of
solutions form 𝑠 equivalence classes hence 𝑠 vertices. So there are at most 𝑠 vertices
⟨𝑥1, 𝑥2⟩ joined simultaneously to ⟨𝑎1, 𝑎2⟩ and ⟨𝑏1, 𝑏2⟩.

Now turn to the uncolored edges {⟨𝑎1, 𝑎2⟩, ⟨𝑏1, 𝑏2⟩} with 𝑎1𝑏1 + 𝑎2𝑏2 = 0. Let
𝐺0 be the graph induced by these edges. We are going to color the edges of 𝐺0 by
an additional 𝑂 (

√
𝑘) colors. We first show that 𝐺0 is a union of 𝐾𝑘,𝑘 and 𝐾𝑘 .

Note that the equation
𝑎1𝑥1 + 𝑎2𝑥2 = 0

has 𝑞 − 1 solutions forming 𝑘 = (𝑞 − 1)/𝑠 equivalence classes hence 𝑘 vertices, thus
vertex ⟨𝑎1, 𝑎2⟩ of 𝐺0 has degree 𝑘 if 𝑎21 + 𝑎

2
2 ≠ 0 and degree 𝑘 − 1 if 𝑎21 + 𝑎

2
2 = 0.

Let {⟨𝑎1, 𝑎2⟩, ⟨𝑏1, 𝑏2⟩} be an edge of 𝐺0, then 𝑎1𝑏1 + 𝑎2𝑏2 = 0. Set

𝑉1 = {⟨𝑥1, 𝑥2⟩ : 𝑎1𝑥1 + 𝑎2𝑥2 = 0} and 𝑉2 = {⟨𝑦1, 𝑦2⟩ : 𝑏1𝑦1 + 𝑏2𝑦2 = 0}.

Then ⟨𝑎1, 𝑎2⟩ ∈ 𝑉2 and ⟨𝑏1, 𝑏2⟩ ∈ 𝑉1, and |𝑉1 | = |𝑉2 | = 𝑘 . For any ⟨𝑥1, 𝑥2⟩ ∈ 𝑉1 and
⟨𝑦1, 𝑦2⟩ ∈ 𝑉2, we have

𝑥1𝑦1 + 𝑥2𝑦2 = 𝑥1𝑦2
(
𝑦1
𝑦2

+ 𝑥2
𝑥1

)
= 𝑥1𝑦2

(
−𝑏2
𝑏1

− 𝑎1
𝑎2

)
= − 𝑥1𝑦2

𝑎2𝑏2
(𝑎1𝑏1 + 𝑎2𝑏2) = 0.

So 𝑉1 and 𝑉2 are completely connected in 𝐺0. If 𝑉1 ∩ 𝑉2 = ∅, then they induce a
complete bipartite graph 𝐾𝑘,𝑘 that is not connecting to any other vertex of 𝐺0 since
the maximum degree of 𝐺0 is 𝑘 . If 𝑉1 ∩𝑉2 ≠ ∅, ⟨𝑧1, 𝑧2⟩ ∈ 𝑉1 ∩𝑉2, then we see that
𝑧21 + 𝑧

2
2 = 0 and the degree of ⟨𝑧1, 𝑧2⟩ in 𝐺0 is 𝑘 − 1. Since it is adjacent to all other

vertices in 𝑉1 and 𝑉2, we have 𝑉1 = 𝑉2 and it induces a complete graph 𝐾𝑘 . As any
vertex in 𝑉1 = 𝑉2 has degree 𝑘 − 1, we have that any vertex in this complete graph is
not connecting to any other vertex of 𝐺0. Therefore, 𝐺0 is a union of 𝐾𝑘,𝑘 and 𝐾𝑘
as desired.

Note that 𝑟𝑘 (𝐶4) ∼ 𝑘2 from Lazebnik and Woldar (2000), so we can color
the edges of 𝐾2𝑘 with at most (1 + 𝑜(1))

√
2𝑘 <

√
3𝑘 colors such that there is

no monochromatic 𝐶4 hence no monochromatic 𝐾2, 𝑠+1. In view of known results
about the density of primes (Siegel-Walfisz Theorem, seeWalfisz (1936) and Prachar
(1957, pp. 144)), let 𝑝 𝑗 be the 𝑗 th prime such that (𝑝 𝑗 − 1)/𝑠 is an integer, and let
𝑛 𝑗 = (𝑝 𝑗 − 1)/𝑠 + ⌊3

√︁
(𝑝 𝑗 − 1)/𝑠⌋, then by what has been proved, 𝑟𝑛 𝑗

(𝐾2, 𝑠+1) ≥
(1 − 𝑜(1))𝑠 𝑛2

𝑗
. For any 𝑛 with 𝑛 𝑗 ≤ 𝑛 < 𝑛 𝑗+1, we have 𝑛 ∼ 𝑛 𝑗 as 𝑛→ ∞, thus

𝑟𝑛 (𝐾2, 𝑠+1) ≥ 𝑟𝑛 𝑗
(𝐾2, 𝑠+1) ≥ (1 − 𝑜(1))𝑠 𝑛2𝑗 = (1 − 𝑜(1))𝑠 𝑛2,

as desired. □
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7.6 Constructions with Forbidden 𝐾𝑡,𝑠 175

By counting the edges in 𝐺1, we obtain the asymptotic formula of 𝑒𝑥(𝑛, 𝐾2,𝑠+1)
as follows.

Corollary 7.3 For any fixed integer 𝑠 ≥ 1,

𝑒𝑥(𝑛, 𝐾2, 𝑠+1) ∼
1
2
√
𝑠𝑛3/2

as 𝑛→ ∞.

Proof. Note that any two vertices ⟨𝑎1, 𝑎2⟩ and ⟨𝑥1, 𝑥2⟩ (all elements are non-zero)
are adjacent in 𝐺1 if and only if 𝑎1𝑥1 + 𝑎2𝑥2 ∈ 𝐻1 and 𝑎1𝑥1 + 𝑎2𝑥2 ≠ 0. For each
fixed vertex ⟨𝑎1, 𝑎2⟩ and ℎ𝑡 ∈ 𝐻1, the solutions of the equation correspond to exactly
one vertex. Thus each vertex ⟨𝑎1, 𝑎2⟩ of 𝐺1 is adjacent to (𝑞 − 1) vertices, one of
these might coincide with ⟨𝑎1, 𝑎2⟩ so the degree of the vertex ⟨𝑎1, 𝑎2⟩ is either 𝑞 − 1
or 𝑞 − 2. Note that 𝐺1 has (𝑞 − 1)2/𝑠 vertices, so the assertion follows. □

7.6 Constructions with Forbidden 𝑲𝒕,𝒔

In this section, we first discuss the lower bound of Turán number 𝑒𝑥(𝑛, 𝐾3,3). Brown
did not know that his construction is in fact asymptotically sharp when the paper
appeared in 1966. Combining his construction and Füredi’s upper bound in 1996
(Theorem 7.7), we have an asymptotic formula of 𝑒𝑥(𝑛, 𝐾3, 3).

Theorem 7.18 As 𝑛→ ∞, 𝑒𝑥(𝑛, 𝐾3, 3) ∼ 1
2𝑛

5/3.

Let us point out that Brown’s construction did not give a good lower bound for
𝑟𝑘 (𝐾3, 3). The following construction is due to Kollár, Rónyai and Szabó (1996),
and Alon, Rónyai and Szabó (1999), which yields both asymptotic formulas of
𝑒𝑥(𝑛, 𝐾3, 3) and 𝑟𝑘 (𝐾3, 3).

Let 𝑞 be a prime power and let 𝐹𝑞2 be the field of order 𝑞2. For any 𝑋 ∈ 𝐹𝑞2 , set
𝑁 (𝑋) = 𝑋1+𝑞 , called the norm of 𝑋 . Note that the zeros of the polynomial 𝑥𝑞 − 𝑥
are precisely the elements of 𝐹𝑞 . Since 𝑋𝑞

2
= 𝑋 for any 𝑋 ∈ 𝐹𝑞2 and

[𝑁 (𝑋)]𝑞 = (𝑋1+𝑞)𝑞 = 𝑋𝑞𝑋𝑞
2
= 𝑋𝑞𝑋 = 𝑁 (𝑋),

we have that 𝑁 (𝑋) ∈ 𝐹𝑞 for any 𝑋 ∈ 𝐹𝑞2 . Clearly, 𝑁 is multiplicative as 𝑁 (𝐴𝐵) =
𝑁 (𝐴)𝑁 (𝐵). We then define a graph 𝐻 as follows. The vertex set 𝑉 (𝐻) is 𝐹𝑞2 × 𝐹∗

𝑞 .
Two distinct vertices (𝐴, 𝑎) and (𝐵, 𝑏) in 𝑉 (𝐻) are connected if and only if

𝑁 (𝐴 + 𝐵) = 𝑎𝑏.

The order of 𝐻 is 𝑞2 (𝑞 − 1). Note that 𝐵 ≠ −𝐴 since otherwise either 𝑎 = 0 or 𝑏 = 0
which is impossible. If (𝐴, 𝑎) and (𝐵, 𝑏) are adjacent, then (𝐴, 𝑎) and 𝐵(≠ −𝐴)
determine 𝑏. Thus 𝐻 is regular of degree 𝑞2 − 1. In particular, the vertex (𝐴, 𝑎) has
a loop if 𝑁 (2𝐴) = 𝑎2.



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

176 7 Turán Number and Related Ramsey Number

Lemma 7.13 The graph 𝐻 does not contain 𝐾3, 3 as a subgraph.

Proof. The lemma is a direct consequence of the following statement: if (𝐷1, 𝑑1),
(𝐷2, 𝑑2), and (𝐷3, 𝑑3) are distinct vertices in 𝑉 (𝐻), then the system of equations

𝑁 (𝑋 + 𝐷1) = 𝑥𝑑1,
𝑁 (𝑋 + 𝐷2) = 𝑥𝑑2,
𝑁 (𝑋 + 𝐷3) = 𝑥𝑑3

(7.7)

has at most two solutions (𝑋, 𝑥) ∈ 𝐹 (𝑞2) × 𝐹∗ (𝑞).
If (𝑋, 𝑥) is a solution of the system (7.7), then

• 𝑋 ≠ −𝐷𝑖 for any 𝑖 = 1, 2, 3,
• 𝐷𝑖 ≠ 𝐷 𝑗 for 𝑖 ≠ 𝑗 .

The former is true since 𝑥𝑑𝑖 ≠ 0. For the latter, if 𝐷𝑖 = 𝐷 𝑗 , then we have 𝑑𝑖 = 𝑑 𝑗
and hence (𝐷𝑖 , 𝑑𝑖) = (𝐷 𝑗 , 𝑑 𝑗 ).

From the system (7.7) and the property that 𝑁 is multiplicative, we have
𝑁

(
𝑋+𝐷1
𝑋+𝐷3

)
=
𝑑1
𝑑3
,

𝑁

(
𝑋+𝐷2
𝑋+𝐷3

)
=
𝑑2
𝑑3
.

Note that a solution (𝑋, 𝑥) of (7.7) is uniquely determined by 𝑋 , so it suffices to
show that the last system has at most two solutions on 𝑋 . This system yields

𝑁

(
𝑋+𝐷1

(𝑋+𝐷3 ) (𝐷1−𝐷3 )

)
=

𝑑1
𝑑3𝑁 (𝐷1−𝐷3 ) ,

𝑁

(
𝑋+𝐷2

(𝑋+𝐷3 ) (𝐷2−𝐷3 )

)
=

𝑑2
𝑑3𝑁 (𝐷2−𝐷3 ) .

For 𝑖 = 1, 2, if we denote 𝑏𝑖 = 𝑑𝑖/(𝑑3𝑁 (𝐷𝑖 − 𝐷3)), 𝐴𝑖 = 1/(𝐷𝑖 − 𝐷3), and
𝑌 = 1/(𝑋 + 𝐷3), then the above equations become{

𝑁 (𝑌 + 𝐴1) = 𝑏1,
𝑁 (𝑌 + 𝐴2) = 𝑏2.

Note that (𝐴 + 𝐵)𝑞 = 𝐴𝑞 + 𝐵𝑞 , so 𝑁 (𝑌 + 𝐴𝑖) = (𝑌 + 𝐴𝑖) (𝑌𝑞 + 𝐴𝑞𝑖 ) and hence the
above system equivalents to{

(𝑌 + 𝐴1) (𝑌𝑞 + 𝐴𝑞1 ) = 𝑏1,
(𝑌 + 𝐴2) (𝑌𝑞 + 𝐴𝑞2 ) = 𝑏2.

(7.8)

We now refer unknown 𝑌 , 𝐴𝑖 and 𝑏𝑖 as elements of 𝐹𝑞2 . Consider the system of
equations {

(𝑥1 − 𝑎11) (𝑥2 − 𝑎12) = 𝑏1,
(𝑥1 − 𝑎21) (𝑥2 − 𝑎22) = 𝑏2

(7.9)

with 𝑎11 ≠ 𝑎21 and 𝑎12 ≠ 𝑎22, where 𝑎𝑖 𝑗 , 𝑏𝑖 ∈ 𝐹𝑞2 . We claim that the system has at
most two solutions (𝑥1, 𝑥2) ∈ 𝐹𝑞2 × 𝐹𝑞2 . In fact, from the system we get
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7.6 Constructions with Forbidden 𝐾𝑡,𝑠 177

(𝑎11 − 𝑎21)𝑥2 + (𝑎12 − 𝑎22)𝑥1 + 𝑎21𝑎22 − 𝑎11𝑎12 = 𝑏2 − 𝑏1.

By expressing 𝑥1 in terms of 𝑥2 and substituting it into one equation in system (7.9),
we obtain a quadratic equation in 𝑥2 with a nonzero leading coefficient. This has at
most two solutions in 𝑥2 and each determines a unique 𝑥1. The claim follows.

Setting 𝑥1 = 𝑌 , 𝑥2 = 𝑌𝑞 , we see the system (7.8) has at most two solutions in
unknown 𝑌 . These solutions are corresponding with the solutions (𝑋, 𝑥) of system
(7.7), so the proof is finished. □

It is just one more step to obtain an asymptotic formula of 𝑟𝑘 (𝐾3, 3).

Theorem 7.19 As 𝑘 → ∞, 𝑟𝑘 (𝐾3, 3) ∼ 𝑘3.

Proof. The upper bound 𝑟𝑘 (𝐾3, 3) ≤ (1 + 𝑜(1))𝑘3 comes from Section 7.2. For a
lower bound, let 𝑞 be a prime power. For a complete graph on vertex set𝑉 = 𝐹𝑞2×𝐹∗

𝑞 ,
color the edge connecting (𝐴, 𝑎) and (𝐵, 𝑏) by color 𝑁 (𝐴 + 𝐵)/𝑎𝑏 if 𝐴 + 𝐵 ≠ 0. For
any three points (𝐴1, 𝑎1), (𝐴2, 𝑎2) and (𝐴3, 𝑎3), if the edges connecting (𝐴𝑖 , 𝑎𝑖) and
(𝑋, 𝑥) receive the same color, then{

𝑁 (𝑋 + 𝐴1)/𝑎1𝑥 = 𝑁 (𝑋 + 𝐴3)/𝑎3𝑥,
𝑁 (𝑋 + 𝐴2)/𝑎2𝑥 = 𝑁 (𝑋 + 𝐴3)/𝑎3𝑥,

or equivalently, 
𝑁

(
𝑋+𝐴1
𝑋+𝐴3

)
=
𝑎1
𝑎3
,

𝑁

(
𝑋+𝐴2
𝑋+𝐴3

)
=
𝑎2
𝑎3
.

It can be verified as the proof for Lemma 7.13 that there are at most two solutions of
the above system and hence there is no monochromatic 𝐾3,3.

Nowwe consider the uncolored edges connecting (𝐴, 𝑎) and (𝐵, 𝑏)with 𝐴+𝐵 = 0.
For any fixed 𝐴 ∈ 𝐹𝑞2 , set

𝑉1 = {(𝐴, 𝑥) : 𝑥 ∈ 𝐹∗
𝑞} and 𝑉2 = {(−𝐴, 𝑦) : 𝑦 ∈ 𝐹∗

𝑞}.

If 𝐴 = 0, then 𝑉1 (= 𝑉2) induces a complete graph of order 𝑞 − 1, otherwise 𝑉1
and 𝑉2 are disjoint and they form a complete bipartite graph on 2(𝑞 − 1) vertices.
Using the fact that 𝑟𝑘 (𝐶4) ∼ 𝑘2, we can color the edges of each such graph (in fact
the complete graph the same vertex set) with at most (1 + 𝑜(1)) (2𝑞)1/2 additional
colors such that there is no monochromatic 𝐶4 hence no monochromatic 𝐾3,3. The
total number of colors is (1 + 𝑜(1))𝑞, implying the required lower bound. □

The above construction can be generalized to a graph 𝐺𝑞,𝑡 as follows, which is
called projective norm graph. Let 𝑉 (𝐺𝑞,𝑡 ) = 𝐹𝑞𝑡−1 × 𝐹∗

𝑞 for 𝑡 ≥ 3. Two distinct
vertices (𝐴, 𝑎) and (𝐵, 𝑏) are adjacent if and only if 𝑁 (𝐴 + 𝐵) = 𝑎𝑏, where

𝑁 (𝑋) = 𝑋1+𝑞+···+𝑞𝑡−2 ,

called the norm of 𝑋 . In this graph, each vertex has degree 𝑞𝑡−1 − 1 (some vertices
may have a loop). In Kollár, Rónyai and Szabó (1996), and Alon, Rónyai and Szabó



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

178 7 Turán Number and Related Ramsey Number

(1999), the authors obtained that for any fixed 𝑡 ≥ 3 and 𝑠 ≥ (𝑡 − 1)!+ 1, the order of
𝑒𝑥(𝑛, 𝐾𝑡 ,𝑠) is 𝑛2−1/𝑡 , and the order of 𝑟𝑘 (𝐾𝑡 ,𝑠) is 𝑘 𝑡 . In particular, for 𝑠 ≥ 𝑡 = 3, the
generalization and the upper bounds obtained by Füredi’s (Theorem 7.7) yield that(

1
2
− 𝑜(1)

) (
𝑠 − 1

2

)1/3
𝑛5/3 ≤ 𝑒𝑥(𝑛, 𝐾3,𝑠) ≤

(
1
2
+ 𝑜(1)

)
(𝑠 − 2)1/3𝑛5/3,

and
(1 − 𝑜(1)) 𝑠 − 1

2
𝑘3 ≤ 𝑟𝑘 (𝐾3,𝑠) ≤ (1 + 𝑜(1)) (𝑠 − 2)𝑘3.

Erdős and Spencer (1974) proved that 𝑒𝑥(𝑛, 𝐾𝑡 ,𝑡 ) ≥ Ω(𝑛2−1/(𝑡+1) ) for 𝑡 ≥ 5 via
an application of the probabilistic method, which was improved by Wolfovitz (2009)
to that 𝑒𝑥(𝑛, 𝐾𝑡 ,𝑡 ) ≥ Ω(𝑛2−1/(𝑡+1) (log log 𝑛)1/(𝑡2−1) ). By analyzing of the 𝐻-free
process, this was further improved by Bohman and Keevash (2010) as

𝑒𝑥(𝑛, 𝐾𝑡 ,𝑡 ) ≥ Ω

(
𝑛2−1/(𝑡+1) (log 𝑛)1/(𝑡2−1)

)
.

A natural problem is as follows.

Problem 7.1 Determine the orders of 𝑒𝑥(𝑛, 𝐾𝑡 , 𝑡 ) and 𝑟𝑘 (𝐾𝑡 , 𝑡 ) for fixed 𝑡 ≥ 4. Is the
former 𝑛2−1/𝑡? Is the latter 𝑘 𝑡?

7.7 Turán Numbers for Even Cycles

In this section, we focus on Turán numbers 𝑒𝑥(𝑛, 𝐶2𝑚). For the upper bound, Erdős
(1965) claimed an upper bound without proof, which was proved by Bondy and
Simonovits (1974). Indeed, Bondy and Simonovits (1974) proved a more general
result that if a graph 𝐺 of order 𝑛 with edge number 𝑒(𝐺) ≥ 100𝑚𝑛1+1/𝑚, then
𝐺 contains all even cycles 𝐶2ℓ for 𝑚 ≤ ℓ ∈ 𝑚𝑛1/𝑚. For 𝑚 = 2, 3, 5, the bounds
are tight, see Klein (Erdős 1938), Benson (1966) and Singleton (1966) and later by
Wenger (1991), Lazebnik and Ustimenko (1995) and Mellinger and Mubayi (2005).
For general 𝑚, the best known lower bound on 𝑒𝑥(𝑛, 𝐶2𝑚) is due to Lazebnik,
Ustimenko and Woldar (1995), but does not match the upper bound.

The following proof is due to Bondy and Simonovits (1974).

Theorem 7.20 Let 𝑚 ≥ 2 be a fixed integer. We have

𝑒𝑥(𝑛, 𝐶2𝑚) ≤ 10𝑚𝑛1+1/𝑚

for 𝑛 ≥ 10𝑚2 .

Now we shall prove the bipartite version of Theorem 7.20 first. To do so, we shall
have more preparative lemmas. Let 𝑡 ≥ 1 be an integer. A coloring of vertices of a
graph 𝐺, not necessarily proper, is called 𝑡-periodic if the pair of end vertices of any
path of length 𝑡 have the same color. So all vertices in a connected graph have the
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7.7 Turán Numbers for Even Cycles 179

same color in any 1-periodic coloring. For 𝑡 ≥ 2, if 𝐺 has enough edges, then the
number of colors used in a 𝑡-periodic coloring is small.

Proposition 7.1 If 𝑡 is the smallest integer such that the cycle 𝐶𝑚 is 𝑡-periodic, then
𝑡 |𝑚. Moreover, if the cycle 𝐶𝑚 is 𝑡′-periodic, then 𝑡 |𝑡′.

Lemma 7.14 Let 𝑡 ≥ 1 be an integer, and let 𝐺 be a connected graph of order 𝑛. If
𝑒(𝐺) ≥ 2𝑡𝑛, then the number of colors in any 𝑡-periodic coloring of 𝐺 is at most
two.

Proof.We separate the proof into several short steps. We first prove that 𝐺 contains
two adjacent vertices joined by two internal vertex-disjoint paths, each of length at
least 𝑡. We shall call this subgraph as a 𝜃-graph intuitively.

Step 1. 𝛿(𝐺) ≥ 2𝑡.We can find such a 𝜃-graph in the followingway. Let 𝑥1𝑥2 · · · 𝑥𝑚
be a longest path. Then 𝑥1 is adjacent only to vertices of this path, 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑟 ,
say, where

2 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑟 , 𝑟 ≥ 2𝑡.

The cycle 𝑥1𝑥2 · · · 𝑥𝑖2𝑡 𝑥1 and the edge 𝑥1𝑥𝑖𝑡 form the desired 𝜃-graph.

Step 2. 𝛿(𝐺) < 2𝑡. Since 𝑒(𝐺) ≥ 2𝑡𝑛, we have that the average degree of 𝐺 is at
least 4𝑡. From Lemma 3.11, 𝐺 contains a subgraph 𝐻 with 𝛿(𝐻) ≥ 2𝑡. Thus from
step 1, 𝐻 contains a 𝜃-graph as desired.

Step 3. Any 𝜃-graph has three cycles. Let us denote these cycles 𝐶1, 𝐶2, 𝐶3 of
lengths ℓ1, ℓ2 and ℓ3, respectively, where 𝑡 + 1 ≤ ℓ1 ≤ ℓ2 < ℓ3. Thus

ℓ1 + ℓ2 − ℓ3 = 2.

The restrictions of the coloring of 𝐺 to the 𝜃-graph and to each cycle 𝐶𝑖 are also 𝑡-
periodic. Let 𝑡𝑖 ≥ 2 be the smallest integer such that the coloring of𝐶𝑖 is 𝑡𝑖-periodic.
Clearly 𝑡𝑖 |𝑡 and 𝑡𝑖 |ℓ𝑖 by Proposition 7.1. Also any period on one cycle induces the
same period on the other two cycles and hence 𝑡1 = 𝑡2 = 𝑡3. Let 𝑡∗ be the common
value of 𝑡𝑖 . Then 𝑡∗ |ℓ𝑖 hence 𝑡∗ |2 so 𝑡∗ = 1 or 𝑡∗ = 2, implying that the number of
colors in the 𝜃-graph is at most two.

Step 4. Since 𝐺 is connected, any vertex of 𝐺 is jointed to some vertex in the
𝜃-graph by a path of length 𝑘𝑡, probably using some vertices in the 𝜃-graph. Thus
both of the end vertices of the path have the same color. Hence the number of colors
in 𝐺 is at most two from step 3. □

Lemma 7.15 Let 𝐺 be a bipartite graph of order 𝑛 ≥ 10𝑚. If the minimum degree
𝛿(𝐺) ≥ 5𝑚𝑛1/𝑚, then 𝐺 contains an even cycle 𝐶2𝑚.

Proof. Fix a vertex 𝑥 of 𝐺 and let

𝑉𝑖 = {𝑣 ∈ 𝑉 (𝐺) : 𝑑 (𝑣, 𝑥) = 𝑖},

which is the set of vertices with distance 𝑖 from 𝑥. Since 𝐺 is bipartite, each 𝑉𝑖 is an
independent set.
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Suppose that 𝐺 contains no 𝐶2𝑚. We claim that

|𝑉𝑖 | ≥ 𝑛1/𝑚 |𝑉𝑖−1 | (7.10)

for 1 ≤ 𝑖 ≤ 𝑚, which will lead to a contradiction since (7.10) implies that |𝑉 (𝐺) | >
|𝑉𝑚 | ≥ 𝑛.

In the following, we aim to prove (7.10). The proof is by induction on 𝑖. This is
trivial for 𝑖 = 1 since 𝛿(𝐺) ≥ 5𝑚𝑛1/𝑚. Suppose (7.10) holds for smaller value of 𝑖.

Let 𝐻 be the subset of 𝐺 induced by 𝑉𝑖−1 ∪ 𝑉𝑖 and let 𝐻1, 𝐻2, . . . , 𝐻𝑞 be the
components of 𝐻. Write𝑊 𝑗 = 𝑉 (𝐻 𝑗 ) ∩𝑉𝑖−1.

A path 𝑥1𝑥2 · · · 𝑥𝑘 in 𝐺 is called monotonic if 𝑑 (𝑥𝑖 , 𝑥) is monotonic. This
means that a monotonic path passes through each of some consecutive sets
𝑉 𝑗 , 𝑉 𝑗+1, . . . , 𝑉 𝑗+𝑘 exactly once.

We shall show that 𝑒(𝐻1) < 4𝑚 |𝑉 (𝐻1) |. This is trivial if 𝑊1 contains only one
vertex which implies 𝐻1 is a star. We thus assume that𝑊1 has at least two vertices.
Let 𝑝 < 𝑖 − 1 be the smallest index such that there is a vertex 𝑎 ∈ 𝑉𝑝 and there
are two monotonic paths 𝑃1, 𝑃2 joining 𝑎 to 𝑊1 which only contain the vertex 𝑎 in
common.

We then show that each vertex of𝑊1 is jointed to 𝑎 by a monotonic path. This is
clear if 𝑎 = 𝑥. Otherwise, for 𝑦 ∈ 𝑊1, there is a monotonic path 𝑃3 joining 𝑦 to 𝑥.
By the minimality of 𝑝, 𝑃3 must intersect 𝑃1 or 𝑃2, say 𝑃1, at some vertex 𝑧. The
path consisting of the section of 𝑃3 between 𝑦 and 𝑧 and the section of 𝑃1 between
𝑧 and 𝑎 is a monotonic path from 𝑦 to 𝑎.

Fig. 1 Fig. 2

We now assign colors red and blue to the vertices of𝑊1 in such a way that if two
vertices have different colors, then they are joined to 𝑎 by internal disjoint monotonic
paths. This can be done as follows. Each vertex of 𝑊1 that can be joined to 𝑎 by a
monotonic path disjoint from 𝑃2 is colored red; all other vertices of𝑊1 are colored
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7.7 Turán Numbers for Even Cycles 181

blue. To see this is the required coloring, let 𝑥1 and 𝑥2 be vertices of𝑊1 colored red
and blue, respectively. We will show that they are joined to 𝑎 by internal disjoint
monotonic paths.

Let 𝑃′
1 be a monotonic path from 𝑥1 to 𝑎 disjoint from 𝑃2, and let 𝑃′

2 be a
monotonic path from 𝑥2 to 𝑎. Moving along 𝑃′

2 from 𝑥2 towards 𝑎, let 𝑣 be the first
vertex of (𝑃′

1∪𝑃2) \ {𝑎} encountered. Such a vertex 𝑣 exists since 𝑥2 is colored blue.
Also we see that 𝑣 cannot belong to 𝑃′

1 for otherwise the section of 𝑃′
2 between 𝑥2

and 𝑣 together with the section of 𝑃′
1 between 𝑣 and 𝑎 would constitute a monotonic

path from 𝑥2 to 𝑎 disjoint from 𝑃2, contradicting the assumption that 𝑥2 is colored
blue. But then 𝑣 ∈ 𝑃2 and we have a monotonic path 𝑥2𝑃′

2𝑣𝑃2𝑎 disjoint from 𝑃′
1 as

desired.
We now color the vertices of 𝐻1 in 𝑉𝑖 green and show that this coloring of 𝐻1 is

𝑡-periodic with 𝑡 = 2(𝑚 − 𝑖 + 𝑝 + 1). For, since 𝑡 is even, if one end vertex of a path
of length 𝑡 in 𝐻1 is green, then so is the other. Also, there can be no path of length 𝑡
joining a red and a blue vertex, because, if a red 𝑥1 were joined to a blue 𝑥2 by such a
path, this path together with vertex-disjoint monotonic paths from 𝑥1 to 𝑎 and 𝑥2 to
𝑎 would form a 𝐶2𝑚. Therefore, the coloring of 𝐻1 is indeed 𝑡-periodic. Since three
colors are used in the coloring, Lemma 7.14 implies that

𝑒(𝐻1) < 2𝑡 |𝑉 (𝐻1) | < 4𝑚 |𝑉 (𝐻1) |.

Similarly we have that 𝑒(𝐻 𝑗 ) < 4𝑚 |𝑉 (𝐻 𝑗 ) | for 𝑗 = 1, 2, . . . , 𝑞 hence

𝑒(𝐻) < 4𝑚 |𝑉 (𝐻) |.

Let 𝐻′ be the subgraph of 𝐺 induced by 𝑉𝑖−2 ∪𝑉𝑖−1. The same argument gives

𝑒(𝐻′) < 4𝑚 |𝑉 (𝐻′) |.

Clearly, since 𝛿(𝐺) ≥ 5𝑚𝑛1/𝑚,

𝑒(𝐻) + 𝑒(𝐻′) ≥ 5𝑚𝑛1/𝑚 |𝑉𝑖−1 |.

Combining these inequalities, we get

4𝑚( |𝑉𝑖−1 | + |𝑉𝑖 | + |𝑉𝑖−1 | + |𝑉𝑖−2 |)
=4𝑚( |𝑉 (𝐻) | + |𝑉 (𝐻′) |) > 𝑒(𝐻) + 𝑒(𝐻′) ≥ 5𝑚𝑛1/𝑚 |𝑉𝑖−1 |,

which implies that

|𝑉𝑖 | >
1
4𝑚

(
(5𝑚𝑛1/𝑚 − 8𝑚) |𝑉𝑖−1 | − 4𝑚 |𝑉𝑖−2 |

)
.

Using the induction hypothesis,

|𝑉𝑖−1 | ≥ 𝑛1/𝑚 |𝑉𝑖−2 |.
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182 7 Turán Number and Related Ramsey Number

Therefore,

|𝑉𝑖 | >
1

4𝑚

(
5𝑚𝑛1/𝑚 − 8𝑚 − 20𝑚2

5𝑚𝑛1/𝑚

)
|𝑉𝑖−1 |

>
1

4𝑚
(5𝑚𝑛1/𝑚 − 9𝑚) |𝑉𝑖−1 |

> 𝑛1/𝑚 |𝑉𝑖−1 |

as desired. □

We also need the following result.

Lemma 7.16 For any graph 𝐺, there is a subgraph 𝐻 of 𝐺 such that 𝐻 is bipartite
and 𝑒(𝐻) ≥ 𝑒(𝐺)/2.

Proof. We may assume that 𝑒(𝐺) > 0 as the case 𝑒(𝐺) = 0 is trivial. For a subset
𝑆 of 𝑉 (𝐺), write 𝑆 = 𝑉 (𝐺) \ 𝑆. Let 𝑒(𝑆, 𝑆) be the number of edges between 𝑆 and
𝑆, in which 𝑒(𝑉, ∅) = 0. Maximizing 𝑒(𝑆, 𝑆) over all subsets 𝑆 of 𝑉 (𝐺), we obtain
a spanning bipartite subgraph 𝐻 on vertex classes 𝑆 and 𝑆 with 𝑒(𝐻) = 𝑒(𝑆, 𝑆), in
which none of 𝑆 and 𝑆 is empty as 𝑒(𝐺) > 0. Then for any vertex 𝑣, say 𝑣 ∈ 𝑆, at
least half of neighbors of 𝑣 in 𝐺 are in 𝑆 since otherwise removing 𝑣 from 𝑆 to 𝑆
would increase 𝑒(𝑆, 𝑆), contradicting to the maximality of 𝑒(𝑆, 𝑆). This follows by
𝑒(𝐻) ≥ 𝑒(𝐺)/2.

The Lemma has a simple proof by probabilistic method. Let 𝑆 be a random set of
𝑉 (𝐺) defined by Pr(𝑣 ∈ 𝑆) = 1/2, independently. Then it is easy to know that the
probability of any edge is an edge between 𝑆 and 𝑆 is 1/2. Thus the expectation of
𝑒(𝑆, 𝑆) is 𝑒(𝐺)/2, implying that there is some set 𝑆 such that 𝑒(𝑆, 𝑆) ≥ 𝑒(𝐺)/2. □

Edwards (1972, 1975) proved the essentially best possible result that for every
graph 𝐺 with 𝑚 edges, there exists a bipartite graph 𝐻 satisfying

𝑒(𝐻) ≥ 𝑚

2
+

√︂
𝑚

8
+ 1

64
− 1

8
.

This result is tight if 𝐺 is a complete graph on an odd number of vertices, i.e.
whenever 𝑚 =

(𝑛
2
)

for some odd integer 𝑛.

Proof of Theorem 7.20. Let 𝐺 be a graph of order 𝑛 ≥ 10𝑚2 with 𝑒(𝐺) ≥
10𝑚𝑛1+1/𝑚. Lemma 7.16 implies that there is a spanning subgraph 𝐻 of 𝐺 such that
𝐻 is bipartite and 𝑒(𝐻) ≥ 5𝑚𝑛1+1/𝑚. The average degree of 𝐻 is at least 10𝑚𝑛1/𝑚.
By Lemma 3.11, there is a subgraph 𝐹 of 𝐻 satisfying that 𝛿(𝐹) ≥ 5𝑚𝑛1/𝑚. Let 𝑛0
be the order of 𝐹, then

𝑛0 > 𝛿(𝐹) ≥ 5𝑚𝑛1/𝑚 > 𝑛1/𝑚 ≥ 10𝑚,

and 𝛿(𝐹) ≥ 5𝑚𝑛1/𝑚
0 . Thus by Lemma 7.15, the bipartite graph 𝐹 contains an even

cycle 𝐶2𝑚, so does 𝐺. This proves the theorem. □
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7.7 Turán Numbers for Even Cycles 183

Theorem 7.20 yields that for each fixed 𝑚 ≥ 2,

𝑒𝑥(𝑛, 𝐶2𝑚) ≤ 10𝑚𝑛1+1/𝑚.

Corollary 7.4 For each fixed 𝑚 ≥ 2,

𝑟𝑘 (𝐶2𝑚) ≤ 𝑐 𝑘𝑚/(𝑚−1) ,

where 𝑐 = 𝑐(𝑚) > 0 is a constant.

For 𝑚 = 2, we have established the right order for 𝑒𝑥(𝑛, 𝐶4). In the following, we
shall prove that its order is also right for 𝑚 = 3 and 𝑚 = 5.

Theorem 7.21 There exists some constant 𝑐 = 𝑐(𝑚) > 0 such that

𝑒𝑥(𝑛, 𝐶2𝑚) ≥ 𝑐𝑛1+1/𝑚

for 𝑚 = 2, 3, 5.

The constructions for the desired lower bounds are due to Wenger (1991). The
same order of lower bound for 𝑚 = 3 has been obtained by Benson (1966), and for
𝑚 = 2, 3, 5 by Lazebnik, Ustimenko and Woldar (1995).

Let 𝑞 be a prime power. Construct a bipartite graph 𝐻𝑚 (𝑞) as follows on vertex
classes 𝑋 and 𝑌 , where both 𝑋 and 𝑌 are copies of 𝐹𝑚𝑞 . Thus |𝑋 | = |𝑌 | = 𝑞𝑚. For
two vertices 𝐴 ∈ 𝑋 and 𝐵 ∈ 𝑌 with

𝐴 =

©­­­­«
𝑎1
𝑎2
...

𝑎𝑚

ª®®®®¬
and 𝐵 =

©­­­­«
𝑏1
𝑏2
...

𝑏𝑚

ª®®®®¬
,

they are adjacent if

𝐵 =

©­­­­­­«

𝑏1
𝑏2
...

𝑏𝑚−1
𝑏𝑚

ª®®®®®®¬
=

©­­­­­­«

𝑎1
𝑎2
...

𝑎𝑚−1
0

ª®®®®®®¬
+ 𝑏𝑚

©­­­­­­«

𝑎2
𝑎3
...

𝑎𝑚
1

ª®®®®®®¬
.

For each vertex 𝐴 ∈ 𝑋 , the value 𝑏𝑚 uniquely determines a neighbor 𝐵 of 𝐴, so each
vertex in 𝑋 has degree 𝑞. Hence 𝐻𝑚 (𝑞) has 2𝑞𝑚 vertices and 𝑞𝑚+1 edges.

Lemma 7.17 The bipartite graph 𝐻𝑚 (𝑞) is 𝑞-regular. The last coordinates of neigh-
bors of any vertex are pairwise distinct, hence they form 𝐹𝑞 .

Proof. For a vertex 𝐴 ∈ 𝑋 , any neighbor 𝐵 ∈ 𝑌 of 𝐴 is uniquely determined by its
last coordinate 𝑏𝑚 from the adjacency. Thus 𝐴 have 𝑞 neighbors, of which the last
coordinates form 𝐹𝑞 . Given a vertex 𝐵 ∈ 𝑌 , if 𝐴 ∈ 𝑋 is a neighbor of 𝐵, then
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©­­­­«
𝑏1
...

𝑏𝑚−1
𝑎𝑚

ª®®®®¬
=

©­­­­«
1 𝑏𝑚
. . .

. . .

1 𝑏𝑚
1

ª®®®®¬
©­­­­«
𝑎1
...

𝑎𝑚−1
𝑎𝑚

ª®®®®¬
,

in which 𝐴 is uniquely determined by 𝑎𝑚. Thus 𝐵 has 𝑞 neighbors, of which the last
coordinates form 𝐹𝑞 . □

Before giving more properties of 𝐻𝑚 (𝑞), recall Vandermonde matrix on 𝐹𝑞 as
follows. For 𝑚 ≥ 2 and 𝑎𝑖 ∈ 𝐹𝑞 , set

𝑀𝑚 = 𝑀 (𝑎1, 𝑎2, . . . , 𝑎𝑚) =
©­­­­«

1 1 · · · 1
𝑎1 𝑎2 · · · 𝑎𝑚
...

...
...

𝑎𝑚−1
1 𝑎𝑚−1

2 · · · 𝑎𝑚−1
𝑚

ª®®®®¬
as an 𝑚 × 𝑚 matrix on 𝐹𝑞 . Note that

det(𝑀𝑚) = Π1≤𝑖< 𝑗≤𝑚 (𝑎 𝑗 − 𝑎𝑖).

So 𝑀𝑚 is singular if and only if there are some 𝑖 ≠ 𝑗 such that 𝑎𝑖 = 𝑎 𝑗 . However, we
need a more specific property of the Vandermonde matrix.

Lemma 7.18 If the 𝑖th column of the Vandermonde matrix 𝑀𝑚 is a linear combina-
tion of the others, then there exists 𝑗 ≠ 𝑖 such that 𝑎𝑖 = 𝑎 𝑗 .

Proof. Note that det(𝑀𝑚) = Π1≤𝑖< 𝑗≤𝑚 (𝑎 𝑗 − 𝑎𝑖) = 0 by the assumption, so the
assertion follows immediately. □

Lemma 7.19 If 𝐻𝑚 (𝑞) contains a cycle of length 2𝑚, denoted by

𝐶2𝑚 = (𝐴1, 𝐵1, 𝐴2, 𝐵2, · · · , 𝐴𝑚, 𝐵𝑚),

where 𝐴𝑖 ∈ 𝑋 and 𝐵𝑖 ∈ 𝑌 , then for each 𝐵𝑖 , there exists a 𝐵 𝑗 with 𝑗 ≠ 𝑖 such
that 𝑏𝑖 𝑚 = 𝑏 𝑗 𝑚, where 𝑏𝑖 𝑚 and 𝑏 𝑗 𝑚 are the 𝑚th (last) coordinates of 𝐵𝑖 and 𝐵 𝑗 ,
respectively.

Proof. Let 𝐴, 𝐵 and 𝐴′ be three consecutive vertices in the cycle 𝐶2𝑚 with 𝐵 ∈ 𝑌 .
By the definition of adjacency we have

©­­­­«
𝑎1 − 𝑎′1

...

𝑎𝑚−1 − 𝑎′𝑚−1
0

ª®®®®¬
= −𝑏𝑚

©­­­­«
𝑎2 − 𝑎′2

...

𝑎𝑚 − 𝑎′𝑚
0

ª®®®®¬
,

which gives 𝑎𝑖 − 𝑎′𝑖 = −𝑏𝑚 (𝑎𝑖+1 − 𝑎′𝑖+1) = (−𝑏𝑚)𝑚−𝑖 (𝑎𝑚 − 𝑎′𝑚) hence
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7.7 Turán Numbers for Even Cycles 185

©­­­­­­«

𝑎1 − 𝑎′1
𝑎2 − 𝑎′2

...

𝑎𝑚−1 − 𝑎′𝑚−1
𝑎𝑚 − 𝑎′𝑚

ª®®®®®®¬
= (𝑎𝑚 − 𝑎′𝑚)

©­­­­­­«

(−𝑏𝑚)𝑚−1

(−𝑏𝑚)𝑚−2

...

−𝑏𝑚
1

ª®®®®®®¬
.

Clearly 𝑎𝑚 ≠ 𝑎′𝑚 since otherwise 𝐴 and 𝐴′ are the same vertex. By taking 𝐴, 𝐵

and 𝐴′ as 𝐴𝑖 , 𝐵𝑖 and 𝐴𝑖+1, respectively, and by writing 𝑥𝑖 = 𝑎𝑖 𝑚 − 𝑎 (𝑖+1) 𝑚, and
𝑐𝑖 = −𝑏𝑖 𝑚, we obtain

𝐴𝑖 − 𝐴𝑖+1 = 𝑥𝑖

©­­­­­­«

𝑐𝑚−1
𝑖

𝑐𝑚−2
𝑖
...

𝑐𝑖
1

ª®®®®®®¬
,

and 𝑥𝑖 ≠ 0. From the trivial fact that
∑𝑚
𝑖=1 (𝐴𝑖 − 𝐴𝑖+1) is a zero vector, where 𝐴𝑚+1

is 𝐴1, we have ©­­­­­«
𝑐𝑚−1

1 𝑐𝑚−1
2 · · · 𝑐𝑚−1

𝑚

𝑐𝑚−2
1 𝑐𝑚−2

2 · · · 𝑐𝑚−2
𝑚

· · · · · ·
𝑐1 𝑐2 · · · 𝑐𝑚
1 1 · · · 1

ª®®®®®¬
©­­­­­­«

𝑥1
𝑥2
...

𝑥𝑚−1
𝑥𝑚

ª®®®®®®¬
=

©­­­­­­«

0
0
...

0
0

ª®®®®®®¬
.

Note that the left-hand side matrix is a Vandermonde matrix, and the 𝑖th column is
a linear combination of the others since 𝑥𝑖 ≠ 0. Thus 𝑐𝑖 = 𝑐 𝑗 and hence 𝑏𝑖 𝑚 = 𝑏 𝑗 𝑚
for some 𝑗 ≠ 𝑖 by Lemma 7.18. □

Corollary 7.5 The graph 𝐻𝑚 (𝑞) contains no 𝐶2𝑚 for 𝑚 = 2, 3, 5.

Proof. If 𝐻2 (𝑞) contains a cycle 𝐶4 = (𝐴1, 𝐵1, 𝐴2, 𝐵2) with 𝐴𝑖 ∈ 𝑋 and 𝐵𝑖 ∈ 𝑌 . By
Lemma 7.19, 𝑏12 = 𝑏22. However, both 𝐵1 and 𝐵2 are adjacent to 𝐴1, implying the
last coordinates 𝑏12 and 𝑏22 are distinct by Lemma 7.17. This leads to a contradiction.

If 𝐻3 (𝑞) contains a cycle 𝐶6 = (𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3) with 𝐴𝑖 ∈ 𝑋 and 𝐵𝑖 ∈ 𝑌 .
By Lemma 7.19, 𝑏13 = 𝑏23 or 𝑏13 = 𝑏33. However, 𝐵1 and 𝐵2 have a neighbor
𝐴2 in common, and 𝐵1 and 𝐵3 have a neighbor 𝐴1 in common, which leads to a
contradiction from Lemma 7.17.

If 𝐻5 (𝑞) contains a cycle 𝐶10 = (𝐴1, 𝐵1, . . . , 𝐴5, 𝐵5) with 𝐴𝑖 ∈ 𝑋 and
𝐵𝑖 ∈ 𝑌 . By Lemma 7.19, there exist three distinct vertices 𝐵𝑖 , 𝐵 𝑗 and 𝐵𝑘 such
that 𝑏𝑖5 = 𝑏 𝑗5 = 𝑏𝑘5. Two of these vertices must be consecutive in the cyclic se-
quence 𝐵1, 𝐵2, . . . , 𝐵5, 𝐵1, so they have a neighbor in common, which again leads
to a contradiction from Lemma 7.17. □

Proof of Theorem 7.21. Note that 𝐻𝑚 (𝑞) has 𝑛 = 2𝑞𝑚 vertices and 𝑞𝑚+1 =

(𝑛/2)1+1/𝑚 edges. The proof of Theorem 7.21 now follows immediately from the
above corollary and a result that two consecutive prime numbers 𝑝, 𝑝′ satisfying
𝑝 ∼ 𝑝′ (Siegel-Walfisz Theorem, see Walfisz (1936) and Prachar (1957, pp. 144)). □
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186 7 Turán Number and Related Ramsey Number

Let us remark that we cannot expect that 𝐻𝑚 (𝑞) gives more exact orders. It is
shown by Shao, He and Shan (2008) that 𝐻𝑚 (𝑞) contains all even cycles of order
2𝑚 for 𝑚 = 4 or 𝑚 ≥ 6.

A further result due to Füredi, Naor and Verstraëte (2006) is as follows:

𝑐1𝑛
4/3 +𝑂 (𝑛) < 𝑒𝑥(𝑛, 𝐶6) < 𝑐2𝑛

4/3 +𝑂 (𝑛),

where 𝑐1 = 3(
√

5 − 2)/(
√

5 − 1)4/3 = 0.53 . . . , and 𝑐2 = 0.62 . . . is the real root of
16𝑥3 − 4𝑥2 + 𝑥 − 3 = 0.

Moreover, as we have mentioned in the beginning of this section, Lazebnik,
Ustimenko and Woldar (1995) proved that for fixed 𝑚 ≥ 3,

𝑒𝑥(𝑛, 𝐶2𝑚) ≥ Ω

(
𝑛1+2/(3𝑚−3)

)
.

As we have known that for 𝑚 = 2, 3, 5, 𝑒𝑥(𝑛, 𝐶2𝑚) = Θ(𝑛1+1/𝑚). The following
conjecture proposed by Bondy and Simonovits (1974) is still open.

Conjecture 7.1 For 𝑚 = 4 or fixed 𝑚 ≥ 6, 𝑒𝑥(𝑛, 𝐶2𝑚) = Θ(𝑛1+1/𝑚).

Let us see a generalization of the Turán number of even cycle as follows. Let 𝜃𝑘,ℓ
be the graph consisting of ℓ internally disjoint paths of length 𝑘 , each with the same
endpoints. We see that 𝜃𝑘,2 = 𝐶2𝑘 . The problem of determining 𝑒𝑥(𝑛, 𝜃𝑘,ℓ) was first
studied by Faudree and Simonovits (1983), who showed that 𝑒𝑥(𝑛, 𝜃𝑘,ℓ) = 𝑂 (𝑛1+1/𝑘)
for all fixed 𝑘, ℓ ≥ 2. The lower bounds for 𝑒𝑥(𝑛, 𝐶2𝑘) imply that this bound is tight
when 𝑘 = 2, 3 or 5. Additionally, a result of Mellinger and Mubayi (2005) shows
that it is tight for 𝑘 = 7 and ℓ ≥ 3. Conlon (2019) obtained that for any fixed integer
𝑘 ≥ 2, there exists an integer ℓ such that

𝑒𝑥(𝑛, 𝜃𝑘,ℓ) = Ω(𝑛1+1/𝑘).

In the following, we will consider Ramsey numbers of bipartite graphs and large
𝐾𝑛. Recall a result in Chapter 3 that for any graph 𝐺 of order 𝑁 and average degree
𝑑, if the maximum degree of any subgraph induced by a neighborhood is less than
an integer 𝑚, then

𝛼(𝐺) ≥ 𝑁 𝑓𝑚 (𝑑), (7.11)

where 𝑓𝑚 (𝑥) > (log(𝑥/𝑚) − 1)/𝑥 for 𝑥 > 0. The inequality (7.11) holds if any
subgraph of 𝐺 induced by a neighborhood contains no path of 𝑚 edges.

The following result is due to Li and Zang (2003).

Theorem 7.22 For any fixed integers 𝑠 ≥ 𝑡 ≥ 2,

𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛) ≤ (1 + 𝑜(1)) (𝑠 − 𝑡 + 1)
(
𝑛

log 𝑛

) 𝑡
.

Proof. Let 𝑁 = 𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛) − 1, and let𝐺 be a graph on 𝑁 vertices with no 𝐾𝑡 , 𝑠 and
𝛼(𝐺) ≤ 𝑛 − 1. By the upper bound of Turán numbers in Section 7.2, we have
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7.7 Turán Numbers for Even Cycles 187

𝑑 (𝐺) ≤ (1 + 𝑜(1)) (𝑠 − 𝑡 + 1)1/𝑡𝑁1−1/𝑡 , (7.12)

where 𝑑 (𝐺) is the average degree of 𝐺.
Let 𝑣 be a vertex of 𝐺, and let 𝐺𝑣 be the subgraph of 𝐺 induced by the neighbor-

hood of 𝑣 with maximum degree Δ(𝐺𝑣). Then

Δ(𝐺𝑣) ≤ 𝑠 − 1 if 𝑡 = 2 (7.13)

and
Δ(𝐺𝑣) ≤ 𝑟 (𝐾𝑡−2,𝑠 , 𝐾𝑛) − 1 if 𝑡 ≥ 3. (7.14)

Indeed, for 𝑡 = 2, (7.13) follows immediately from the fact that 𝐺 contains no 𝐾2, 𝑠.
For 𝑡 ≥ 3, suppose to the contrary that the degree of some vertex 𝑢 in 𝐺𝑣 is at
least 𝑟 (𝐾𝑡−2, 𝑠, 𝐾𝑛). Since 𝐺 contains no 𝐾𝑛, 𝐺𝑢 ∩ 𝐺𝑣 must contain 𝐾𝑡−2, 𝑠, which
together with 𝑢 and 𝑣 yield a 𝐾𝑡 , 𝑠 in 𝐺, a contradiction.

Now let us apply induction on 𝑡 ≥ 2. For 𝑡 = 2, in view of (7.12) and (7.13), from
(7.11) we have,

𝑛 > 𝑁 𝑓𝑠 (𝑑 (𝐺)) ≥ (1 − 𝑜(1))
𝑁 log(

√︁
(𝑠 − 1)𝑁/𝑠)√︁

(𝑠 − 1)𝑁

= (1 − 𝑜(1))
√︂

𝑁

𝑠 − 1
log 𝑁

2
.

It follows that 𝑁 ≤ (𝑠 − 1 + 𝑜(1)) (𝑛/log 𝑛)2 since otherwise, there exists a constant
𝛿 > 0 such that 𝑁 ≥ (𝑠 − 1 + 𝛿) (𝑛/log 𝑛)2 for infinitely many 𝑛, which will lead to a
contradiction. Hence the assertion holds for 𝑡 = 2.

For 𝑡 = 3, our proof begins at Chvátal’s discovery on 𝑟 (𝑇, 𝐾𝑛) mentioned in
Chapter 1,

𝑟 (𝐾1,𝑠 , 𝐾𝑛) = 𝑠(𝑛 − 1) + 1.

Let𝑚 = 𝑠(𝑛−1)+1 ∼ Ω(𝑁1/3). Since any subgraph of𝐺 induced by a neighborhood
has maximum degree less than 𝑚, a similar argument as that for 𝑡 = 2 gives

𝑛 > 𝑁 𝑓𝑚 (𝑑 (𝐺)) ≥ (1 − 𝑜(1)) 𝑁 log((𝑠 − 2)1/3𝑁2/3/𝑚)
(𝑠 − 2)1/3𝑁2/3

= (1 − 𝑜(1))
(
𝑁

𝑠 − 2

)1/3 log 𝑁
3

.

It follows that 𝑁 ≤ (𝑠 − 2 + 𝑜(1)) (𝑛/log 𝑛)3, and the assertion holds for 𝑡 = 3.
Let us proceed to the induction step for 𝑡 ≥ 4. For any fixed 0 < 𝜖 < 1, set

𝑑 = (1 + 𝜖) (𝑠 − 𝑡 + 2)
(
𝑛

log 𝑛

) 𝑡−1
,

and
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188 7 Turán Number and Related Ramsey Number

𝑚 =

⌊
(1 + 𝜖) (𝑠 − 𝑡 + 3)

(
𝑛

log 𝑛

) 𝑡−2
⌋
.

The induction hypothesis assumes that for large 𝑛,

𝑟 (𝐾𝑡−1,𝑠 , 𝐾𝑛) < 𝑑, and 𝑟 (𝐾𝑡−2,𝑠 , 𝐾𝑛) < 𝑚.

Using (7.11) as before, we have

𝑛 ≥ (1 − 𝑜(1))
(

𝑁

𝑠 − 𝑡 + 1

)1/𝑡
log

𝑑

𝑚

= (1 − 𝑜(1))
(

𝑁

𝑠 − 𝑡 + 1

)1/𝑡
log

(
𝑛

log 𝑛

)
.

It follows that 𝑁 ≤ (𝑠 − 𝑡 + 1 + 𝑜(1)) (𝑛/log 𝑛)𝑡 as desired. □

Combining the above theorem and the lower bounds obtained in Chapter 5 by
using the Local Lemma, we have that for fixed 𝑠 ≥ 𝑡 ≥ 2,

𝑐

(
𝑛

log 𝑛

) (𝑠𝑡−1)/(𝑠+𝑡−2)
≤ 𝑟 (𝐾𝑡 ,𝑠 , 𝐾𝑛) ≤ (1 + 𝑜(1)) (𝑠 − 𝑡 + 1)

(
𝑛

log 𝑛

) 𝑡
,

where 𝑐 = 𝑐(𝑠, 𝑡) > 0 is a constant. Note that the exponent (𝑠𝑡 − 1)/(𝑠 + 𝑡 − 2) in the
lower bound can be arbitrarily close to the exponent 𝑡 when 𝑠 is much larger than 𝑡.
So it is natural to ask if the order of upper bound is sharp. Assuming yes, we shall
be able to establish a somehow unexpected result: asymptotically, all the extremal
graphs for 𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛) come from those for 𝑒𝑥(𝑁, 𝐾𝑡 , 𝑠). Thus it is very interesting
to estimate the independence numbers of known extremal graphs for 𝑒𝑥(𝑛, 𝐾𝑡 , 𝑠). No
doubt, this assumption is a bold adventure.

Proposition 7.2 For any fixed integers 𝑠 ≥ 𝑡 ≥ 2, if there exists a constant 𝑐 > 0
such that

𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛) ≥ (𝑐 − 𝑜(1))
(
𝑛

log 𝑛

) 𝑡
(7.15)

as 𝑛→ ∞, then
𝑒𝑥(𝑁, 𝐾𝑡 , 𝑠) ≥

1
2
(𝑐 − 𝑜(1))1/𝑡𝑁2−1/𝑡 (7.16)

for all sufficiently large 𝑁 of the form 𝑁 = 𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛)−1. Furthermore, the extremal
graphs yielding (7.15) also yield (7.16).

Proof. To prove it, assume the contrary: there exists 𝛿 > 0 such that 𝑒𝑥(𝑁, 𝐾𝑡 , 𝑠) ≤
1
2 (𝑐 − 𝛿)

1/𝑡𝑁2−1/𝑡 for infinitely many 𝑛, where 𝑁 = 𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛) − 1. Imitating the
previous proof, we have

𝑛 ≥ (1 − 𝑜(1))
(
𝑁

𝑐 − 𝛿

)1/𝑡
log

𝑁1−1/𝑡

𝑟 (𝐾𝑡−2,𝑠 , 𝐾𝑛)
,
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7.7 Turán Numbers for Even Cycles 189

which implies 𝑁 ≤ (𝑐 − 𝛿 + 𝑜(1)) ( 𝑛
log 𝑛 )

𝑡 , contradicting (7.15). □

The main idea for the proof of the above theorem is simple: if the average degree
of a graph is small, then its independence number must be big. The main result in the
last section 𝑒𝑥(𝑁,𝐶2𝑚) ≤ 𝑐(𝑚)𝑁1+1/𝑚 will be used to improve the result of Erdős,
Faudree, Rousseau and Schelp (1978) that 𝑟 (𝐶2𝑚, 𝐾𝑛) ≤ 𝑐𝑛𝑚/(𝑚−1) with a factor
log 𝑛.

Theorem 7.23 For any fixed 𝑚 ≥ 2, there exists a constant 𝑐 = 𝑐(𝑚) > 0 such that
for all sufficiently large 𝑛,

𝑟 (𝐶2𝑚, 𝐾𝑛) ≤ 𝑐
(
𝑛

log 𝑛

)𝑚/(𝑚−1)
.

Proof. Let 𝐺 be a graph of order 𝑁 = 𝑟 (𝐶2𝑚, 𝐾𝑛) − 1 which contains no 𝐶2𝑚
and 𝛼(𝐺) < 𝑛. For any vertex 𝑣 of 𝐺, consider the subgraph 𝐺𝑣 induced by the
neighborhood of 𝑣. The subgraph 𝐺𝑣 does not contain path 𝑃2𝑚−2 since 𝐺 does
not contain 𝐶2𝑚, where 𝑃2𝑚−2 is a path of 2𝑚 − 2 edges. Also since 𝑒𝑥(𝑁,𝐶2𝑚) ≤
𝑐1𝑁

1+1/𝑚 for some constant 𝑐1 = 𝑐1 (𝑚) > 0 thus the average degree of 𝐺 is at most
2𝑐1𝑁

1/𝑚. Note that for fixed 𝑎, the function 𝑓𝑎 (𝑥) is asymptotic equal to log 𝑥/𝑥 as
𝑥 → ∞. By Theorem 3.6,

𝑛 > 𝛼(𝐺) ≥ (1 − 𝑜(1))𝑁 log 2𝑐1𝑁
1/𝑚

2𝑐1𝑁1/𝑚 > 𝑐2𝑁
1−1/𝑚 log 𝑁

for some constant 𝑐2 > 0. Now if for any large 𝑐 > 0, there are infinitely many 𝑛
such that 𝑁 ≥ 𝑐(𝑛/log 𝑛)𝑚/(𝑚−1) , then log 𝑁 ≥ 𝑐3 log 𝑛, where 𝑐3 > 0 is a constant
increasing as 𝑐 increasing, and

𝑛 ≥ 𝑐2𝑐
(𝑚−1)/𝑚 𝑛

log 𝑛
𝑐3 log 𝑛 = 𝑐2𝑐3𝑐

(𝑚−1)/𝑚𝑛

which would lead to a contradiction if 𝑐 is large and 𝑛→ ∞. □

We have discussed the Ramsey number of cycle and 𝐾𝑛 when 𝑛 is large. For
large 𝑚, Erdős, Faudree, Rousseau and Schelp (1978) conjectured that for every
𝑚 ≥ 𝑛 ≥ 3, except for 𝑚 = 𝑛 = 3,

𝑟 (𝐶𝑚, 𝐾𝑛) = (𝑚 − 1) (𝑛 − 1) + 1. (7.17)

Bondy and Erdős (1973) verified it for 𝑛 > 3 and 𝑚 ≥ 𝑛2 − 2, which was slightly
improved by Schiermeyer (2003) and further by Nikiforov (2005) for 𝑚 ≥ 4𝑛 + 2.
Recently, Keevash, Long and Skokan (2021) confirmed this conjecture in a stronger
form by proving (7.17) holds for𝑚 ≥ 𝑐 log 𝑛/log log 𝑛, where 𝑐 > 0 is constant. This
is best possible up to the constant factor 𝑐 since we can prove that for any 𝜖 > 0, there
exists 𝑛0 (𝜖) such that 𝑟 (𝐶𝑚, 𝐾𝑛) > 𝑛 log 𝑛 ≫ (𝑚 − 1) (𝑛 − 1) + 1 for all 𝑛 ≥ 𝑛0 (𝜖)
and 3 ≤ 𝑚 ≤ (1− 𝜖) log 𝑛/log log 𝑛 (see Exercise 14). It is challenging to determine
the asymptotical order of 𝑟 (𝐶𝑚, 𝐾𝑛) for each fixed 𝑚 > 3. In particular, Erdős asked
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190 7 Turán Number and Related Ramsey Number

if there exists a constant 𝜖 > 0 such that

𝑟 (𝐶4, 𝐾𝑛) = 𝑜(𝑛2−𝜖 ).

We conclude this section with the following problem.

Problem 7.2 For fixed 𝑠 ≥ 𝑡 ≥ 2, determine the order of 𝑟 (𝐾𝑡 , 𝑠, 𝐾𝑛). Is it (𝑛/log 𝑛)𝑡 .
If yes, does it grow linear on 𝑠?

7.8 Exercises

1. Prove that 𝑒𝑥(𝑛, 𝐻) =
(𝑛
2
)

if 𝑛 < |𝑉 (𝐻) |. What can we say about 𝑒𝑥(𝑛, 𝐻) if
𝑛 = |𝑉 (𝐻) |?

2. Directly prove 𝛼(𝐺) ≥ 𝑛/(1 + 𝑑) by the method proving the upper bound for
𝑒𝑥(𝑛, 𝐾𝑘) in Section 7.1 as the former can be proved by the latter.

3. Let 𝑇𝑚 be a graph of 𝑚 edges. Show that

(i) 𝑒𝑥(𝑛, 𝑇𝑚) ≤ (𝑚 − 1)𝑛.
(ii) If 𝑛 = 𝑠𝑚 + 𝑟 with 0 ≤ 𝑟 < 𝑚, then 𝑒𝑥(𝑛, 𝑇𝑚) ≥ 𝑠

(𝑚
2
)
+

(𝑟
2
)
.

4. What are 𝑒𝑥(𝑛, 𝑃𝑚) and 𝑒𝑥(𝑛, 𝐾1,𝑚)?

5. Prove that 𝑒𝑥(𝑛, 𝐶2𝑚+1) = ⌊𝑛2/4⌋ for large 𝑛.

6.∗ An 𝐻-free graph 𝐺 is called to be critical if any graph obtained from 𝐺 by
adding any edge in the complement of 𝐺 contains 𝐻. A critical 𝐻-free graph is
also called to be 𝐻-saturated. So the saturation number 𝑠𝑎𝑡 (𝑛;𝐻) is defined as the
minimum number of edges of an 𝐻-saturated graph of order 𝑛.

(i) Show 𝑠𝑎𝑡 (𝑛;𝐾3) = 𝑛 − 1.
(ii) Show generally 𝑠𝑎𝑡 (𝑛;𝐾𝑡 ) = (𝑡 − 2) (𝑛 − 1) −

(𝑡−2
2

)
arising from the graph

𝐾𝑡−2 + 𝐾𝑛−𝑡+2. (See Erdős, Hajnal and Moon, 1964)

7. Let 𝐺 and 𝐻 be graphs of order 𝑛. Prove that 𝐺 contains a subgraph with at
least 𝑒(𝐺)𝑒(𝐻)/

(𝑛
2
)

edges that is isomorphic to a subgraph of 𝐻. (See the proof of
Theorem 7.5)

8. Let𝐺 be a graph with 𝑛 vertices and𝑚 edges. By considering random bipartition
of 𝑉 (𝐺) of sizes ⌊𝑛/2⌋ and ⌈𝑛/2⌉, show that 𝐺 contains a bipartite graph with at
least 2𝑚⌊𝑛2/4⌋/𝑛(𝑛 − 1) edges.

9. Let 𝐻 be a bipartite graph, and let 𝑒𝑥𝑏 (𝑛;𝐻) be the maximum number of edges
in a bipartite graph of order 𝑛. Prove that 𝑒𝑥𝑏 (𝑛;𝐻) ≤ 𝑒𝑥(𝑛, 𝐻) ≤ 2 𝑒𝑥𝑏 (𝑛;𝐻).

10. Show that if 𝐺 is a subgraph of 𝐾𝑛,𝑛 with average degree 𝑑 that contains
neither 𝐶4 nor 𝐶6, then 𝑑 < 𝑛1/3 + 1.

11. Let 𝑞 be a prime power. Prove that
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7.8 Exercises 191

𝑟 (𝐶4, 𝐾1, 𝑞2 ) ≥ 𝑞2 + 𝑞 + 1, and 𝑟 (𝐶4, 𝐾1, 𝑞2+1) ≥ 𝑞2 + 𝑞 + 2.

12.∗ Let 𝑛 ≥ 2 be an integer. Prove that

𝑟 (𝐶4, 𝐾1,𝑛) ≤ 𝑛 +
√
𝑛 − 1 + 2.

13.∗ Prove that for any 𝜖 > 0, there exists 𝑛0 (𝜖) such that 𝑟 (𝐶𝑚, 𝐾𝑛) > 𝑛 log 𝑛 ≫
(𝑚 − 1) (𝑛 − 1) + 1 for all 𝑛 ≥ 𝑛0 (𝜖) and 3 ≤ 𝑚 ≤ (1 − 𝜖) log 𝑛/log log 𝑛. (Hint:
Keevash, Long and Skokan, 2021)

14.∗ Extending Theorem 7.18 to that for each 𝑡 ≥ 4 and 𝑠 ≥ 𝑡! + 1, 𝑒𝑥(𝑛, 𝐾𝑡 ,𝑠) >
𝑐𝑛2−1/𝑡 for some 𝑐 > 0. (Hint: Alon, Rónyai, and Szabó, 1999)
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Chapter 8
Communication Channels

Ramsey theory has been applied to information theory in various ways. In this
chapter, we shall see that the connection between Ramsey theory and communication
channel is natural. The first section is on Shannon capacity, and the second section
is on that of cycles, which contains a result of Lovász for Shannon capacity of 𝐶5.
The third section set an equalities for classical Ramsey numbers and functions from
communication channels.

8.1 Introduction

A communication channel consists of a finite input set 𝑋 , and an output set 𝑌 . For
each input 𝑥 ∈ 𝑋 , there is a nonempty fan-shaped output 𝑆𝑥 ⊆ 𝑌 , which is the set
of outputs that may be received for the input 𝑥 by the receiver. In each use of the
channel, a sender transmits an input 𝑥 ∈ 𝑋 , and receiver receives an arbitrary output
𝑦 ∈ 𝑆𝑥 . For distinct inputs 𝑢 and 𝑣, they can be received as the same output if and
only if 𝑆𝑢∩𝑆𝑣 ≠ ∅. Suppose that the sender and receiver agree in advance on an input
set 𝐼 ⊆ 𝑋 . In order to avoid error, the outputs of any two distinct inputs in 𝐼 cannot
intersect. In a noiseless channel, there is no intersect between two outputs. Shannon
(1956) first studied the amount that an information channel can communicate without
error. He formulated the problem to a problem of graph theory.

Let 𝑋 be the input set of a channel and let 𝐺 be a graph with vertex set 𝑋 in
which two distinct vertices are adjacent if and only if their outputs intersect. The
graph𝐺 is called the characteristic graph of the channel. The characteristic graph of
a completely noisy channel is 𝐾𝑘 ; and that of a noiseless channel is an empty graph
(a graph with edge set empty).

In most situations, a channel is in repeated uses. When the channel is used 𝑛 times,
the sender transmits a sequence 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑥𝑖 ∈ 𝑋 , and receiver
receives a sequence 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛), where 𝑦𝑖 ∈ 𝑆𝑥𝑖 ⊆ 𝑌 . The repeated use of
the channel can be viewed as a single use of a larger channel. The large channel has
an input set 𝑋𝑛, the Cartesian product of 𝑋 . For 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋𝑛, its output

193© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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194 8 Communication Channels

set is

𝑆𝑥 = 𝑆𝑥1 × 𝑆𝑥2 × · · · × 𝑆𝑥𝑛 = {(𝑦1, 𝑦2, . . . , 𝑦𝑛) : 𝑦𝑖 ∈ 𝑆𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛}.

Let G denote the characteristic graph of the large channel. Then its vertex set is 𝑋𝑛.
Two distinct vertices 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥′ = (𝑥′1, 𝑥

′
2, . . . , 𝑥

′
𝑛) can be received

as the same output if and only if for each 1 ≤ 𝑖 ≤ 𝑛, 𝑆𝑥𝑖 ∩ 𝑆𝑥′𝑖 ≠ ∅, when 𝑥𝑖 ≠ 𝑥′
𝑖
.

Thus 𝑥 and 𝑥′ are adjacent in G if and only if for each 1 ≤ 𝑖 ≤ 𝑛, 𝑥𝑖 and 𝑥′
𝑖

are
adjacent in 𝐺, when 𝑥𝑖 ≠ 𝑥′𝑖 . Hence the edge set of G is defined.

We now define the 𝑛th AND product of graph 𝐺 = (𝑋, 𝐸), denoted by ∧𝑛𝐺. Its
vertex set is 𝑋𝑛, two vertices 𝑥, 𝑥′ ∈ 𝑋𝑛 are adjacent in ∧𝑛𝐺 if and only if for each
1 ≤ 𝑖 ≤ 𝑛, 𝑥𝑖 and 𝑥′

𝑖
are adjacent in 𝐺, when 𝑥𝑖 ≠ 𝑥′

𝑖
; namely, either 𝑥𝑖 and 𝑥′

𝑖
are

adjacent in 𝐺, or 𝑥𝑖 = 𝑥′𝑖 . (It is slightly more convenient to give the definition if we
admit any vertex in 𝐺 is adjacent to itself.) Clearly, if the characteristic graph of a
channel is 𝐺, and when its repeated use is viewed as a single use of a large channel,
the characteristic graph of the large channel is ∧𝑛𝐺.

When we consider to transmit the sequence 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of length 𝑛,
where 𝑥𝑖 may come from different input 𝑋𝑖 , the characteristic graph of the channel is
the AND product of the graphs𝐺𝑖 defined as follows. Let𝐺1, 𝐺2, . . . , 𝐺𝑛 be graphs,
and let 𝑉1, 𝑉2, . . . , 𝑉𝑛 be their vertex sets, respectively. Define their AND product
𝐺1 ∧𝐺2 ∧ · · · ∧𝐺𝑛 as a graph with vertex set𝑉1 ×𝑉2 × · · · ×𝑉𝑛, two distinct vertices
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥′ = (𝑥′1, 𝑥

′
2, . . . , 𝑥

′
𝑛) are adjacent if and only if for each

1 ≤ 𝑖 ≤ 𝑛, either 𝑥𝑖 and 𝑥′
𝑖
are adjacent in𝐺𝑖 or 𝑥𝑖 = 𝑥′𝑖 . In the following proposition,

the closed neighborhood 𝑁 [𝑣] of a vertex 𝑣 is {𝑣} ∪ 𝑁 (𝑣).

Proposition 8.1 Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be graphs and G = 𝐺1 ∧ 𝐺2 ∧ · · · ∧ 𝐺𝑛. Then
for any vertex 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of G, its closed neighborhood 𝑁G [𝑥] satisfies

𝑁G [𝑥] = 𝑁𝐺1 [𝑥1] × 𝑁𝐺2 [𝑥2] × · · · × 𝑁𝐺𝑛 [𝑥𝑛] .

Note the above equality does not hold for neighborhoods in general. Let 𝐺 =

𝐾2 ∪ 𝐾1 on vertex set 𝑉 = {𝑢, 𝑣, 𝑤} with only one edge 𝑢𝑣. Consider G = ∧2𝐺.
Take vertex 𝑥 = (𝑢, 𝑤) of G, its neighborhood 𝑁G (𝑥) is singleton {(𝑣, 𝑤)}, but
𝑁𝐺 (𝑢) × 𝑁𝐺 (𝑤) = ∅ since 𝑁𝐺 (𝑤) = ∅.

Proposition 8.2 Let 𝐼𝑖 be an independent set of 𝐺𝑖 . Then 𝐼1 × 𝐼2 × · · · × 𝐼𝑛 is an
independent set of 𝐺1 ∧ 𝐺2 ∧ · · · ∧ 𝐺𝑛. Consequently,

𝛼(𝐺1 ∧ 𝐺2 ∧ · · · ∧ 𝐺𝑛) ≥ 𝛼(𝐺1)𝛼(𝐺2) · · · 𝛼(𝐺𝑛),

and
𝛼(∧𝑚+𝑛𝐺) ≥ 𝛼(∧𝑚𝐺)𝛼(∧𝑛𝐺).

Proof. For two distinct vertices 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥′ = (𝑥′1, 𝑥
′
2 . . . , 𝑥

′
𝑛) of

𝐼1 × 𝐼2 × · · · × 𝐼𝑛, there is some 1 ≤ 𝑖 ≤ 𝑛, 𝑥𝑖 ≠ 𝑥′𝑖 . Since 𝐼𝑖 is independent in 𝐺𝑖 , so
𝑥𝑖 and 𝑥′

𝑖
are non-adjacent in𝐺𝑖 . So 𝑥 and 𝑥′ are non-adjacent in𝐺1 ∧𝐺2 ∧ · · · ∧𝐺𝑛,

hence 𝐼1 × 𝐼2 × · · · × 𝐼𝑛 is an independent set. □
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8.2 Shannon Capacities of Cycles 195

Since 𝛼(∧𝑛𝐺) is super-multiplicative, hence the limit

lim
𝑛
(𝛼(∧𝑛𝐺))1/𝑛 = sup

𝑛

(𝛼(∧𝑛𝐺))1/𝑛

exists, which is denoted by Θ(𝐺), called the Shannon capacity of 𝐺 (or of the
corresponding channel). Then we have an easy lower bound for Θ(𝐺) as follows.

Theorem 8.1 For any graph 𝐺, Θ(𝐺) ≥ 𝛼(𝐺).

The inequality can be strict. The first such graph is 𝐶5, which we will encounter
in the next section.

We now define OR product of graphs. Let 𝑉1, 𝑉2, . . . , 𝑉𝑛 be vertex sets of graphs
𝐺1, 𝐺2, . . . , 𝐺𝑛, respectively. The OR product of 𝐺1, 𝐺2, . . . , 𝐺𝑛, denoted by 𝐺1 ∨
𝐺2∨· · ·∨𝐺𝑛, is defined a graph on vertex set𝑉1×𝑉2×· · ·×𝑉𝑛, in which two distinct
vertices 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥′ = (𝑥′1, 𝑥

′
2, . . . , 𝑥

′
𝑛) are adjacent if and only if for

some 1 ≤ 𝑖 ≤ 𝑛, 𝑥𝑖 ≠ 𝑥′𝑖 , and they are adjacent in 𝐺𝑖 . For 𝐺1 = 𝐺2 = · · · = 𝐺𝑛 = 𝐺,
this OR product is denoted by ∨𝑛𝐺. By the definition, we have

𝐺1 ∨ 𝐺2 ∨ · · · ∨ 𝐺𝑛 = 𝐺1 ∧ 𝐺2 ∧ · · · ∧ 𝐺𝑛,

and hence
𝐺1 ∧ 𝐺2 ∧ · · · ∧ 𝐺𝑛 = 𝐺1 ∨ 𝐺2 ∨ · · · ∨ 𝐺𝑛.

Combining these with the fact that 𝛼(𝐺) = 𝜔(𝐺), we obtain

𝛼(𝐺1 ∧ 𝐺2 ∧ · · · ∧ 𝐺𝑛) = 𝜔(𝐺1 ∨ 𝐺2 ∨ · · · ∨ 𝐺𝑛). (8.1)

8.2 Shannon Capacities of Cycles

This section is devoted to compute the Shannon capacities of cycles.

Lemma 8.1 The independence number of ∧2𝐶5 is 5.

Proof. Setting the vertex set of 𝐶5 as {0, 1, 2, 3, 4}, we arrange all vertices of ∧2𝐶5
as follows.

(0, 0)∗ (0, 1) (0, 2) (0, 3) (0, 4)
(1, 0) (1, 1) (1, 2)∗ (1, 3) (1, 4)
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)∗
(3, 0) (3, 1)∗ (3, 2) (3, 3) (3, 4)
(4, 0) (4, 1) (4, 2) (4, 3)∗ (4, 4)

It is easy to check that the set {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}, each element of
which is marked by a star as above, forms an independent set in ∧2𝐶5, it follows that
𝛼(∧2𝐶5) ≥ 5. For each 𝑖 = 0, 1, 2, 3, 4, the consecutive two rows

(𝑖, 0) (𝑖, 1) (𝑖, 2) (𝑖, 3) (𝑖, 4)
(𝑖 + 1, 0) (𝑖 + 1, 1) (𝑖 + 1, 2) (𝑖 + 1, 3) (𝑖 + 1, 4),
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196 8 Communication Channels

with 5 ≡ 1 (mod 4), contain only two non-adjacent vertices. Thus we have
𝛼(∧2𝐶5) ≤ 5, proving the lemma. □

Corollary 8.1 Θ(𝐶5) ≥
√

5.

We know that there is graph 𝐺 with the chromatic number 𝜒(𝐺) is considerably
larger than its clique number 𝜔(𝐺), see Chapter 4. A graph 𝐺 is called perfect
if any induced subgraph 𝐻 of 𝐺 satisfies that 𝜒(𝐻) = 𝜔(𝐻). Any even cycle is
a perfect graph and any odd cycle with length at least 5 is not a perfect graph.
Shannon (1956) proved that when 𝐺 is a perfect graph, then Θ(𝐺) = 𝛼(𝐺). The
equality may not hold in general as Θ(𝐶5) ≥

√
5. However, Lovász (1979) proved

that Θ(𝐶5) =
√

5. The knowledge on the Shannon capacity of imperfect graphs is
very limited. By using stochastic search methods, Mathew and Östergård (2017)
obtained that Θ(𝐶7) ≥ 3501/5 > 3.2271, and Θ(𝐶15) ≥ 3811/3 > 7.2495.

We adopt a simpler way from Proofs from THE BOOK by Aigner and Ziegler
to obtain the Shannon capacities of even cycles and a general upper bound for odd
cycles. We shall introduce the Lovász theta function briefly later.

Call a real vector 𝑋 = {𝑥𝑣 : 𝑣 ∈ 𝑉} as a probability distribution or simply a
distribution on the set 𝑉 if 𝑥𝑣 ≥ 0 and

∑
𝑣∈𝑉 𝑥𝑣 = 1. Denote by T for the set of all

cliques of 𝐺. For a fixed distribution 𝑋 , we write

𝜆(𝑋) = max
𝑇∈T

∑︁
𝑣∈𝑇

𝑥𝑣 ,

and 𝜆(𝐺) = inf𝑋 𝜆(𝑋). If the distribution 𝑋 is viewed as weights of vertices in
𝑉 , then

∑
𝑣∈𝑇 𝑥𝑣 is the weight of 𝑇 , and 𝜆(𝑋) is the maximum weight of a clique.

Since the inf is achievable as 𝜆(𝑋) is continuous on the compact set consisting of
all distributions, so

𝜆(𝐺) = min
𝑋
𝜆(𝑋) = min

𝑋
max
𝑇∈T

∑︁
𝑣∈𝑇

𝑥𝑣 , (8.2)

where the min runs through all distributions 𝑋 on vertex set 𝑉 (𝐺).
In order to get another expression for 𝜆(𝐺), we need a basic result in the Game

Theory or Linear Programming, called Minimax Theorem.

Theorem 8.2 Let 𝐴 = (𝑎𝑖 𝑗 ) be a real 𝑛 × 𝑚 matrix, and let 𝑋 = (𝑥1, . . . , 𝑥𝑚) and
𝑌 = (𝑦1, . . . , 𝑦𝑛) be probability distributions. Then

min
𝑋

max
𝑌
𝑌 𝐴𝑋𝑇 = max

𝑌
min
𝑋
𝑌 𝐴𝑋𝑇 ,

where the min runs through all probability distributions 𝑋 and the max does through
all such 𝑌 . Furthermore, there exist probability distributions 𝑋∗ and 𝑌 ∗ such that

min
𝑋
𝑌 ∗𝐴𝑋𝑇 = max

𝑌
𝑌 𝐴𝑋∗𝑇 .

The proof is based on Duality Theorem, which can be found in most of textbooks
on Game Theory or Linear Programming. We thus omit it.
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8.2 Shannon Capacities of Cycles 197

Set T = {𝑇1, 𝑇2, . . . , 𝑇𝑛} and 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑚}. For any clique 𝑇𝑖 and any
vertex 𝑣 𝑗 of 𝐺, define

𝑎𝑖 𝑗 =

{
1 if 𝑣 𝑗 ∈ 𝑇𝑖 ,
0 otherwise.

Then (𝑎𝑖1, · · · , 𝑎𝑖𝑚) is the incident vector of𝑇𝑖 and we thus have an 𝑛×𝑚 real matrix
𝐴 = (𝑎𝑖 𝑗 ). Let 𝑒𝑖 = (0, . . . , 0, 1, 0, . . . , 0) be the vector of 𝑅𝑛 of all zeros except for
a one in the 𝑖th position. Then 𝑒𝑖𝐴𝑋𝑇 =

∑
𝑣∈𝑇𝑖 𝑥𝑣 , so the expression (8.2) is

𝜆(𝐺) = min
𝑋

max
1≤𝑖≤𝑛

𝑒𝑖𝐴𝑋
𝑇 .

We now consider the left-hand side in the first equality in Minimax Theorem, for
a given distribution 𝑋 , suppose in the 𝑖th position that the vertex 𝐴𝑋𝑇 has the
maximum component, then

max
𝑌
𝑌 𝐴𝑋𝑇 = 𝑒𝑖𝐴𝑋

𝑇 = max
1≤𝑖≤𝑛

𝑒𝑖𝐴𝑋
𝑇 ,

and thus
min
𝑋

max
𝑌
𝑌 𝐴𝑋𝑇 = min

𝑋
max

1≤𝑖≤𝑛
𝑒𝑖𝐴𝑋

𝑇 .

Denote by 𝑓 𝑗 for the vector of 𝑅𝑚 of all zeros except for a one in the 𝑗 th position. So

min
𝑋

max
𝑇∈T

∑︁
𝑣∈𝑇

𝑥𝑣 = min
𝑋

max
1≤𝑖≤𝑛

𝑒𝑖𝐴𝑋
𝑇 = max

𝑌
min

1≤ 𝑗≤𝑚
𝑌 𝐴 𝑓 𝑇𝑗 = max

𝑌
min
𝑣∈𝑉

∑︁
𝑇∋𝑣

𝑦𝑇 ,

where in the last expression the sum is taken on 𝑇 over T , and the max runs through
all distributions 𝑌 = {𝑦𝑇 : 𝑇 ∈ T } on T .

We thus obtain the second expression for 𝜆(𝐺) as

𝜆(𝐺) = max
𝑌

min
𝑣∈𝑉

∑︁
𝑇∋𝑣

𝑦𝑇 . (8.3)

Let 𝑈 ⊆ 𝑉 (𝐺) be an independent set of 𝐺 with |𝑈 | = 𝛼(𝐺) = 𝛼, and define a
distribution 𝑋 (𝑈) = {𝑥𝑣 : 𝑣 ∈ 𝑉} by

𝑥𝑣 =

{
1/𝛼 if 𝑣 ∈ 𝑈,
0 otherwise.

Since each clique contains at most one vertex of 𝑈, we have that 𝜆(𝑋 (𝑈)) = 1/𝛼
and 𝜆(𝐺) ≤ 1/𝛼. We then have the following lemma.

Lemma 8.2 For any graph 𝐺,

𝛼(𝐺) ≤ 1
𝜆(𝐺) .

Lemma 8.3 For any graphs 𝐺1 and 𝐺2,
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198 8 Communication Channels

𝜆(𝐺1 ∧ 𝐺2) = 𝜆(𝐺1)𝜆(𝐺2).

Proof. We now have two expressions for 𝜆(𝐺) as

𝜆(𝐺) = min
𝑋

max
𝑇∈T

∑︁
𝑣∈𝑇

𝑥𝑣 = max
𝑌

min
𝑣∈𝑉

∑︁
𝑇∋𝑣

𝑦𝑇 .

Let 𝑋 and 𝑋 ′ be the distributions which achieve the minima for 𝜆(𝐺1) and 𝜆(𝐺2),
that is to say,

𝜆(𝑋) = 𝜆(𝐺1) and 𝜆(𝑋 ′) = 𝜆(𝐺2).

We define a distribution 𝑍 on vertex set of 𝐺1 ∧ 𝐺2 as 𝑧 (𝑢,𝑣) = 𝑥𝑢𝑥
′
𝑣 for a vertex

(𝑢, 𝑣) of 𝐺1 ∧ 𝐺2. The fact that 𝑍 = {𝑧 (𝑢,𝑣) : (𝑢, 𝑣) ∈ 𝑉 (𝐺1) × 𝑉 (𝐺2)} is truly a
probability distribution can be seen by

∑
𝑧 (𝑢,𝑣) =

∑
𝑥𝑢

∑
𝑥′𝑣 = 1.

Claim A clique of 𝐺1 ∧𝐺2 is maximal if and only if it has the form 𝑇1 ×𝑇2 with
𝑇𝑖 is a maximal clique of 𝐺𝑖 for 𝑖 = 1, 2.

Proof. Indeed, note the “clique” in the statement cannot be replaced by “indepen-
dent set”. The dual form of the claim is “ an independent set of 𝐺1 ∨𝐺2 is maximal
if and only if it has the form 𝑆1 × 𝑆2 with 𝑆𝑖 is a maximal independent set of 𝐺𝑖 for
𝑖 = 1, 2”. □

Using the above claim, we have

𝜆(𝐺1 ∧ 𝐺2) ≤ 𝜆(𝑍) = max
𝑋×𝑋′

∑︁
(𝑢,𝑣) ∈𝑋×𝑋′

𝑧 (𝑢,𝑣)

= max
𝑋×𝑋′

∑︁
𝑢∈𝑋

𝑥𝑢

∑︁
𝑣∈𝑋′

𝑥′𝑣

= 𝜆(𝐺1)𝜆(𝐺2).

On the other hand, denote still by 𝑇 for clique of 𝐺1 ∧𝐺2, and 𝑌 for distribution on
the set of cliques of 𝐺1 ∧ 𝐺2, then

𝜆(𝐺1 ∧ 𝐺2) = max
𝑌

min
(𝑢,𝑣) ∈𝑉 (𝐺1 )×𝑉 (𝐺2 )

∑︁
𝑇∋ (𝑢,𝑣)

𝑦𝑇

≥ 𝜆(𝑍) = max
𝑋×𝑋′

∑︁
(𝑢,𝑣) ∈𝑋×𝑋′

𝑧 (𝑢,𝑣)

= max
𝑋×𝑋′

∑︁
𝑢∈𝑋

𝑥𝑢

∑︁
𝑣∈𝑋′

𝑥′𝑣

= 𝜆(𝐺1)𝜆(𝐺2),

proving the lemma. □

Theorem 8.3 For any graph 𝐺, we have

𝛼(𝐺) ≤ Θ(𝐺) ≤ 1
𝜆(𝐺) .
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8.2 Shannon Capacities of Cycles 199

Proof. From Lemma 8.3, we see 𝜆(∧𝑛𝐺) = 𝜆𝑛 (𝐺). This and Lemma 8.2 give

𝛼(∧𝑛𝐺) ≤ 1
𝜆(∧𝑛𝐺) =

1
𝜆𝑛 (𝐺) ,

hence Θ(𝐺) ≤ 1
𝜆(𝐺) . □

Lemma 8.4 Let 𝑘 ≥ 4 be an integer and let 𝐶𝑘 be a cycle of length 𝑘 . Then
𝜆(𝐶𝑘) = 2

𝑘
, hence

Θ(𝐶𝑘) ≤
𝑘

2
.

Proof. Let 𝑋0 = (1/𝑘, . . . , 1/𝑘) be the uniform distribution on the vertex set. Since
any clique 𝑇 meets 𝐶𝑘 at most two vertices, we obtain that

𝜆(𝐶𝑘) = min
𝑋
𝜆(𝑋) ≤ 𝜆(𝑋0) = max

𝑇∈T

∑︁
𝑣∈𝑇

1
𝑘
=

2
𝑘
.

On the other hand, T consists of all 𝑘 vertices and all 𝑘 edges. Defining a distribution
𝑌0 by choosing a component as 1/𝑘 for an edge and 0 for a vertex, and using the
expression (8.3) for 𝜆(𝐺), a similar argument yields that 𝜆(𝐶𝑘) ≥ 2/𝑘 , and hence
𝜆(𝐶𝑘) = 2/𝑘 . □

Theorem 8.4 Let 𝑚 ≥ 2 be an integer. Then Θ(𝐶2𝑚) = 𝑚.

The above discuss is not sufficient to obtain the Shannon capacity of any odd
cycle. The first one, Θ(𝐶5), was obtained by Lovász with an elegant solution. Recall
the proof of a theorem in Chapter 5, in which the representation of vertices of
hypergraps in 𝑅𝑠+1 plays an important role.

In order to find the exact value of Θ(𝐶5), the idea of Lovász was to represent
the vertices 𝑉𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑚} by real vectors (points in an Euclidean space)
of length one such that any pair of vectors presenting two non-adjacent vertices are
orthogonal. Let us call such a representation an orthogonal representation of 𝐺.
Note that such a representation always exists: just take unit vectors

𝑒1 = (1, 0, . . . , 0), 𝑒2 = (0, 1, 0 . . . , 0), . . . , 𝑒𝑚 = (0, 0, . . . , 1)

in 𝑅𝑚.
Let 𝑇 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) } be an orthogonal representation of 𝐺 in 𝑅𝑠 with

𝑣 (𝑖) corresponding to the vertex 𝑣𝑖 . Denote by

𝑣 =
1
𝑚
(𝑣 (1) + 𝑣 (2) + · · · + 𝑣 (𝑚) ).

When any vector 𝑣 (𝑖) has the same angle (≠ 𝜋/2) with 𝑣, or equivalently that any
inner product 𝑣 (𝑖) · 𝑣 has the same non-zero value, denoted by 𝜎𝑇 (𝐺), we shall say
that the representation 𝑇 has constant 𝜎𝑇 (𝐺) = 𝑣 (𝑖) · 𝑣.

Denote by |𝑣 | =
√
𝑣 · 𝑣 for the length of the vector 𝑣. For a probability distribution

𝑋 = (𝑥1, . . . , 𝑥𝑚) on vertex set 𝑉 , set
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200 8 Communication Channels

𝜇(𝑋) = |𝑥1𝑣
(1) + 𝑥2𝑣

(2) + · · · + 𝑥𝑚𝑣 (𝑚) |2

and
𝜇(𝐺) = inf

𝑋
𝜇(𝑋) = min

𝑋
𝜇(𝑋).

Lemma 8.5 If 𝑇 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) } is an orthogonal representation of 𝐺 with
constant 𝜎𝑇 (𝐺), then

𝜎𝑇 (𝐺) = 𝜇𝑇 (𝐺).

Proof. From the Cauchy-Schwarz inequality |𝑎 · 𝑏 | ≤ |𝑎 | |𝑏 |, we have[
(𝑥1𝑣

(1) + 𝑥2𝑣
(2) + · · · + 𝑥𝑚𝑣 (𝑚) ) · 𝑣

]2
≤ 𝜇(𝑋) |𝑣 |2.

However, since 𝑣 (𝑖) · 𝑣 = 𝜎𝑇 (𝐺) and
∑
𝑥𝑖 = 1, we have

(𝑥1𝑣
(1) + 𝑥2𝑣

(2) + · · · + 𝑥𝑚𝑣 (𝑚) ) · 𝑣 = 𝜎𝑇 (𝐺).

The above can be applied for the uniform distribution 𝑋0 = (1/𝑚, . . . , 1/𝑚), giving
|𝑣 |2 = 𝜎𝑇 (𝐺). We then have 𝜎2

𝑇
(𝐺) ≤ 𝜇(𝑋)𝜎𝑇 (𝐺), or 𝜎𝑇 (𝐺) ≤ 𝜇(𝑋) for any 𝑋 ,

thus 𝜎𝑇 (𝐺) ≤ min 𝜇(𝑋) = 𝜇𝑇 (𝐺). On the other hand, we have

𝜇𝑇 (𝐺) ≤ 𝜇(𝑋0) =
��� 1
𝑚
(𝑣 (1) + 𝑣 (1) + · · · + 𝑣 (𝑚) )

���2 = |𝑣 |2 = 𝜎𝑇 (𝐺),

so 𝜇𝑇 (𝐺) = 𝜎𝑇 (𝐺) follows. □

Lemma 8.6 If 𝑇 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) } is an orthogonal representation of 𝐺, then

𝛼(𝐺) ≤ 1
𝜇𝑇 (𝐺)

=
1

𝜎𝑇 (𝐺)
.

Proof. It suffices to show the first inequality. Let𝑈 be an independent set of 𝐺 with
|𝑈 | = 𝛼(𝐺) = 𝛼. Define a distribution 𝑋 (𝑈) on 𝑉 (𝐺) by

𝑥𝑖 =

{
1/𝛼 if 𝑣𝑖 ∈ 𝑈,
0 otherwise

Since 𝑣 (𝑖) · 𝑣 ( 𝑗 ) = 0 for any pair of two non-adjacent vertices and 𝑣 (𝑖) · 𝑣 (𝑖) = 1, we
have that

𝜇𝑇 (𝐺) ≤ 𝜇(𝑋 (𝑈)) =
����� 𝑚∑︁
𝑖=1

𝑥𝑖𝑣
(𝑖)

�����2 =

����� ∑︁
𝑣𝑖∈𝑈

1
𝛼
𝑣 (𝑖)

�����2 =
1
𝛼
,

yielding 𝛼 ≤ 1/𝜇𝑇 (𝐺) as desired. □

Let 𝐺1 and 𝐺2 be graphs with orthogonal representations 𝑇 and 𝑆 in 𝑅𝑡 and 𝑅𝑠 ,
respectively. We now do not distinguish the vertices and their representations. For
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𝑢 = (𝑢1, . . . , 𝑢𝑡 ) ∈ 𝑇 and 𝑣 = (𝑣1, . . . , 𝑣𝑠) ∈ 𝑆, the tensor product of 𝑢 and 𝑣 is
defined as the vector

𝑢 ◦ 𝑣 = (𝑢1𝑣1, . . . , 𝑢1𝑣𝑠 , 𝑢2𝑣1, . . . , 𝑢2𝑣𝑠 , . . . . . . , 𝑢𝑡𝑣1, . . . , 𝑢𝑡𝑣𝑠)

of 𝑅𝑡𝑠 . Denote by 𝑇 ◦ 𝑆 for the set {𝑢 ◦ 𝑣 : 𝑢 ∈ 𝑇, 𝑣 ∈ 𝑆}.

Lemma 8.7 Let 𝑢, 𝑥 ∈ 𝑅𝑡 and 𝑣, 𝑦 ∈ 𝑅𝑠 be vectors. Then

(𝑢 ◦ 𝑣) · (𝑥 ◦ 𝑦) = (𝑢 · 𝑥) (𝑣 · 𝑦).

Proof. Directly from the definitions of tensor product and inner product. □

Lemma 8.8 If 𝑇 and 𝑆 are orthogonal representations of 𝐺1 and 𝐺2, respectively,
then 𝑇 ◦ 𝑆 is an orthogonal representation of 𝐺1 ∧ 𝐺2 with

𝜇𝑇◦𝑆 (𝐺1 ∧ 𝐺2) = 𝜇𝑇 (𝐺1)𝜇𝑆 (𝐺2).

Proof. In fact, for any 𝑢 ∈ 𝑇 and 𝑣 ∈ 𝑆,

|𝑢 ◦ 𝑣 |2 =
∑︁
𝑖, 𝑗

(𝑢𝑖𝑣 𝑗 )2 =
∑︁
𝑖

𝑢2𝑖

∑︁
𝑗

𝑣2𝑗 = 1.

If (𝑢, 𝑣) and (𝑥, 𝑦) are two non-adjacent vertices of 𝐺1 ∧𝐺2, then either 𝑢 and 𝑥 are
non-adjacent in 𝐺1 or 𝑣 and 𝑦 are non-adjacent in 𝐺2, so 𝑢 · 𝑥 = 0 or 𝑣 · 𝑦 = 0. Thus

(𝑢 ◦ 𝑣) · (𝑥 ◦ 𝑦) = (𝑢 · 𝑥) (𝑣 · 𝑦) = 0,

and the claimed follows. □

Theorem 8.5 If 𝑇 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) } is an orthonormal representation of 𝐺
with constant 𝜎𝑇 (𝐺), then

Θ(𝐺) ≤ 1
𝜎𝑇 (𝐺)

.

Proof. Repeatedly using Lemma 8.8, we know that 𝑇𝑛 is an orthonormal represen-
tation of ∧𝑛𝐺 with constant 𝜇𝑇𝑛 (∧𝑛𝐺) = 𝜇𝑇 (𝐺)𝑛. Thus by Lemma 8.6,

𝛼(∧𝑛𝐺) ≤ 1
𝜇𝑇𝑛 (∧𝑛𝐺) =

1
𝜎𝑇 (𝐺)𝑛

,

which yields 𝛼(∧𝑛𝐺)1/𝑛 ≤ 1/𝜎𝑇 (𝐺) as desired. □

An “umbrella” used by Lovász in the proof of the following theorem is called
“Lovász umbrella”.

Theorem 8.6 Θ(𝐶5) =
√
5.
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Proof. For the graph 𝐶5, Lovász obtained an orthogonal representation 𝑇 in 𝑅3 by
considering an “umbrella” with five ribs 𝑣1, 𝑣2, . . . , 𝑣5 of unit length. Now open the
umbrella (with tip at the origin 𝑜) to the point where the angles between alternate
ribs are 𝜋/2, namely, it is an orthogonal representation of 𝐶5. This can be done
as the umbrella opens, in which the angle of alternate ribs varies from zero to
4𝜋/5 with 4𝜋/5 > 𝜋/2. After we have the orthogonal representation 𝑇 of 𝐶5 as
𝑇 = {𝑣 (1) , 𝑣 (2) , · · · , 𝑣 (5) }, then a simple calculation shows that ℎ2 = 1√

5
, where

ℎ is distance from the origin to the plan determined by end-vertices of ribs. So
𝑣 = (0, 0, ℎ) = (0, 0, 5−1/4) hence

𝜎𝑇 (𝐶5) = 𝑣 (𝑖) · 𝑣 = ℎ2 =
1
√

5
,

which and Theorem 8.5 prove that Θ(𝐶5) ≤
√

5. The inverse inequality has been
obtained. □

In order to improve the obtained upper bound Θ(𝐶𝑘) ≤ 𝑘/2 for odd 𝑘 , we are
going to find the eigenvalues of the adjacency matrix of 𝐶𝑘 first.

Lemma 8.9 Let 𝑘 = 2𝑚 + 1 ≥ 3 be an integer. Then

2 cos
2ℓ𝜋
𝑘

(ℓ = 0, 1, . . . , 𝑘 − 1)

are all eigenvalues of the adjacency matrix of 𝐶𝑘 , in which the maximum and
minimum are 2 and −2 cos 𝜋

𝑘
, respectively.

Proof. Let 𝐴 = (𝑎𝑖 𝑗 ) be the adjacency matrix of 𝐶𝑘 . Then

𝐴 =

©­­­­­­«

0 1 0 · · · 0 0 1
1 0 1 · · · 0 0 0
...
...
...

...
...
...

0 0 0 · · · 1 0 1
1 0 0 · · · 0 1 0

ª®®®®®®¬
,

in which each row contains two ones and 𝑘 − 2 zeros. Let 𝜁 = 𝑒2𝜋𝑖/𝑘 . Note that
1, 𝜁 , · · · , 𝜁 𝑘−1 are all 𝑘th roots of unity. Denote by 𝛽 for 𝜁ℓ with 0 ≤ ℓ ≤ 𝑘 − 1. We
shall show that 𝑋 (ℓ ) = (1, 𝛽, 𝛽2, . . . , 𝛽𝑘−1)𝑇 is an eigenvector of 𝐴 corresponding
to eigenvalue 𝛽 + 𝛽−1 = 𝜁ℓ + 𝜁−ℓ . In fact,

𝐴𝑋 (ℓ ) =

©­­­­­­«

𝛽 + 𝛽𝑘−1

𝛽2 + 1
𝛽3 + 𝛽
...

1 + 𝛽𝑘−2

ª®®®®®®¬
= (𝛽 + 𝛽−1)𝑋 (ℓ ) .
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8.2 Shannon Capacities of Cycles 203

Since 𝑋 (0) , 𝑋 (1) , . . . , 𝑋 (𝑘−1) are independent (seen from the Vandermonde matrix
formed by them), it follows that

𝜁ℓ + 𝜁−ℓ = 2 cos
2ℓ𝜋
𝑘

(ℓ = 0, 1, . . . , 𝑘 − 1)

are all eigenvalues of 𝐴, which are decreasing from ℓ = 0 to 𝑚 and the increasing,
proving the lemma. □

We need to recall some results in linear algebra:

Facts from Linear Algebra. If 𝑀 = (𝑚𝑖 𝑗 ) is an 𝑚 × 𝑚 real symmetric matrix,
then it has 𝑚 real eigenvalues. Furthermore, if all such eigenvalues are non-negative,
then there are vectors 𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) in 𝑅𝑠 with 𝑠 = 𝑟𝑎𝑛𝑘 (𝑀) such that 𝑚𝑖 𝑗 =
𝑣 (𝑖) · 𝑣 ( 𝑗 ) .

Let 𝐴 = (𝑎𝑖 𝑗 ) be the adjacency matrix of graph 𝐺 of order 𝑘 with eigenvalues

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑘 .

Since
∑
𝜆𝑖 =

∑
𝑑𝑖𝑖 = 0, we have 𝜆𝑘 < 0 (unless𝐺 has no edge). Let 𝑝 = |𝜆𝑘 | = −𝜆𝑘 .

Then the matrix
𝑀 = 𝐼 + 1

𝑝
𝐴,

where 𝐼 is the identity matrix, has 𝑘 eigenvalues

1 + 𝜆1
𝑝

≥ 1 + 𝜆2
𝑝

≥ · · · ≥ 1 + 𝜆𝑘
𝑝

= 0.

Therefore, we obtain a set of vectors 𝑇 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑘 ) } in 𝑅𝑠 with 𝑠 =

𝑟𝑎𝑛𝑘 (𝑀) such that

𝑣 (𝑖) · 𝑣 (𝑖) = 𝑚𝑖𝑖 = 1 and 𝑣 (𝑖) · 𝑣 ( 𝑗 ) = 𝑚𝑖 𝑗 =
𝑎𝑖 𝑗

𝑝
(𝑖 ≠ 𝑗).

If two vertices 𝑣𝑖 and 𝑣 𝑗 are not adjacent, then 𝑎𝑖 𝑗 = 0, thus 𝑇 forms an orthonormal
representation of 𝐺. Now for an odd cycle 𝐶𝑘 , we have

𝜎𝑇 (𝐶𝑘) = 𝑣 (𝑖) · 𝑣 =
1
𝑘
𝑣 (𝑖) ·

(
𝑣 (1) + 𝑣 (2) + · · · + 𝑣 (𝑘 )

)
=

1
𝑘

(
1 + 2

𝑝

)
=

1 + cos(𝜋/𝑘)
𝑘 cos(𝜋/𝑘) .

Theorem 8.7 Let 𝑘 ≥ 3 be an odd integer. Then

Θ(𝐶𝑘) ≤
𝑘 cos(𝜋/𝑘)

1 + cos(𝜋/𝑘) .
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204 8 Communication Channels

Note the equality holds for 𝑘 = 3 in the above theorem with Θ(𝐶3) = 1, and it
does also for 𝑘 = 5 with Θ(𝐶5) =

√
5 and cos(𝜋/5) = (

√
5 + 1)/4. Whether or not

it holds for 𝑘 ≥ 7 is unknown. We also refer the reader to Bohman and Holzman
(2003) for a nontrivial lower bound on the Shannon capacities of the complements
of odd cycles.

Let 𝑇 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) } with 𝑣 (𝑖) ∈ 𝑅𝑟 be an orthonormal representation
of graph 𝐺 of order 𝑚. Define

𝑣𝑎𝑙𝑇 (𝐺) = min
𝑐

max
1≤𝑖≤𝑚

1
(𝑐 · 𝑣 (𝑖) )2 ,

where the min runs over all unit vectors 𝑐 in 𝑅𝑟 . The vector 𝑐 yielding the minimum
is called the handle of the representation. The name “handle” comes from the Lovász
umbrella in the proof for Θ(𝐶5) =

√
5. The theta function introduced by Lovász is

defined as
𝜗(𝐺) = min

𝑇
𝑣𝑎𝑙𝑇 (𝐺),

where 𝑇 runs over all representations of 𝐺. Call a representation 𝑇 to be optimal if
it achieves the minimum value.

Lemma 8.10 𝜗(𝐺1 ∧ 𝐺2) ≤ 𝜗(𝐺1)𝜗(𝐺2).

Proof. Let 𝑇 = {𝑢 (1) , 𝑢 (2) , . . . , 𝑢 (𝑚) } in 𝑅𝑡 and 𝑆 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑛) } in 𝑅𝑠 be
optimal orthonormal representations of𝐺1 and𝐺2 with handles 𝑐 and 𝑑, respectively.
Then 𝑇 ◦ 𝑆 is an orthonormal representation of 𝐺1 ∧𝐺2 and 𝑐 ◦ 𝑑 is a unit vector of
𝑅𝑡𝑠 . Hence

𝜗(𝐺1 ∧ 𝐺2) ≤ max
𝑖, 𝑗

1
((𝑐 ◦ 𝑑) · (𝑢 (𝑖) ◦ 𝑣 ( 𝑗 ) ))2

= max
𝑖, 𝑗

1
(𝑐 · 𝑢 (𝑖) )2

1
(𝑑 · 𝑣 ( 𝑗 ) )2

= 𝜗(𝐺1)𝜗(𝐺2),

as claimed. □

In fact, the equality holds in the above lemma.

Lemma 8.11 𝛼(𝐺) ≤ 𝜗(𝐺).

Proof. Let 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑚} be the vertex set of 𝐺, and let 𝑇 =

{𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑚) } be an optimal orthonormal representation of 𝐺 in 𝑅𝑡 with
handle 𝑐. Suppose that {𝑣1, 𝑣2, . . . , 𝑣𝑘} be an independent set of 𝐺 with 𝑘 = 𝛼(𝐺).
Then the vectors in 𝑆 = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑘 ) } are pairwise orthogonal, thus they can
be extended to a base of 𝑅𝑡 by adding some unit vectors 𝑤 (𝑘+1) , . . . , 𝑤 (𝑡 ) . Therefore,

1 = |𝑐 |2 =

𝑘∑︁
𝑖=1

(𝑐 · 𝑣 (𝑖) )2 +
𝑡∑︁

𝑖=𝑘+1
(𝑐 · 𝑤 (𝑖) )2 =

𝑘∑︁
𝑖=1

(𝑐 · 𝑣 (𝑖) )2 ≥ 𝑘

𝜗(𝐺) ,
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8.3 Connection with Ramsey Numbers 205

where the last inequality holds as by definition 𝜗(𝐺) ≥ 1
(𝑐·𝑣 (𝑖) )2 for each 𝑖. □

Theorem 8.8 Θ(𝐺) ≤ 𝜗(𝐺).

Proof. By the above two lemmas,

𝛼(∧𝑛𝐺) ≤ 𝜗(∧𝑛𝐺) ≤ 𝜗(𝐺)𝑛,

which follows by the inequality as required immediately. □

Using linear algebra extensively, with a special case in a general upper bound,
Lovász obtained that for odd 𝑘 ≥ 3,

𝜗(𝐶𝑘) =
𝑘 cos(𝜋/𝑘)

1 + cos(𝜋/𝑘) ,

which is an upper bound for Θ(𝐶𝑘) as we have seen.

8.3 Connection with Ramsey Numbers

The independence number of a graph product is important for the corresponding
communication channel. As the capacity of a channel is described by the indepen-
dence number of the graph, the following definition comes naturally. For integers
𝑘1 ≥ 2, 𝑘2 ≥ 2, . . . , 𝑘𝑛 ≥ 2, define

𝜌(𝑘1, . . . , 𝑘𝑛) = max {𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) : 𝛼(𝐺𝑖) < 𝑘𝑖 , 𝑖 = 1, . . . , 𝑛} .

From the equality (8.1), we have

Proposition 8.3 Let 𝑘1 ≥ 2, 𝑘2 ≥ 2, . . . , 𝑘𝑛 ≥ 2 be integers. Then

𝜌(𝑘1, . . . , 𝑘𝑛) = max{𝜔(𝐺1 ∨ · · · ∨ 𝐺𝑛) : 𝜔(𝐺𝑖) < 𝑘𝑖 , 𝑖 = 1, . . . , 𝑛}.

When 𝑘1 = 𝑘2 = · · · = 𝑘𝑛 = 𝑘 ≥ 2,

𝜌(𝑘, . . . , 𝑘) = max{𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) : 𝛼(𝐺𝑖) < 𝑘, 𝑖 = 1, . . . , 𝑛},

where 𝐺1, 𝐺2, . . . , 𝐺𝑛 are formally independent in the definition. However, Erdős,
McEliece, and Taylor (1971), and later Alon and Orlitsky (1995) proved that
𝐺1, 𝐺2, . . . , 𝐺𝑛 can be taken to one graph𝐺. That is to say, 𝜌(𝑘, 𝑘, . . . , 𝑘) = 𝜌𝑛 (𝑘),
where

𝜌𝑛 (𝑘) = max{𝛼(∧𝑛𝐺) : 𝛼(𝐺) < 𝑘}.

Theorem 8.9 Let 𝑘 ≥ 2 be an integer. Then 𝜌𝑛 (𝑘) = 𝜌(𝑘, . . . , 𝑘), i.e.,

max{𝛼(∧𝑛𝐺) : 𝛼(𝐺) < 𝑘} = max{𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) : 𝛼(𝐺𝑖) < 𝑘, 𝑖 = 1, . . . , 𝑛}.
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206 8 Communication Channels

Proof. Set

𝜌 = 𝜌(𝑘, · · · , 𝑘) = max{𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) : 𝛼(𝐺𝑖) < 𝑘, 𝑖 = 1, . . . , 𝑛}.

Clearly 𝜌𝑛 (𝑘) ≤ 𝜌. It suffices to show that there exists a graph with 𝛼(𝐺) < 𝑘 such
that 𝛼(∧𝑛𝐺) ≥ 𝜌. By definition, there are graphs 𝐺1, . . . , 𝐺𝑛 with 𝛼(𝐺𝑖) < 𝑘 such
that 𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) = 𝜌, where the vertex sets of 𝐺1, . . . , 𝐺𝑛 are distinct. Let
𝐺 = 𝐺1 + · · · + 𝐺𝑛 be the graph by adding edges connecting any pair of 𝐺𝑖 and 𝐺 𝑗

completely. Then 𝛼(𝐺) < 𝑘 . Clearly,

𝛼(∧𝑛𝐺) ≥ 𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) = 𝜌

as desired. □

More importantly, Erdős, McEliece and Taylor (1971) obtained a relation of
function 𝜌(𝑘1, . . . , 𝑘𝑛) and Ramsey number 𝑟 (𝑘1, . . . , 𝑘𝑛) as follows.

Theorem 8.10 Let 𝑘1 ≥ 2, 𝑘2 ≥ 2, . . . , 𝑘𝑛 ≥ 2 be integers. Then

𝜌(𝑘1, . . . , 𝑘𝑛) = 𝑟 (𝑘1, . . . , 𝑘𝑛) − 1.

Proof. Set 𝜌 = 𝜌(𝑘1, . . . , 𝑘𝑛), and 𝑟 = 𝑟 (𝑘1, . . . , 𝑘𝑛) − 1. We first prove that 𝜌 ≥ 𝑟 .
Recall the definition that 𝑟 is the largest integer for which there exists a coloring of
edges of 𝐾𝑟 with colors {1, 2, . . . , 𝑛} such that any monochromatic clique in color 𝑖
has size less than 𝑘𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Let

𝑉 = {1, 2, · · · , 𝑟}

be the vertex set of this 𝐾𝑟 , and let 𝐺𝑖 be the subgraph with vertex set 𝑉 whose edge
set consists of all edges in color 𝑖. Then 𝜔(𝐺𝑖) < 𝑘𝑖 . By considering the OR product
graph 𝐺 = 𝐺1 ∨ 𝐺2 ∨ · · · ∨ 𝐺𝑛, we have 𝜌 ≥ 𝜔(𝐺). On the other hand, 𝐺 contains
a set

𝑆 = {(1, 1, . . . , 1), (2, 2, . . . , 2), · · · , (𝑟, 𝑟, . . . , 𝑟)}.

For any pair of vertices 𝑖 and 𝑗 of 𝐾𝑟 with 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟 , they are adjacent in some
𝐺ℓ , so the vertices (𝑖, 𝑖, . . . , 𝑖) and ( 𝑗 , 𝑗 , . . . , 𝑗) of 𝑆 are adjacent in 𝐺. Thus 𝑆 is a
clique and hence 𝜌 ≥ 𝜔(𝐺) ≥ 𝑟 .

We then prove that 𝑟 ≥ 𝜌. From the definition, there are graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛
with 𝜔(𝐺𝑖) < 𝑘𝑖 such that 𝐺1 ∨ 𝐺2 ∨ · · · ∨ 𝐺𝑛 contains a clique 𝑇 of size 𝜌,

𝑇 = {(𝑥1
1, 𝑥

1
2, . . . , 𝑥

1
𝑛), (𝑥2

1, 𝑥
2
2, . . . , 𝑥

2
𝑛), . . . , (𝑥

𝜌

1 , 𝑥
𝜌

2 , . . . , 𝑥
𝜌
𝑛)}.

Define a coloring for the edges of 𝐾𝜌 on vertex set

𝑈 = {1, 2, . . . , 𝜌}

with colors {1, 2, . . . , 𝑛} in following way. For an edge 𝑎𝑏 in this 𝐾𝜌, consider two
vertices in 𝑇

(𝑥𝑎1 , 𝑥
𝑎
2 , . . . , 𝑥

𝑎
𝑛 ) and (𝑥𝑏1 , 𝑥

𝑏
2 , . . . , 𝑥

𝑏
𝑛),
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8.4 Exercises 207

which are adjacent in 𝐺. There is some 𝑖 so that 𝑥𝑎
𝑖
≠ 𝑥𝑏

𝑖
and 𝑥𝑎

𝑖
𝑥𝑏
𝑖

is an edge of 𝐺𝑖 .
We color the edge 𝑎𝑏 of 𝐾𝜌 with the such smallest color 𝑖, then all edges of 𝐾𝜌 are
colored.

We claim that there is no monochromatic clique of size 𝑘𝑖 in any fixed color 𝑖. In
fact, if

𝐴 ⊆ 𝑈 = {1, 2, . . . , 𝜌}

is a monochromatic clique in color 𝑖, consider

𝑋 = {𝑥𝑎𝑖 : 𝑎 ∈ 𝐴} ⊆ 𝑉 (𝐺𝑖).

For any distinct 𝑥𝑎
𝑖

and 𝑥𝑏
𝑖

of 𝑋 , the edge 𝑎𝑏 of 𝐾𝜌 is colored 𝑖, thus 𝑥𝑎
𝑖
𝑥𝑏
𝑖

is an edge
of 𝐺𝑖 . Hence 𝑋 forms a clique of 𝐺𝑖 . Therefore

|𝐴| = |𝑋 | ≤ 𝜔(𝐺𝑖) < 𝑘𝑖 ,

yielding the fact that 𝑟 ≥ 𝜌 and completing the proof. □

It is very interesting to study the behavior of 𝜌𝑛 (𝑚). From the above theorem, we
have

lim
𝑛→∞

𝜌𝑛 (3)1/𝑛 = lim
𝑛→∞

(𝑟𝑛 (3) − 1)1/𝑛.

The later limit was proved to exist in Chapter 2 that is at least 3211/5, conjectured to
be infinity.

8.4 Exercises

1. Determine 𝛼(∧2𝑛𝐶5). What can we say about 𝛼(∧2𝑛+1𝐶5)?

2.∗ Prove 𝛼(∧4𝐶7) ≥ 17. (Hint: Bohman and Holzman, 2003)

3. Show that the length of handle of the Lovász umbrella is 5−1/4.

4. Prove that Θ(𝐶2𝑚) = 𝑚.

5.∗ Prove that Θ(𝐶5) =
√

5. (Hint: Lovász, 1979)

6.∗ For integers 𝑘1 ≥ 2, 𝑘2 ≥ 2, . . . , 𝑘𝑛 ≥ 2, define

𝜌(𝑘1, . . . , 𝑘𝑛) = max {𝛼(𝐺1 ∧ · · · ∧ 𝐺𝑛) : 𝛼(𝐺𝑖) < 𝑘𝑖 , 𝑖 = 1, . . . , 𝑛} .

Prove that
𝜌(𝑘1, . . . , 𝑘𝑛) = 𝑟 (𝑘1, . . . , 𝑘𝑛) − 1.

(Hint: Erdős, McEliece and Taylor, 1971)
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Chapter 9
Dependent Random Choice

The method of dependent random choice has many applications, particularly for
extremal problems that deal with embedding a small or sparse graph into a dense
graph, in which the most of embedded graphs are bipartite. To obtain such an
embedding, it is sometimes convenient to find a large vertex subset 𝑈 in a dense
graph, in which all (or almost all) small subsets of𝑈 have many common neighbors.
Using this𝑈, one can greedily embed vertices of a desired subgraph one by one.

9.1 The Basic Lemma

For a graph 𝐺 and a vertex set 𝑇 , let 𝑑 (𝐺) be the average degree of 𝐺, and 𝐽 (𝑇) the
set of common neighbors of vertices of 𝑇 as

𝐽 (𝑇) =
⋂
𝑥∈𝑇

𝑁 (𝑥).

The following lemma is basic for dependent random choice, which appeared in dif-
ferent forms in Kostochka and Rödl (2001), Alon, Krivelevich and Sudakov (2003),
Sudakov (2003), and the survey by Fox and Sudakov (2011).

Lemma 9.1 Let𝑚, 𝑟 and 𝑡 be positive integers. If𝐺 is a graph of order 𝑛 and average
degree 𝑑 = 𝑑 (𝐺), then there exists a subset𝑈 of 𝐺 such that

|𝑈 | ≥ 𝑛
(
𝑑

𝑛

) 𝑡
−

(
𝑛

𝑟

) (𝑚
𝑛

) 𝑡
and every 𝑅 ⊆ 𝑈 of size |𝑅 | = 𝑟 has |𝐽 (𝑅) | ≥ 𝑚 + 1.

Proof. Pick a set 𝑇 of 𝑡 vertices uniformly at random with repetitions. For a vertex
𝑣, observe that a vertex 𝑣 is a common neighbor of 𝑇 , i.e., 𝑣 ∈ 𝐽 (𝑇) if and only if
𝑇 ⊆ 𝑁 (𝑣), so

209© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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210 9 Dependent Random Choice

Pr(𝑣 ∈ 𝐽 (𝑇)) = Pr(𝑇 ⊆ 𝑁 (𝑣)) =
(
𝑑 (𝑣)
𝑛

) 𝑡
.

Let 𝑋 = |𝐽 (𝑇) |. Then 𝐸 (𝑋) = ∑
𝑣 Pr(𝑣 ∈ 𝐽 (𝑇)) and thus

𝐸 (𝑋) =
∑︁
𝑣

(
𝑑 (𝑣)
𝑛

) 𝑡
=

1
𝑛𝑡−1

(
1
𝑛

∑︁
𝑣

𝑑𝑡 (𝑣)
)
≥ 𝑑𝑡

𝑛𝑡−1 = 𝑛

(
𝑑

𝑛

) 𝑡
,

in which we use the convexity of the function 𝑓 (𝑧) = 𝑧𝑡 .
Similarly, for a given set 𝑅, we have

Pr(𝑅 ⊆ 𝐽 (𝑇)) = Pr(𝑇 ⊆ 𝐽 (𝑅)) =
(
|𝐽 (𝑅) |
𝑛

) 𝑡
.

Let 𝑌 be the number of subsets 𝑅 of 𝐽 (𝑇) with |𝑅 | = 𝑟 and |𝐽 (𝑅) | ≤ 𝑚. Then

𝐸 (𝑌 ) =
∑︁

𝑅⊆𝐽 (𝑇 ) ,
|𝑅 |=𝑟, |𝐽 (𝑅) |≤𝑚

(
|𝐽 (𝑅) |
𝑛

) 𝑡
≤

(
𝑛

𝑟

) (𝑚
𝑛

) 𝑡
,

and thus

𝐸 (𝑋 − 𝑌 ) ≥ 𝑛
(
𝑑

𝑛

) 𝑡
−

(
𝑛

𝑟

) (𝑚
𝑛

) 𝑡
. (9.1)

Therefore, there is a choice 𝑇0 of 𝑇 for which the corresponding 𝑋 −𝑌 has the lower
bound as the right hand side of (9.1). Delete one vertex from each such 𝑅 of 𝐽 (𝑇0).
Let𝑈 be the remaining subset in 𝐽 (𝑇0). Then𝑈 satisfies the claimed property. □

The above result asserts the size of a set 𝑈 such that there is a 𝐾𝑟 ,𝑚+1 for any
𝑅 ⊆ 𝑈 with |𝑅 | = 𝑟. The terms 𝑛

(
𝑑
𝑛

) 𝑡 and
(𝑛
𝑟

) (
𝑚
𝑛

) 𝑡 are like some expectations, and
𝑚, 𝑟, 𝑡 will be chosen according to requirements in applications. Note that Lemma
9.1 makes sense only if

|𝑈 | ≥ 𝑟, and 𝑛

(
𝑑

𝑛

) 𝑡
−

(
𝑛

𝑟

) (𝑚
𝑛

) 𝑡
> 0.

9.2 Applications

In this section, we will include several applications. The 𝑑-cube 𝑄𝑑 is a graph of
order 2𝑑 whose vertex set consists of all binary vectors of {0, 1}𝑑 and two distinct
vertices are adjacent if they differ in exactly one coordinate. Clearly,𝑄𝑑 is 𝑑-regular
and bipartite. Let us write Δ(𝑆) = max{𝑑𝐺 (𝑣) : 𝑣 ∈ 𝑆} for a subset 𝑆 of vertices of
𝐺. The following result is a general upper bound, in which the constant is slightly
larger than that for 𝐻 = 𝐾𝑡 ,𝑠 obtained by double counting method due to Füredi
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9.2 Applications 211

(1991). This is best possible for every fixed 𝑡, as shown by the constructions due to
Kollár, Rónyai, and Szabó (1996) and Alon, Rónyai and Szabó (1999).

Theorem 9.1 Let 𝑡 ≥ 2 be an integer. If 𝐻 is a bipartite graph on parts 𝐴 and 𝐵
with Δ(𝐵) ≤ 𝑡, then

𝑒𝑥(𝑛, 𝐻) ≤ 𝑐𝑛2−1/𝑡 ,

where 𝑐 = 𝑐(𝐻) > 0 is a constant. In particular, 𝑒𝑥(𝑛, 𝑄𝑑) ≤ 𝑐 𝑛2−1/𝑑 .

Proof. Let 𝑎 = |𝐴|, 𝑏 = |𝐵|,𝑚 = 𝑎+𝑏, 𝑟 = 𝑡 and 𝑐 = max(𝑎1/𝑡 , 𝑒𝑚
𝑡
). Let𝐺 be a graph

of order 𝑛 and 𝑒(𝐺) ≥ 𝑐𝑛2−1/𝑡 . Hence the average degree 𝑑 = 𝑑 (𝐺) ≥ 2𝑐𝑛1−1/𝑡 .
Using the fact that

(𝑛
𝑟

)
< (𝑒𝑛/𝑟)𝑟 , we find that

𝑛

(
𝑑

𝑛

) 𝑡
−

(
𝑛

𝑟

) (𝑚
𝑛

) 𝑡
≥ (2𝑐)𝑡 −

( 𝑒𝑚
𝑡

) 𝑡
≥ (2𝑐)𝑡 − 𝑐𝑡 ≥ 𝑐𝑡 .

Thus, by Lemma 9.1, there is a subset 𝑈 in 𝐺 with |𝑈 | ≥ 𝑐𝑡 ≥ 𝑎 such that any 𝑡
vertices of𝑈 have more than 𝑚 = 𝑎 + 𝑏 common neighbors.

Now we shall embed 𝐻 into 𝐺 as a subgraph, in which we first embed 𝐴 to
an arbitrary subset of size 𝑎 in 𝑈. Without loss of generality, we may assume that
|𝑈 | = 𝑎 and the embedding of 𝐴 is𝑈. For any 𝑣 ∈ 𝐵, let 𝑀𝑣 be the image of 𝑁𝐻 (𝑣)
in 𝑈. Thus |𝑀𝑣 | ≤ 𝑡 = 𝑟 and |𝐽𝐺 (𝑀𝑣) | ≥ 𝑚 = 𝑎 + 𝑏, and so we can embed 𝑣 into
𝐽𝐺 (𝑀𝑣) \𝑈 as it contains at least 𝑏 vertices. □

Recall a result that every graph𝐺 contains an induced subgraph 𝐻 with minimum
degree 𝛿(𝐻) ≥ 𝑑 (𝐺)/2 without knowing the order of 𝐻. Inversely, the aim of the
following result of Sudakov (2005) is to find a sparse subgraph in a graph that
contains no large book graph 𝐵𝑎 = 𝐾2 + 𝐾𝑎, namely, the maximum degree of any
subgraph induced by a neighborhood is less than 𝑎.

Lemma 9.2 Let 𝐺 be a graph of order 𝑛 and 𝑑 = 𝑑 (𝐺). For any integers 𝑡 ≥ 2 and
𝑎 ≥ 0, if 𝐺 contains no 𝐵𝑎+1, then it contains an induced subgraph 𝐻 with

|𝑉 (𝐻) | ≥ 𝑛

2

(
𝑑

𝑛

) 𝑡
, and 𝑑 (𝐻) ≤ 2𝑑

( 𝑎
𝑑

) 𝑡
.

Proof. Let 𝑇 be a subset of 𝑡 vertices, chosen uniformly at random with repetitions,
and let 𝑋 = |𝐽 (𝑇) |. Similar to that in Lemma 9.1, we have

𝐸 (𝑋) =
∑︁
𝑣

(
𝑑 (𝑣)
𝑛

) 𝑡
=

1
𝑛𝑡−1

(
1
𝑛

∑︁
𝑣

𝑑𝑡 (𝑣)
)
≥ 𝑑𝑡

𝑛𝑡−1 = 𝑛

(
𝑑

𝑛

) 𝑡
,

For an edge 𝑒 = 𝑢𝑣, write 𝐽 (𝑒) = 𝐽 ({𝑢, 𝑣}) for the set of common neighbors of
𝑢 and 𝑣. Clearly, |𝐽 (𝑒) | ≤ 𝑎 as 𝐺 contains no 𝐵𝑎. Since 𝑒 is an edge in 𝐽 (𝑇) if and
only if 𝑇 is contained in 𝐽 (𝑒), we have

Pr(𝑒 ⊆ 𝐽 (𝑇)) = Pr(𝑇 ⊆ 𝐽 (𝑒)) =
(
|𝐽 (𝑒) |
𝑛

) 𝑡
≤

( 𝑎
𝑛

) 𝑡
.
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212 9 Dependent Random Choice

Let 𝑌 be the number of edges in 𝐽 (𝑇). Thus

𝐸 (𝑌 ) ≤ 𝑒(𝐺)
( 𝑎
𝑛

) 𝑡
=

𝑑𝑎𝑡

2𝑛𝑡−1 .

We shall find a choice 𝑇0 such that the subgraph 𝐻 induced by 𝐽 (𝑇0) satisfying
the claimed properties.

If 𝑎 = 0, then 𝑌 is identically 0. Therefore, there is a choice 𝑇0 such that

|𝐽 (𝑇0) | ≥
𝑑𝑡

𝑛𝑡−1 ≥ 𝑑𝑡

2𝑛𝑡−1

and the number 𝑌0 of edges in 𝐽 (𝑇0) is 0. For the case 𝑎 ≥ 1, let

𝑍 = 𝑋 − 𝑑𝑡−1

𝑎𝑡
𝑌 − 𝑑𝑡

2𝑛𝑡−1 .

Hence 𝐸 (𝑍) ≥ 0. It follows that there exists a choice 𝑇0 such that 𝑍0 = 𝑍 (𝑇0) ≥ 0.
This implies that 𝑋0 = |𝐽 (𝑇0) | ≥ 𝑑𝑡

2𝑛𝑡−1 and 𝑋0 ≥ 𝑑𝑡−1

𝑎𝑡
𝑌0. Thus the subgraph 𝐻

induced by 𝐽 (𝑇0) has 𝑋0 vertices and average degree 2𝑌0/𝑋0 ≤ 2𝑎𝑡
𝑑𝑡−1 as claimed. □

Li and Rousseau (1996) obtained that for sufficiently large 𝑛,

𝑛3

44(log 𝑛)2 < 𝑟 (𝐵𝑛, 𝐾𝑛) <
𝑛3

log(𝑛/𝑒) .

Sudakov (2005) improved the above upper bound by a factor
√︁

log 𝑛, in which
Sudakov also conjectured that the order of 𝑟 (𝐵𝑛, 𝐾𝑛) is 𝑛3/log2 𝑛.
Theorem 9.2 For all large 𝑛,

𝑟 (𝐵𝑛, 𝐾𝑛) ≤
3𝑛3

(log 𝑛)3/2 .

Proof. Let 𝐺 be a graph of order 𝑁 = 3𝑛3/(log 𝑛)3/2 that contains no 𝐵𝑛. We
shall prove that 𝛼(𝐺) ≥ 𝑛. We separate the proof into two cases depending on the
magnitude of the average degree 𝑑 = 𝑑 (𝐺).

Case 1 𝑑 ≤ 2.5𝑛2/
√︁

log 𝑛.
Note that the maximum degree of the subgraph induced by the neighborhood of

a vertex in 𝐺 is at most 𝑛 − 1. By Theorem 3.4, we have 𝛼(𝐺) ≥ 𝑁 𝑓𝑛 (𝑑), where
𝑓𝑛 (𝑑) ≥ log(𝑑/𝑛)−1

𝑑
, which implies that 𝛼(𝐺) > 𝑛.

Case 2 𝑑 > 2.5𝑛2/
√︁

log 𝑛.
In this case, applying Lemma 9.2 with 𝑡 = 2, we obtain that𝐺 contains an induced

subgraph 𝐻 of order

ℎ ≥ 𝑑2

2𝑁
> 𝑛

√︁
log 𝑛 and 𝑑 (𝐻) ≤ 2(𝑛 − 1)2

𝑑
< 0.8

√︁
log 𝑛.
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9.2 Applications 213

Thus 𝛼(𝐺) ≥ 𝛼(𝐻) ≥ ℎ
1+𝑑 (𝐻 ) > 𝑛. □

Another immediate application of Lemma 9.1 is a result of Sudakov (2003) on a
Ramsey-Turán type problem. Let 𝐺𝑛 be a graph of order 𝑛, and define

𝑅𝑇 (𝑛;𝐻, 𝑓 (𝑛)) = max{𝑒(𝐺𝑛) : 𝐺𝑛 is 𝐻-free and 𝛼(𝐺𝑛) < 𝑓 (𝑛)}.

Note that 𝑅𝑇 (𝑛;𝐻, 𝑓1 (𝑛)) ≤ 𝑅𝑇 (𝑛;𝐻, 𝑓2 (𝑛)) if 𝑓1 (𝑛) ≤ 𝑓2 (𝑛). For a survey on
Ramsey-Turán theory, see Simonovits and Sós (2001).

Trivially, 𝑅𝑇 (𝑛;𝐾3, 𝑜(𝑛)) = 𝑜(𝑛2) since a triangle-free graph 𝐺𝑛 has maximum
degree less than 𝛼(𝐺𝑛). A celebrated result in this area is

𝑅𝑇 (𝑛;𝐾4, 𝑜(𝑛)) = (1 + 𝑜(1)) 𝑛
2

8
,

in which the upper bound was proved by Szemerédi (1972) while the lower bound
was given by Bollobás and Erdős (1976). To clarify, the above result states that
every 𝐾4-free graph 𝐺𝑛 with independence number 𝛼(𝐺𝑛) = 𝑜(𝑛) has at most
(1 + 𝑜(1))𝑛2/8 edges, and this bound is tight. It is natural to ask whether or not
𝑅𝑇 (𝑛;𝐾4, 𝑛

1−𝜖 ) is Ω(𝑛2) for some 𝜖 > 0? A negative answer to this question was
given by Sudakov (2003). For any fixed 𝜖 > 0, the function 𝑓 (𝑛) in the following
result is larger than 𝑛1−𝜖 if 𝜔 tends to infinity sufficiently slowly.

Theorem 9.3 Let 𝑓 (𝑛) = 𝑒−𝜔
√

log 𝑛𝑛. If
√︁

log 𝑛 ≥ 𝜔 → ∞, then

𝑅𝑇 (𝑛;𝐾4, 𝑓 (𝑛)) < 𝑒−𝜔
2/2𝑛2

for large 𝑛.

Proof. Suppose that there exists a 𝐾4-free graph 𝐺 of order 𝑛 with edge number
𝑒(𝐺) ≥ 𝑒−𝜔

2/2𝑛2 and 𝛼(𝐺) < 𝑓 (𝑛) for large 𝑛. It is clear that the average degree 𝑑
of 𝐺 is at least 2𝑒−𝜔2/2𝑛. For 𝑟 = 2, 𝑚 = 𝑓 (𝑛) and 𝑡 = 2

√︁
log 𝑛/𝜔, we have 𝑡 ≥ 2

and

𝑛

(
𝑑

𝑛

) 𝑡
≥ 𝑛

(
2𝑒−𝜔

2/2
) 𝑡

= 2𝑡𝑛𝑒−𝑡𝜔
2/2 = 2𝑡 𝑓 (𝑛),

and (
𝑛

2

) (𝑚
𝑛

) 𝑡
=
𝑛(𝑛 − 1)

2
𝑒−𝑡𝜔

√
log 𝑛 =

𝑛(𝑛 − 1)
2

𝑒−2 log 𝑛 <
1
2
,

which implies that

𝑛

(
𝑑

𝑛

) 𝑡
−

(
𝑛

2

) (𝑚
𝑛

) 𝑡
≥ 2𝑡 𝑓 (𝑛) − 1

2
≥ 𝑓 (𝑛).

From Lemma 9.1, we can find a subset 𝑈 with |𝑈 | ≥ 𝑓 (𝑛) such that every pair
of vertices in 𝑈 has at least 𝑚 = 𝑓 (𝑛) common neighbors. The condition 𝛼(𝐺) <
𝑓 (𝑛) implies that 𝑈 contains an adjacent vertices 𝑢 and 𝑣, which have common
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214 9 Dependent Random Choice

neighborhood𝑊 with |𝑊 | ≥ 𝑓 (𝑛). Since 𝐺 is 𝐾4-free,𝑊 must form an independent
set and thus 𝛼(𝐺) ≥ |𝑊 | ≥ 𝑓 (𝑛). This is a contradiction. □

The following lemma is due to Fox and Sudakov (2009), which can be used to
give a better bound for Ramsey number of bipartite graphs with bounded maximum
degree than that from the regularity lemma (see Chapter 11).

Lemma 9.3 Let integers 𝑛 ≥ 𝑑 ≥ 1, and let 𝜖 > 0. If 𝐺 is a graph of order
𝑁 ≥ 4𝑑𝑛𝜖−𝑑 and 𝑒(𝐺) ≥ 𝜖𝑁2/2, then there is a subset 𝑈 in 𝐺 with |𝑈 | > 2𝑛 such
that the number of 𝑑-subsets 𝐷 in𝑈 with |𝐽 (𝐷) | < 𝑛 is less than 1

(2𝑑)𝑑
( |𝑈 |
𝑑

)
. That is

to say, the fraction of such 𝑑-subsets in𝑈 is less than (2𝑑)−𝑑 .

Proof. Pick a set 𝑇 of 𝑑 vertices from 𝑉 (𝐺) uniformly at random with repetitions.
Let 𝑋 = |𝐽 (𝑇) |, and let 𝑌 be the number of 𝑑-sets 𝐷 in 𝐽 (𝑇) with |𝐽 (𝐷) | < 𝑛.
Similar to the proof of Lemma 9.1 by noting the average degree of 𝐺 is at least 𝜖𝑁 ,
we obtain

𝐸 (𝑋) ≥ (𝜖𝑁)𝑑
𝑁𝑑−1 ≥ 𝜖𝑑𝑁, and 𝐸 (𝑌 ) <

(
𝑁

𝑑

) ( 𝑛
𝑁

)𝑑
.

If 𝐸 (𝑌 ) = 0, then 𝑌 is identically zero. We are done by taking 𝑈 = 𝐽 (𝑇0) for some
choice 𝑇0 of 𝑇 such that |𝐽 (𝑇0) | ≥ 𝐸 (𝑋) ≥ 4𝑑𝑛 from the assumption. So we assume
that 𝐸 (𝑌 ) > 0 in the remaining proof. As 𝐸 (𝑋𝑑) ≥ 𝐸𝑑 (𝑋) from convexity, we
obtain

𝐸

(
𝑋𝑑 − 𝐸𝑑 (𝑋)

2𝐸 (𝑌 ) 𝑌 − 1
2
𝐸𝑑 (𝑋)

)
≥ 0.

Therefore, there is a choice 𝑇0 of 𝑇 such that the expression in the bracket is
nonnegative. Let 𝑋0 = |𝐽 (𝑇0) | and 𝑌0 = 𝑌 (𝑇0). Thus

𝑋𝑑0 ≥ 1
2
𝐸𝑑 (𝑋) ≥ 1

2
(
𝜖𝑑𝑁

)𝑑
,

and hence |𝐽 (𝑇0) | = 𝑋0 > 2𝑛 ≥ 2𝑑. Note that

𝑋𝑑0 =
𝑋𝑑0 𝑑!

𝑋0 (𝑋0 − 1) · · · (𝑋0 − 𝑑 + 1)

(
𝑋0
𝑑

)
< 2𝑑−1𝑑!

(
𝑋0
𝑑

)
,

so we have

𝑌0 ≤
2𝑋𝑑0 𝐸 (𝑌 )
𝐸𝑑 (𝑋)

<
2𝑑𝑑!

(𝜖𝑑𝑁)𝑑

(
𝑋0
𝑑

) (
𝑁

𝑑

) ( 𝑛
𝑁

)𝑑
<

1
(2𝑑)𝑑

(
𝑋0
𝑑

)
.

Now we can take𝑈 = 𝐽 (𝑇0), which satisfies the asserted properties. □

Lemma 9.4 Let 𝐻 be a bipartite graph of order 𝑛 with Δ(𝐻) ≤ 𝑑. If a graph 𝐺
contains a subset 𝑈 with |𝑈 | > 2𝑛 such that the fraction of subsets 𝐷 in 𝑈 with
|𝐷 | = 𝑑 and |𝐽 (𝐷) | < 𝑛 is less than (2𝑑)−𝑑 , then 𝐺 contains 𝐻 as a subgraph.
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9.2 Applications 215

Proof. We may assume that 𝑑 ≥ 1. We say that a 𝑑-subset 𝐷 of 𝑈 is good if
|𝐽 (𝐷) | ≥ 𝑛. Generally, if 𝑆 is a subset of 𝑈 with 𝑠 = |𝑆 | ≤ 𝑑, then we say that 𝑆 is
good if 𝑆 is contained in more than(

1 − 1
(2𝑑)𝑑−𝑠

) (
|𝑈 | − 𝑠
𝑑 − 𝑠

)
good 𝑑-subsets of 𝑈. For a good set 𝑆 with |𝑆 | < 𝑑 and a vertex 𝑤 ∈ 𝑈 \ 𝑆, we say
that 𝑤 is good with respect to 𝑆 if 𝑆 ∪ {𝑤} is good.

Clearly, a subset 𝑆 of 𝑈 with 𝑠 = |𝑆 | ≤ 𝑑 is good if the fraction of bad 𝑑-sets
containing 𝑆 is less than 1

(2𝑑)𝑑−𝑠 . For example, the empty set is good since the fraction
of bad 𝑑-sets in𝑈 is at most (2𝑑)−𝑑 from the assumption.

For a good set 𝑆, let 𝐵𝑆 denote the set of vertices 𝑤 ∈ 𝑈 \ 𝑆 that are bad with
respect to 𝑆. The following claim is crucial for the proof.

Claim If 𝑆 is good with 𝑠 = |𝑆 | < 𝑑, then |𝐵𝑆 | ≤ |𝑈 |−𝑠
2𝑑 .

Proof. Indeed, suppose to the contrary that |𝐵𝑆 | > |𝑈 |−𝑠
2𝑑 . For any 𝑤 ∈ 𝐵𝑆 , the

set 𝑆 ∪ {𝑤} is bad and thus the number of bad 𝑑-sets that contains 𝑆 ∪ {𝑤} is at least

1
(2𝑑)𝑑−𝑠−1

(
|𝑈 | − 𝑠 − 1
𝑑 − 𝑠 − 1

)
.

Let us count these bad 𝑑-sets over 𝑤 of 𝐵𝑆 . Note that each such 𝑑-set is counted at
most 𝑑 − 𝑠 times, thus the number of these bad 𝑑-sets is at least

|𝐵𝑆 |
(𝑑 − 𝑠) (2𝑑)𝑑−𝑠−1

(
|𝑈 | − 𝑠 − 1
𝑑 − 𝑠 − 1

)
>

1
(2𝑑)𝑑−𝑠

(
|𝑈 | − 𝑠
𝑑 − 𝑠

)
,

contradicting to the fact that 𝑆 is good. □

Let 𝑉1 and 𝑉2 be the two parts of the bipartite graph 𝐻 with

𝑉1 = {𝑣1, 𝑣2, . . . , 𝑣𝑚}.

Denote 𝐿𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑖}, and we shall find an embedding 𝜙 of 𝐻 into 𝐺 such
that 𝜙(𝑉1) is contained in𝑈 and

• 𝜙(𝑁 (𝑤) ∩𝑉1) is good for each 𝑤 ∈ 𝑉2,

where and henceforth 𝑁 (𝑤) = 𝑁𝐻 (𝑤). This 𝜙 is constructed such that 𝜙(𝑁 (𝑤)∩𝐿𝑖)
is good for any 𝑤 ∈ 𝑉2 and any 𝑖 ≤ 𝑚 by induction on 𝑖.

As mentioned, the empty set ∅ is good, and hence by the claim, the number of
bad vertices respect to ∅ is at most |𝑈 |/(2𝑑). Any good vertex in𝑈 with respect to ∅
forms a good singleton set. Let us pick such a good vertex to be 𝜙(𝑣1). Note that for
any 𝑤 ∈ 𝑉2, 𝜙(𝑁 (𝑤) ∩ 𝐿1) is an empty set or a singleton {𝜙(𝑣1)}, so 𝜙(𝑁 (𝑤) ∩ 𝐿1)
is good as desired.

Suppose that we have embedded 𝐿𝑖 into 𝑈 such that 𝜙(𝑁 (𝑤) ∩ 𝐿𝑖) is good for
any 𝑤 ∈ 𝑉2. We then shall find a vertex in 𝑈 to be 𝜙(𝑣𝑖+1). Note that if 𝑤 and 𝑣𝑖+1
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216 9 Dependent Random Choice

are non-adjacent, then 𝑁 (𝑤) ∩ 𝐿𝑖+1 = 𝑁 (𝑤) ∩ 𝐿𝑖 hence 𝜙(𝑁 (𝑤) ∩ 𝐿𝑖) is good.
Since Δ(𝐻) ≤ 𝑑, there are at most 𝑑 subsets 𝑆 of the form 𝑆 = 𝑁 (𝑤) ∩ 𝐿𝑖+1 among
neighbors 𝑤 of 𝑣𝑖+1. By the induction hypothesis, for each such subset 𝑆, the set
𝜙(𝑆 \ {𝑣𝑖+1}) = 𝜙(𝑁 (𝑤) ∩ 𝐿𝑖) is good and therefore there are at most |𝑈 |/(2𝑑) bad
vertices in 𝑈 with respect to it. In total this gives at most |𝑈 |/2 bad vertices. The
remaining at least |𝑈 |/2 − 𝑖 > 0 vertices in 𝑈 \ 𝜙(𝐿𝑖) are good with respect to all
the above sets 𝜙(𝑆 \ {𝑣𝑖+1}) and we can pick any of them to be 𝜙(𝑣𝑖+1). Thus the set
𝜙(𝑁 (𝑤) ∩ 𝐿𝑖+1) is good for every 𝑤 ∈ 𝑉2.

Once we have found 𝜙 satisfying the mentioned property, we then embed vertices
of 𝑉2 one by one. Suppose that the current vertex to embed is 𝑤 ∈ 𝑉2. Then
𝜙(𝑁 (𝑤)) = 𝜙(𝑁 (𝑤) ∩ 𝐿𝑚) is good and hence 𝜙(𝑁 (𝑤)) has at least 𝑛 common
neighbors. Since less than 𝑛 of them were so far occupied, we still have an available
vertex to embed 𝑤. We thus complete the embedding of 𝐻 into 𝐺. □

Theorem 9.4 Let 𝐻 be a bipartite graph of order 𝑛 with Δ = Δ(𝐻) ≥ 1. For any
𝜖 > 0, if 𝐺 is a graph of order 𝑁 ≥ 8Δ𝜖−Δ𝑛 and 𝑒(𝐺) ≥ 𝜖

(𝑁
2
)
, then 𝐺 contains 𝐻

as a subgraph.

Proof. Let 𝜖 ′ = (1 − 1/𝑁)𝜖 . Thus, we have 𝑁 ≥ 8Δ𝑛/𝜖Δ ≥ 4Δ𝑛/𝜖 ′Δ and 𝑒(𝐺) ≥
𝜖 ′𝑁2/2. Therefore, Lemma 9.3 implies that 𝐺 contains a subset 𝑈 with |𝑈 | > 2𝑛
such that the fraction of sets 𝐷 in 𝑈 with |𝐷 | = Δ and |𝐽 (𝐷) | < 𝑛 is less than
1/(2Δ)Δ. Now, Lemma 9.4 guarantees that 𝐺 contains every bipartite graph 𝐻 of
order 𝑛 with Δ(𝐻) ≤ Δ as desired. □

The following result follows from Theorem 9.4 immediately.

Theorem 9.5 Let 𝐻 be a bipartite graph of order 𝑛. If the maximum degree of 𝐻 is
at most Δ ≥ 1, then

𝑟 (𝐻) ≤ 8Δ2Δ𝑛.

In particular, 𝑟 (𝐾𝑛,𝑛) ≤ 18𝑛22𝑛 and 𝑟 (𝑄𝑑) ≤ 8𝑑4𝑑 .

Proof. Taking 𝜖 = 1/2 together with the majority color in a 2-coloring of edges of
𝐾𝑁 , where 𝑁 = 8Δ2Δ𝑛, we have the asserted upper bound from Theorem 9.4. □

Note that the upper bound for 𝑟 (𝐾𝑛,𝑛) in the above theorem has been improved
to 𝑂 (2𝑛 log 𝑛) by Conlon (2008). Conlon, Fox and Sudakov (2014) gave an upper
bound as 𝑟 (𝐻) ≤ Δ2Δ+5𝑛 through a different and short proof. Furthermore, Conlon,
Fox and Sudakov (2016) obtained an upper bound as 𝑟 (𝐻) ≤ 2Δ+6𝑛.

For the lower bound, Graham, Rödl and Ruciński (2001) proved that there is a
constant 𝑎 > 1 such that for each Δ ≥ 2 and 𝑛 ≥ Δ+1, there is a bipartite graph 𝐻 of
order 𝑛 and Δ(𝐻) = Δ satisfying that 𝑟 (𝐻) ≥ 𝑎Δ𝑛. For the cube 𝑄𝑑 , Burr and Erdős
conjectured that {𝑄𝑑 : 𝑑 ≥ 1} is a Ramsey linear family, i.e., 𝑟 (𝑄𝑑) is at most 𝑐2𝑑
for some constant 𝑐. This conjecture has been confirmed by Conlon, Fox, Lee and
Sudakov (2013).

A graph 𝐺 is called 𝑑-degenerate if every subgraph of 𝐺 has a minimum degree
at most 𝑑. Let us turn to the degenerate bipartite graphs. Erdős conjectured that
𝑒𝑥(𝑛, 𝐻) = 𝑂 (𝑛2−1/𝑟 ) if 𝐻 is 𝑟-degenerate and bipartite, and for any graph 𝐻, if
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9.2 Applications 217

𝐻 has no isolated vertices, then 𝑟 (𝐻) ≤ 2𝑐
√
𝑚, where 𝑚 = 𝑒(𝐻). A progress has

been made for the first conjecture due to Alon, Krivelevich and Sudakov (2003),
and the second conjecture was verified for bipartite graphs by Alon, Krivelevich and
Sudakov (2003) and completely solved by Sudakov (2011).

Lemma 9.5 Let 𝐺 = 𝐺 (𝑈1,𝑈2) be a bipartite graph. If any 𝑟 vertices in each of
𝑈1 and 𝑈2 have at least 𝑛 common neighbors, then 𝐺 contains every 𝑟-degenerate
bipartite graph of order 𝑛.

Proof. Let 𝑉 (𝐻) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, where every vertex 𝑣𝑖 has at most 𝑟 neighbors
𝑣 𝑗 with 𝑗 < 𝑖. Let 𝐴1 and 𝐴2 be two parts of 𝐻. We shall find an embedding 𝜙
of 𝐻 into 𝐺 such that 𝜙(𝐴𝑘) ⊆ 𝑈𝑘 for 𝑘 = 1, 2. Suppose that we have embedded
𝑣1, 𝑣2, . . . , 𝑣𝑖−1 and the current vertex to embed is 𝑣𝑖 , where 𝑣𝑖 ∈ 𝐴1, say. Consider
the set {𝜙(𝑣 𝑗 ) : 𝑗 < 𝑖, 𝑣 𝑗𝑣𝑖 ∈ 𝐸 (𝐻)}. This set is contained in 𝑈2, and it has
cardinality at most 𝑟 and hence at least 𝑛 common neighbors in 𝑈1. All these
neighbors can be used to embed 𝑣𝑖 and at least one of them is not occupied yet,
which can be picked to be 𝜙(𝑣𝑖). □

Lemma 9.6 Let 𝑟, 𝑠 ≥ 2 be integers. If 𝐺 is a graph of order 𝑁 with 𝑒(𝐺) ≥
𝑁2−1/(𝑠3𝑟 ) , then 𝐺 contains disjoint subsets𝑈1 and𝑈2 such that |𝑈1 | ≥ 𝑁1−1/𝑠 and
in each of which every 𝑟 vertices have at least 𝑁1−1.8/𝑠 common neighbors in the
other.

Proof. Let 𝑞 = 1.75𝑟𝑠, 𝑑 = 2𝑒(𝐺)/𝑁 ≥ 2𝑁1−1/(𝑠3𝑟 ) , 𝑚 = 𝑁1−1.8/𝑠 and 𝑡 = 𝑠2𝑟 .
Thus

𝑁

(
𝑑

𝑁

) 𝑡
−

(
𝑁

𝑞

) (𝑚
𝑁

) 𝑡
≥ 2𝑡𝑁1−𝑡/(𝑠3𝑟 ) − 𝑁𝑞−1.8𝑡/𝑠

𝑞!

≥ 2𝑡𝑁1−1/𝑠 − 1
𝑞!

≥ 𝑁1−1/𝑠 .

Applying Lemma 9.1, we obtain a set 𝑈1 with |𝑈1 | ≥ 𝑁1−1/𝑠 such that every 𝑞
vertices in𝑈1 has at least 𝑚 = 𝑁1−1.8/𝑠 common neighbors in 𝐺.

Let 𝑇 be a subset of𝑈1 consisting of 𝑞 − 𝑟 vertices chosen from𝑈1 randomly and
uniformly with repetitions. If 𝑅 is a fixed subset with |𝑅 | = 𝑟 and |𝐽 (𝑅) ∩𝑈1 | ≤ 𝑚,
then

Pr(𝑇 ⊆ 𝐽 (𝑅)) =
(
|𝐽 (𝑅) ∩𝑈1 |

|𝑈1 |

)𝑞−𝑟
≤

(
𝑚

|𝑈1 |

)𝑞−𝑟
.

Note that the event 𝑅 ⊆ 𝐽 (𝑇) is exactly that 𝑇 ⊆ 𝐽 (𝑅). Thus the probability that
𝐽 (𝑇) contains a subset 𝑅 with |𝑅 | = 𝑟 and |𝐽 (𝑅) ∩𝑈1 | ≤ 𝑚 is at most(

𝑁

𝑟

) (
𝑚

|𝑈1 |

)𝑞−𝑟
≤ 𝑁𝑟

𝑟!
𝑁−0.8(𝑞−𝑟 )/𝑠 < 1,

where we used that 𝑞 − 𝑟 > 1.25𝑟𝑠 and |𝑈1 | ≥ 𝑁1−1/𝑠 .
Therefore, there is a choice 𝑇0 of 𝑇 such that every 𝑟 vertices of 𝐽 (𝑇0) have at

least 𝑚 common neighbors in𝑈1. Let𝑈2 = 𝐽 (𝑇0). Consider now an arbitrary subset
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218 9 Dependent Random Choice

𝑆 of 𝑈1 with |𝑆 | = 𝑟. Since 𝑆 ∪ 𝑇0 is a subset of 𝑈1 of size at most 𝑞, this set has at
least 𝑚 common neighbors in 𝐺. Observe that 𝐽 (𝑆∪𝑇0) ⊆ 𝐽 (𝑇0) = 𝑈2. Hence 𝑆 has
at least 𝑚 common neighbors in𝑈2, and the statement follows as asserted. □

From the above two lemmas, we get the following corollary immediately.

Corollary 9.1 Let 𝑟, 𝑠 ≥ 2 be integers. If 𝐺 is a graph of order 𝑁 and 𝑒(𝐺) ≥
𝑁2−1/(𝑠3𝑟 ) , then 𝐺 contains every 𝑟-degenerate bipartite graph of order at most
𝑁1−1.8/𝑠 .

Theorem 9.6 Let 𝐻 be an 𝑟-degenerate bipartite graph of order ℎ. For all 𝑛 ≥ ℎ10,

𝑒𝑥(𝑛, 𝐻) ≤ 𝑛2−1/(8𝑟 ) .

Proof. Let 𝐺 be a graph of order 𝑛 and 𝑒(𝐺) ≥ 2 𝑛2−1/(8𝑟 ) . Substituting 𝑠 = 2
in Corollary 9.1, we have that 𝐺 contains 𝐻 since it is 𝑟-degenerate with order
ℎ ≤ 𝑛1−1.8/𝑠 = 𝑛0.1. □

The following result is due to Alon, Krivelevich and Sudakov (2003).

Theorem 9.7 For any bipartite graph 𝐻 with 𝑚 edges and no isolated vertices,

𝑟 (𝐻) ≤ 216
√
𝑚+1.

Proof. We shall first prove that 𝐻 is
√
𝑚-degenerate. If not, 𝐻 has a subgraph 𝐻′

with 𝛿(𝐻′) >
√
𝑚. Let (𝑈,𝑊) be the bipartition of 𝐻′. Thus, |𝑈 | >

√
𝑚 and

𝑒(𝐻′) =
∑︁
𝑣∈𝑈

𝑑𝐻′ (𝑣) ≥ |𝑈 |𝛿(𝐻′) > 𝑚,

which is a contradiction.
Let 𝑁 = 216

√
𝑚+1 and consider a red/blue coloring of the edges of 𝐾𝑁 . We claim

that at least 𝑁2−1/(8
√
𝑚) edges have been colored in red, say. To see this, it suffices

to show 1
2
(𝑁

2
)
≥ 𝑁2−1/(8

√
𝑚) , which is (𝑁 − 1)𝑁1/(8

√
𝑚) ≥ 4𝑁 and follows from the

fact that
𝑁1/8

√
𝑚 = 22+1/8

√
𝑚 = 4 exp

{
log 2
8
√
𝑚

}
> 4

(
1 + log 2

8
√
𝑚

)
immediately. These edges induce a red graph, denoted by𝐺, which satisfies Corollary
9.1 with 𝑟 =

√
𝑚 and 𝑠 = 2. Thus 𝐺 contains every

√
𝑚-degenerate bipartite graph

of order at most 𝑁1−1.8/𝑠 . Note that 𝑁1−1.8/𝑠 = 𝑁0.1 > 21.6
√
𝑚 > 2𝑚, and the order

of 𝐻 is at most 2𝑚, so 𝐻 is a subgraph of 𝐺. □

9.3 Exercises

1. Prove that any graph with maximum degree Δ is Δ-degenerate. When will we
say that it is (Δ − 1)-degenerate?
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9.3 Exercises 219

2. Prove that 𝑃𝑛 is 1-degenerate. How about 𝐾1,𝑛, 𝐶𝑛, 𝑇𝑛 and 𝐾𝑚,𝑛?

3. Prove that every graph with 𝑚 edges is
√
𝑚-degenerate.

4. Let 𝐺 be a graph of order 𝑛 and 𝑑 = 𝑑 (𝐺). For any integers 𝑡 ≥ 2 and 𝑎 ≥ 0,
prove that if 𝐺 contains no 𝐵𝑎+1, then it contains an induced subgraph 𝐻 with

|𝑉 (𝐻) | ≥ 𝑛

2

(
𝑑

𝑛

) 𝑡
, and 𝑑 (𝐻) ≤ 2𝑑

( 𝑎
𝑑

) 𝑡
.

5. Improve the constant 3 in Theorem 9.2 to 2 + 𝑜(1). How do it further?

6. Sudakov (2005) conjectured that the order of 𝑟 (𝐵𝑛, 𝐾𝑛) is 𝑛3/log2 𝑛. For each
𝑘 ≥ 2, estimate 𝑟 (𝐵 (𝑘 )

𝑛 , 𝐾𝑛).

7. Let 𝐺 = 𝐺 (𝑈1,𝑈2) be a bipartite graph. Prove that if any 𝑟 vertices in each of
𝑈1 and 𝑈2 have at least 𝑛 common neighbors, then 𝐺 contains every 𝑟-degenerate
bipartite graph of order 𝑛.

8.∗ Prove that 𝑅𝑇 (𝑛;𝐾4, 𝑜(𝑛)) ≤ (1 + 𝑜(1)) 𝑛2

8 . (Hint: Szemerédi, 1972)

9.∗ Prove that for any bipartite graph 𝐻 with 𝑚 edges and no isolated vertices,
𝑟 (𝐻) ≤ 2𝑐

√
𝑚 for some constant 𝑐 > 0. (Hint: Alon, Krivelevich and Sudakov, 2003)
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Chapter 10
Quasi-Random Graphs

Random graphs have been proven to be one of the most important tools in modern
graph theory. Their tremendous triumph raises the following general question: what
are the essential properties and how can we tell when a given graph behaves like
a random graph 𝐺 𝑝 in G(𝑛, 𝑝)? Here a typical property of random graphs is what
a.a.s. 𝐺 𝑝 satisfies. This leads us to a concept of quasi-random graphs (also called
pseudo-random graphs). It was Thomason (1987) who introduced the notation of
jumbled graphs in order to measure the similarity between the edge distribution of
quasi-random graphs and random graphs. An important result of Chung, Graham
and Wilson (1989) showed that many properties of different nature are equivalent.
The quasi-random graph is in fact a family of graphs, which satisfy any of those
equivalent properties. For a survey on this topic, see Krivelevich and Sudakov (2006).

10.1 Properties of Dense Graphs

Roughly speaking, a quasi-random graph 𝐺 of order 𝑛 is a graph that behaves like
a random graph 𝐺 𝑝 with 𝑝 = 𝑒(𝐺)/

(𝑛
2
)
. For 0 < 𝑝 < 1 ≤ 𝛼, a graph 𝐺 is called

(𝑝, 𝛼)-jumbled if each induced subgraph 𝐻 on ℎ vertices of 𝐺 satisfies that����𝑒(𝐻) − 𝑝 (ℎ2)���� ≤ 𝛼ℎ.
For given graphs 𝐺 and 𝐻, let 𝑁∗

𝐺
(𝐻) be the number of labeled occurrences

of 𝐻 as an induced subgraph of 𝐺, which is the number of adjacency-preserving
injections from𝑉 (𝐻) to𝑉 (𝐺) whose image is the set of vertices of an induced copy of
𝐻 of 𝐺. Namely, these injections are both adjacency-preserving and non-adjacency-
preserving. Let 𝑁𝐺 (𝐻) be the number of labeled copies of 𝐻 as a subgraph (not
necessarily induced) of 𝐺. Thus

221© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 

Y. Li, Q. Lin, Elementary Methods of Graph Ramsey Theory, Applied Mathematical  

Sciences 211, https://doi.org/10.1007/978-3-031-12762-5_10 
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222 10 Quasi-Random Graphs

𝑁𝐺 (𝐻) =
∑︁

𝐻′:𝐻′⊇𝐻
𝑉 (𝐻′ )=𝑉 (𝐻 )

𝑁∗
𝐺 (𝐻

′),

that is to say, 𝐻′ ranges over all graphs on 𝑉 (𝐻) obtained from 𝐻 by adding a set of
edges out of 𝐻.

For example, if 𝐺 = 𝐻 = 𝐶𝑡 , then 𝑁∗
𝐺
(𝐻) = 𝑁𝐺 (𝐻) = 2𝑡, and if 𝐺 = 𝐾𝑛 and

𝑛 ≥ 𝑡 ≥ 4, then 𝑁∗
𝐺
(𝐶𝑡 ) = 0 and 𝑁𝐺 (𝐶𝑡 ) = 𝑁∗

𝐺
(𝐾𝑡 ) = (𝑛)𝑡 . If 𝐺 = 𝐾𝑛/2,𝑛/2 and 𝑛

is even, then 𝑁∗
𝐺
(𝐶4) = 𝑁𝐺 (𝐶4) = 2

[
𝑛
2

(
𝑛
2 − 1

) ]2.
Let 𝐺 be a (𝑝, 𝛼)-jumbled graph of order 𝑛, where 𝛼 = 𝛼𝑛 = 𝑜(𝑛) as 𝑛→ ∞. As

shown by Thomason, for fixed 𝑝 and graph 𝐻 of order ℎ,

𝑁∗
𝐺 (𝐻) ∼ 𝑝𝑒 (𝐻 ) (1 − 𝑝) (

ℎ
2)−𝑒 (𝐻 )𝑛ℎ .

For distinct vertices 𝑥 and 𝑦 of 𝐺, denote by 𝑠(𝑥, 𝑦) the number of vertices of 𝐺
that adjacent to 𝑥 and 𝑦 the same way: either to both or none. Let 𝜆1, 𝜆2, . . . , 𝜆𝑛 be
eigenvalues of 𝐺 with |𝜆1 | ≥ |𝜆2 | ≥ · · · ≥ |𝜆𝑛 |. Denote 𝜆 = 𝜆(𝐺) = |𝜆2 |. For two
subsets 𝐵 and 𝐶, denote 𝑒(𝐵,𝐶) by the number of edges between 𝐵 and 𝐶, in which
each edge in 𝐵∩𝐶 is counted twice. If 𝐵∩𝐶 = ∅, then 𝑒(𝐵,𝐶) is simply the number
of edges between 𝐵 and 𝐶.

The quasi-random graph defined by Chung, Graham and Wilson is in fact a
family of simple graphs, which satisfy any (hence all) of those equivalent properties
in the following theorem. It is remarkable that these properties ignore “small” local
structures. The expressions of the properties are related to the edge density 𝑝, in
particular the case 𝑝 = 1/2 is as follows.

Theorem 10.1 Let {𝐺 }∞
𝑛=1 be a sequence of graphs, where 𝐺 = 𝐺𝑛 is a graph of

order 𝑛. The following properties are equivalent:

𝑃1 (ℎ): For all graphs 𝐻 of order ℎ ≥ 4, 𝑁∗
𝐺
(𝐻) ∼ ( 1

2 ) (
ℎ
2)𝑛ℎ.

𝑃2 (𝑡): 𝑒(𝐺) ∼ 𝑛2

4 and 𝑁𝐺 (𝐶𝑡 ) ≤
(
𝑛
2
) 𝑡 + 𝑜(𝑛𝑡 ) for any 𝑡 ≥ 4.

𝑃3: 𝑒(𝐺) ≥ 𝑛2

4 + 𝑜(𝑛2), 𝜆1 ∼ 𝑛
2 and 𝜆2 = 𝑜(𝑛).

𝑃4: For each𝑈 ⊆ 𝑉 (𝐺), 𝑒(𝑈) = 1
2
( |𝑈 |

2
)
+ 𝑜(𝑛2).

𝑃5: For any two subsets𝑈,𝑉 ⊆ 𝑉 (𝐺), 𝑒(𝑈,𝑉) = 1
2 |𝑈 | |𝑉 | + 𝑜(𝑛2).

𝑃6:
∑
𝑥,𝑦

��|𝑁 (𝑥) ∩ 𝑁 (𝑦) | − 𝑛
4
�� = 𝑜(𝑛3).

𝑃7:
∑
𝑥,𝑦

��𝑠(𝑥, 𝑦) − 𝑛
2
�� = 𝑜(𝑛3).

Proof. In order to simplify the proof and catch the main idea, we assume that 𝐺 is
𝑑-regular with 𝑑 = (1/2 + 𝑜(1))𝑛. The steps of the proof are as follows,

𝑃1 (ℎ) ⇒ 𝑃2 (ℎ) ⇒ 𝑃2 (4) ⇒ 𝑃3 ⇒ 𝑃4 ⇒ 𝑃5 ⇒ 𝑃6 ⇒ 𝑃7 ⇒ 𝑃1 (ℎ).

Fact 1 𝑃1 (ℎ) ⇒ 𝑃2 (ℎ) (ℎ ≥ 4).
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10.1 Properties of Dense Graphs 223

Proof. We will show that

𝑁𝐺 (𝐶ℎ) =
∑︁

𝐻′:𝐻′⊇𝐶ℎ
𝑉 (𝐻′ )=𝑉 (𝐶ℎ )

𝑁∗
𝐺 (𝐶ℎ) ≤ (1 + 𝑜(1))

(𝑛
2

)ℎ
.

As 𝐻′ ranges over all graphs on 𝑉 (𝐶ℎ) obtained from 𝐶ℎ by adding to it a set of
edges out of 𝐶ℎ, we obtain that the number of such 𝐻′ is 2(ℎ2)−ℎ. 𝑃1 (ℎ) states that
𝑁∗
𝐺
(𝐻) ∼ ( 1

2 ) (
ℎ
2)𝑛ℎ for any graph𝐻 of order ℎ. Therefore,𝑁𝐺 (𝐶ℎ) = (1+𝑜(1))

(
𝑛
2
)ℎ

and so 𝑃2 (ℎ) follows.

Fact 2 𝑃2 (4) ⇒ 𝑃3.

Proof. Since we suppose𝐺 is regular, which together with the condition that 𝑒(𝐺) ∼
𝑛2

4 yield 𝜆1 = 𝑛
2 + 𝑜(𝑛). Now, consider the trace of 𝐴4. Clearly,

𝑡𝑟 (𝐴4) =
𝑛∑︁
𝑖=1

𝜆4
𝑖 ≥ 𝜆4

1 ≥ (1 + 𝑜(1)) 𝑛
4

16
. (10.1)

On the other hand, as this trace is precisely the number of labeled and closed walks of
length 4 in 𝐺, i.e., the number of sequences 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4 = 𝑣0 such that 𝑣𝑖𝑣𝑖+1 is
an edge for 𝑖 = 0, 1, 2, 3. This number is 𝑁𝐺 (𝐶4) plus the number of such sequences
in which 𝑣2 = 𝑣0, and plus the number of such sequences in which 𝑣2 ≠ 𝑣0 and
𝑣3 = 𝑣1. Thus by the condition of 𝑃2 (4),

𝑛∑︁
𝑖=1

𝜆4
𝑖 = 𝑁𝐺 (𝐶4) + 𝑜(𝑛4) ≤ (1 + 𝑜(1)) 𝑛

4

16
. (10.2)

It follows from (10.1) and (10.2) that 𝜆1 ∼ 𝑛
2 and

∑𝑛
𝑖=2 𝜆

4
𝑖
= 𝑜(𝑛4), and hence

𝜆2 = 𝑜(𝑛) follows as desired.

Fact 3 𝑃3 ⇒ 𝑃4.

Proof. It follows from Corollary 10.2 in the next section by noting that 𝐺 is regular.

Fact 4 𝑃4 ⇒ 𝑃5.

Proof. If𝑈 and 𝑉 are disjoint, then

𝑒(𝑈,𝑉) = 𝑒(𝑈 ∪𝑉) − 𝑒(𝑈) − 𝑒(𝑉)

=
1
4
( |𝑈 | + |𝑉 |)2 − 1

4
|𝑈 |2 − 1

4
|𝑉 |2 + 𝑜(𝑛2)

=
1
2
|𝑈 | |𝑉 | + 𝑜(𝑛2).

We now suppose that 𝑈 and 𝑉 are not disjoint, and we write |𝑈 | = 𝑎, |𝑉 | = 𝑏 and
|𝑈 ∩𝑉 | = 𝑐. From 𝑃4 and what we have just proved,
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224 10 Quasi-Random Graphs

𝑒(𝑈,𝑉) = 𝑒(𝑈 \𝑉,𝑉 \𝑈) + 𝑒(𝑈 ∩𝑉,𝑈 \𝑉) + 𝑒(𝑈 ∩𝑉,𝑉 \𝑈) + 2𝑒(𝑈 ∩𝑉)

=
1
2
(𝑎 − 𝑐) (𝑏 − 𝑐) + 1

2
𝑐(𝑎 − 𝑐) + 1

2
𝑐(𝑏 − 𝑐) + 2 · 1

4
𝑐2 + 𝑜(𝑛2)

=
1
2
𝑎𝑏 + 𝑜(𝑛2),

which is 𝑃5 as desired.

Fact 5 𝑃5 ⇒ 𝑃6.

Proof. Let 𝑥 be a fixed vertex of 𝐺, and let 𝑉1 be the set of all neighbors of 𝑥 in
𝐺. We have |𝑉1 | = (1/2 + 𝑜(1))𝑛 under the assumption that 𝐺 is 𝑑-regular with
𝑑 = (1/2 + 𝑜(1))𝑛. Define

𝑈1 =

{
𝑦 ∈ 𝑉 (𝐺), 𝑦 ≠ 𝑥 : |𝑁 (𝑥) ∩ 𝑁 (𝑦) | ≥ 𝑛

4

}
,

and
𝑈2 =

{
𝑦 ∈ 𝑉 (𝐺), 𝑦 ≠ 𝑥 : |𝑁 (𝑥) ∩ 𝑁 (𝑦) | < 𝑛

4

}
.

Observe that ∑︁
𝑦∈𝑈1

���|𝑁 (𝑥) ∩ 𝑁 (𝑦) | − 𝑛

4

��� = ∑︁
𝑦∈𝑈1

|𝑁 (𝑥) ∩ 𝑁 (𝑦) | − |𝑈1 |
𝑛

4

= 𝑒(𝑈1, 𝑉1) − |𝑈1 |
𝑛

4

=
1
2
|𝑈1 | |𝑉1 | + 𝑜(𝑛2) − |𝑈1 |𝑛/4

= 𝑜(𝑛2),

in which the third equality follows from 𝑃5. A similar argument implies that∑︁
𝑦∈𝑈2

���|𝑁 (𝑥) ∩ 𝑁 (𝑦) | − 𝑛

4

��� = 𝑜(𝑛2).

Therefore, for every vertex 𝑥 of 𝐺,∑︁
𝑦∈𝑉 (𝐺) ,𝑦≠𝑥

���|𝑁 (𝑥) ∩ 𝑁 (𝑦) | − 𝑛

4

��� = 𝑜(𝑛2).

Summing over all vertices 𝑥 we conclude that 𝐺 satisfies property 𝑃6 as desired.

Fact 6 𝑃6 ⇒ 𝑃7.

Proof. Since 𝐺 is 𝑑-regular with 𝑑 = (1/2 + 𝑜(1))𝑛, it follows that

𝑠(𝑥, 𝑦) = |𝑁 (𝑥) ∩ 𝑁 (𝑦) | + (𝑛 − |𝑁 (𝑥) ∪ 𝑁 (𝑦) |)
= |𝑁 (𝑥) ∩ 𝑁 (𝑦) | + 𝑛 − (2𝑑 − |𝑁 (𝑥) ∩ 𝑁 (𝑦) |)
= 2|𝑁 (𝑥) ∩ 𝑁 (𝑦) | + 𝑜(𝑛),
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10.1 Properties of Dense Graphs 225

which together with property 𝑃6 yield that∑︁
𝑥,𝑦

���𝑠(𝑥, 𝑦) − 𝑛

2

��� = 𝑜(𝑛3).

Fact 7★ 𝑃7 ⇒ 𝑃1 (ℎ).

Proof. Suppose that 𝑃7 holds:∑︁
𝑥,𝑦

���𝑠(𝑥, 𝑦) − 𝑛

2

��� = 𝑜(𝑛3). (10.3)

For any fixed graph 𝐻 on ℎ vertices, denote by 𝑁ℎ = 𝑁∗
𝐺
(𝐻) and we shall show that

𝑁ℎ = (1 + 𝑜(1))𝑛ℎ2−(ℎ2) .

Let {𝑣1, 𝑣2, . . . , 𝑣ℎ} denote the vertex set of 𝐻. For each 1 ≤ 𝑟 ≤ ℎ, put 𝑉𝑟 =

{𝑣1, 𝑣2, . . . , 𝑣𝑟 }, and let 𝐻 (𝑟) be the induced subgraph of 𝐻 on 𝑉𝑟 . Denote 𝑁𝑟 =

𝑁∗
𝐺
(𝐻 (𝑟)). It suffices to prove that for 1 ≤ 𝑟 ≤ ℎ,

𝑁𝑟 = (1 + 𝑜(1))𝑛(𝑟 )2−(𝑟2) ,

where 𝑛(𝑟 ) = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑟 + 1). The proof is by induction on 𝑟.
This is trivial for 𝑟 = 1. Assuming it holds for 𝑟, where 1 ≤ 𝑟 < ℎ, we prove it for

𝑟 + 1. For any two distinct vertices 𝑢 and 𝑣 of 𝐺, let 𝑎(𝑢, 𝑣) be 1 if 𝑢𝑣 ∈ 𝐸 (𝐺) and 0
otherwise. For a vector 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) of labeled distinct vertices of 𝐺, and for a
vector 𝜖 = (𝜖1, . . . , 𝜖𝑟 ) of (0, 1)-entries, define

𝑓𝑟 (𝛼, 𝜖) = |{𝑣 ∈ 𝑉 : 𝑣 ≠ 𝛼1, . . . , 𝛼𝑟 and 𝑎(𝑣, 𝛼 𝑗 ) = 𝜖 𝑗 , for all 1 ≤ 𝑗 ≤ 𝑟}|.

Note that if 𝛼1, . . . , 𝛼𝑟 induce a copy of 𝐻 (𝑟), then 𝑓𝑟 (𝛼, 𝜖) is just the number
of vertices such that each of such a vertex together with 𝛼1, . . . , 𝛼𝑟 induce a copy of
𝐻 (𝑟+1). Thus 𝑁𝑟+1 is the sum of the 𝑁𝑟 quantities 𝑓𝑟 (𝛼, 𝜖) in which 𝜖 𝑗 = 𝑎(𝑣𝑟+1, 𝑣 𝑗 )
and 𝛼 ranges over all 𝑁𝑟 induced copies of 𝐻 (𝑟) in 𝐺.

Observe that altogether there are precisely 𝑛(𝑟 )2𝑟 quantities 𝑓𝑟 (𝛼, 𝜖) since there
are (𝑛)𝑟 ways to choose 𝛼 and 2𝑟 possibilities of 𝜖 . It is convenient to view 𝑓𝑟 (𝛼, 𝜖) as
a random variable defined on a sample space of 𝑛(𝑟 )2𝑟 points, each having an equal
probability. To complete the proof we compute the expectation and the variance
of this random variable. We show that the variance is so small that most of the
quantities 𝑓𝑟 (𝛼, 𝜖) are very close to the expectation, and thus obtain a sufficiently
accurate estimate for 𝑁𝑟+1 which is the sum of 𝑁𝑟 such quantities.

We start with the simple computation of the expectation 𝐸 [ 𝑓𝑟 ] of 𝑓𝑟 (𝛼, 𝜖). Note
that every vertex 𝑣 ≠ 𝛼1, . . . , 𝛼𝑟 defines 𝜖 uniquely, that is to say, for each such fixed
vertex 𝑣, there is exactly one 𝜖 such that 𝑓𝑟 (𝛼, 𝜖) contributes 1. Therefore,
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226 10 Quasi-Random Graphs

𝐸 [ 𝑓𝑟 ] =
1

𝑛(𝑟 )2𝑟
∑︁
𝛼,𝜖

𝑓𝑟 (𝛼, 𝜖) =
1

𝑛(𝑟 )2𝑟
∑︁
𝛼

∑︁
𝜖

𝑓𝑟 (𝛼, 𝜖)

=
1

𝑛(𝑟 )2𝑟
∑︁
𝛼

(𝑛 − 𝑟) = 𝑛 − 𝑟
2𝑟

.

Next, we estimate the quantity 𝑆𝑟 defined by

𝑆𝑟 =
∑︁
𝛼,𝜖

𝑓𝑟 (𝛼, 𝜖) ( 𝑓𝑟 (𝛼, 𝜖) − 1).

Claim 𝑆𝑟 =
∑
𝑥≠𝑦 𝑠(𝑥, 𝑦) (𝑟 ) .

Proof. We count 𝑠𝑟 on two ways. Observe that 𝑆𝑟 can be interpreted as the number
of ordered triples (𝛼, 𝜖, (𝑥, 𝑦)), where 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) is an ordered set of 𝑟 distinct
vertices of 𝐺, 𝜖 = (𝜖1, . . . , 𝜖𝑟 ) is a binary vector of length 𝑟 , and (𝑥, 𝑦) is an ordered
pair of additional vertices of 𝐺 so that

𝑎(𝑥, 𝛼𝑘) = 𝑎(𝑦, 𝛼𝑘) = 𝜖𝑘 for all 1 ≤ 𝑘 ≤ 𝑟.

Now we count 𝑠𝑟 on another way. Given 𝑥 and 𝑦, the required additional 𝑟 vertices
𝛼1, . . . , 𝛼𝑟 must come exactly from {𝑢 ∈ 𝑉 (𝐺) : 𝑎(𝑥, 𝑢) = 𝑎(𝑦, 𝑢)}. Therefore, there
are 𝑠(𝑥, 𝑦) (𝑟 ) ways to choose them, which completes the proof of the claim. □

We next assert that (10.3) implies

𝑆𝑟 =
∑︁
𝑥≠𝑦

𝑠(𝑥, 𝑦) (𝑟 ) = (1 + 𝑜(1))𝑛𝑟+22−𝑟 . (10.4)

To this end, we first define
𝜖𝑥𝑦 = 𝑠(𝑥, 𝑦) − 𝑛/2.

By (10.3),
∑
𝑥≠𝑦 |𝜖𝑥𝑦 | = 𝑜(𝑛3). Clearly, |𝜖𝑥𝑦 | ≤ 𝑛. Thus for any fixed 𝑎,∑︁

𝑥≠𝑦

|𝜖𝑥𝑦 |𝑎 ≤ 𝑛𝑎−1
∑︁
𝑥≠𝑦

|𝜖𝑥𝑦 | = 𝑜(𝑛𝑎+2).

This implies that for some appropriate constants 𝑐 and 𝑐𝑘 depending on 𝑟,∑︁
𝑥≠𝑦

𝑠(𝑥, 𝑦) (𝑟 ) =
∑︁
𝑥≠𝑦

(𝑛
2
+ 𝜖𝑥𝑦

)
(𝑟 )

=

(𝑛
2

)𝑟
𝑛(2) +

𝑟−1∑︁
𝑘=0

∑︁
𝑥≠𝑦

𝑐𝑘

(𝑛
2

) 𝑘
𝜖𝑟−𝑘𝑥𝑦 .

Note that �����∑︁
𝑥≠𝑦

𝑐𝑘

(𝑛
2

) 𝑘
𝜖𝑟−𝑘𝑥𝑦

����� ≤ ∑︁
𝑥≠𝑦

|𝑐𝑘 |𝑛𝑘 |𝜖𝑥𝑦 |𝑟−𝑘 ≤ 𝑐𝑛𝑘
∑︁
𝑥≠𝑦

|𝜖𝑥𝑦 |𝑟−𝑘

≤ 𝑐𝑛𝑘 · 𝑜(𝑛𝑟−𝑘+2) = 𝑜(𝑛𝑟+2),
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which implies (10.4).
By the above claim and (10.4), 𝑆𝑟 = (1 + 𝑜(1))𝑛𝑟+22−𝑟 . Therefore,∑︁

𝛼,𝜖

( 𝑓𝑟 (𝛼, 𝜖) − 𝐸 [ 𝑓𝑟 ])2 =
∑︁
𝛼,𝜖

𝑓𝑟 (𝛼, 𝜖)2 −
∑︁
𝛼,𝜖

𝐸 [ 𝑓𝑟 ]2

=
∑︁
𝛼,𝜖

( 𝑓𝑟 (𝛼, 𝜖)2 − 𝑓𝑟 (𝛼, 𝜖)) +
∑︁
𝛼,𝜖

𝑓𝑟 (𝛼, 𝜖) − 𝑛(𝑟 )2𝑟 (𝑛 − 𝑟)22−2𝑟

=𝑆𝑟 + 𝑛(𝑟 )2𝑟𝐸 [ 𝑓𝑟 ] − 𝑛(𝑟 )2−𝑟 (𝑛 − 𝑟)2

=𝑆𝑟 + 𝑛(𝑟+1) − (1 + 𝑜(1))𝑛𝑟+22−𝑟

=𝑜(𝑛𝑟+2).

Recall that 𝑁𝑟+1 is the summation of 𝑁𝑟 quantities of 𝑓𝑟 (𝛼, 𝜖). Thus���𝑁𝑟+1 − 𝑁𝑟𝐸 [ 𝑓𝑟 ]
���2 =

����� ∑︁
𝑁𝑟 terms

( 𝑓𝑟 (𝛼, 𝜖) − 𝐸 [ 𝑓𝑟 ])
�����2 .

By Cauchy-Schwarz inequality, the last expression is at most

𝑁𝑟

∑︁
𝑁𝑟 terms

( 𝑓𝑟 (𝛼, 𝜖) − 𝐸 [ 𝑓𝑟 ])2 ≤𝑁𝑟
∑︁
𝛼,𝜖

( 𝑓𝑟 (𝛼, 𝜖) − 𝐸 [ 𝑓𝑟 ])2

=𝑁𝑟 · 𝑜(𝑛𝑟+2)
=𝑜(𝑛2𝑟+2).

It follows that
|𝑁𝑟+1 − 𝑁𝑟𝐸 [ 𝑓𝑟 ] | = 𝑜(𝑛𝑟+1),

and hence, by the induction hypothesis,

𝑁𝑟+1 = 𝑁𝑟𝐸 [ 𝑓𝑟 ] + 𝑜(𝑛𝑟+1)

= (1 + 𝑜(1))𝑛(𝑟 )2−(𝑟2) (𝑛 − 𝑟)2−𝑟 + 𝑜(𝑛𝑟+1)

= (1 + 𝑜(1))𝑛(𝑟+1)2−(𝑟+1
2 ) .

This completes the proof of the induction step of Fact 7 and hence establishes
Theorem 10.1. □

A property is called a quasi-random property for 𝑝 = 1/2 if it is equivalent to
any property in Theorem 10.1. It is surprised that 𝑃2 (4), which seems to be weaker,
is a quasi-random property.

Theorem 10.2 The property

𝑃′
5: For each𝑈 ⊆ 𝑉 (𝐺) with |𝑈 | =

⌊𝑛
2

⌋
, 𝑒(𝑈) ∼ 𝑛2

16
.

is a quasi-random property for 𝑝 = 1/2.
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228 10 Quasi-Random Graphs

Proof. The implication 𝑃4 ⇒ 𝑃′
5 is immediate, so we show 𝑃′

5 ⇒ 𝑃4. By ignoring
one vertex possibly, we assume that 𝑛 is even so that 𝑛/2 is an integer. Suppose that
for any subset 𝑆 with |𝑆 | = 𝑛/2,

���𝑒(𝑆) − 𝑛2

16

��� < 𝜖𝑛2, where 𝜖 > 0 is fixed. We shall
show that for any subset 𝑇 , ����𝑒(𝑇) − 1

2

(
𝑡

2

)���� < 20𝜖𝑛2, (10.5)

where 𝑡 = |𝑇 |.
Case 1 𝑡 = |𝑇 | ≥ 𝑛/2.

By averaging over all 𝑆 ⊆ 𝑇 with |𝑆 | = 𝑛/2, we have

𝑒(𝑇) = 1( 𝑡−2
𝑛/2−2

) ∑︁
𝑆⊆𝑇, |𝑆 |=𝑛/2

𝑒(𝑆)

as each edge of 𝑇 appears in exactly
( 𝑡−2
𝑛/2−2

)
such 𝑛/2-sets. Thus

𝑒(𝑇) ≤
( 𝑡
𝑛/2

)( 𝑡−2
𝑛/2−2

) (
𝑛2

16
+ 𝜖𝑛2

)
≤

(
𝑡

2

) (
1
2
+ 9𝜖

)
.

Similarly,

𝑒(𝑇) ≥
(
𝑡

2

) (
1
2
− 9𝜖

)
.

Therefore, (10.5) follows.

Case 2 𝑡 = |𝑇 | < 𝑛/2.

We shall show that the assumption

𝑒(𝑇) ≥ 1
2

(
𝑡

2

)
+ 20𝜖𝑛2

leads to a contradiction. Set 𝑇 = 𝑉 \ 𝑇 . Note that |𝑇 | = 𝑛 − 𝑡 > 𝑛/2. By Case 1, we
have (

𝑛 − 𝑡
2

) (
1
2
− 9𝜖

)
< 𝑒(𝑇) <

(
𝑛 − 𝑡

2

) (
1
2
+ 9𝜖

)
.

Consider the average value of 𝑒(𝑇 ∪ 𝑇 ′), denoted by 𝐴, where 𝑇 ′ ranges over all
subsets of 𝑇 with |𝑇 ′ | = 𝑛/2 − 𝑡 so that |𝑇 ∪ 𝑇 ′ | = 𝑛/2, we have that

𝐴 =
1( 𝑛−𝑡

𝑛/2−𝑡
) ∑︁
𝑇 ′: 𝑇 ′⊆𝑇
|𝑇 ′ |=𝑛/2−𝑡

𝑒(𝑇 ∪ 𝑇 ′)

as there are
( 𝑛−𝑡
𝑛/2−𝑡

)
such 𝑇 ∪ 𝑇 ′-sets. Counting how much different edges contribute

to the sum, we know that the sum equals to



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

10.1 Properties of Dense Graphs 229

𝑒(𝑇)
(
𝑛 − 𝑡
𝑛/2 − 𝑡

)
+ 𝑒(𝑇)

(
𝑛 − 𝑡 − 2
𝑛/2 − 𝑡 − 2

)
+ 𝑒(𝑇,𝑇)

(
𝑛 − 𝑡 − 1
𝑛/2 − 𝑡 − 1

)
since each edge in 𝑇 appears in exactly

( 𝑛−𝑡
𝑛/2−𝑡

)
such 𝑇 ∪ 𝑇 ′, each edge in 𝑇 appears

in exactly
( 𝑛−𝑡−2
𝑛/2−𝑡−2

)
such 𝑇 ∪𝑇 ′ and each edge in (𝑇,𝑇) appears in exactly

( 𝑛−𝑡−1
𝑛/2−𝑡−1

)
such 𝑇 ∪ 𝑇 ′, respectively. Note that 𝑒(𝑇,𝑇) = 𝑒(𝐺) − 𝑒(𝑇) − 𝑒(𝑇), we obtain that

𝐴 =
𝑛/2
𝑛 − 𝑡 𝑒(𝑇) −

(𝑛/2 − 𝑡)𝑛/2
(𝑛 − 𝑡) (𝑛 − 𝑡 − 1) 𝑒(𝑇) +

𝑛/2 − 𝑡
𝑛 − 𝑡 𝑒(𝐺)

≥ 𝑛/2
𝑛 − 𝑡

{
1
2

(
𝑡

2

)
+ 20𝜖𝑛2

}
− (𝑛/2 − 𝑡)𝑛/2

(𝑛 − 𝑡) (𝑛 − 𝑡 − 1)

(
𝑛 − 𝑡

2

) (
1
2
+ 9𝜖

)
+ 𝑛/2 − 𝑡

𝑛 − 𝑡

(
𝑛

2

) (
1
2
− 9𝜖

)
>
𝑛2

16
+ 𝜖𝑛2,

which contradicts the property 𝑃5.
Similarly, the assumption

𝑒(𝑇) < 1
2

(
𝑡

2

)
− 20𝜖𝑛2

will lead to a contradiction too. This completes the proof. □

The analogous results of Theorem 10.1 can be established by a similar argument
for general edge density 𝑝, where 0 < 𝑝 < 1 is fixed.

Theorem 10.3 Let {𝐺 }∞
𝑛=1 be a sequence of graphs, where 𝐺 = 𝐺𝑛 is a graph of

order 𝑛. If 0 < 𝑝 < 1 is fixed, then the following properties are equivalent:

𝑃1 (ℎ): For any fixed ℎ ≥ 4 and graph 𝐻 of order ℎ,

𝑁∗
𝐺 (𝐻) ∼ 𝑝𝑒 (𝐻 ) (1 − 𝑝) (

ℎ
2)−𝑒 (𝐻 )𝑛ℎ .

𝑃2 (𝑡): 𝑒(𝐺) ∼ 𝑝𝑛2

2 and 𝑁𝐺 (𝐶𝑡 ) ≤ (𝑝𝑛)𝑡 + 𝑜(𝑛𝑡 ) for any even 𝑡 ≥ 4.

𝑃3: 𝑒(𝐺) ≥ 𝑝𝑛2

2 + 𝑜(𝑛2), 𝜆1 ∼ 𝑝𝑛 and 𝜆2 = 𝑜(𝜆1).

𝑃4: For each𝑈 ⊆ 𝑉 (𝐺), 𝑒(𝑈) = 𝑝
( |𝑈 |

2
)
+ 𝑜(𝑛2).

𝑃5: For any two subsets𝑈,𝑉 ⊆ 𝑉 (𝐺), 𝑒(𝑈,𝑉) = 𝑝 |𝑈 | |𝑉 | + 𝑜(𝑛2).
𝑃6:

∑
𝑥,𝑦

��|𝑁 (𝑥) ∩ 𝑁 (𝑦) | − 𝑝2𝑛
�� = 𝑜(𝑛3).

𝑃7:
∑
𝑥,𝑦

��𝑠(𝑥, 𝑦) − (𝑝2 + (1 − 𝑝)2)𝑛
�� = 𝑜(𝑛3).

For the quasi-randomness of the sparse graphs, the situation is much different.
Under some certain conditions, there are several equivalent properties, see Chung
and Graham (2002).
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230 10 Quasi-Random Graphs

Return to the Paley graph 𝑃𝑞 . It satisfies that

𝑒(𝑃𝑞) =
𝑞(𝑞 − 1)

4
∼ 𝑞2

4
,

𝜆1 =
𝑞 − 1

2
∼ 𝑞

2
,

𝜆 =

����−√
𝑞 + 1
2

���� = 𝑜(𝑞).
Thus 𝑃𝑞 satisfies quasi-random property 𝑃3 hence all other quasi-random properties
with 𝑝 = 1/2.

10.2 Graphs with Small Second Eigenvalues

The last section was devoted to the quasi-random graphs with fixed edge density. Let
us now switch to the case of density 𝑝 = 𝑝(𝑛) = 𝑜(1), which is more important for
some applications.

In applications, we shall allow the graphs to be semi-simple, that is, each vertex
is attached with at most one loop. When 𝑝 tends to zero, the situation is significantly
more complicated as revealed by Chung and Graham (2002). The first remarked fact
is that the properties defined for quasi-random graphs with fixed edge density may
be not equivalent anymore.

Recall the Erdős-Rényi graph 𝐸𝑅𝑞 , which has order 𝑛 = 𝑞2+𝑞+1 and each vertex
of 𝐸𝑅𝑞 has degree 𝑞 or (𝑞 + 1). So the edge density 𝑝 ∼ 1√

𝑛
. We know from Lemma

7.6 that 𝜆1 = 𝑞 + 1, and 𝜆 ∼ √
𝑞 = 𝑜(𝜆1). So the property 𝑃3 holds. However,

𝑝4 (1 − 𝑝)2𝑛4 ∼ 𝑛2,

and thus the property 𝑃1 (4) of Theorem 10.3 does not hold as 𝐸𝑅𝑞 does not contain
𝐶4 hence 𝑁∗

𝐺
(𝐶4) = 0.

Recall that the quasi-random property 𝑃3, the magnitude of 𝜆 = 𝜆(𝐺) is a measure
of quasi-randomness. For sparse graphs with 𝑝 = 𝑜(1), Chung and Graham (2002)
found some equivalent properties under certain conditions. One of the properties is
that 𝜆1 ∼ 𝑝𝑛 and 𝜆 = 𝑜(𝜆1).

In this section, we shall focus on (𝑛, 𝑑, 𝜆)-graphs defined by Alon. We say a graph
𝐺 is an (𝑛, 𝑑, 𝜆)-graph if 𝐺 is 𝑑-regular with 𝑛 vertices and

𝜆 = 𝜆(𝐺) = max{|𝜆𝑖 | : 2 ≤ 𝑖 ≤ 𝑛},

where 𝜆1 = 𝑑, and 𝜆2, . . . , 𝜆𝑛 are all eigenvalues of 𝐺. For an (𝑛, 𝑑, 𝜆)-graph, the
spectral gap between 𝑑 and 𝜆 is a measure for its quasi-random property. The smaller
the value of 𝜆 compared to 𝑑, the closer is edge distribution to the ideal uniform
distribution. How small 𝜆 can be?
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10.2 Graphs with Small Second Eigenvalues 231

Theorem 10.4 Let 𝐺 be an (𝑛, 𝑑, 𝜆)-graph and let 𝜖 > 0. If 𝑑 ≤ (1 − 𝜖)𝑛, then

𝜆 ≥
√
𝜖𝑑.

Proof. Let 𝐴 be the adjacency matrix of 𝐺. Note that 𝐺 is 𝑑-regular, so we obtain
that

𝑛𝑑 = 𝑡𝑟 (𝐴2) =
𝑛∑︁
𝑖=1

𝜆2
𝑖 ≤ 𝑑2 + (𝑛 − 1)𝜆2 ≤ (1 − 𝜖)𝑛𝑑 + 𝑛𝜆2,

which follows by what claimed. □

On this estimate, we can say, not precisely, that an (𝑛, 𝑑, 𝜆)-graph with 𝜆 =

Ω(
√
𝑑) has good quasi-randomness. Recall that if 𝐺 is a strongly regular graph

𝑠𝑟𝑔(𝑛, 𝑑, 𝜇1, 𝜇2) with 𝑛 ≥ 3, then all eigenvalues except 𝜆1 = 𝑑 are solutions of the
equation

𝜆2 + (𝜇2 − 𝜇1)𝜆 + (𝜇2 − 𝑑) = 0.

Thus when 𝜇2 − 𝜇1 is small compared to 𝑑, which implies that 𝜆 is close to
√
𝑑

and 𝐺 has good quasi-randomness. For example, the Paley graph 𝑃𝑞 has good
quasi-randomness since 𝜇2 − 𝜇1 = 1.

For a simple graph 𝐺 with vertex set 𝑉 and for two subsets 𝐵,𝐶 ⊆ 𝑉 , 𝑒(𝐵,𝐶)
counts each edge from 𝐵 \𝐶 to𝐶 \𝐵 once, and each edge in 𝐵∩𝐶 twice. When𝐺 is
semi-simple, it also counts each loop in 𝐵 ∩𝐶 once. For disjoint subsets 𝐵 and 𝐶 in
a random graph, 𝑒(𝐵,𝐶) is expected to be 𝑑

𝑛
|𝐵 | |𝐶 |, which is close to the expectation

as shown in the following when 𝜆 is much smaller than 𝑑.
Some graphs 𝐺 constructed by algebraic method are nearly regular with Δ(𝐺) −

𝛿(𝐺) ≤ 1, which will be regular if we attach some vertices with a loop. Hence, to
get a regular graph, we always add a loop to some vertices when necessary.

Theorem 10.5 Let𝐺 be a semi-simple (𝑛, 𝑑, 𝜆)-graph with vertex set𝑉 and edge set
𝐸 . For each partition of 𝑉 into disjoint subsets 𝐵 and 𝐶,

𝑒(𝐵,𝐶) ≥ (𝑑 − 𝜆) |𝐵 | |𝐶 |
𝑛

.

Proof. Let 𝐴 be the adjacency matrix of 𝐺 and 𝐼 the identity matrix of order 𝑛.
Observe that for any real vector 𝑥 of dimension 𝑛 (as a real valued function on 𝑉),
we have the coordinate (𝑥𝑇 𝐴)𝑢 =

∑
𝑣: 𝑢𝑣∈𝐸 𝑥𝑣 . Thus the inner product

((𝑑𝐼 − 𝐴)𝑥, 𝑥) = 𝑑𝑥𝑇𝑥 − 𝑥𝑇 𝐴𝑥 =
∑︁
𝑢∈𝑉

(
𝑑𝑥2
𝑢 −

∑︁
𝑣: 𝑢𝑣∈𝐸

𝑥𝑣𝑥𝑢

)
=

∑︁
𝑢𝑣∈𝐸

(𝑥𝑢 − 𝑥𝑣)2.

Set 𝑏 = |𝐵 | and 𝑐 = |𝐶 | = 𝑛 − 𝑏. Define a vector 𝑥 = (𝑥𝑣) by

𝑥𝑣 =

{
−𝑐 if 𝑣 ∈ 𝐵,
𝑏 if 𝑣 ∈ 𝐶.



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

232 10 Quasi-Random Graphs

Note that 𝑑𝐼 − 𝐴 and 𝐴 have the same eigenvectors, and that the eigenvalues of
𝑑𝐼 − 𝐴 are precisely 𝑑 − 𝜇 as 𝜇 ranges over all eigenvalues of 𝐴. Also, 𝑑 is the largest
eigenvalue of 𝐴 corresponding to the eigenvector 1 = (1, 1, . . . , 1)𝑇 and (𝑥, 1) = 0.
Hence 𝑥 is orthogonal to the eigenvector of the smallest eigenvalue (zero) of 𝑑𝐼 − 𝐴.

Since 𝑑𝐼 − 𝐴 is a real symmetric matrix, its eigenvectors are orthogonal each
other and form a basis of the 𝑛-dimensional space and 𝑥 is a linear combination of
these eigenvectors other than that of 1/

√
𝑛. This together with the fact that 𝑑 − 𝜆 is

the second smallest eigenvalue of 𝑑𝐼 − 𝐴, we have

((𝑑𝐼 − 𝐴)𝑥, 𝑥) ≥ (𝑑 − 𝜆) (𝑥, 𝑥) = (𝑑 − 𝜆) (𝑏𝑐2 + 𝑐𝑏2) = (𝑑 − 𝜆)𝑏𝑐𝑛. (10.6)

However, as 𝐵 and 𝐶 form a partition of 𝑉 ,∑︁
𝑢𝑣∈𝐸

(𝑥𝑢 − 𝑥𝑣)2 = 𝑒(𝐵,𝐶) (𝑏 + 𝑐)2 = 𝑒(𝐵,𝐶)𝑛2,

implying the desired inequality. □

In a random 𝑑-regular graph, we expect that a vertex 𝑣 has 𝑑
𝑛
|𝐵 | neighbors in 𝐵.

The theorem below shows that if 𝜆 is small, then |𝑁𝐵 (𝑣) | is not too far from the
expectation for most vertices 𝑣, where 𝑁𝐵 (𝑣) = 𝑁 (𝑣) ∩ 𝐵.

Theorem 10.6 If 𝐺 is a semi-simple (𝑛, 𝑑, 𝜆)-graph with vertex set 𝑉 , then for each
𝐵 ⊆ 𝑉 , ∑︁

𝑣∈𝑉

(
|𝑁𝐵 (𝑣) | −

𝑑

𝑛
|𝐵 |

)2
≤ 𝜆2 |𝐵 | (𝑛 − |𝐵 |)

𝑛
.

Proof. Let 𝐴 be the adjacency matrix of 𝐺. Define a vector 𝑓 : 𝑉 → 𝑅 by

𝑓𝑢 =

{
1 − 𝑏

𝑛
if 𝑢 ∈ 𝐵,

− 𝑏
𝑛

if 𝑢 ∉ 𝐵,

where 𝑏 = |𝐵 |. Therefore,
∑
𝑢 𝑓𝑢 = 0 and 𝑓 is orthogonal to the eigenvector 1 =

(1, 1, . . . , 1)𝑇 of the largest eigenvalue 𝑑 of 𝐴. Thus 𝑓 is a linear combination of
eigenvectors other than 1, and

(𝐴 𝑓 , 𝐴 𝑓 ) = 𝑓 𝑇 𝐴2 𝑓 ≤ 𝜆2 ( 𝑓 , 𝑓 ) = 𝜆2 𝑏(𝑛 − 𝑏)
𝑛

.

Now, let 𝐴𝑣 be the row of 𝐴 corresponding to vertex 𝑣. Note that the coordinate
(𝐴 𝑓 )𝑣 of 𝐴 𝑓 at 𝑣 is

𝐴𝑣 𝑓 =

(
1 − 𝑏

𝑛

)
|𝑁𝐵 (𝑣) | −

𝑏

𝑛

(
𝑑 − |𝑁𝐵 (𝑣) |

)
= |𝑁𝐵 (𝑣) | −

𝑑𝑏

𝑛
,

it follows that

(𝐴 𝑓 , 𝐴 𝑓 ) =
∑︁
𝑣

(
|𝑁𝐵 (𝑣) | −

𝑑𝑏

𝑛

)2
,
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10.2 Graphs with Small Second Eigenvalues 233

the desired inequality follows. □

Corollary 10.1 Let 𝐺 be a semi-simple (𝑛, 𝑑, 𝜆)-graph with vertex set 𝑉 . For every
two subsets 𝐵 and 𝐶 of 𝑉 ,����𝑒(𝐵,𝐶) − 𝑑

𝑛
|𝐵| |𝐶 |

���� ≤ 𝜆√︁|𝐵| |𝐶 |.

Proof. Set 𝑏 = |𝐵| and 𝑐 = |𝐶 |. Note that����𝑒(𝐵,𝐶) − 𝑑𝑏𝑐

𝑛

���� = �����∑︁
𝑣∈𝐶

(
|𝑁𝐵 (𝑣) | −

𝑑𝑏

𝑛

)�����
≤

∑︁
𝑣∈𝐶

����|𝑁𝐵 (𝑣) | − 𝑑𝑏

𝑛

���� ≤ √
𝑐

[∑︁
𝑣∈𝐶

(
|𝑁𝐵 (𝑣) | −

𝑑𝑏

𝑛

)2
]1/2

,

where the Cauchy-Schwarz inequality is used. By Theorem 10.6,����𝑒(𝐵,𝐶) − 𝑑𝑏𝑐

𝑛

���� ≤ √
𝑐

[∑︁
𝑣∈𝑉

(
|𝑁𝐵 (𝑣) | −

𝑑𝑏

𝑛

)2
]1/2

≤ 𝜆
√
𝑐

√︄
𝑏

(
1 − 𝑏

𝑛

)
≤ 𝜆

√
𝑏𝑐

as desired. □

Let 𝑒(𝐵) and ℓ(𝐵) be the number of edges and loops in 𝐵, respectively. Note that

𝑒(𝐵, 𝐵) = 2 𝑒(𝐵) + ℓ(𝐵),

and ℓ(𝐵) ≤ |𝐵| if 𝐺 is semi-simple.

Corollary 10.2 Let 𝐺 be a semi-simple (𝑛, 𝑑, 𝜆)-graph with vertex set 𝑉 . For any
subset 𝐵 ⊂ 𝑉 , ����𝑒(𝐵) − 𝑑

2𝑛
|𝐵|2

���� ≤ 𝜆 + 1
2

|𝐵|.

By setting 𝑒(𝐵) = 0, together with the Turán bound (Theorem 3.2), we have

𝑛

𝑑 + 1
≤ 𝛼(𝐺) ≤ 𝜆 + 1

𝑑
𝑛.

For an (𝑛, 𝑑, 𝜆)-graph 𝐺 = (𝑉, 𝐸) and 𝐵 ⊆ 𝑉 , define 𝐶 as the set of vertices 𝑢
so that the proportion of its neighborhood 𝑁 (𝑢) in 𝐵, which is |𝑁𝐵 (𝑢) |/|𝐵|, is at
most half of that in 𝑉 . The following result implies that |𝐵| |𝐶 | is at most Θ(𝑛2/𝑑) if
𝜆 = Θ(

√
𝑑).

Corollary 10.3 Let 𝐺 be a semi-simple (𝑛, 𝑑, 𝜆)-graph with vertex set 𝑉 . For any
subset 𝐵 ⊂ 𝑉 , define
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234 10 Quasi-Random Graphs

𝐶 =

{
𝑢 ∈ 𝑉 : |𝑁𝐵 (𝑢) | ≤

𝑑

2𝑛
|𝐵|

}
.

We have

|𝐵| |𝐶 | ≤
(
2𝜆𝑛
𝑑

)2
.

Consequently, |𝐵 ∩ 𝐶 | ≤ 2𝜆𝑛
𝑑

.

Proof. By Theorem 10.6,∑︁
𝑣∈𝑉

(
|𝑁𝐵 (𝑣) | −

𝑑

𝑛
|𝐵|

)2
≤ 𝜆2 |𝐵| (𝑛 − |𝐵|)

𝑛
≤ 𝜆2 |𝐵|.

Note that each 𝑣 ∈ 𝐶 contributes to the left-hand side more than ( 𝑑 |𝐵 |2𝑛 )2, thus we
obtain that

|𝐶 |
(
𝑑 |𝐵|
2𝑛

)2
≤ 𝜆2 |𝐵|,

implying what as claimed. □

10.3 Some Multicolor Ramsey Numbers

For 𝐻1 = · · · = 𝐻𝑘 = 𝐻, let us write the multicolor Ramsey numbers as

𝑟𝑘+1 (𝐻;𝐻𝑘+1) = 𝑟 (𝐻1, . . . , 𝐻𝑘 , 𝐻𝑘+1).

For 𝑘 ≥ 2, Alon and Rödl (2005) gave sharp bounds for 𝑟𝑘+1 (𝐻;𝐾𝑛) when 𝐻 is
a (some kind) bipartite graph or 𝐾3. Their main idea is to estimate the number of
independent sets of given size in a quasi-random graph 𝐺, which contains no 𝐻,
and then consider the random shifting of 𝐺. The number of shifts is 𝑘 . The bigger
of 𝑘 we choose, the tighter of the bound follows. When 𝑘 = 1, there are no shifting
actually.

Theorem 10.7 Let 𝐺 be a semi-simple (𝑁, 𝑑, 𝜆)-graph with vertex set 𝑉 . For any
𝑛 ≥ 𝑛0 =

2𝑁 log 𝑁
𝑑

, the number 𝑀 of independent sets of size 𝑛 in 𝐺 satisfies that

𝑀 ≤
(
𝑒𝑑𝑛

2𝜆𝑛0

)𝑛0 (
2𝑒𝜆𝑁
𝑑𝑛

)𝑛
.

Proof. Consider the number of ways to choose an ordered set 𝑣1, 𝑣2, . . . , 𝑣𝑛 of
𝑛 vertices which form an independent set. Starting with 𝐵0 = 𝑉 , we choose 𝑣1
arbitrarily. Define

𝐵𝑖 = 𝑉 \ ∪𝑖𝑗=1𝑁 [𝑣 𝑗 ],
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10.3 Some Multicolor Ramsey Numbers 235

i.e., 𝐵𝑖 is the set of vertices by deleting {𝑣1, 𝑣2, . . . , 𝑣𝑖} and their neighbors, where
𝑣1, . . . , 𝑣𝑖 are the vertices that have been chosen. Clearly the size of 𝐵𝑖 is decreasing
since 𝐵𝑖 ⊇ 𝐵𝑖+1, and 𝑣𝑖+1 has to lie in 𝐵𝑖 . Define

𝐶𝑖 =

{
𝑢 ∈ 𝑉 : |𝑁𝐵𝑖 (𝑢) | ≤

𝑑

2𝑁
|𝐵𝑖 |

}
.

If the next chosen vertex 𝑣𝑖+1 from 𝐵𝑖 does not lie in 𝐶𝑖 , then 𝐵𝑖+1 is obtained by
deleting 𝑣𝑖+1 and at least 𝑑

2𝑁 |𝐵𝑖 | neighbors of 𝑣𝑖+1 from 𝐵𝑖 and so

|𝐵𝑖+1 | <
(
1 − 𝑑

2𝑁

)
|𝐵𝑖 |.

Hence throughout the process there cannot be more than 𝑛0 =
2𝑁 log 𝑁

𝑑
choices like

that, since otherwise the corresponding set of non-neighbors will be empty before
the process terminates from(

1 − 𝑑

2𝑁

)𝑛0

=

(
1 − 𝑑

2𝑁

) (2𝑁 log 𝑁 )/𝑑
<

1
𝑁
.

It follows that with at most 𝑛0 possible exceptions, each vertex 𝑣𝑖+1 has to lie in
𝐵𝑖 ∩ 𝐶𝑖 . By Corollary 10.3, we have

|𝐵𝑖 ∩ 𝐶𝑖 | ≤
2𝜆𝑁
𝑑
.

Therefore, the total number of choices for the ordered set 𝑣1, 𝑣2, . . . , 𝑣𝑛 is at most(
𝑛

𝑛0

)
𝑁𝑛0

(
2𝜆𝑁
𝑑

)𝑛−𝑛0

≤
(
𝑒𝑑𝑛

2𝜆𝑛0

)𝑛0 (
2𝜆𝑁
𝑑

)𝑛
.

Indeed, there are
( 𝑛
𝑛0

)
possibilities to choose a set of indices covering all indices 𝑖 for

which the vertex 𝑣𝑖+1 has not been chosen in 𝐵𝑖 ∩ 𝐶𝑖 . Moreover, there are at most
𝑁 ways to choose each such vertex 𝑣𝑖 , and at most 2𝜆𝑁

𝑑
ways to choose each vertex

𝑣 𝑗+1 for each other index 𝑗 .
Now, dividing the above bound by 𝑛!, we obtain an upper bound for the number

of unordered independent sets of size 𝑛 as claimed. □

Lemma 10.1 Let 𝐺 be a graph of order 𝑁 that contains no 𝐻, and let 𝑀 be the
number of independent sets of size 𝑛 in 𝐺. If

𝑀 𝑘 <

(
𝑁

𝑛

) 𝑘−1
,

then 𝑟𝑘+1 (𝐻;𝐾𝑛) > 𝑁 .

Proof. For each 𝑖, 1 ≤ 𝑖 ≤ 𝑘 , let 𝐺𝑖 be a random copy of 𝐺 on the same vertex set
𝑉 , that is, a graph obtained from 𝐺 by mapping its vertices to those of 𝑉 according
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236 10 Quasi-Random Graphs

to a random one to one mapping. The probability that a fixed set of 𝑛 vertices of 𝑉
will be an independent set in each 𝐺𝑖 is(

𝑀(𝑁
𝑛

) ) 𝑘 < 1(𝑁
𝑛

) ,
implying that with a positive probability there is no such independent set. This gives
the existence of the graphs 𝐺𝑖 as required.

Now we color each edge of 𝐾𝑁 on 𝑉 (𝐺) by the minimum 𝑖 if the edge belongs to
𝐺𝑖 . Otherwise, color the edge by 𝑘 + 1. Therefore, there is no monochromatic 𝐻 in
the first 𝑘 colors and no 𝐾𝑛 in the last color 𝑘 + 1, so the lower bound follows. □

One can also find the second part of the following result in Lin and Li (2011).

Theorem 10.8 The Ramsey number 𝑟𝑘+1 (𝐶4;𝐾𝑛) satisfies the following:
(1) For any fixed 𝑘 ≥ 3, 𝑟𝑘+1 (𝐶4;𝐾𝑛) = Θ( 𝑛2

log2 𝑛
).

(2) There are positive constants 𝑐1 and 𝑐2 such that

𝑐1

(
𝑛 log log 𝑛
(log 𝑛)2

)2
≤ 𝑟 (𝐶4, 𝐶4, 𝐾𝑛) ≤ 𝑐2

(
𝑛

log 𝑛

)2
.

We know that for every fixed bipartite graph 𝐻, there exists some real number
𝑡 > 1 such that the Turán number 𝑒𝑥(𝑛, 𝐻) ≤ 𝑂 (𝑁2−1/𝑡 ) by Theorem 7.5. The upper
bound of the above theorem follows from the following general result.

Lemma 10.2 Let 𝐻 be a fixed bipartite graph such that 𝑒𝑥(𝑛, 𝐻) ≤ 𝑂 (𝑁2−1/𝑡 ) for
some real 𝑡 > 1. For every fixed 𝑘 ≥ 1,

𝑟𝑘+1 (𝐻;𝐾𝑛) ≤ 𝑂
[(

𝑛

log 𝑛

) 𝑡 ]
.

Proof. Let 𝑁 = 𝑟𝑘+1 (𝐻;𝐾𝑛) − 1. Given an edge-coloring of 𝐾𝑁 by 𝑘 + 1 colors with
no monochromatic copy of 𝐻 in each of the first 𝑘 colors, and no monochromatic
𝐾𝑛 in the last color. Let 𝑇 be the graph whose edges are all edges of 𝐾𝑁 colored
by one of the first 𝑘 colors. Thus, the total number of edges of 𝑇 is clearly at
most 𝑘 · 𝑒𝑥(𝑛, 𝐻) ≤ 𝑐1𝑁

2−1/𝑡 , where 𝑐1 is a constant depending only on 𝑘 and
𝐻. Moreover, the neighborhood of any vertex of degree 𝑑 in 𝑇 contains at most
𝑘 · 𝑒𝑥(𝑑;𝐻) ≤ 𝑐2𝑑

2−1/𝑡 edges of 𝑇 , where 𝑐2 is a constant.
Ajtai, Komlós and Szemerédi (1981) proved that if a graph on 𝑁 vertices with

average degree at most 𝐷 contains at most 𝑁𝐷2−𝜂 triangles, then it contains an in-
dependent set of size at least 𝑐(𝜂)𝑁 log𝐷

𝐷
. Therefore, if 𝐷 is the average degree of 𝑇

then, as 𝑇 contains an induced subgraph, denoted by 𝑇 ′, with 𝑁/2 vertices and max-
imum degree at most 2𝐷 and hence at most 𝑂 (𝐷2−1/𝑡 ) edges in any neighborhood
of a vertex in 𝑇 ′. Thus

𝛼(𝑇 ′) ≥ Ω

(
𝑁

log𝐷
𝐷

)
≥ Ω(𝑁1/𝑡 log 𝑁).
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10.3 Some Multicolor Ramsey Numbers 237

Since 𝛼(𝑇 ′) ≤ 𝛼(𝑇) < 𝑛 it follows that 𝑛 > Ω(𝑁1/𝑡 log 𝑁), implying the desired
upper bound. □

Proof of Theorem 10.8. It remains to prove the lower bounds. Consider the Erdős-
Rényi graph 𝐸𝑅𝑜𝑞 (we attach a loop to each vertex ⟨𝑎1, 𝑎2, 𝑎3⟩ if 𝑎2

1 + 𝑎
2
2 + 𝑎

2
3 = 0)

of order 𝑁 = 𝑞2 + 𝑞 + 1 and let 𝑀 be the number of independent sets of size 𝑛.
It suffices to show that 𝑀 𝑘 <

(𝑁
𝑛

) 𝑘−1 by Lemma 10.1. Note that the graph 𝐸𝑅𝑜𝑞 is
𝑑-regular, where 𝑑 = 𝑞 + 1. Set 𝑛0 =

2𝑁 log 𝑁
𝑑

. Thus for large 𝑞,

4𝑞 log 𝑞 < 𝑛0 < 4(𝑞 + 1) log 𝑞.

From Theorem 10.7, if 𝑛 ≥ 𝑛0 which can be seen as follows then

𝑀 ≤
(
𝑒𝑑𝑛

2𝜆𝑛0

)𝑛0 (
2𝑒𝜆𝑁
𝑑𝑛

)𝑛
,

where 𝜆 =
√
𝑞.

(1) For 𝑘 ≥ 3, it suffices to show that 𝑟4 (𝐶4;𝐾𝑛) ≥ Ω( 𝑛2

(log 𝑛)2 ). Set 𝑛 = 𝑐𝑞 log 𝑞,
where 𝑐 > 4 is a large constant to be chosen later. We shall show that

𝑀3/𝑛 <

(
𝑁

𝑛

)2/𝑛
. (10.7)

Substituting 𝑑, 𝜆, 𝑛0, 𝑛, 𝑁 by values in terms of 𝑞, we have

𝑀3/𝑛 ≤
(
𝑐𝑒(𝑞 + 1)

8√𝑞

) 12
𝑐
(1+1/𝑞) ( 2𝑒√𝑞

𝑐 log 𝑞

)3

∼ 𝑐1
𝑞12/𝑐+3/2

(log 𝑞)3 ,

where 𝑐1 is a positive constant, and(
𝑁

𝑛

)2/𝑛
∼

(
𝑒𝑁

𝑛

)2
∼

(
𝑒𝑞

𝑐 log 𝑞

)2
.

Thus the inequality (10.7) holds if we choose 𝑐 such that 12/𝑐 + 3/2 ≤ 2, which is
𝑐 ≥ 24. Then we have 𝑛 > 𝑛0 and 𝑁 ∼ 𝑞2 ∼ 𝑛2/(𝑐 log 𝑛)2 as 𝑞 → ∞, completing
the proof for 𝑘 ≥ 3.

(2) For 𝑟 (𝐶4, 𝐶4, 𝐾𝑛), set 𝑛 = 𝑐𝑞 log2 𝑞/log log 𝑞, where 𝑐 is a positive constant
will be chosen later. It suffices to show that 𝑀2/𝑛 <

(𝑁
𝑛

)1/𝑛 by Lemma 10.1. Note
that for some constant 𝑐𝑖 > 0,

𝑀2/𝑛 ≤ 𝑐1

(√
𝑞 log 𝑞

log log 𝑞

) 8 log log𝑞
𝑐 log𝑞

(√
𝑞 log log 𝑞
log2 𝑞

)2

≤ 𝑐2𝑞
1+ 4 log log𝑞

𝑐 log𝑞

(
log log 𝑞
log2 𝑞

)2
= 𝑐2

𝑞(log log 𝑞)2

(log 𝑞)4−4/𝑐 ,
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238 10 Quasi-Random Graphs

and (
𝑁

𝑛

)1/𝑛
≥ 𝑐3

𝑒𝑁

𝑛
≥ 𝑐4

𝑞 log log 𝑞
log 𝑞

.

We are done by taking 𝑐 > 4/3 so that 4 − 4/𝑐 > 1. □

Note that we have found the spectrum of the projective norm graph 𝐺𝑞,𝑡 in the
last section and it contains no 𝐾𝑡 , 𝑠 for 𝑠 ≥ (𝑡 − 1)! + 1. Similar argument as above
gives the following result.

Theorem 10.9 For any fixed 𝑡 ≥ 2 and 𝑠 ≥ (𝑡 − 1)! + 1,
(1) For any 𝑘 ≥ 3,

𝑟𝑘+1 (𝐾𝑡 ,𝑠;𝐾𝑛) = Θ

(
𝑛

log 𝑛

) 𝑡
.

(2) There are positive constants 𝑐1 and 𝑐2 such that

𝑐1

(
𝑛 log log 𝑛
(log 𝑛)2

) 𝑡
≤ 𝑟 (𝐾𝑡 ,𝑠 , 𝐾𝑡 ,𝑠 , 𝐾𝑛) ≤ 𝑐2

(
𝑛

log 𝑛

) 𝑡
.

Alon and Rödl (2005) also solved a conjecture of Erdős and Sós that

lim
𝑛→∞

𝑟 (𝐾3, 𝐾3, 𝐾𝑛)
𝑟 (𝐾3, 𝐾𝑛)

= ∞.

The 𝑟-blow-up 𝐺′ of a graph 𝐺 is the graph obtained by replacing each vertex
𝑣 of 𝐺 by an independent set 𝑆𝑣 of size 𝑟 , and each edge 𝑢𝑣 of 𝐺 by the set of all
edges 𝑥𝑦 with 𝑥 ∈ 𝑆𝑢 and 𝑦 ∈ 𝑆𝑣 .

Lemma 10.3 There is a constant 𝑐 = 𝑐𝑘 > 0 such that

𝑟𝑘+1 (𝐾3;𝐾𝑛) ≥
𝑐 𝑛𝑘+1

(log 𝑛)2𝑘

for all large 𝑛.

Proof. Let 𝑁 = 𝑐1𝑠
2/log 𝑠 < 𝑟 (𝐾3, 𝐾𝑠+1), where 𝑐1 > 0 is a fixed constant. Thus

there is a graph 𝐹 of order 𝑁 with no 𝐾3 and its independence number 𝛼(𝐹) ≤ 𝑠.
Let 𝐺 be the 𝑟-blow up of 𝐹, where 𝑟 = 𝑟 (𝑠) will be chosen later. Denote 𝑀 by the
number of independent sets of size 𝑛 in 𝐺. Note that there are at most

(𝑁
𝑠

)
ways to

choose these blocks, and each independent set of size 𝑛 can be chosen from at most
𝑠 blocks, so we obtain that

𝑀 ≤
(𝑁
𝑠

)
(𝑟𝑠)𝑛

𝑛!
≤

(
𝑒𝑁

𝑠

)𝑠 ( 𝑒𝑟𝑠
𝑛

)𝑛
,

where we use the fact that 𝑡! ≥ ( 𝑡
𝑒
)𝑡 .

Since 𝐺 has 𝑟𝑁 vertices and it contains no 𝐾3, by Lemma 10.1, we can deduce
that 𝑟𝑘+1 (𝐾3;𝐾𝑛) > 𝑟𝑁 if
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𝑀𝑘 <

(
𝑟𝑁

𝑛

) 𝑘−1
.

We now take 𝑟 = 𝑠𝑘−1 (log 𝑠)2−𝑘 and 𝑛 = 𝑐𝑠 log 𝑠, where 𝑐 > 0 is a constant to be
chosen. Thus

𝑀𝑘/𝑛 <

(
𝑐1𝑒𝑠

log 𝑠

) 𝑘/(𝑐 log 𝑠) (
𝑒𝑠𝑘−1

𝑐(log 𝑠)𝑘−1

) 𝑘
≤ 𝑐2

𝑐𝑘

(
𝑠

log 𝑠

) 𝑘 (𝑘−1)
,

where 𝑐2 and henceforth 𝑐3 and 𝑐4 are positive constants that is independent of 𝑐,
and (

𝑟𝑁

𝑛

) (𝑘−1)/𝑛
> 𝑐3

(
𝑒𝑟𝑁

𝑛

) 𝑘−1
≥ 𝑐4

𝑐𝑘−1

(
𝑠

log 𝑠

) 𝑘 (𝑘−1)
.

Thus the condition is satisfied if we take large 𝑐 such that 𝑐2/𝑐𝑘 < 𝑐4/𝑐𝑘−1, and
hence

𝑟𝑘+1 (𝐾3;𝐾𝑛) > 𝑟𝑁 =
𝑐1𝑠

𝑘+1

(log 𝑠)𝑘−1 = Θ

(
𝑛𝑘+1

(log 𝑛)2𝑘

)
,

completing the proof. □

Theorem 10.10 For each fixed 𝑘 ≥ 1, there are constants 𝑐𝑖 = 𝑐𝑖 (𝑘) > 0 such that

𝑐1 𝑛
𝑘+1

(log 𝑛)2𝑘 ≤ 𝑟𝑘+1 (𝐾3;𝐾𝑛) ≤
𝑐2 𝑛

𝑘+1

(log 𝑛)𝑘

for all large 𝑛.

Proof. It remains to show the upper bound. The proof is by induction on 𝑘 ≥ 1.
For 𝑘 = 1, it is already implied by Theorem 3.5. Now we suppose 𝑘 ≥ 2 and
assume that the upper bound holds for 𝑘 − 1, we will prove it also holds for 𝑘 . Let
𝑁 = 𝑟𝑘+1 (𝐾3;𝐾𝑛) − 1. There is an edge-coloring of 𝐾𝑁 by colors 1, 2, . . . , 𝑘 + 1
with no monochromatic 𝐾3 in any of the first 𝑘 colors, and no monochromatic 𝐾𝑛
in the last color. Consider the graph 𝑇 induced by all edges of the first 𝑘 colors.
The neighborhood 𝑁 (𝑣) of a vertex 𝑣 in 𝑇 is ∪𝑘

𝑖=1𝑁𝑖 (𝑣), where 𝑁𝑖 (𝑣) is the set of
neighbors of 𝑣 that are connected to 𝑣 by an edge in the color 𝑖, 1 ≤ 𝑖 ≤ 𝑘 . Note that
for 1 ≤ 𝑖 ≤ 𝑘 , |𝑁𝑖 (𝑣) | < 𝑟𝑘 (𝐾3;𝐾𝑛) as there is no monochromatic 𝐾3 in any of the
first 𝑘 colors, and no monochromatic 𝐾𝑛 in the last color. Let 𝐷 be the maximum
degree of 𝑇 . Thus

𝐷 ≤ 𝑘 (𝑟𝑘 (𝐾3;𝐾𝑛) − 1) < 𝑘𝑟𝑘 (𝐾3;𝐾𝑛).

For a vertex 𝑢 in 𝑁 (𝑣), we consider the neighborhood of 𝑢 in the subgraph induced
by 𝑁 (𝑣) in 𝑇 . Suppose 𝑢 ∈ 𝑁1 (𝑣), say. Such neighbors are these in

𝑁 (𝑢) ∩ 𝑁 (𝑣) = ∪𝑘𝑗=1

(
∪𝑘𝑖=1

(
𝑁𝑖 (𝑢) ∩ 𝑁 𝑗 (𝑣)

) )
.
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240 10 Quasi-Random Graphs

First of all, 𝑁1 (𝑢) ∩ 𝑁1 (𝑣) = ∅ since there is no monochromatic triangle in the
color 1. For 2 ≤ 𝑖 ≤ 𝑘 , 𝑁𝑖 (𝑢) ∩ 𝑁1 (𝑣) contains no edge in the colors 𝑖 and 1, thus
|𝑁𝑖 (𝑢) ∩ 𝑁1 (𝑣) | ≤ 𝑟𝑘−1 (𝐾3;𝐾𝑛) − 1 which implies that��∪𝑘𝑖=1 (𝑁𝑖 (𝑢) ∩ 𝑁1 (𝑣))

�� < (𝑘 − 1)𝑟𝑘−1 (𝐾3;𝐾𝑛).

Similarly, for 2 ≤ 𝑗 ≤ 𝑘 ,��∪𝑘𝑖=1
(
𝑁𝑖 (𝑢) ∩ 𝑁 𝑗 (𝑣)

) �� < (𝑘 − 1)𝑟𝑘−1 (𝐾3;𝐾𝑛).

Thus the maximum degree of the subgraph induced by 𝑁 (𝑣) in 𝑇 is less than
𝑚 = 𝑘2𝑟𝑘−1 (𝐾3;𝐾𝑛). By Theorem 3.4, we obtain that

𝑛 ≥ 𝛼(𝑇) ≥ 𝑁
log(𝐷/𝑚) − 1

𝐷
.

Therefore, using the induction hypothesis for 𝐷 and 𝑚, the desired upper bound
follows. □

10.4 A Related Lower Bound of 𝒓(𝒔, 𝒕)

Constructions of (𝑛, 𝑑, 𝜆)-graphs arise from a number of sources, including Cayley
graphs, projective geometry and strongly regular graphs – we refer the reader to
Krivelevich and Sudakov (2006) for a survey of (𝑛, 𝑑, 𝜆)-graphs. Sudakov, Szabo
and Vu (2005) proved that a 𝐾𝑠-free (𝑛, 𝑑, 𝜆)-graph satisfies

𝜆 = Ω(𝑑𝑠−1/𝑛𝑠−2) (10.8)

as 𝑛→ ∞. For 𝑠 = 3, if 𝐺 is any triangle-free (𝑛, 𝑑, 𝜆)-graph with adjacency matrix
𝐴, then

0 = 𝑡𝑟 (𝐴) ≥ 𝑑3 − 𝜆3 (𝑛 − 1). (10.9)

If 𝜆 =
√
𝑑, then this gives 𝑑 = 𝑂 (𝑛2/3) matching (10.8). Alon (1994b) constructed

a triangle-free pseudorandom graph attaining this bound, and Conlon (2017) more
recently analyzed a randomized construction with the same average degree. A similar
argument to (10.9) shows that a 𝐾𝑠-free (𝑛, 𝑑, 𝜆)- graph with 𝜆 =

√
𝑑 has 𝑑 =

𝑂 (𝑛1− 1
2𝑠−3 ). The Alon-Boppana Bound (see Nilli 1991, 2004) shows that 𝜆 =

√
𝑑 for

every (𝑛, 𝑑, 𝜆)-graph provided 𝑑/𝑛 is bounded away from 1. Sudakov, Szabo and Vu
(2005) raised the question of the existence of optimal pseudorandom 𝐾𝑠-free graphs
for 𝑠 ≥ 4, namely (𝑛, 𝑑, 𝜆)-graphs achieving the bound in (10.8) with 𝜆 =

√
𝑑 and

𝑑 = Ω(𝑛1− 1
2𝑠−3 ). The following result due to Mubayi and Verstraëte (2019+) shows

that a positive answer to this question will give the exponent of the Ramsey numbers
𝑟 (𝑠, 𝑡).
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Theorem 10.11 Let 𝐹 be a graph, 𝑛, 𝑑, 𝜆 be positive integers with 𝑑 ≥ 1 and 𝜆 > 1/2
and let 𝑡 = ⌈2𝑛 log2 𝑛/𝑑⌉. If there exists an 𝐹-free (𝑛, 𝑑, 𝜆)-graph, then

𝑟 (𝐹, 𝐾𝑡 ) >
𝑛

20𝜆
log2 𝑛.

Proof. Let 𝐺 be an 𝐹-free (𝑛, 𝑑, 𝜆)-graph and let𝑈 be a random set of vertices of 𝐺
where each vertex is chosen independently with probability 𝑝 = log2 𝑛/2𝑒2𝜆. Let 𝑍
be the number of independent sets of size 𝑡 = ⌈2𝑛 log2 𝑛/𝑑⌉ in the induced subgraph
𝐺 [𝑈]. By Theorem 10.7, the number of independent sets of size 𝑡 in 𝐺 is at most(

𝑒𝑑 log 𝑛
2𝜆

)2𝑛 log 𝑛/𝑑 (2𝑒𝜆𝑛
𝑑𝑡

) 𝑡
≤ (2𝑒)𝑡

(
𝑒𝜆

log2 𝑛

) 𝑡
=

(
2𝑒2𝜆

log2 𝑛

) 𝑡
by noting (𝑑/2𝜆)1/log 𝑛 < 𝑒 and (𝑒 log 𝑛)1/log 𝑛 < 1.1. Therefore,

𝐸 ( |𝑈 | − |𝑍 |) ≥ 𝑝𝑛 − 𝑝𝑡
(

2𝑒2𝜆

log2 𝑛

) 𝑡
= 𝑝𝑛 − 1,

which implies that there is a subset 𝑈 ⊂ 𝑉 (𝐺) such that if we remove one vertex
from every independent set in𝑈, the remaining set 𝑇 has |𝑇 | ≥ 𝑝𝑛− 1 and𝐺 [𝑇] has
no independent set of size 𝑡. It follows that

𝑟 (𝐹, 𝐾𝑡 ) ≥ 𝑝𝑛 >
𝑛

20𝜆
log2 𝑛,

completing the proof. □

Theorem 10.11 provides good bounds if there exists an 𝐹-free (𝑛, 𝑑, 𝜆)-graph
with many edges and good pseudorandom properties (meaning that 𝑑 is large and 𝜆
is small). For example, we immediately obtain the following consequence.

Corollary 10.4 If there exists a 𝐾𝑠-free (𝑛, 𝑑, 𝜆)-graph with 𝑑 = Ω(𝑛1− 1
2𝑠−3 ) and

𝜆 = 𝑂 (
√
𝑑), then

𝑟 (𝑠, 𝑡) ≥ Ω

(
𝑡𝑠−1

log2𝑠−4 𝑡

)
as 𝑡 → ∞.

Proof. From 𝑡 = ⌈2𝑛 log2 𝑛/𝑑⌉, we have 𝑛 = Ω(𝑑𝑡/log2 𝑡). Apply Theorem 10.11
with 𝐹 = 𝐾𝑠 , 𝑑 and 𝜆 = 𝑂 (

√
𝑑) we obtain that the lower bound holds as desired. □

Alon and Krivelevich (1997) gave a construction of 𝐾𝑠-free (𝑛, 𝑑, 𝜆)-graphs with
𝑑 = Ω(𝑛1− 1

𝑠−2 ) and 𝜆 = 𝑂 (
√
𝑑) for all 𝑠 ≥ 3, and this was slightly improved by

Bishnoi, Ihringer and Pepe (2020+) to obtain 𝑑 = Ω(𝑛1− 1
𝑠−1 ). This is the current

record for the degree of a 𝐾𝑠-free (𝑛, 𝑑, 𝜆)-graph with 𝜆 = 𝑂 (
√
𝑑). The problem

of obtaining optimal 𝐾𝑠-free pseudorandom constructions in the sense (10.8) with
𝜆 = 𝑂 (

√
𝑑) for 𝑠 ≥ 4 seems difficult and is considered to be a central open problem in

pseudorandom graph theory. The problem of determining the growth rate of 𝑟 (𝑠, 𝑡) is
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242 10 Quasi-Random Graphs

classical and much older, and it wasn’t completely clear whether the upper bound in
Theorem 3.5 or the lower bound in (5.10) was closer to the truth. Based on Theorem
1, it seems reasonable to conjecture that if 𝑠 ≥ 4 is fixed, then 𝑟 (𝑠, 𝑡) = 𝑡𝑠−1+𝑜 (1) as
𝑡 → ∞.

10.5 A Lower Bound for Book Graph

Let 𝐵 (𝑚)
𝑛 denote the book graph that consists of 𝑛 copies of 𝐾𝑚+1 sharing a common

𝐾𝑚. The study of Ramsey numbers of books goes back to Erdős, Faudree, Rousseau
and Schelp (1978), and Rousseau and Sheehan (1978). For convenience, we also
denote 𝑟 (𝐺) instead of 𝑟 (𝐺,𝐺). It is shown by Erdős et al. (1978) that for fixed
𝑚 ≥ 2,

𝑟 (𝐵 (𝑚)
𝑛 ) ≥ (2𝑚 − 𝑜(1))𝑛

by using the elementary probabilistic method, see Theorem 3.16. For the upper
bound, Thomason (1982) conjectured that

𝑟 (𝐵 (𝑚)
𝑛 ) ≤ 2𝑚 (𝑛 + 𝑚 − 2) + 2.

For 𝑚 = 2, Rousseau and Sheehan (1978) verified this conjecture and proved that it
is tight for infinitely many values of 𝑛. Using the refined regularity lemma, Conlon
(2019) proved that

𝑟 (𝐵 (𝑚)
𝑛 ) ≤ (2𝑚 + 𝑜(1))𝑛,

and thus 𝑟 (𝐵 (𝑚)
𝑛 ) ∼ 2𝑚𝑛 as 𝑛 → ∞. This anwsers a question of Erdős et al.

(1978) and confirms a conjecture of Thomason (1982) asymptotically. Recently,
the upper bound was improved further by Conlon, Fox and Wigderson (2021) as
𝑟 (𝐵 (𝑚)

𝑛 ) ≤ 2𝑚𝑛 + 𝑂 ( 𝑛

(log log log 𝑛)1/25 ). For more Ramsey numbers on books, see e.g.
Nikiforov, Rousseau and Schelp (2005, three papers) and other related references.

Let us point out that the lower bound 𝑟 (𝐵 (𝑚)
𝑛 ) ≥ (2𝑚 − 𝑜(1))𝑛 by Erdős et al.

(1978) follows from considering the random graph space of edge density 1/2. We
shall improve this by a constructive bound by using the Paley graph as follows, one
can see Thomason (1982).

Theorem 10.12 If 𝑞 ≡ 1 (mod 4) is a prime power and 𝑚 ≥ 2, then

𝑟 (𝐵 (𝑚)
𝑛 ) > 2𝑚𝑛 − 𝑚23𝑚/2√𝑛

for 𝑞

2𝑚 + (𝑚 − 1)√𝑞 ≤ 𝑛 ≤ 𝑞

2𝑚 + 𝑚√𝑞.

We will apply Weil bound in the proof. The characters of a finite field 𝐹𝑞 are
group homomorphisms from 𝐹𝑞 or 𝐹∗

𝑞 = 𝐹𝑞 \ {0} to

𝑆1 = {𝑒𝑖 𝜃 : 0 ≤ 𝜃 < 2𝜋},



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

10.5 A Lower Bound for Book Graph 243

respectively, where 𝑆1 is viewed as a multiplicative group of complex numbers.
A multiplicative character of 𝐹𝑞 is a function 𝜒 : 𝐹∗

𝑞 → 𝑆1 such that for any
𝑥, 𝑦 ∈ 𝐹∗

𝑞 ,
𝜒(𝑥𝑦) = 𝜒(𝑥)𝜒(𝑦).

We often extend the domain of a multiplicative character 𝜒 from 𝐹∗
𝑞 to 𝐹𝑞 by defining

𝜒(0) = 0. The trivial function 𝜒0 with 𝜒0 (𝑥) ≡ 1 is called the principal multiplicative
character of 𝐹𝑞 . The order of a multiplicative character 𝜒 is the smallest positive
integer 𝑑 such that 𝜒𝑑 = 𝜒0.

Let 𝐹𝑞 [𝑥] be the set of all polynomials over 𝐹𝑞 . Let 𝜒 be the multiplicative
character of 𝐹𝑞 of order 𝑑 > 1 and 𝑓 (𝑥) ∈ 𝐹𝑞 [𝑥]. If 𝑓 (𝑥) has precisely 𝑠 distinct
zeros and it is not the form 𝑐(𝑔(𝑥))𝑑 for some 𝑐 ∈ 𝐹𝑞 and 𝑔(𝑥) ∈ 𝐹𝑞 [𝑥], then����� ∑︁

𝑥∈𝐹𝑞
𝜒( 𝑓 (𝑥))

����� ≤ (𝑠 − 1)√𝑞, (10.10)

which is known as the Weil bound (1948).

Proof of Theorem 10.12. Let 𝑈 ⊆ 𝐹𝑞 be a subset of vertices of the Paley graph 𝑃𝑞
with |𝑈 | = 𝑚 which forms a clique. Denote by 𝐽 (𝑈) for the common neighbors of
the vertices of 𝑈. If |𝐽 (𝑈) | < 𝑛 for any such clique 𝑈, then 𝑟 (𝐵 (𝑚)

𝑛 ) > 𝑞 since the
Paley graph 𝑃𝑞 is self-complementary. For a fixed clique 𝑈 with |𝑈 | = 𝑚, define a
function 𝑓 (𝑥) depending on𝑈 as that

𝑓 (𝑥) =
∏
𝑢∈𝑈

(1 + 𝜒(𝑥 − 𝑢)), 𝑥 ∈ 𝐹𝑞 ,

where 𝜒 is the quadratic residue character defined by (2.2). Note that∑︁
𝑥∈𝑈

𝑓 (𝑥) =
∑︁
𝑥∈𝑈

∏
𝑢∈𝑈

(1 + 𝜒(𝑥 − 𝑢)) = 𝑚2𝑚−1.

For 𝑥 ∈ 𝐹𝑞 \ 𝑈, if 𝑥 ∈ 𝐽 (𝑈) then 𝑓 (𝑥) = 2𝑚, and if 𝑥 ∉ 𝐽 (𝑈) then 𝑓 (𝑥) = 0 as
𝜒(𝑥 − 𝑢) = −1 for some 𝑢 ∈ 𝑈. Therefore,∑︁

𝑥∈𝐹𝑞\𝑈
𝑓 (𝑥) = 2𝑚 |𝐽 (𝑈) |.

Suppose that𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑚}. We have
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244 10 Quasi-Random Graphs

2𝑚 |𝐽 (𝑈) | =
∑︁

𝑥∈𝐹𝑞\𝑈
𝑓 (𝑥) =

∑︁
𝑥∈𝐹𝑞

𝑓 (𝑥) −
∑︁
𝑥∈𝑈

𝑓 (𝑥)

=
∑︁
𝑥∈𝐹𝑞

∑︁
𝑖1 ,...,𝑖𝑚∈{0,1}

𝜒

(
(𝑥 − 𝑢1)𝑖1 · · · (𝑥 − 𝑢𝑚)𝑖𝑚

)
− 𝑚2𝑚−1

=
∑︁
𝑥∈𝐹𝑞

(
1 +

∑︁
𝑖1 ,...,𝑖𝑚∈{0,1}
𝑖1+···+𝑖𝑚≥1

𝜒

(
(𝑥 − 𝑢1)𝑖1 · · · (𝑥 − 𝑢𝑚)𝑖𝑚

))
− 𝑚2𝑚−1

= 𝑞 +
∑︁

𝑖1 ,...,𝑖𝑚∈{0,1}
𝑖1+···+𝑖𝑚≥1

∑︁
𝑥∈𝐹𝑞

𝜒

(
(𝑥 − 𝑢1)𝑖1 · · · (𝑥 − 𝑢𝑚)𝑖𝑚

)
− 𝑚2𝑚−1.

Note that the polynomial (𝑥 − 𝑢1)𝑖1 · · · (𝑥 − 𝑢𝑚)𝑖𝑚 is not the form 𝑎(𝑔(𝑥))2 with
𝑎 ∈ 𝐹𝑞 and 𝑔(𝑥) ∈ 𝐹𝑞 [𝑥] as 𝑖1, . . . , 𝑖𝑚 ∈ {0, 1}, it follows from Weil bound (10.10)
that ∑︁

𝑥∈𝐹𝑞\𝑈
𝑓 (𝑥) ≤ 𝑞 +

∑︁
𝑖1 ,...,𝑖𝑚∈{0,1}
𝑖1+···+𝑖𝑚≥1

(𝑚 − 1)√𝑞 − 𝑚2𝑚−1

= 𝑞 + (𝑚 − 1) (2𝑚 − 1)√𝑞 − 𝑚2𝑚−1.

Consequently,

|𝐽 (𝑈) | = 1
2𝑚

∑︁
𝑥∈𝐹𝑞\𝑈

𝑓 (𝑥) < 𝑞

2𝑚
+ (𝑚 − 1)√𝑞.

If we suppose that 𝑞

2𝑚 + (𝑚 − 1)√𝑞 ≤ 𝑛 ≤ 𝑞

2𝑚 + 𝑚√𝑞, then |𝐽 (𝑈) | < 𝑛 and

𝑟 (𝐵 (𝑚)
𝑛 ) ≥ 𝑞 + 1 > 2𝑚𝑛 − 𝑚2𝑚

√
𝑞 > 2𝑚𝑛 − 𝑚23𝑚/2√𝑛

as claimed. □

10.6 Exercises

1. Let 𝐺 be a graph of order 𝑛 satisfying that for any vertex 𝑣 and subset 𝐵,
|𝑁 (𝑣) ∩ 𝐵| = 𝑝 |𝐵| + 𝑜(𝑛). Is 𝐺 quasi-random for fixed 𝑝?

2. Define a property: For any𝑈 ⊆ 𝑉 with |𝑈 | = ⌊𝑛/2⌋, 𝑒(𝑈,𝑉 \𝑈) ∼ 𝑝 𝑛
2

4 . Is this
a quasi-random property for fixed edge density 𝑝?

3. Prove that the inequality holds in (10.6).

4. Estimate 𝑏𝑟𝑘 (𝐶4;𝐾𝑛,𝑛) for 𝑘 ≥ 3 by modifying the argument for 𝑟𝑘 (𝐶4;𝐾𝑛).

5. Let 𝐺 be a finite group and 𝑆 be an inverse-closed subset of 𝐺 that contains
no identity. Prove that each eigenvalue of the Cayley graph Γ(𝐺, 𝑆) is of the form
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10.6 Exercises 245∑
𝑠∈𝑆 𝜒(𝑠) with respective to the eigenvector is (𝜒(𝑔) : 𝑔 ∈ 𝐺), where 𝜒 is a

character of 𝐺.

6. Prove that if 𝜓 is a complex-valued function such that 𝜓(𝑥) ≠ 0 and 𝜓(𝑥 + 𝑦) =
𝜓(𝑥)𝜓(𝑦), then 𝜓 is an additive character of 𝐹𝑞 .

7. Prove that if 𝜓 is an additive character of 𝐹𝑞 , where 𝑞 = 𝑝𝑚 with 𝑝 ≥ 3, then
𝜓(𝑥) ≠ −1 for any 𝑥 ∈ 𝐹𝑞 .

8. Let 𝐺 be a semi-simple (𝑁, 𝑑, 𝜆)-graph with vertex set 𝑉 . Prove that for any
𝑛 ≥ 4𝑁 log 𝑁

𝑑
, the number 𝑀 of 𝐾𝑛,𝑛 in 𝐺 satisfies that

𝑀 ≤
(

𝑒𝑑2𝑛

4𝜆𝑁 log 𝑁

) 4𝑁 log𝑁
𝑑

(
2𝑒𝜆𝑁
𝑑𝑛

)2𝑛
.

(Hint: Consider the number of ways to choose ordered subsets {𝑢1, . . . , 𝑢𝑛} and
{𝑣1, . . . , 𝑣𝑛} of 𝐺 which form a 𝐾𝑛,𝑛 in 𝐺, where 𝑢𝑖 ≠ 𝑣 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Starting
with choosing a pair of distinct and non-adjacent vertices 𝑢1 and 𝑣1. See Lin and Li
(2011) or Liu and Li (2021))
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Chapter 11
Regularity Lemma and van der Waerden
Number

Bartel L. van der Waerden (February 2, 1903–January 12, 1996) was a Dutch
mathematician, who published his Algebra, an influential two-volume treatise on
abstract algebra at age 27. Before this, in 1927, he proved the following result,
conjectured by Baudet in 1926, which is now called van der Waerden theorem:
For any positive integers 𝑘 and 𝑡, there exists a positive integer 𝑁 such that if the
set {1, 2, . . . , 𝑁} is partitioned into 𝑘 classes, then at least one class contains an
arithmetic progression of 𝑡 terms. This is one of the most important Ramsey-type
results on the integers, and another such result is that of Schur, discussed in Chapter
2. Let 𝑤𝑘 (𝑡) be the smallest 𝑁 for the van der Waerden theorem, which has a very
huge upper bound in the original proof. Much later, in 1988, a substantially improved
upper bound was given by Israeli mathematician Saharon Shelah (born on July 3,
1945, recipient of the 2001 Wolf prize). He gave the first primitive recursive upper
bound for 𝑤𝑘 (𝑡), which is proved in Section 11.2 as it is almost transparent even
the bound is still enormous. The bound was further improved greatly by Timothy
Gowers (born on November 20, 1963, recipient of the 1998 Fields Medal) to a tower
of height 6. He is a British mathematician, and his research is connecting the fields
of functional analysis and combinatorics in surprise.

In the 1930s, Erdős and Turán conjectured that if a set 𝐴 of positive integers
satisfies lim

𝑛→∞
|𝐴 ∩ [𝑛] |/𝑛 > 0, then 𝐴 contains arbitrarily long arithmetic progres-

sions. The conjecture in case of length 3 was proved by Roth in 1953 and 1954.
Klaus F. Roth (born on 29 October 1925, recipient of the 1958 Fields Medal) is a
German-born British mathematician. The full conjecture was proved by Szemerédi
in 1975 with a deep and complicated combinatorial argument, which thus becomes
Szemerédi theorem. Endre Szemerédi (born on August 21, 1940, recipient of the
2012 Abel prize) is a Hungarian-American mathematician, working in the field of
combinatorics and theoretical computer science. In the proof, he used a result which
is called the Regularity Lemma (in bipartite version). In 1978, he proved the full
lemma, which is a powerful tool in extremal graph theory. Sometimes the Regularity
Lemma is called uniformity lemma, see e.g., Bollobás (1998). The proof of Sze-
merédi theorem is beyond our book, but we shall have an clear and detailed proof for
the Regularity Lemma in this chapter. Let us remark that fully understanding of the

247© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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248 11 Regularity Lemma and van der Waerden Number

lemma is important for its applications. For many applications, we refer the reader
to the survey of Komlós and Simonovits (1996) and other related references.

A further problem of Erdős and Turán (1936) is still open, who conjectured that
if 𝐴 = {𝑎𝑖} is a set of positive integers such that

∑
1/𝑎𝑖 = ∞, then 𝐴 contains

arbitrarily long arithmetic progression. Note that
∑
𝑝≤𝑛 1/𝑝 ∼ log log 𝑛, where the

sum is taken over all primes no more than 𝑛. The most important special case by
Green and Tao (2008) states that there are arbitrarily long arithmetic progression of
primes. Terence Tao (Chinese name Chi-Shen Tao, born on July 17, 1975, recipient
of the 2006 Fields Medal) is an Australian-born American mathematician working
in many mathematical fields with excellent results.

11.1 van der Waerden Number

Let 𝑡-AP denote an arithmetic progression of 𝑡 terms. If no specifying, a 𝑡-AP
always means non-trivial one (with distinct 𝑡 terms). The existence of an arithmetic
progression in partition of integers by van der Waerden (1927) is as follows.

Theorem 11.1 Let 𝑘 and 𝑡 be positive integers. If an integer 𝑤 is sufficiently large
and the set [𝑤] = {1, 2, . . . , 𝑤} is partitioned into 𝑘 classes, then one of the classes
must contain a 𝑡-AP.

As usual, a partition of [𝑤] is called a coloring of [𝑤]. Define𝑤𝑘 (𝑡) as the smallest
integer 𝑤 so that the mentioned property holds, and write 𝑤(𝑡) = 𝑤2 (𝑡). We call
𝑤𝑘 (𝑡) the van der Waerden number. It is trivial to see that 𝑤𝑘 (1) = 1, 𝑤𝑘 (2) = 𝑘 + 1
and 𝑤1 (𝑡) = 𝑡. However, for general 𝑘 and 𝑡, the functions 𝑤(𝑡) = 𝑤2 (𝑡) and 𝑤𝑘 (3)
are not trivial at all. The following data for 𝑤𝑘 (𝑡) was announced by Heule in his
own web page, which improves that in the paper of Herwig, Heule, Lambalgen and
Maaren (2007).

𝑘\𝑡 3 4 5 6 7 8
2 9 35 178 1132 > 3703 > 11495
3 27 > 292 > 2173 > 11191 > 48811 > 238400
4 76 > 1048 > 17705 > 91331 > 420217
5 > 170 > 2254 > 98740 > 540025
6 > 223 > 9778 > 98748 > 816981

Table 12.1 Small van der Waerden numbers 𝑤𝑘 (𝑡 ) .

The original proof of van der Waerden (1927) gave an extremal large upper bound
for 𝑤(𝑡). Shelah (1998) improved this with a cerebrated upper bound, it is still a
tower, in which the height of the tower on 𝑡 is somehow like the value of the tower
on 𝑡 − 1. The current best upper bound for 𝑤(𝑡) is a striking result of Gowers (see
Gowers (2001), Corollary 18.7) as a tower of height 6 as

𝑤(𝑡) < 22222(𝑡+9)

.
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11.1 van der Waerden Number 249

These upper bounds may be far away from the truth. However, it is hard to show the
existence of finite 𝑤𝑘 (𝑡). In fact, nobody has found an easy proof for the statement:
If all natural numbers are 𝑘-colored, then there exists an arbitrary long AP, where
an arbitrary length signifies that the length of AP can be any given 𝑡 > 0, as this
statement implies 𝑤𝑘 (𝑡) < ∞ immediately, see Exercise 12.2.

Proof of Theorem 11.1. We shall prove 𝑤𝑘 (𝑡) < ∞ by induction on 𝑡. For 𝑡 = 2,
we have 𝑤𝑘 (2) = 𝑘 + 1. To conduct the induction step for positive integers 𝑟, 𝑠 and
𝑁 = 4𝑟𝑠, we partition [𝑁] into 2𝑟 blocks 𝐵0, 𝐵1, . . . , 𝐵2𝑟−1 as

𝐵0 = {1, 2, . . . , 2𝑠},
𝐵1 = {2𝑠 + 1, 2𝑠 + 2, . . . , 4𝑠},

𝐵2𝑟−1 = {(2𝑟 − 1)2𝑠 + 1, (2𝑟 − 1)2𝑠 + 2, . . . , 4𝑟𝑠},

where each 𝐵𝑖 is a block containing 2𝑠 consecutive integers, and

𝐵𝑖 = 𝑖 · 2𝑠 + 𝐵0.

We shall call 𝑎 + 𝑡𝑑 the continuation of a 𝑡-AP {𝑎, 𝑎 + 𝑑, . . . , 𝑎 + (𝑡 − 1)𝑑}. Note
that a partition {𝐶1, . . . , 𝐶𝑘} of [𝑁] induces an equivalence relation on the sets of
all colorings of blocks 𝐵0, 𝐵1, . . . , 𝐵2𝑟−1, for which 𝐵𝑖 and 𝐵 𝑗 with 𝑖 ≤ 𝑗 are in the
same equivalence class if and only if

𝐶ℓ ∩ 𝐵 𝑗 = ( 𝑗 − 𝑖)2𝑠 + (𝐶ℓ ∩ 𝐵𝑖),

for all 1 ≤ ℓ ≤ 𝑘 . In this case, we say that 𝐵𝑖 and 𝐵 𝑗 have the same pattern. i.e.,
𝑏𝑖ℎ ∈ 𝐶ℓ ∩ 𝐵𝑖 if and only if 𝑏𝑖ℎ + ( 𝑗 − 𝑖)2𝑠 ∈ 𝐶ℓ ∩ 𝐵 𝑗 . It follows that there are at
most 𝑘2𝑠 equivalence classes (different patterns) since there are 2𝑠 elements of 𝐵𝑖
and each element of 𝐵𝑖 has 𝑘 choices of 𝐶ℓ .

By the induction hypothesis, the number 𝑤𝑘2𝑠 (𝑡) exists, which means that in case
𝑟 ≥ 𝑤𝑘2𝑠 (𝑡), there exists some 𝑡-AP

{𝑎, 𝑎 + 𝑑, . . . , 𝑎 + (𝑡 − 1)𝑑} ⊆ {0, 1, . . . , 𝑟 − 1},

such that all blocks 𝐵𝑎, 𝐵𝑎+𝑑 , . . . , 𝐵𝑎+(𝑡−1)𝑑 have the same pattern. Each 𝑘2𝑠-
coloring on {0, 1, . . . , 𝑟−1} can be referred to as a 𝑘2𝑠-coloring on 𝐵0, 𝐵1, . . . , 𝐵𝑟−1.
Note that the block 𝐵𝑎+𝑡𝑑 is still contained in [𝑁] as 𝑟 − 1 + 𝑑 < 2𝑟 .

The induction step will be completed by verifying the following claim: For each
ℓ with 1 ≤ ℓ ≤ 𝑘 , there exists some 𝑁 (ℓ) such that the following assertion holds: If
[𝑁 (ℓ)] is partitioned into 𝑘 classes, then either one class contains a (𝑡 + 1)-AP or
there are ℓ APs 𝐴1, . . . , 𝐴ℓ with |𝐴𝑖 | = 𝑡 such that

(i) All 𝐴𝑖 are monochromatic but of different colors, namely, 𝐴𝑖 ⊆ 𝐶 𝑗𝑖 , 1 ≤ 𝑖 ≤ ℓ,
where 𝑗1, . . . , 𝑗ℓ are distinct.

(ii) All 𝐴𝑖 have the same continuation that are still in [𝑁 (ℓ)].



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

250 11 Regularity Lemma and van der Waerden Number

Suppose first the claim is proved, we then choose that 𝑁 ≥ 𝑁 (𝑘). If no (𝑡 +1)-AP
exists, then we have 𝑘 APs 𝐴1, . . . , 𝐴𝑘 of all colors with the same continuation
in [𝑁]. Since this element is also colored by one of the 𝑘-colors, one AP can be
extended.

The proof of our claim is by induction on ℓ. For ℓ = 1, we have 𝑁 (1) ≤ 𝑤𝑘 (𝑡).
For the induction step, the set [𝑁] is partitioned into blocks 𝐵0, 𝐵1, . . . , 𝐵2𝑟−1 as
above with 𝑠 = 𝑁 (ℓ − 1) and 𝑟 = 𝑤𝑘2𝑠 (𝑡). If there is no monochromatic (𝑡 + 1)-AP,
then we conclude from the above two induction hypotheses with the following two
facts:

(1) There is an AP of blocks 𝐵𝑎, 𝐵𝑎+𝑑 , . . . , 𝐵𝑎+(𝑡−1)𝑑 , all of the same pattern as
described above;

(2) In the block 𝐵𝑎, without loss of generality, we may assume that there are
ℓ − 1 APs 𝐴′

1, . . . , 𝐴
′
ℓ−1 such that 𝐴′

𝑖
⊆ 𝐶𝑖 , 1 ≤ 𝑖 ≤ ℓ − 1, which all have the same

continuation 𝑐 ∈ 𝐵𝑎. We may assume that 𝑐 ∈ 𝐶ℓ .

Let 𝐴ℓ = {𝑐, 𝑐+2𝑠𝑑, . . . , 𝑐+ (𝑡−1)2𝑠𝑑}. From (1), we have 𝐴ℓ ⊆ 𝐶ℓ . Indeed, we
have that 𝑐+2𝑠𝑑 ∈ 𝐶ℓ since𝐶ℓ ∩𝐵𝑎+𝑑 = (𝑎+ 𝑑−𝑎)2𝑠+ (𝐶ℓ ∩𝐵𝑎) and 𝑐 ∈ 𝐶ℓ ∩𝐵𝑎.
Inductively, we can get that 𝐴ℓ ⊆ 𝐶ℓ . Moreover, 𝑐 + 𝑡 · 2𝑠𝑑 is the continuation of 𝐴ℓ .

If 𝐴′
𝑖
= {𝛼, 𝛼 + 𝛿, . . . , 𝛼 + (𝑡 − 1)𝛿} ⊆ 𝐶𝑖 , then 𝑐 = 𝛼 + 𝑡𝛿 ∈ 𝐵𝑎 and a similar

argument as above yields that 𝐴𝑖 = {𝛼, 𝛼 + 𝛿 + 2𝑠𝑑, . . . , 𝛼 + (𝑡 − 1) (𝛿 + 2𝑠𝑑)} ⊆ 𝐶𝑖
is a 𝑡-AP with continuation 𝛼 + 𝑡 (𝛿 + 2𝑠𝑑) = 𝑐 + 𝑡 · 2𝑠𝑑. □

What about the lower bound of 𝑤𝑘 (𝑡)? The first lower bound 𝑤𝑘 (𝑡) ≥ Ω(
√
𝑡𝑘 𝑡 )

was due to Erdős and Rado (1952) by a counting method, see the exercises. Szabó
(1990) proved that if 𝑘 ≥ 2 is fixed, then 𝑤𝑘 (𝑡) ≥ 𝑘 𝑡−1/(𝑒𝑡), which can be slightly
improved as follows.

Theorem 11.2 Let 𝑘 ≥ 2 be fixed and 𝑡 ≥ 2. Then

𝑤𝑘 (𝑡) ≥
𝑘 𝑡

𝑒(𝑘 − 1)𝑡 .

Proof. Randomly 𝑘-color [𝑁], each 𝑥 ∈ [𝑁] being colored by a color with probability
1/𝑘 . For each 𝑆 of 𝑡-AP, let 𝐴𝑖

𝑆
be the event that 𝑆 is monochromatic in color 𝑖. Then

Pr(𝐴𝑖
𝑆
) = 1/𝑘 𝑡 . We try to use the local lemma. Define a graph whose vertex set

consists of all events 𝐴𝑖
𝑆
, which contains edges from joining events 𝐴𝑖

𝑆
and 𝐴 𝑗

𝑇
if

and only if 𝑆 ∩𝑇 ≠ ∅ and 𝑖 ≠ 𝑗 . For fixed 𝑆 of 𝑡-AP, the number of 𝑇 with 𝑆 ∩𝑇 ≠ ∅
is at most 𝑁𝑡, and thus the maximum degree 𝑑 of the dependency graph satisfies
𝑑 < (𝑘 − 1)𝑁𝑡.

If 𝑁 = ⌊𝑘 𝑡/(𝑒(𝑘 − 1)𝑡)⌋, then 𝑒𝑝(𝑑 + 1) ≤ 1. When the symmetric form of
the local lemma is applied, we know Pr(∩𝑆𝐴𝑆) > 0, which implies that there is a
𝑘-coloring of [𝑁] without monochromatic 𝑡-AP. Therefore, 𝑤𝑘 (𝑡) ≥ 𝑁 + 1, and the
assertion holds. □

Let us call a prime of the form 2𝑝 − 1 to be a Mersenne prime, where 𝑝 is
necessarily a prime. Most known top primes are such ones and an old conjecture
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11.1 van der Waerden Number 251

is that there are infinitely many of them. The following bound is due to Berlekamp
(1968).

Theorem 11.3 If 2𝑝 − 1 is a prime, then 𝑤(𝑝 + 1) ≥ 𝑝(2𝑝 − 1).

Proof. Let 𝐹 (2𝑝) be the finite field of 2𝑝 elements. As 2𝑝 − 1 is a prime, any
𝛼 ∈ 𝐹 (2𝑝) \ {0, 1} is a primitive element, which generates the cyclic multiplicative
group 𝐹∗ (2𝑝). Fix a primitive element 𝛼 ∈ 𝐹 (2𝑝). Since 𝐹 (2𝑝) is a linear space
of dimension 𝑝 over 𝑍2, we can have a basis 𝑣1, 𝑣2, . . . , 𝑣𝑝 . For any integer 𝑗 with
1 ≤ 𝑗 ≤ 𝑝(2𝑝 − 1), set

𝛼 𝑗 = 𝑎1 𝑗𝑣1 + 𝑎2 𝑗𝑣2 + · · · + 𝑎𝑝 𝑗𝑣𝑝 , 𝑎𝑖 𝑗 ∈ 𝑍2.

We shall partition the set [𝑝(2𝑝 − 1)] of integers into 𝐶0 and 𝐶1 according to the
first coordinate of 𝛼 𝑗 as

𝐶0 = { 𝑗 : 𝑎1 𝑗 = 0, 1 ≤ 𝑗 ≤ 𝑝(2𝑝 − 1)},

and
𝐶1 = { 𝑗 : 𝑎1 𝑗 = 1, 1 ≤ 𝑗 ≤ 𝑝(2𝑝 − 1)}.

We then claim that (𝐶0, 𝐶1) is a 2-coloring of [𝑝(2𝑝 − 1)] with no monochromatic
(𝑝 + 1)-AP. For 𝑘 = 0 or 𝑘 = 1, suppose that 𝑎, 𝑎 + 𝑏, 𝑎 + 2𝑏, . . . , 𝑎 + 𝑝𝑏 are integers
from the same 𝐶𝑘 , where 𝑎, 𝑏 ≥ 1. We shall show that this leads to a contradiction.
Let 𝛽 = 𝛼𝑎, and 𝛾 = 𝛼𝑏. Then the vectors in

{𝛼𝑎, 𝛼𝑎+𝑏, 𝛼𝑎+2𝑏, . . . , 𝛼𝑎+𝑝𝑏} = {𝛽, 𝛽𝛾, 𝛽𝛾2, . . . , 𝛽𝛾𝑝}

have the same first coordinates when they are expressed as linear combinations of
𝑣1, 𝑣2, . . . , 𝑣𝑝 . Since 1 ≤ 𝑎 < 𝑎 + 𝑝𝑏 ≤ 𝑝(2𝑝 − 1), we have 1 ≤ 𝑏 ≤ 2𝑝 − 2, and
𝛾 = 𝛼𝑏 is a primitive element as 2𝑝 − 1 is a prime.

Case 1 𝑘 = 0.

Then 𝑝 vectors 𝛽, 𝛽𝛾, . . . , 𝛽𝛾𝑝−1 are linearly dependent as they are linear com-
bination of {𝑣2, 𝑣3, . . . , 𝑣𝑝} as all first coordinates are 0 over 𝑍2. Thus there exist
𝑐0, 𝑐1, . . . , 𝑐𝑝−1 in 𝑍2, not all 0, such that

𝑝−1∑︁
𝑖=0

𝑐𝑖 (𝛽𝛾𝑖) = 0, and hence
𝑝−1∑︁
𝑖=0

𝑐𝑖𝛾
𝑖 = 0.

But 𝛾 = 𝛼𝑏 ∈ 𝐹 (2𝑝), 𝛾 ≠ 0, 1, so 𝛾 satisfies a non-trivial polynomial of degree at
most 𝑝 − 1 over 𝐹 (2𝑝), a contradiction.

Case 2 𝑘 = 1.

For this case, each of {𝛽, 𝛽𝛾, . . . , 𝛽𝛾𝑝} has the first coordinate 1 and thus 𝛽(𝛾 −
1), 𝛽(𝛾2 − 1), . . . , 𝛽(𝛾𝑝 − 1) are linearly dependent. i.e.,
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252 11 Regularity Lemma and van der Waerden Number

𝑝∑︁
𝑖=1

𝑐𝑖 [𝛽(𝛾𝑖 − 1)] = 0,

where 𝑐𝑖 ∈ 𝑍2, and some 𝑐𝑖 ≠ 0. Dividing by 𝛽(𝛾 − 1), we have

𝑐1 + 𝑐2 (𝛾 + 1) + · · · + 𝑐𝑝 (𝛾𝑝−1 + 𝛾𝑝−2 + · · · + 1) = 0.

Since 𝛾 cannot be a root of any polynomial of degree at most 𝑝 − 1, we have 𝑐𝑝 = 0,
and consequently 𝑐𝑝−1 = 𝑐𝑝−2 = · · · = 𝑐1 = 0, a contradiction. □

For two colors, the lower bounds in the above two theorems are very close, but
the proofs are completely different. This may suggest that the lower bounds are much
closer to the truth than the known upper bounds.

Let 𝜈(𝑛) be the maximum cardinality of a subset in [𝑛] that does not contain any
3-AP. The first non-trivial upper bound concerning the size of 3-AP-free sets was
given by Roth (1953) who showed 𝜈(𝑛) ≤ 𝑛/log log 𝑛. Subsequently, it was refined
by several researchers, see Heath-Brown (1987), Szemerédi (1990), Bourgain (1999,
2008), Sanders (2011,2012), Bloom (2016), Bloom and Sisask (2019), and Schoen
(2021(b)) etc. To our best knowledge, the current bounds for 𝜈 are

𝑛𝑒−𝑐1
√

log 𝑛 < 𝜈(𝑛) ≪ 𝑛/(log 𝑛)1+𝑐2 ,

in which the lower and upper bounds were given by Behrend (1946) and Bloom and
Sisask (2021+) respectively, where 𝑐1 and 𝑐2 are positive constants.

What about bounds of 𝑤𝑘 (𝑡) for fixed 𝑡 as 𝑘 → ∞? The first nontrival case is
𝑤𝑘 (3). Let 𝑛 = 𝑤𝑘 (3) −1. Then there exists a 𝑘-coloring on [𝑛] such that there is no
monochromatic 3-AP, which means each color class has size at most 𝜈(𝑛). It follows
from that 𝑛 ≤ 𝑘 · 𝜈(𝑛), which combines the above upper bound of 𝜈(𝑛) yield that for
some constant 𝑐 > 0,

𝑤𝑘 (3) < 𝑒𝑘
1/(1+𝑐)

.

For the lower bound, Brown (2008) obtained that 𝑤𝑘 (3) > 𝑒Ω(𝑘log3 2 ) .
The off-diagonal van der Waerden number 𝑤(𝑚, 𝑛) in two colors is the smallest

positive integer 𝑤 such that if [𝑤] is red-blue colored, then there is either a red𝑚-AP
or a blue 𝑛-AP. It is easy to see that 𝑤(1, 𝑛) = 𝑛, and for 𝑛 ≥ 2, 𝑤(2, 𝑛) = 2𝑛 if 𝑛 is
odd and 2𝑛 − 1 otherwise. However, it is also hard to prove the existence of 𝑤(𝑚, 𝑛)
for fixed 𝑚 ≥ 3 as that is similar to that of 𝑤(𝑛, 𝑛).

For the van der Waerden function 𝑤(3, 𝑛), it is known that

𝑛2−1/log log 𝑛 ≤ 𝑤(3, 𝑛) ≤ 𝑛𝑐𝑛2
.

The upper bound is due to Bourgain (1999), and the lower bound is a special case of
that for 𝑤(𝑚, 𝑛) of Brown, Landman and Robertson (2008), whose proof is from the
symmetric form of the local lemma. This result was improved by Li and Shu (2010)
by using the local lemma as 𝑤(𝑚, 𝑛) ≥ 𝑐𝑛𝑚−1/log𝑚−1 𝑛. Recently, Guo and Warnke
(2021+) show that 𝑤(𝑚, 𝑛) ≥ Ω(𝑛𝑚−1/log𝑚−2 𝑛) by using a different method. A
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breakthrough due to Green (2021+) states that there is a constant 𝑐 > 0 such that

𝑤(3, 𝑛) ≥ 𝑛𝑐 (
log𝑛

log log𝑛 )
1/3

= exp
(
log4/3−𝑜 (1) 𝑛

)
.

For the upper bound, Schoen (2021(a)) obtain that there is a small positive 𝜖 such
that

𝑤(3, 𝑛) ≤ 𝑒𝑐𝑛1−𝜖

.

11.2 Recursive Bounds for 𝒘𝒌 (𝒕)
★

Rather than proving van der Waerden theorem directly, we shall introduce a remark-
able extension of the theorem by Hales and Jewett in 1963, which leads to the proof of
Shelah (1988). We introduce Shelah’s proof in this section because it is transparent.

A cube 𝐶𝑛𝑡 is a set of sequences of length 𝑛 formed from 𝑡 symbols. The sym-
bols are ordered, usually as [𝑡] = {1, 2, . . . , 𝑡} if no specified, or in example as
{𝐴, 𝐵, 𝐶, . . . , 𝑍} with 𝑡 = 26. The symbol in the 𝑖th position of an element is called
its 𝑖th coordinate. The elements are called points often.

Some points of 𝐶5
26: 𝑃1 : 𝐴𝐴𝐴𝐴𝐵, 𝑃2 : 𝐴𝑋𝑌𝐶𝑁 , 𝑃3 : 𝑃𝑃𝑃𝑃𝑃. The third

coordinate of 𝑃2 is 𝑌 .
The points of 𝐶𝑛𝑡 can be viewed as the points of the 𝑛-dimensional discrete cube.

For example, the points of 𝐶2
4 with symbols 1, 2, 3, 4 can be arranged in a matrix.

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

A set of 𝑡 points 𝐿 = {𝑃1, 𝑃2, . . . , 𝑃𝑡 } in𝐶𝑛𝑡 is called a line if there is a non-empty
set 𝐼 of indices such that for any 𝑖 ∈ 𝐼, the 𝑖th coordinate of any point 𝑃 𝑗 ∈ 𝐿 is just
the 𝑗 th symbol, and for 𝑖 ∉ 𝐼, the 𝑖th coordinates of all points of 𝐿 are the same. The
𝑖th coordinates for 𝑖 ∈ 𝐼 are called moving coordinates, and those for 𝑖 ∉ 𝐼 are called
constant coordinates.

Let us take a look at two lines 𝐿1 and 𝐿2 in 𝐶5
26 as follows.

𝐿1 𝐿2
𝑃1 : 𝑋𝐴𝑄𝐴𝐵 𝐴𝐴𝐴𝐴𝐴

𝑃2 : 𝑋𝐵𝑄𝐵𝐵 𝐵𝐴𝐵𝐴𝐴

𝑃3 : 𝑋𝐶𝑄𝐶𝐵 𝐶𝐴𝐶𝐴𝐴
...

...
...

𝑃25 : 𝑋𝑌𝑄𝑌𝐵 𝑌 𝐴𝑌 𝐴𝐴

𝑃26 : 𝑋𝑍𝑄𝑍𝐵 𝑍𝐴𝑍𝐴𝐴
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254 11 Regularity Lemma and van der Waerden Number

In line 𝐿1, the first, third, and fifth coordinates are constant coordinates; the second
and fourth are moving coordinates.

In 𝐶2
4 , there are totally 9 lines, namely, each row and each column, and one

diagonal line {11, 22, 33, 44}. The last line does not have constant coordinates.
Clearly, every line has 𝑡 points, and there are∑︁

𝐽⊆[𝑛],𝐽≠[𝑛]
𝑡 |𝐽 | =

𝑛−1∑︁
𝑗=0

(
𝑛

𝑗

)
𝑡 𝑗 = (𝑡 + 1)𝑛 − 𝑡𝑛

lines in 𝐶𝑛𝑡 . For example, the cube 𝐶2
𝑡 contains 2𝑡 + 1 lines: 𝑡 horizontal lines, 𝑡

vertical lines, and one diagonal line. Note that a line is not determined completely
by the set of indices of moving coordinates.

The following is an important result of Hales and Jewett in 1963.

Theorem 11.4 For any positive integers 𝑘 and 𝑡, there exists an integer 𝑁 such that
if the points of 𝐶𝑁𝑡 are 𝑘-colored in any fashion, then there is a monochromatic line.

The Hales-Jewett function 𝐻𝐽 (𝑘, 𝑡) is defined as the minimal value of 𝑁 that will
satisfy the above theorem. To see that the function makes sense, one needs to make
sure that 𝑁 + 1 will do the theorem. This is clear if we consider the derived coloring
𝜒′ on 𝐶𝑁𝑡 from a given coloring 𝜒 on 𝐶𝑁+1

𝑡 by 𝜒′ (𝑃) = 𝜒(𝑃𝑡), where 𝑃 is a point
of 𝐶𝑁𝑡 , and 𝑃𝑡 is a point of 𝐶𝑁+1

𝑡 with the last coordinate 𝑡. More importantly, we
need to show that such finite 𝑁 exists.

The theorem of van der Waerden follows from Theorem 11.4 immediately.

Proof of Theorem 11.1. For given 𝑘 and 𝑡, let 𝑁 be an integer such that any 𝑘-
coloring of 𝐶𝑁𝑡 contains a monochromatic line, where the set of symbols of 𝐶𝑁𝑡 is
{0, 1, . . . , 𝑡 −1}. Then each point can be viewed as a representation of a nonnegative
integer in base 𝑡. The largest such integer is 𝑡𝑁 − 1. This representation establishes
a bijection from 𝐶𝑁𝑡 to {0, 1, . . . , 𝑡𝑁 − 1}. A key observation is that a line in 𝐶𝑁𝑡
is exactly a 𝑡-AP. Now any coloring of {1, 2, . . . , 𝑡𝑁 } with 𝑘 colors yields a natural
coloring for {0, 1, . . . , 𝑡𝑁−1} and hence a coloring of𝐶𝑁𝑡 with 𝑘 colors. By Theorem
11.4, we have a monochromatic line in 𝐶𝑁𝑡 hence a monochromatic 𝑡-AP. □

The above proof in fact gives an upper bound for 𝑤𝑘 (𝑡).

Theorem 11.5 Let 𝑘 and 𝑡 be positive integers and let 𝑁 = 𝐻𝐽 (𝑘, 𝑡). Then

𝑤𝑘 (𝑡) ≤ 𝑡𝑁 .

The remaining part of this section is Shelah’s proof of Theorem 11.4. However, in
order to make the proof clearer, we shall give some examples and details to explain
the concepts in the context.

A line 𝐿 in 𝐶𝑛𝑡 is called a Shelah line if for some 𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, the
following holds:

(i) Coordinates 1, . . . , 𝑖 − 1 are all equal to 𝑡 − 1 (constant);
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(ii) Coordinates 𝑖, . . . , 𝑗 are moving;
(iii) Coordinates 𝑗 + 1, . . . , 𝑛 are all equal to 𝑡 (constant).

Namely, a line is a Shelah line if the positions of moving coordinates are consecu-
tive, and all constant coordinates are 𝑡 −1 and 𝑡 before and after moving coordinates,
respectively. In the above definition, the first condition disappears if 𝑖 = 1, and the
third condition disappears if 𝑗 = 𝑛. A point is called Shelah point if it is on some
Shelah line.

Let us take a look at some Shelah lines in 𝐶5
26 as follows.

𝐿1 𝐿2 𝐿3
𝑌 𝐴𝐴𝑍𝑍 𝐴𝐴𝑍𝑍𝑍 𝐴𝐴𝐴𝐴𝐴

𝑌𝐵𝐵𝑍𝑍 𝐵𝐵𝑍𝑍𝑍 𝐵𝐵𝐵𝐵𝐵

𝑌𝐶𝐶𝑍𝑍 𝐶𝐶𝑍𝑍𝑍 𝐶𝐶𝐶𝐶𝐶
...

...
...

𝑌𝑌𝑌𝑍𝑍 𝑌𝑌𝑍𝑍𝑍 𝑌𝑌𝑌𝑌𝑌

𝑌𝑍𝑍𝑍𝑍 𝑍𝑍𝑍𝑍𝑍 𝑍𝑍𝑍𝑍𝑍

𝑖 = 2, 𝑗 = 3 𝑖 = 1, 𝑗 = 2 𝑖 = 1, 𝑗 = 5

The points 𝑌𝑌𝑄𝑍𝑍, 𝑌𝐶𝐶𝐶𝑍, 𝐻𝐻𝐻𝐻𝑍, 𝑆𝑆𝑆𝑆𝑆 are Shelah points, but 𝑌𝐹𝐺𝑍𝑍 ,
𝐴𝐴𝑌𝑌𝑌 are not.

The following result is clear from the fact that a Shelah line is uniquely determined
by 𝑖 and 𝑗 in the definition.

Lemma 11.1 The cube 𝐶𝑛𝑡 contains
(𝑛+1

2
)

Shelah lines and at most
(𝑛+1

2
)
𝑡 Shelah

points.

Assume 𝑛 = 𝑛1 + 𝑛2 + · · · + 𝑛𝑠 . Then

𝐶𝑛𝑡 = 𝐶
𝑛1
𝑡 × 𝐶𝑛2

𝑡 × · · · × 𝐶𝑛𝑠𝑡 .

Let 𝐿 𝑗 be a Shelah line of 𝐶𝑛 𝑗𝑡 for 𝑗 = 1, 2, . . . , 𝑠. We call

𝐿1 × 𝐿2 × · · · × 𝐿𝑠

a Shelah 𝑠-space of 𝐶𝑛𝑡 , which contains 𝑡𝑠 points of 𝐶𝑛𝑡 .
For example, if 𝑛1 = 5 and 𝑛2 = 6, then

{𝑌𝛼𝛼𝑍𝑍 |𝑌𝑌 𝛽𝛽𝑍𝑍},

where 𝛼 and 𝛽 are letters in alphabet and the vertical line is added for clarity of
conjunction, forms a Shelah 2-space in 𝐶11

26 . It contains 262 points. If 𝑛1 = 3, 𝑛2 = 4
and 𝑛3 = 4, then

{𝑌𝛼𝑍 |𝑌 𝛽𝛽𝑍 | 𝛾𝛾𝑍𝑍}

forms a Shelah 3-space in 𝐶11
26 . It contains 263 points.

We now define a canonical isomorphism 𝜙 between a Shelah s-space of 𝐶𝑛𝑡 and
𝐶𝑠𝑡 as follows.
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𝜙 : 𝐿1 × 𝐿2 × · · · × 𝐿𝑠 → 𝐶𝑠𝑡 , 𝜙(𝜂) = 𝛼1𝛼2 . . . 𝛼𝑠 ,

where 𝛼 𝑗 is the common value of the moving coordinate in 𝐿 𝑗 , which can be viewed
as the index of the corresponding point in 𝐿 𝑗 . Using the previous examples,

𝜙(𝑌𝛼𝛼𝑍𝑍 |𝑌𝑌 𝛽𝛽𝑍𝑍) = 𝛼𝛽 ∈ 𝐶2
11,

𝜙(𝑌𝛼𝑍 |𝑌 𝛽𝛽𝑍 | 𝛾𝛾𝑍𝑍) = 𝛼𝛽𝛾 ∈ 𝐶3
11.

It is easy to see that the map 𝜙 is really a bijection.
During the rest of the proof, 𝜒 is used as a coloring function, thus 𝜒(𝑃) is the color

of the point 𝑃 ∈ 𝐶𝑛𝑡 . A coloring 𝜒 on 𝐶𝑛𝑡 is called a flip-top if 𝑃 = 𝑝1𝑝2 . . . 𝑝𝑛, 𝑄 =

𝑞1𝑞2 . . . 𝑞𝑛 ∈ 𝐶𝑛𝑡 , for which there exists 𝐼 ⊆ [𝑛] such that 𝑝𝑖 = 𝑡 − 1, 𝑞𝑖 = 𝑡 for
𝑖 ∈ 𝐼, and 𝑝 𝑗 = 𝑞 𝑗 for 𝑗 ∉ 𝐼, then 𝜒(𝑃) = 𝜒(𝑄), where 𝑡 − 1 and 𝑡 are last two
elements of the set of symbols. Equivalently, 𝜒(𝑃) = 𝜒(𝑄) if 𝑃 and 𝑄 are the last
two points of some line. For example, a flip-top coloring 𝜒 of 𝐶5

26 satisfies

𝜒(𝐵𝐴YY𝑂) = 𝜒(𝐵𝐴ZZ𝑂),
𝜒(Z𝐸Z𝐴𝐾) = 𝜒(Y𝐸Y𝐴𝐾),
𝜒(YYYYY) = 𝜒(ZZZZZ).

It is easy to see that 𝜒(Z𝐸Y𝐴𝐾) = 𝜒(Y𝐸Z𝐴𝐾) as both of them are equal to
𝜒(Z𝐸Z𝐴𝐾).

Let 𝜒 be a coloring of the points of 𝐿1 × 𝐿2 × · · · × 𝐿𝑠 , and let 𝜙 be the canonical
isomorphism from 𝐿1×𝐿2×· · ·×𝐿𝑠 to𝐶𝑠𝑡 . Define a coloring 𝜒′ on𝐶𝑠𝑡 as for 𝑃 ∈ 𝐶𝑠𝑡 ,

𝜒′ (𝑃) = 𝜒(𝜙−1 (𝑃)),

which is called the derived coloring of 𝜒. The coloring 𝜒 is called flip-top on the
Shelah s-space if 𝜒′ is flip-top on 𝐶𝑠𝑡 .

For example, if 𝜒 is a flip-top coloring of the Shelah 2-space in the form of
{𝑌𝛼𝛼𝑍𝑍 |𝑌𝑌 𝛽𝛽𝛽𝑍}, then

𝜒(𝑌QQ𝑍𝑍 |𝑌𝑌YYY𝑍) = 𝜒(𝑌QQ𝑍𝑍 |𝑌𝑌ZZZ𝑍)

since 𝜒′ (𝑄𝑌 ) = 𝜒′ (𝑄𝑍) by noting that 𝜒′ is flip-top on 𝐶2
26.

If 𝑠 = 1, then the above definition gives flip-top coloring of a Shelah line. In this
case 𝜙 maps a Shelah line 𝐿 in 𝐶𝑛𝑡 onto 𝐶1

𝑡 , and the derived coloring on 𝐶1
𝑡 must be

flip-top. However, a flip-top coloring of 𝐶1
𝑡 simply says that the color of 𝑡 − 1 equals

to the color of 𝑡. This gives the following remark.

Let us remark that the points of a Shelah line 𝐿 = {𝑃1, 𝑃2, . . . , 𝑃𝑡 } in 𝐶𝑛𝑡 are
colored flip-top if and only if the “last two points” 𝑃𝑡−1 and 𝑃𝑡 have the same color.

Lemma 11.2 (Shelah Cube Lemma) Let positive integers 𝑘, 𝑠, 𝑡 be fixed. Then
there exist 𝑛1, 𝑛2, . . . , 𝑛𝑠 with the following property: Any 𝑘-coloring of the points
of 𝐶𝑛𝑡 = 𝐶

𝑛1+𝑛2+···+𝑛𝑠
𝑡 is flip-top on a suitable Shelah 𝑠-space 𝐿1 × 𝐿2 × · · · × 𝐿𝑠 ,
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where 𝐿 𝑗 is a Shelah line in 𝐶𝑛 𝑗𝑡 . In fact, the numbers 𝑛 𝑗 can be explicitly given by
𝑛1 = 𝑘 𝑡

𝑠−1 and 𝑛𝑖+1 = 𝑘𝐴𝑖 for 1 ≤ 𝑖 < 𝑠, where

𝐴𝑖 =

[
Π1≤ 𝑗≤𝑖

(
𝑛 𝑗 + 1

2

)]
𝑡𝑠−1.

Proof. We shall prove the lemma by induction on 𝑠. For 𝑠 = 1, take 𝑛1 = 𝑛 = 𝑘 . We
have to show that in an arbitrary 𝑘-coloring of 𝐶𝑘𝑡 there is a flip-top colored Shelah
line. Consider the following points in 𝐶𝑘𝑡 :

𝑃1 : 𝑡 − 1 𝑡 − 1 · · · 𝑡 − 1 𝑡 − 1 𝑡 − 1
𝑃2 : 𝑡 − 1 𝑡 − 1 · · · 𝑡 − 1 𝑡 − 1 𝑡
...

𝑃𝑘 : 𝑡 − 1 𝑡 · · · 𝑡 𝑡 𝑡

𝑃𝑘+1 : 𝑡 𝑡 · · · 𝑡 𝑡 𝑡

Each of these points consists of a block of 𝑡 − 1 followed by a block of 𝑡. Two of
them, say 𝑃𝑖 and 𝑃 𝑗 with 𝑖 < 𝑗 , are colored with the same color in this 𝑘-coloring.
Note that 𝑃𝑖 and 𝑃 𝑗 are the last two points of the following Shelah line determined
by themselves:

𝑄1 : 𝑡 − 1 · · · 𝑡 − 1 1 . . . 1 𝑡 · · · 𝑡
𝑄2 : 𝑡 − 1 · · · 𝑡 − 1 2 . . . 2 𝑡 · · · 𝑡
...

𝑄𝑡−2 : 𝑡 − 1 · · · 𝑡 − 1 𝑡 − 2 . . . 𝑡 − 2 𝑡 · · · 𝑡
𝑃𝑖 : 𝑡 − 1 · · · 𝑡 − 1 t − 1 . . . t − 1 𝑡 · · · 𝑡
𝑃 𝑗 : 𝑡 − 1 · · · 𝑡 − 1 t . . . t 𝑡 · · · 𝑡

By the previous remark, the above line is exactly what we want: a flip-top colored
Shelah line.

For 𝑠 = 2, let 𝑛1 = 𝑘 𝑡 and 𝑛2 = 𝑘𝐴1 with 𝐴1 =
(𝑛1+1

2
)
𝑡. Let 𝜒 be a 𝑘-coloring on

𝐶𝑛𝑡 = 𝐶
𝑛1+𝑛2
𝑡 = 𝐶

𝑛1
𝑡 × 𝐶𝑛2

𝑡 .

In order to find a Shelah 2-space 𝐿1 × 𝐿2 such that 𝜒 is flip-top on it, we shall define
new colorings 𝜒1 and 𝜒2 on 𝐶𝑛1

𝑡 and 𝐶𝑛2
𝑡 , respectively. Let us write points of 𝐶𝑛𝑡 as

𝑋𝑌 with 𝑋 ∈ 𝐶𝑛1
𝑡 and 𝑌 ∈ 𝐶𝑛2

𝑡 .
Let us define 𝜒2 on𝐶𝑛2

𝑡 first. Denote by𝑚 the number of Shelah points in𝐶𝑛1
𝑡 and

label these Shelah points as 𝑋1, 𝑋2, . . . , 𝑋𝑚. For any 𝑌 ∈ 𝐶𝑛2
𝑡 , we assign a vector for

its color as
𝜒2 (𝑌 ) = (𝜒(𝑋1𝑌 ), 𝜒(𝑋2𝑌 ), . . . , 𝜒(𝑋𝑚𝑌 )).

Clearly two points 𝑌 and 𝑌 ′ of 𝐶𝑛2
𝑡 have same color in 𝜒2 if and only if 𝜒(𝑋𝑌 ) =

𝜒(𝑋𝑌 ′) for any Shelah point 𝑋 of 𝐶𝑛1
𝑡 .
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Since 𝑚 ≤ 𝐴1 =
(𝑛1+1

2
)
𝑡 as mentioned, and each coordinate of 𝜒2 (𝑌 ) is one of

the 𝑘 colors, so the coloring 𝜒2 uses at most 𝑘𝑚 ≤ 𝑘𝐴1 = 𝑛2 colors. Referring to the
case 𝑠 = 1, the coloring 𝜒2 is flip-top on a suitable Shelah line 𝐿2 in 𝐶𝑛2

𝑡 .
The Shelah line 𝐿2 contains 𝑡 points, say 𝐿2 = {𝑌1, 𝑌2, . . . , 𝑌𝑡 }. We then define a

coloring 𝜒1 on any point 𝑋 of 𝐶𝑛1
𝑡 as a vector

𝜒1 (𝑋) = (𝜒(𝑋𝑌1), 𝜒(𝑋𝑌2), . . . , 𝜒(𝑋𝑌𝑡 )).

Thus two points 𝑋 and 𝑋 ′ of 𝐶𝑛1
𝑡 have same color in 𝜒1 if and only if 𝜒(𝑋𝑌𝛽) =

𝜒(𝑋 ′𝑌𝛽) for any point 𝑌𝛽 of 𝐿2.
Clearly 𝜒1 uses at most 𝑘 𝑡 = 𝑛1 colors. Again, referring the case 𝑠 = 1, the

coloring 𝜒1 is flip-top on a suitable Shelah line 𝐿1 in 𝐶𝑛1
𝑡 .

Next we verify that 𝜒 is flip-top on 𝐿1 × 𝐿2: the derived coloring 𝜒′ of 𝜒 is a
flip-top coloring on 𝐶2

𝑡 . That is to say, we need to verify

𝜒′ (𝛼 (𝑡 − 1)) = 𝜒′ (𝛼 𝑡),
𝜒′ ((𝑡 − 1) 𝛽) = 𝜒′ (𝑡 𝛽),

𝜒′ ((𝑡 − 1) (𝑡 − 1)) = 𝜒′ (𝑡 𝑡)

for any symbols 𝛼 and 𝛽. We verify the first equality, and omit the similar proofs
for the others. By relabelling the Shelah points of 𝐶𝑛1

𝑡 , we may assume that 𝐿1 =

{𝑋1, 𝑋2, . . . , 𝑋𝑡 }. Note that points of 𝐿1 × 𝐿2 have form 𝑋𝛼𝑌𝛽 , where

𝑋𝛼 = 𝑡 − 1 . . . 𝑡 − 1𝛼 . . . 𝛼 𝑡 . . . 𝑡, 𝑌𝛽 = 𝑡 − 1 . . . 𝑡 − 1 𝛽 . . . 𝛽 𝑡 . . . 𝑡.

Since 𝜒2 is flip-top on 𝐿2, we have 𝜒2 (𝑌𝑡−1) = 𝜒2 (𝑌𝑡 ), implying 𝜒(𝑃𝑌𝑡−1) = 𝜒(𝑃𝑌𝑡 )
for any Shelah point 𝑃 of 𝐶𝑛1

𝑡 from the definition of 𝜒2. In particular, we have
𝜒(𝑋𝛼𝑌𝑡−1) = 𝜒(𝑋𝛼𝑌𝑡 ), which yields 𝜒′ (𝛼 (𝑡 − 1)) = 𝜒′ (𝛼 𝑡).

The proof for 𝑠 ≥ 3 is similar to the case 𝑠 = 2, we thus omit it. □

Lemma 11.3 (Induction Lemma) Assume that 𝑠 = 𝐻𝐽 (𝑘, 𝑡 − 1) is defined, namely,
in any 𝑘-coloring of 𝐶𝑠

𝑡−1 there is a monochromatic line. Then under any flip-top
𝑘-coloring of 𝐶𝑠𝑡 , there is a monochromatic line.

Proof. Consider a flip-top 𝑘-coloring 𝜒 on 𝐶𝑠𝑡 . Since 𝐶𝑠
𝑡−1 is a subset of 𝐶𝑠𝑡 , 𝜒 is

a 𝑘-coloring on 𝐶𝑠
𝑡−1. From the definition of 𝑠, there is a monochromatic line 𝐿 in

𝐶𝑠
𝑡−1, say 𝐿 = {𝑃1, 𝑃2, . . . , 𝑃𝑡−1} in color 1, then the following line

𝑃1 : · · · 𝛼 · · · 1 · · · color 1
𝑃2 : · · · 𝛼 · · · 2 · · · color 1
...

𝑃𝑡−1 : · · · 𝛼 · · · 𝑡 − 1 · · · color 1
𝑃𝑡 : · · · 𝛼 · · · t · · · new point

is a monochromatic line, where 𝑃𝑡 is a new point, and 𝛼 is a constant coordinate.
The point 𝑃𝑡 is colored in 1 since 𝜒 is flip-top on 𝐶𝑠𝑡 . □
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Proof of Theorem 11.4. Now it is easy to see the existence of 𝐻𝐽 (𝑘, 𝑡). We use the
induction on 𝑡 for fixed 𝑘 .

Basis It is a trivial fact that 𝐻𝐽 (𝑘, 1) = 1 for any 𝑘 .

Inductive Step Assume 𝑠 := 𝐻𝐽 (𝑘, 𝑡 − 1) exists, i.e., 𝐻𝐽 (𝑘, 𝑡 − 1) < ∞. Define 𝑛
as above which satisfies the cube lemma for the given 𝑘, 𝑡 and 𝑠.

Claim For any 𝑘-coloring of 𝐶𝑛𝑡 , there is a monochromatic line.

Proof. Let 𝜒 be a 𝑘-coloring of 𝐶𝑛𝑡 , the cube lemma shows that 𝜒 is flip-top on
a suitable Shelah 𝑠-space 𝐿1 × 𝐿2 × · · · × 𝐿𝑠 . By definition, the derived coloring 𝜒′
is flip-top on 𝐶𝑠𝑡 . By the definition of 𝑠 = 𝐻𝐽 (𝑘, 𝑡 − 1), we can apply the induction
lemma to 𝜒′ to obtain that there is a monochromatic line 𝐿 in 𝐶𝑠𝑡 . The 𝜙−1 (𝐿) is a
monochromatic line in 𝐶𝑛𝑡 under the coloring 𝜒, each point of which is formed from
the corresponding point of 𝐿 by adding constant coordinates. □

Let us remark a bit how Shelah’s bound increases. Define a sequence of functions
N = {1, 2, . . . } → N as 𝑓1 (𝑛) = 2𝑛 and

𝑓𝑚+1 (𝑛) = 𝑓𝑚 ◦ 𝑓𝑚 ◦ · · · ◦ 𝑓𝑚︸                 ︷︷                 ︸
𝑛

(1).

Some small values of 𝑓𝑚 (𝑛) are listed in the following table.

𝑓𝑚 (𝑛) 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 · · · 𝑛

𝑓1 (𝑛) 2 4 6 8 · · · 2𝑛
𝑓2 (𝑛) 2 22 23 24 · · · 2𝑛

𝑓3 (𝑛) 2 22 222 2222
· · · 22· · ·2

}
𝑛

𝑓4 (𝑛) 2 22 2222
22· · ·2

}
𝑓4 (3) · · · 22· · ·2

}
𝑓4 (𝑛 − 1)

𝑓5 (𝑛) 2 22 𝑓4 (4) 𝑓4 ( 𝑓4 (4))

Table 12.2 Some values of 𝑓𝑚 (𝑛)

The function 𝑓3 (𝑛) is called a “tower”, whose height is 𝑛. The function 𝑓4 (𝑛)
grows much faster, which is called a wowzer, wow! Note that 𝑓4 (𝑛) is a tower of
height 𝑓4 (𝑛 − 1). For example 𝑓4 (3) = 65536, which is the height of the tower of
𝑓4 (4). The huge value of 𝑓4 ( 𝑓4 (4) − 1) is just the height of the tower of 𝑓5 (4). The
Ackerman function 𝐴(𝑛) is defined as the diagonal value 𝑓𝑛 (𝑛).

No reasonable upper bound for 𝑤𝑘 (𝑡) or 𝑤2 (𝑡) has been found. Shelah’s proof
gives “wowzer” bound for 𝐻𝐽 (𝑘, 𝑡) hence 𝑤𝑘 (𝑡) because it iterates the cube
lemma, which gives a “tower” bound by iterating the exponential functions. In fact,
𝐻𝐽 (𝑘, 𝑡) ≤ 𝑓4 (𝑐(𝑘 + 𝑡)) for some constant 𝑐 by noticing that 𝑛𝑠 in the cube lemma is
a tower of height around 𝑠. Even so, this proof for the van der Waerden theorem still
reduces the original bound of van der Waerden greatly, who used double induction
on 𝑘 and 𝑡, even for 𝑤(𝑡) = 𝑤2 (𝑡). The original upper bound of van der Waerden in
Section 11.1 is a Ackerman function.
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260 11 Regularity Lemma and van der Waerden Number

Shelah’s proof for upper bound of 𝑤(𝑡) is celebrated, but it is far away from the
truth from Gower’s upper bound of tower of height 6. Graham offered 1000 USD for
a proof or disproof of 𝑤(𝑡) < 2𝑘2 , see Chung, Erdős and Graham (2000).

11.3 Szemerédi’s Regularity Lemma

Let 𝐺 be a graph with vertex set 𝑉 and let 𝑋 and 𝑌 be nonempty disjoint subsets of
𝑉 . Denote by 𝑒(𝑋,𝑌 ) the number of edges between 𝑋 and 𝑌 in 𝐺. The ratio

𝑑𝐺 (𝑋,𝑌 ) =
𝑒(𝑋,𝑌 )
|𝑋 | |𝑌 |

is called the edge density of (𝑋,𝑌 ). It can be seen as the probability that any pair
(𝑥, 𝑦) selected randomly from 𝑋 ×𝑌 is an edge. It is easy to see 0 ≤ 𝑑𝐺 (𝑋,𝑌 ) ≤ 1,
and

𝑑𝐺 (𝑋,𝑌 ) + 𝑑𝐺 (𝑋,𝑌 ) = 1,

where 𝐺 is the complement of 𝐺. We always simply denote 𝑑𝐺 (𝑋,𝑌 ) by 𝑑 (𝑋,𝑌 ) if
the context is clear.

The density 𝑑 (𝑋,𝑌 ) behaves in a fair continuous fashion.

Lemma 11.4 Suppose 𝑋 and𝑌 are disjoint subsets of𝑉 (𝐺), and 𝑋 ′ ⊆ 𝑋 and𝑌 ′ ⊆ 𝑌
with |𝑋 ′ | > (1 − 𝜂) |𝑋 | and |𝑌 ′ | > (1 − 𝜂) |𝑌 |. Then

|𝑑 (𝑋 ′, 𝑌 ′) − 𝑑 (𝑋,𝑌 ) | < 2𝜂 and |𝑑2 (𝑋 ′, 𝑌 ′) − 𝑑2 (𝑋,𝑌 ) | < 4𝜂.

Proof. Note that

0 ≤ 𝑒(𝑋,𝑌 ) − 𝑒(𝑋 ′, 𝑌 ′)
= 𝑒(𝑋 \ 𝑋 ′, 𝑌 ) + 𝑒(𝑋,𝑌 \ 𝑌 ′) − 𝑒(𝑋 \ 𝑋 ′, 𝑌 \ 𝑌 ′)
≤ 𝑒(𝑋 \ 𝑋 ′, 𝑌 ) + 𝑒(𝑋,𝑌 \ 𝑌 ′)
< 2𝜂 |𝑋 | |𝑌 |,

so 𝑑 (𝑋,𝑌 ) − 𝑑 (𝑋 ′, 𝑌 ′) < 2𝜂. Similarly,

𝑑 (𝑋 ′, 𝑌 ′) − 𝑑 (𝑋,𝑌 ) = 𝑑
𝐺
(𝑋,𝑌 ) − 𝑑

𝐺
(𝑋 ′, 𝑌 ′) < 2𝜂.

Hence the assertion follows immediately. □

Let 𝜖 > 0 be a real number. We say a disjoint pair (𝑋,𝑌 ) is 𝜖-regular if any
𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 with |𝑋 ′ | > 𝜖 |𝑋 | and |𝑌 ′ | > 𝜖 |𝑌 | satisfy that

|𝑑 (𝑋,𝑌 ) − 𝑑 (𝑋 ′, 𝑌 ′) | < 𝜖.
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11.3 Szemerédi’s Regularity Lemma 261

A partition 𝑉0, 𝑉1, . . . , 𝑉𝑘 of 𝑉 is said to be equitable with exceptional set 𝑉0
if |𝑉1 | = |𝑉2 | = · · · = |𝑉𝑘 |. Furthermore, we say a partition 𝑉0, 𝑉1, . . . , 𝑉𝑘 of 𝑉 is
𝜖-regular if the following two conditions hold:

(1) |𝑉1 | = |𝑉2 | = · · · = |𝑉𝑘 | and |𝑉0 | ≤ 𝜖 |𝑉 |;
(2) All but at most 𝜖 𝑘2 pairs (𝑉𝑖 , 𝑉 𝑗 ) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 are 𝜖-regular.

Theorem 11.6 (Regularity Lemma) For any real 𝜖 > 0 and any integer 𝑚 ≥ 1,
there exist 𝑛0 = 𝑛0 (𝜖, 𝑚) and 𝑀 = 𝑀 (𝜖, 𝑚) > 𝑚 such that every graph 𝐺 on 𝑛 ≥ 𝑛0
vertices has an 𝜖-regular partition 𝑉0, 𝑉1, . . . , 𝑉𝑘 with 𝑚 ≤ 𝑘 ≤ 𝑀 .

The above theorem is trivial for |𝑉 (𝐺) | ≤ 𝑀 since a partition that each class
contains at most one vertex is 0-regular. The crucial point for the lemma is that the
number of classes of the partition can be bounded.

The defect form of Cauchy-Schwarz inequality is as follows, which can be applied
to sequences that the average is greater than some local average.

Lemma 11.5 Let 𝑑𝑖 be reals and 𝑠 > 𝑡 ≥ 1 be integers. If

1
𝑠

𝑠∑︁
𝑖=1

𝑑𝑖 =
1
𝑡

𝑡∑︁
𝑖=1

𝑑𝑖 + 𝛿,

then
1
𝑠

𝑠∑︁
𝑖=1

𝑑2
𝑖 ≥

(
1
𝑠

𝑠∑︁
𝑖=1

𝑑𝑖

)2

+ 𝑡𝛿2

𝑠 − 𝑡 ≥
(
1
𝑠

𝑠∑︁
𝑖=1

𝑑𝑖

)2

+ 𝑡𝛿
2

𝑠
.

Proof. Let 𝐷𝑠 = 1
𝑠

∑𝑠
𝑖=1 𝑑𝑖 . The Cauchy-Schwarz inequality implies that

𝑠∑︁
𝑖=1

𝑑2
𝑖 =

𝑡∑︁
𝑖=1

𝑑2
𝑖 +

𝑠∑︁
𝑖=𝑡+1

𝑑2
𝑖 ≥ 𝑡𝐷2

𝑡 + (𝑠 − 𝑡)
(

1
𝑠 − 𝑡

𝑠∑︁
𝑖=𝑡+1

𝑑𝑖

)2

= 𝑡𝐷2
𝑡 + (𝑠 − 𝑡)

(
𝑠𝐷𝑠 − 𝑡𝐷𝑡
𝑠 − 𝑡

)2
= 𝑠

(
𝐷2
𝑠 +

𝑡 (𝐷𝑠 − 𝐷𝑡 )2

𝑠 − 𝑡

)
,

so the assertion follows. □

Given an equitable partition P = {𝑉0, 𝑉1, . . . , 𝑉𝑘} with exceptional set 𝑉0, define

𝑞(P) = 1
𝑘2

∑︁
1≤𝑖< 𝑗≤𝑘

𝑑2 (𝑉𝑖 , 𝑉 𝑗 ).

It is easy to see that 0 ≤ 𝑞(P) < 1/2 since 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) ≤ 1.
The function 𝑞(P) is a cornerstone in the proof of the Regularity Lemma. We will

show that if P is not 𝜖-regular, then there is a partition P′ with the new exceptional
class a bit larger than the old one, but 𝑞(P′) ≥ 𝑞(P) + 𝜖5/2. Continue this procedure
until we obtain the partition as desired. The number of iterations is thus at most 1/𝜖5

to guarantee the occurrence of an 𝜖-regular partition.
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262 11 Regularity Lemma and van der Waerden Number

Note that for 𝜖 < 𝜖 ′, an 𝜖-regular pair is also 𝜖 ′-regular. Thus, without loss of
generality, we may assume that 0 < 𝜖 ≤ 1/2 since if 𝜖 > 1/2, then one can take
𝑀 (𝜖, 𝑚) = 𝑀 (1/2, 𝑚).
Lemma 11.6 Let 𝐺 be a graph with vertex set 𝑉 , where |𝑉 | = 𝑛. Suppose P =

{𝑉0, 𝑉1, . . . , 𝑉𝑘} is a partition of 𝑉 with exceptional class 𝑉0,

|𝑉1 | = |𝑉2 | = · · · = |𝑉𝑘 | = 𝑛1 ≥ 23𝑘+1, and 2𝑘 ≥ 8/𝜖5.

If P is not 𝜖-regular, then there is an equitable partition P′ = {𝑉 ′
0, 𝑉

′
1, . . . , 𝑉

′
ℓ
} with

exceptional class 𝑉 ′
0 ⊇ 𝑉0 and ℓ = 𝑘 (4𝑘 − 2𝑘−1) such that

(1) |𝑉 ′
0 | ≤ |𝑉0 | + 𝑛/2𝑘 ,

(2) 𝑞(P′) ≥ 𝑞(P) + 𝜖5/2.

Proof.★ For each pair (𝑉𝑖 , 𝑉 𝑗 ) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , put the corresponding indices
pair (𝑖, 𝑗) into 𝑆 if (𝑉𝑖 , 𝑉 𝑗 ) is 𝜖-regular, and put (𝑖, 𝑗) into 𝑇 otherwise. If (𝑖, 𝑗) ∈ 𝑆,
then set𝑉𝑖 𝑗 = 𝑉 𝑗𝑖 = ∅. If (𝑖, 𝑗) ∈ 𝑇 , i.e., (𝑉𝑖 , 𝑉 𝑗 ) is not 𝜖-regular, then we can choose
𝑉𝑖 𝑗 ⊆ 𝑉𝑖 and 𝑉 𝑗𝑖 ⊆ 𝑉 𝑗 with |𝑉𝑖 𝑗 | > 𝜖𝑛1, |𝑉 𝑗𝑖 | > 𝜖𝑛1 such that

|𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) | ≥ 𝜖 .

Fix 𝑖 for 1 ≤ 𝑖 ≤ 𝑘 , consider an equivalence relation ≡ on 𝑉𝑖 as 𝑥 ≡ 𝑦 if and
only if both 𝑥 and 𝑦 belong to the same subset 𝑉𝑖 𝑗 for every 𝑗 ≠ 𝑖. (Clearly, there
are vertices that may not lie in any such 𝑉𝑖 𝑗 .) Thus 𝑉𝑖 has at most 2𝑘−1 equivalent
classes. Set 𝑑 = ⌊𝑛1/4𝑘⌋. Clearly,

𝑑 ≥ 2𝑘+1, and 4𝑘𝑑 ≤ 𝑛1 < 4𝑘 (𝑑 + 1).

Cut 𝑉𝑖 into pairwise disjoint 𝑑-subsets such that each 𝑑-subset belongs to some
equivalent class of 𝑉𝑖 . Denote 𝑧 by the maximal number of these 𝑑-subsets that one
can take. It follows that

𝑧𝑑 + 2𝑘−1 (𝑑 − 1) ≥ 𝑛1 ≥ 4𝑘𝑑,

yielding 𝑧 ≥ 4𝑘 − 2𝑘−1. Set 𝐻 = 4𝑘 − 2𝑘−1. Take exactly 𝐻 such 𝑑-subsets and put
the remainder into the “rubbish bin” to get a new exceptional set 𝑉 ′

0. Label all these
𝑑-subsets in 𝑉𝑖 as 𝐷𝑖1, 𝐷𝑖2, . . . , 𝐷𝑖𝐻 . Set

𝑉 ′
0 = 𝑉0 ∪

[
∪𝑘𝑖=1

(
𝑉𝑖 \ ∪𝐻ℎ=1𝐷𝑖ℎ

)]
.

Note that |𝑉 ′
0 | = |𝑉0 | + 𝑘 (𝑛1 − 𝐻𝑑), and

𝐻𝑑 ≥
(
4𝑘 − 2𝑘−1

) ( 𝑛1

4𝑘
− 1

)
> 𝑛1 −

𝑛1

2𝑘+1 − 4𝑘 ≥ 𝑛1 −
𝑛1

2𝑘

as 𝑛1 ≥ 23𝑘+1. Hence 𝑛1 − 𝐻𝑑 < 𝑛1/2𝑘 and

|𝑉 ′
0 | ≤ |𝑉0 | + 𝑘 (𝑛1 − 𝐻𝑑) ≤ |𝑉0 | + 𝑛/2𝑘 .
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11.3 Szemerédi’s Regularity Lemma 263

Rename 𝐷𝑖ℎ as 𝑉 ′
𝑗

for 1 ≤ 𝑗 ≤ ℓ, where ℓ = 𝑘𝐻. Set P′ = {𝑉 ′
0, 𝑉

′
1, . . . , 𝑉

′
ℓ
}. All that

remains is to show 𝑞(P′) ≥ 𝑞(P) + 𝜖5/2.
For 𝑖, 𝑗 = 1, 2, . . . , 𝑘 , set

𝑉𝑖 =

𝐻⋃
ℎ=1

𝐷𝑖ℎ and 𝑉𝑖 𝑗 =
⋃

𝐷𝑖ℎ⊆𝑉𝑖 𝑗
𝐷𝑖ℎ .

Set P = {𝑉 ′
0, 𝑉1, . . . , 𝑉𝑘} with exceptional class 𝑉 ′

0.

Claim 1 𝑞(P) ≥ 𝑞(P) − 𝜖5/4.

Proof. For any pair (𝑉𝑖 , 𝑉 𝑗 ),

|𝑉𝑖 \𝑉𝑖 |
|𝑉𝑖 |

=
𝑛1 − 𝐻𝑑
𝑛1

<
1
2𝑘

≤ 𝜖5

8
. (11.1)

By Lemma 11.4,

|𝑑 (𝑉𝑖 , 𝑉 𝑗 ) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) | ≤
𝜖5

4
. (11.2)

Consequently, |𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) −𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) | ≤ 𝜖 5

2 , and so 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) ≥ 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) − 𝜖5/2,
which implies that 𝑞(P) ≥ 𝑞(P) − 𝜖5/4 as claimed. □

To illustrate what can be obtained in the proof, we shall use 𝐴 ⊂≈ 𝐵 to represent
for “𝐴 ⊆ 𝐵 and |𝐴| = (1 + 𝑜(1)) |𝐵|”, and 𝐴 ⊂≪ 𝐵 for “𝐴 ⊆ 𝐵 and |𝐴| = 𝑜( |𝐵|)”.
For a pair (𝑖, 𝑗) ∈ 𝑇 , we have

(𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) ⊂≈ (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) ⊂≪ (𝑉𝑖 , 𝑉 𝑗 )
(𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) ⊂≪ (𝑉𝑖 , 𝑉 𝑗 ) ⊂≈ (𝑉𝑖 , 𝑉 𝑗 ).

So for (𝑖, 𝑗) ∈ 𝑇 , it is expected that |𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) | is almost as large as
|𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) |.

Claim 2 If (𝑖, 𝑗) ∈ 𝑇 , then |𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) | > 15
16 𝜖 .

Proof. Note that 𝑉𝑖 𝑗 \𝑉𝑖 𝑗 ⊆ 𝑉𝑖 \𝑉𝑖 , so from (11.1),

|𝑉𝑖 𝑗 \𝑉𝑖 𝑗 |
|𝑉𝑖 𝑗 |

≤ |𝑉𝑖 \𝑉𝑖 |
|𝑉𝑖 |

|𝑉𝑖 |
|𝑉𝑖 𝑗 |

≤ 𝜖5

8
· 1
𝜖
=
𝜖4

8
, (11.3)

which and Lemma 11.4 give

|𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) | ≤
𝜖4

4
. (11.4)

The definition of 𝑉𝑖 𝑗 , the bounds (11.2) and (11.4) with the assumption that 0 < 𝜖 ≤
1/2 yield
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264 11 Regularity Lemma and van der Waerden Number

|𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) |
≥|𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) | − |𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) − 𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) |
− |𝑑 (𝑉𝑖 , 𝑉 𝑗 ) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) |

≥𝜖 − 𝜖4

4
− 𝜖5

4
≥ 15

16
𝜖,

as claimed. □

Let us return to the partition P′ in which each class is a 𝑑-subset 𝐷𝑖ℎ except the
class 𝑉 ′

0. Note that 𝑉𝑖 = ∪𝐻
ℎ=1𝐷𝑖ℎ, we obtain that

𝑑 (𝑉𝑖 , 𝑉 𝑗 ) =
𝑒(𝑉𝑖 , 𝑉 𝑗 )
|𝑉𝑖 | |𝑉 𝑗 |

=

∑
1≤ℎ,ℎ′≤𝐻 𝑒(𝐷𝑖ℎ, 𝐷 𝑗ℎ′ )
𝐻2 |𝐷𝑖ℎ | |𝐷 𝑗ℎ′ |

=
1
𝐻2

∑︁
1≤ℎ,ℎ′≤𝐻

𝑑 (𝐷𝑖ℎ, 𝐷 𝑗ℎ′ )

since |𝑉𝑖 | = |𝑉 𝑗 | = 𝐻𝑑. Set

𝐴(𝑖, 𝑗) = 1
𝐻2

∑︁
1≤ℎ,ℎ′≤𝐻

𝑑2 (𝐷𝑖ℎ, 𝐷 𝑗ℎ′ ).

For any pair (𝑉𝑖 , 𝑉 𝑗 ), from Cauchy-Schwarz inequality, we have

𝐴(𝑖, 𝑗) ≥
(

1
𝐻2

∑︁
1≤ℎ,ℎ′≤𝐻

𝑑 (𝐷𝑖ℎ, 𝐷 𝑗ℎ′ )
)2

= 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ). (11.5)

If (𝑖, 𝑗) ∈ 𝑇 , we have some gain. Let 𝑅 = 𝑅(𝑖, 𝑗) be the set of indices (ℎ, ℎ′) such
that 𝐷𝑖ℎ ⊆ 𝑉𝑖 𝑗 and 𝐷 𝑗ℎ′ ⊆ 𝑉 𝑗𝑖 . Then

𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖) =
1
|𝑅 |

∑︁
(ℎ,ℎ′ ) ∈𝑅

𝑑 (𝐷𝑖ℎ, 𝐷 𝑗ℎ′ ).

So for (𝑖, 𝑗) ∈ 𝑇 , from Lemma 11.5 and Claim 2,

𝐴(𝑖, 𝑗) ≥ 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) +
|𝑅 |
𝐻2

(
𝑑 (𝑉𝑖 , 𝑉 𝑗 ) − 𝑑 (𝑉𝑖 𝑗 , 𝑉 𝑗𝑖)

)2

≥ 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) +
|𝑅 |
𝐻2

(
15𝜖
16

)2
. (11.6)

Let 𝐻𝑖 𝑗 be the number of 𝐷𝑖ℎ ∈ 𝑉𝑖 𝑗 . Then by (11.1),

𝐻𝑖 𝑗𝑑 = |𝑉𝑖 𝑗 | − |𝑉𝑖 𝑗 \𝑉𝑖 𝑗 | ≥ |𝑉𝑖 𝑗 | − |𝑉𝑖 \𝑉𝑖 |
≥ (𝜖 − 𝜖5/8) |𝑉𝑖 | ≥ (1 − 2−7)𝜖 |𝑉𝑖 |.

Note that |𝑅 | = 𝐻𝑖 𝑗𝐻 𝑗𝑖 and |𝑉𝑖 | |𝑉 𝑗 | ≥ (𝐻𝑑)2, so for (𝑖, 𝑗) ∈ 𝑇 ,
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11.3 Szemerédi’s Regularity Lemma 265

|𝑅 |
𝐻2 =

𝐻𝑖 𝑗𝐻 𝑗𝑖𝑑
2

𝐻2𝑑2 ≥
𝐻𝑖 𝑗𝐻 𝑗𝑖𝑑

2

|𝑉𝑖 | |𝑉 𝑗 |
≥

(
(1 − 2−7)𝜖

)2
,

and thus recall (11.6) we obtain that

𝐴(𝑖, 𝑗) ≥ 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) +
(
(1 − 2−7)𝜖

)2
(
15𝜖
16

)2
≥ 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) +

3
4
𝜖4. (11.7)

Note that ℓ = 𝑘𝐻 and so we have

𝑞(P′) = 1
ℓ2

∑︁
1≤𝑡<𝑠≤ℓ

𝑑2 (𝑉 ′
𝑡 , 𝑉

′
𝑠)

≥ 1
𝑘2𝐻2

∑︁
1≤𝑖< 𝑗≤𝑘

∑︁
1≤ℎ,ℎ′≤𝐻

𝑑2 (𝐷𝑖ℎ, 𝐷 𝑗ℎ′ ) =
1
𝑘2

∑︁
1≤𝑖< 𝑗≤𝑘

𝐴(𝑖, 𝑗), (11.8)

where the summands of form 𝑑2 (𝐷𝑖ℎ, 𝐷 𝑗ℎ′ ) with 𝑖 = 𝑗 are ignored in the inequality.
Now combining (11.5), (11.7) and (11.8) we obtain that

𝑞(P′) ≥ 1
𝑘2

©­«
∑︁

(𝑖, 𝑗 ) ∈𝑆
𝐴(𝑖, 𝑗) +

∑︁
(𝑖, 𝑗 ) ∈𝑇

𝐴(𝑖, 𝑗)ª®¬
≥ 1
𝑘2

©­«
∑︁

(𝑖, 𝑗 ) ∈𝑆
𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) +

∑︁
(𝑖, 𝑗 ) ∈𝑇

(
𝑑2 (𝑉𝑖 , 𝑉 𝑗 ) +

3
4
𝜖4

)ª®¬
= 𝑞(P) + 3|𝑇 |

4𝑘2 𝜖
4 ≥ 𝑞(P) + 3

4
𝜖5,

where we used the fact that |𝑇 | ≥ 𝜖 𝑘2 as P is not 𝜖-regular. From this fact and Claim
1, we have

𝑞(P′) ≥ 𝑞(P) − 𝜖5

4
+ 3

4
𝜖5 = 𝑞(P) + 𝜖

5

2
.

This completes the proof of Lemma 11.6. □

Now, we give the proof for Theorem 11.6.

Proof of Theorem 11.6. We shall use Lemma 11.6 repeatedly by showing that at
most 𝑡 = ⌊𝜖−5⌋ iterations will yield a required partition. Let 𝑘0 be an integer such
that 𝑘0 ≥ 𝑚 and 2−𝑘0 ≤ 𝜖5/8, and define 𝑘𝑖+1 = 𝑘𝑖 (4𝑘𝑖 − 2𝑘𝑖−1). Set 𝑀𝑖 = 𝑘𝑖4𝑘𝑖 and
𝑀 = 𝑘𝑡 .

Let 𝐺 be a graph of order 𝑛. We may assume that 𝑛 > 𝑀 since otherwise the
partition with each class being a singleton with empty exceptional set will do. Let
P0 = {𝑉 (0)

0 , 𝑉
(0)
1 , . . . , 𝑉

(0)
𝑘0

} be an equitable partition with |𝑉 (0)
1 | = · · · = |𝑉 (0)

𝑘0
| =

⌊𝑛/𝑘0⌋. So
|𝑉 (0)

0 | < 𝑘0 ≤ 𝑀0/4𝑘0 <
𝜖𝑛

2
.
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266 11 Regularity Lemma and van der Waerden Number

If P0 is 𝜖-regular, then we are done. Otherwise, by Lemma 11.6, there is an equitable
partition P1 = {𝑉 (1)

0 , 𝑉
(1)
1 , . . . , 𝑉

(1)
𝑘1

} such that

|𝑉 (1)
0 | ≤ |𝑉 (0)

0 | + 𝑛/2𝑘0 < 𝜖𝑛, and 𝑞(P1) ≥ 𝑞(P) + 𝜖5/2.

If P1 is not 𝜖-regular yet, then we continue the procedure to obtain P2. Suppose we
have obtained an equitable partition P 𝑗 with exceptional class 𝑉 ( 𝑗 )

0 in the 𝑗 th step.
Thus,

|𝑉 ( 𝑗 )
0 | ≤ |𝑉 (0)

0 | + 𝑛(2−𝑘0 + 2−𝑘1 + · · · ) < 𝜖𝑛,

and 𝑞(P 𝑗 ) ≥ 𝑞(P0) + 𝑗 𝜖
5

2 . It follows that 𝑗 ≤ 𝑡 since 𝑞(P 𝑗 ) < 1/2. This completes
the proof of Theorem 11.6. □

The bound on 𝑀 (𝜖, 𝑚) given in the Regularity Lemma is enormous, it is a tower
of the height up to 𝜖−5 since the number of iterations in the proof. This seems
to be very bad at the first glance. However, a celebrated result of Gowers (1997)
proved that 𝑀 (𝜖, 2) grows at least as a such tower of height about 𝜖−1/16. His
argument is powerful. Subsequently, Conlon and Fox (2012) estimated the number
of irregular pairs in the Regularity Lemma, and Moshkovitz and Shapira (2016) gave
a simpler proof of a tower-type lower bound. By using the mean square density, i.e.,
𝑞(P) = ∑𝑘

𝑖, 𝑗=1
|𝑉𝑖 | |𝑉𝑗 |
|𝑉 |2 𝑑2 (𝑉𝑖 , 𝑉 𝑗 ), Fox and Lovász (2017) showed that the bound on

the number of parts is at most a tower of height at most 2 + 𝜖−2/16. They also gave
a tight lower bound on the tower height in the Regularity Lemma, which addresses
a question of Gowers.

The size of the exceptional class may be larger than that of normal ones. To see
this, if 𝑚 is much larger than 1/𝜖 , then the size of normal classes is around 𝑛/𝑘 ,
which is much less than 𝜖𝑛.

For graph 𝐺 = (𝑉, 𝐸), we say that a partition 𝑉1, . . . , 𝑉𝑘 of 𝑉 is an equipartition
if |𝑉𝑖 | and |𝑉 𝑗 | differ by no more than 1 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . One of reformulations
of the Regularity Lemma is as follows.

Theorem 11.7 For any 𝜖 > 0 and integer 𝑚 ≥ 1, there exist 𝑛0 = 𝑛0 (𝜖, 𝑚) and
𝑀 = 𝑀 (𝜖, 𝑚) > 𝑚 such that every graph 𝐺 on 𝑛 ≥ 𝑛0 vertices has an equipartition
𝑉1, 𝑉2, . . . , 𝑉𝑘 with 𝑚 ≤ 𝑘 ≤ 𝑀 , in which all but at most 𝜖 𝑘2 pairs (𝑉𝑖 , 𝑉 𝑗 ),
1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , are 𝜖-regular.

Proof. By Theorem 11.6, for any real 𝜖 > 0 and 𝑚 ≥ 1, there exist 𝑛0 = 𝑛0 (𝜖, 𝑚)
and 𝑀 = 𝑀 (𝜖, 𝑚) > 𝑚 such that every graph𝐺 on 𝑛 ≥ 𝑛0 vertices has an 𝜖 2

4 -regular
partition P = {𝑉0, 𝑉1, . . . , 𝑉𝑘} with 𝑚 ≤ 𝑘 ≤ 𝑀 . Note that |𝑉0 | < 𝜖 2

4 𝑛, we have
⌊(1 − 𝜖2/4)𝑛/𝑘⌋ ≤ |𝑉𝑖 | ≤ 𝑛/𝑘 . Partition 𝑉0 into 𝑘 classes 𝐵1, 𝐵2, . . . , 𝐵𝑘 such that
|𝐵𝑖 | = ⌊|𝑉0 |/𝑘⌋ or |𝐵𝑖 | = ⌈|𝑉0 |/𝑘⌉. Set

𝑉 ′
𝑖 = 𝑉𝑖 ∪ 𝐵𝑖 .
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11.3 Szemerédi’s Regularity Lemma 267

Thus the sizes of any 𝑉 ′
𝑖

and 𝑉 ′
𝑗

differ at most by one. We aim to prove that the
partition P′ = {𝑉 ′

1, 𝑉
′
2, . . . , 𝑉

′
𝑘
} is as desired. It suffices to verify that if a pair

(𝑉𝑖 , 𝑉 𝑗 ) is 𝜖 2

4 -regular, then (𝑉 ′
𝑖
, 𝑉 ′
𝑗
) is 𝜖-regular.

Indeed, suppose 𝑋 ′
𝑖
⊆ 𝑉 ′

𝑖
and 𝑋 ′

𝑗
⊆ 𝑉 ′

𝑗
with |𝑋 ′

𝑖
| > 𝜖 |𝑉 ′

𝑖
| and |𝑋 ′

𝑖
| > 𝜖 |𝑉 ′

𝑗
|,

respectively. Set 𝑋𝑖 = 𝑋 ′
𝑖
\ 𝐵𝑖 ⊆ 𝑉𝑖 . Note that |𝑉 ′

𝑖
| = ⌊𝑛/𝑘⌋ or |𝑉 ′

𝑖
| = ⌈𝑛/𝑘⌉, so for

sufficiently large 𝑛,

|𝑋𝑖 |
|𝑋 ′
𝑖
| ≥ 1 − |𝐵𝑖 |

|𝑋 ′
𝑖
| ≥ 1 − ⌈𝜖2𝑛/(4𝑘)⌉

𝜖 ⌊𝑛/𝑘⌋ > 1 − 𝜖

3
.

Hence by Lemma 11.4,

|𝑑 (𝑋 ′
𝑖 , 𝑋

′
𝑗 ) − 𝑑 (𝑋𝑖 , 𝑋 𝑗 ) | ≤

2𝜖
3
. (11.9)

The sizes of 𝑉𝑖 and 𝑉 ′
𝑖

are close. Indeed,

|𝑉𝑖 |
|𝑉 ′
𝑖
| ≥

⌊(1 − 𝜖2/4)𝑛/𝑘⌋
⌈𝑛/𝑘⌉ > 1 − 𝜖2

2
,

and thus
|𝑑 (𝑉𝑖 , 𝑉 𝑗 ) − 𝑑 (𝑉 ′

𝑖 , 𝑉
′
𝑗 ) | ≤ 𝜖2. (11.10)

Also, since (𝑉𝑖 , 𝑉 𝑗 ) is 𝜖 2

4 -regular and

|𝑋𝑖 |
|𝑉𝑖 |

≥ |𝑋𝑖 |
|𝑋 ′
𝑖
|
|𝑋 ′
𝑖
|

|𝑉 ′
𝑖
| ≥

(
1 − 𝜖

3

)
𝜖 >

𝜖2

4
,

it follows that
|𝑑 (𝑋𝑖 , 𝑋 𝑗 ) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) | ≤

𝜖2

4
. (11.11)

Consequently, by inequalities (11.9), (11.10) and (11.11),

|𝑑 (𝑋 ′
𝑖 , 𝑋

′
𝑗 ) − 𝑑 (𝑉 ′

𝑖 , 𝑉
′
𝑗 ) |

≤ |𝑑 (𝑋 ′
𝑖 , 𝑋

′
𝑗 ) − 𝑑 (𝑋𝑖 , 𝑋 𝑗 ) | + |𝑑 (𝑋𝑖 , 𝑋 𝑗 ) − 𝑑 (𝑉𝑖 , 𝑉 𝑗 ) |

+ |𝑑 (𝑉𝑖 , 𝑉 𝑗 ) − 𝑑 (𝑉 ′
𝑖 , 𝑉

′
𝑗 ) |

≤ 2𝜖
3

+ 𝜖2 + 𝜖
2

4
< 𝜖.

This completes the proof of Theorem 11.7. □

A similar proof yields another formulation of the Regularity Lemma as following.

Theorem 11.8 For any 𝜖 > 0 and integer 𝑚 ≥ 1, there exist 𝑛0 = 𝑛0 (𝜖, 𝑚) and
𝑀 = 𝑀 (𝜖, 𝑚) > 𝑚 such that every graph 𝐺 on 𝑛 ≥ 𝑛0 vertices has a partition
𝑉0, 𝑉1, . . . , 𝑉𝑘 with |𝑉0 | ≤ 𝑘 − 1, |𝑉1 | = |𝑉2 | = · · · = |𝑉𝑘 |, and 𝑚 ≤ 𝑘 ≤ 𝑀 , in which
all but at most 𝜖 𝑘2 pairs (𝑉𝑖 , 𝑉 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , are 𝜖-regular.
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268 11 Regularity Lemma and van der Waerden Number

The following is the multicolor Regularity Lemma.

Theorem 11.9 (Multicolor Regularity Lemma) For any 𝜖 > 0 and any positive
integers 𝑚 and 𝑠, there exist 𝑛0 = 𝑛0 (𝜖, 𝑚, 𝑠) and 𝑀 = 𝑀 (𝜖, 𝑚, 𝑠) such that if the
edges of a graph 𝐺 on 𝑛 ≥ 𝑛0 vertices are colored in 𝑠 colors, all monochromatic
graphs have a same partition 𝑉0, 𝑉1, . . . , 𝑉𝑘 that is 𝜖-regular with exceptional set 𝑉0
and 𝑚 ≤ 𝑘 ≤ 𝑀 .

Proof. Using the original proof, but modify the definition of 𝑞(P) by summing the
indices over all colors: for a partition P = {𝑉0, 𝑉1, . . . , 𝑉𝑘} of𝑉 (𝐺) with exceptional
set 𝑉0, let

𝑞(P) = 1
𝑘2

𝑠∑︁
ℓ=1

∑︁
1≤𝑖< 𝑗≤𝑘

𝑑2
ℓ (𝑉𝑖 , 𝑉 𝑗 ),

where 𝑑ℓ (𝑉𝑖 , 𝑉 𝑗 ) is the edge density in the ℓ-th color. □

Similar to Theorem 11.7, we have the following multicolor Regularity Lemma.

Theorem 11.10 For any 𝜖 > 0 and integer 𝑚 ≥ 1, there exist 𝑛0 = 𝑛0 (𝜖, 𝑚, 𝑠)
and 𝑀 = 𝑀 (𝜖, 𝑚, 𝑠) such that if the edges of a graph 𝐺 on 𝑛 ≥ 𝑛0 vertices are
colored in 𝑠 colors, all monochromatic graphs have a partition 𝑉1, . . . , 𝑉𝑘 with
|𝑉1 | ≤ |𝑉2 | ≤ · · · ≤ |𝑉𝑘 | ≤ |𝑉1 | + 1, and 𝑚 ≤ 𝑘 ≤ 𝑀 , in which all but at most 𝜖 𝑘2

pairs (𝑉𝑖 , 𝑉 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , are 𝜖-regular.

In some applications, the following degree form of the Regularity Lemma is more
applicable.

Theorem 11.11 For any 𝜖 > 0, there exist an 𝑀 = 𝑀 (𝜖) such that for any graph
𝐺 = (𝑉, 𝐸) and any 𝑑 ∈ [0, 1], there exists a partition 𝑉0, 𝑉1, . . . , 𝑉𝑘 of 𝑉 with
𝑘 ≤ 𝑀 , 𝑉0 ≤ 𝜖 |𝑉 |, each 𝑉𝑖 has the same size 𝑚 ≤ 𝜖 |𝑉 |, and there exists a subgraph
𝐺′ ⊆ 𝐺 with the following properties:

(1) deg𝐺′ (𝑣) > deg𝐺 (𝑣) − (𝑑 + 𝜖) |𝑉 | for all 𝑣 ∈ 𝑉 ,
(2) 𝑒(𝐺′ (𝑉𝑖)) = 0 for all 𝑖 ≥ 1,
(3) all pairs 𝐺′ (𝑉𝑖 , 𝑉 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , are 𝜖-regular, each with a density either

0 or greater than 𝑑.

11.4 Two Applications

Recall that the Ramsey-Turán number 𝑅𝑇 (𝑛;𝐾4, 𝑜(𝑛)) is the maximum number of
edges among all 𝐾4-free graph whose independence number is 𝑜(𝑛). We know that
𝑅𝑇 (𝑛;𝐾4, 𝑜(𝑛)) > 1

8𝑛
2 + 𝑜(𝑛2) by Bollobás and Erdős (1976). Now, let us have an

application of the regularity lemma on the upper bound of 𝑅𝑇 (𝑛;𝐾4, 𝑜(𝑛)) given by
Szemerédi (1972).

Theorem 11.12 We have 𝑅𝑇 (𝑛;𝐾4, 𝑜(𝑛)) < 1
8𝑛

2 + 𝑜(𝑛2).
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11.4 Two Applications 269

Proof. Let 𝐺 be a graph on 𝑛 vertices satisfying 𝑒(𝐺) > (1/8 + 4𝜖)𝑛2 where 𝜖 > 0
is sufficiently small and 𝑛 is large. Let 𝑑 = 2𝜖 . We apply Theorem 11.11 to obtain
an 𝑀 = 𝑀 (𝜖) and a partition 𝑉0, 𝑉1, . . . , 𝑉𝑘 of 𝑉 with 𝑘 ≤ 𝑀 , 𝑉0 ≤ 𝜖 |𝑉 |, each 𝑉𝑖
has the same size 𝑚 ≤ 𝜖 |𝑉 |, and there exists a subgraph 𝐺′ ⊆ 𝐺 with the following
properties:

(1) deg𝐺′ (𝑣) > deg𝐺 (𝑣) − (𝑑 + 𝜖) |𝑉 | for all 𝑣 ∈ 𝑉 ,
(2) 𝑒(𝐺′ (𝑉𝑖)) = 0 for all 𝑖 ≥ 1,
(3) all pairs 𝐺′ (𝑉𝑖 , 𝑉 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , are 𝜖-regular, each with a density either 0

or greater than 𝑑.

We assume that
𝛼(𝐺) ≤ 𝜖2

𝑀
𝑛 − 1, and 𝑛 ≥ 𝑀

𝜖
.

We aim to show that 𝐾4 ⊂ 𝐺.
Let 𝐺′′ = 𝐺′ −𝑉0. We have 𝑒(𝐺′′) > (1/8 + 𝜖)𝑛2. Also note that

𝛼(𝐺) < 𝜖2
( 𝑛
𝑀

− 1
)
≤ 𝜖2

( 𝑛
𝑘
− 1

)
< 𝜖2𝑚.

Case 1. The reduced graph contains more than 𝑘2/4 edges.

For this case, by Turan’s theorem, the reduced graph contains a triangle which
corresponding to sets𝑉1, 𝑉2, 𝑉3 without loss of generality. By Lemma 11.7, we obtain
a subset𝑉 ′

1 ⊆ 𝑉1 with |𝑉 ′
1 | ≥ (1−2𝜖) |𝑉1 | such that each vertex in𝑉 ′

1 is adjacent to at
least (𝑑 − 𝜖)𝑚 vertices in 𝑉2 and 𝑉3 respectively. Fix a vertex 𝑣1 ∈ 𝑉 ′

1, we consider
the pair (𝑁 (𝑣1) ∩ 𝑉2, 𝑁 (𝑣1) ∩ 𝑉3). We again apply Lemma 11.7 to obtain a vertex
𝑣2 ⊂ 𝑁 (𝑣1) ∩𝑉2 such that |𝑁 (𝑣2) ∩ 𝑁 (𝑣1) ∩𝑉3 | ≥ 𝜖2𝑚. Thus 𝑁 (𝑣2) ∩ 𝑁 (𝑣1) ∩𝑉3
contains an edge by noting that 𝛼(𝐺) < 𝜖2𝑚, and so we can get a 𝐾4 ⊂ 𝐺 as desired.

Case 2. The reduced graph contains at most 𝑘2/4 edges.

Note that ∑︁
1≤𝑖< 𝑗≤𝑘

𝑑 (𝑉𝑖 , 𝑉 𝑗 ) =
𝑒(𝐺′′)
𝑚2 ≥ 𝑒(𝐺′′)𝑘2

𝑛2 >

(
1
8
+ 𝜖

)
𝑘2.

For this case, their average density of pairs is greater than 1/2 + 4𝜖 . Thus, at least
one pair, say (𝑉1, 𝑉2), has a density greater than 1/2 + 4𝜖 . A similar argument by
using Lemma 11.7 we can show that the subgraph induced by (𝑉1, 𝑉2) together with
the edges inside the two clusters contains a copy of 𝐾4. □

In the following, let us have another application of the regularity lemma.

A family G = {𝐺𝑛}, where 𝐺𝑛 is a graph of order 𝑛, is said to be Ramsey linear
if there exists a constant 𝑐 = 𝑐(G) > 0 such that 𝑟 (𝐺𝑛) ≤ 𝑐𝑛 for any 𝐺𝑛 in G, where
𝑟 (𝐺𝑛) = 𝑟 (𝐺𝑛, 𝐺𝑛).

For dense graph𝐺𝑛, 𝑟 (𝐺𝑛) may tend to grow exponentially in 𝑛. For example, the
extreme case 𝑟 (𝐾𝑛) is lying roughly between 2𝑛/2 and 4𝑛 as discussed in previous
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270 11 Regularity Lemma and van der Waerden Number

Chapters. However, for relatively sparse graphs, 𝑟 (𝐺𝑛) grows much more modestly.
A special class which has been investigated from this aspect is the class of graphs
𝐺𝑛 with maximum degree Δ(𝐺𝑛) ≤ Δ, where Δ is fixed. Denote

G(Δ) = {𝐺𝑛 : 𝑛 ≥ 1 and Δ(𝐺𝑛) ≤ Δ},

and
D(𝑑) = {𝐺𝑛 : 𝑛 ≥ 1 and 𝐺𝑛 is 𝑑-degenerate}.

Conjecture 11.1 (Burr-Erdős, 1975) For any fixed positive integers Δ and 𝑑,

(1) the family G(Δ) is Ramsey linear.

(2) the family D(𝑑) is Ramsey linear.

A well known application of the Regularity Lemma by Chvátal, Rödl, Szemerédi
and Trotter (1983) tells us that G(Δ) is Ramsey linear. Given a graph 𝐺, let 𝑁𝐺 (𝑥)
be the neighborhood of 𝑥 in𝐺 and for 𝑋,𝑌 ⊆ 𝑉 (𝐺), 𝑁𝑌 (𝑋) = (∪𝑥∈𝑋𝑁𝐺 (𝑥)) ∩𝑌 . A
graph 𝐺 of order 𝑛 is called 𝑝-arrangeable if there exists an ordering 𝑣1, 𝑣2, . . . , 𝑣𝑛
of the vertices of 𝐺 such that for each 1 ≤ 𝑖 ≤ 𝑛 − 1, |𝑁𝐿𝑖

(
𝑁𝑅𝑖 (𝑣𝑖)

)
| ≤ 𝑝, where

𝐿𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑖} and 𝑅𝑖 = {𝑣𝑖+1, 𝑣𝑖+2, . . . , 𝑣𝑛}. Set a family of graphs as

G𝑝 = {𝐺𝑛 | 𝐺𝑛 is 𝑝-arrangeable}.

Chen and Schelp (1993) showed that the family of 𝑝-arrangeable graphs is also
Ramsey linear, and so does the family of planar graphs. Recently, a celebrate result
of Lee (2017) confirms the second conjecture of Burr and Erdős (1975), in which
one of the main ingredients of the proof is the dependent random choice introduced
in Chapter 9.

In this section, we will mainly give the proof of the first conjecture by Chvátal,
Rödl, Szemerédi and Trotter (1983).

Theorem 11.13 For any fixed integer Δ ≥ 1, G(Δ) is Ramsey linear.

Before giving a proof for the above result, let us have some properties of an
𝜖-regular pair as follows.

Lemma 11.7 Let (𝐴, 𝐵) be an 𝜖-regular pair of density 𝑑 ∈ (0, 1]. If 𝑌 ⊆ 𝐵 with
|𝑌 | ≥ 𝜖 |𝐵|, then there exists a subset 𝐴′ ⊆ 𝐴 with |𝐴′ | ≥ (1 − 𝜖) |𝐴| such that each
vertex in 𝐴′ is adjacent to at least (𝑑 − 𝜖) |𝑌 | vertices in 𝑌 .

Proof. Let 𝑋 be the set of vertices with fewer than (𝑑 − 𝜖) |𝑌 | neighbors in 𝑌 . Thus
𝑒(𝑋,𝑌 ) < (𝑑 − 𝜖) |𝑋 | |𝑌 |, which implies that 𝑑 (𝑋,𝑌 ) < 𝑑 − 𝜖 . Since (𝐴, 𝐵) is
𝜖-regular, we have that |𝑋 | ≤ 𝜖 |𝐴|. □

Lemma 11.8 Let (𝐴, 𝐵) be an 𝜖-regular pair of density 𝑑 ∈ (0, 1]. If 𝑋 ⊆ 𝐴 and
𝑌 ⊆ 𝐵 with |𝑋 | ≥ 𝛼 |𝐴| and |𝑌 | ≥ 𝛼 |𝐵| for some 𝛼 > 𝜖 , then (𝑋,𝑌 ) is 𝜖 ′-regular
satisfying |𝑑 (𝐴, 𝐵) − 𝑑 (𝑋,𝑌 ) | < 𝜖 , where 𝜖 ′ = max{ 𝜖

𝛼
, 2𝜖}.
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11.4 Two Applications 271

Proof. Let 𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 . If |𝑋 ′ | > 𝜖 ′ |𝑋 | and |𝑌 ′ | > 𝜖 ′ |𝑌 |, then |𝑋 ′ | > 𝜖 |𝐴|
and |𝑌 ′ | > 𝜖 |𝐵|. Hence the assertion follows from the assumption that (𝐴, 𝐵) is
𝜖-regular. □

Proof of Theorem 11.13. LetΔ ≥ 1 be fixed. Let𝑚 ≥ 𝑟 (Δ+1,Δ+1) and 0 < 𝜖 ≤ 1
6𝑚

such that (
(1/2 − 𝜖)Δ − Δ𝜖

)
𝑚 ≥ 1 hence (1/2 − 𝜖)Δ − Δ𝜖 > 𝜖 .

Let 𝑀 = 𝑀 (𝜖, 2𝑚) > 2𝑚 be the integer determined by 𝜖 and 2𝑚 in Theorem 11.7.
Finally, let 𝑐 = 𝑚𝑀 , which is a constant depends only on Δ. We shall show that
𝑟 (𝐺) ≤ 𝑐𝑛 for any graph 𝐺 of order 𝑛 with Δ(𝐺) ≤ Δ.

Consider a red/blue edge coloring of the complete graph 𝐾𝑐𝑛 with vertex set 𝑉 .
Let 𝑅 be the graph spanned by all red edges on 𝑉 .

From Theorem 11.7, there is a partition {𝑉1, 𝑉2, . . . , 𝑉𝑘} of𝑉 with | |𝑉𝑖 |− |𝑉 𝑗 | | ≤ 1
and 2𝑚 ≤ 𝑘 ≤ 𝑀 such that all but at most 𝜖 𝑘2 pairs (𝑉𝑖 , 𝑉 𝑗 ), 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , are
𝜖-regular. Clearly, |𝑉𝑖 | ≥ 𝑚𝑛 for 1 ≤ 𝑖 ≤ 𝑘 .

Let 𝐹 be the reduced graph on vertex set {1, 2, . . . , 𝑘}, in which (𝑖, 𝑗) is an edge
if and only if (𝑉𝑖 , 𝑉 𝑗 ) is 𝜖-regular. Note that the number of edges of 𝐹 is at least(

𝑘

2

)
− 𝜖 𝑘2 =

(
𝑘

2

)
− 𝑘2

6𝑚
≥ 𝑚 − 1

𝑚

𝑘2

2
> 𝑡𝑚−1 (𝑘).

By Turán’s theorem, i.e., Theorem 7.2, the subgraph of 𝐹 spanned by all red edges
contains a complete graph 𝐾𝑚. Color an edge (𝑖, 𝑗) of 𝐾𝑚 red if 𝑑𝑅 (𝑉𝑖 , 𝑉 𝑗 ) ≥ 1/2,
and blue otherwise. Since𝑚 ≥ 𝑟 (Δ+1,Δ+1), this will yield a monochromatic 𝐾Δ+1.
Without loss of generality, suppose that 𝐾Δ+1 is red for otherwise we consider the
complement graph 𝑅.

Relabeling the sets of the partition if necessary, we may assume that the vertex
set of 𝐾Δ+1 is {1, 2, . . . ,Δ + 1}. Thus we have

(i) all pairs (𝑉𝑖 , 𝑉 𝑗 ) for 1 ≤ 𝑖 < 𝑗 ≤ Δ + 1 are 𝜖-regular, and
(ii) 𝑑𝑅 (𝑉𝑖 , 𝑉 𝑗 ) ≥ 1/2.

Assume that 𝑉 (𝐺) = {𝑢1, 𝑢2, . . . , 𝑢𝑛}. Since the chromatic number of 𝐺 is at
most Δ + 1, we can define a map 𝜒: {1, . . . , 𝑛} → {1, . . . ,Δ + 1}, where 𝜒(𝑖) is the
color of the vertex 𝑢𝑖 , such that 𝜒(𝑖) ≠ 𝜒( 𝑗) if 𝑢𝑖𝑢 𝑗 is an edge of 𝐺. In order to
prove that the red graph 𝑅 contains 𝐺 as a subgraph, we will define an embedding
𝜑 : 𝑢𝑖 → 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛 such that 𝑣𝑖 ∈ 𝑉𝜒 (𝑖) and 𝑣𝑖𝑣 𝑗 is an edge of 𝑅 whenever
𝑢𝑖𝑢 𝑗 is an edge of 𝐺.

Our plan is to choose the vertices 𝑣1, . . . , 𝑣𝑛 inductively. Throughout the induc-
tion, we shall have a target set 𝑌𝑖 ⊆ 𝑉𝜒 (𝑖) assigned to each 𝑖. Initially, 𝑌𝑖 is the
entire 𝑉𝜒 (𝑖) . As the embedding proceeds, 𝑌𝑖 will get smaller and smaller since some
vertices will be deleted. However, for each 𝑖 = 1, . . . ,Δ + 1, the number that 𝑉𝜒 (𝑖)
will have some vertices deleted is at most Δ times, and each time there are majority
of vertices remaining for us. This guarantees that each 𝑌𝑖 will not get too small to
make this approach work.
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272 11 Regularity Lemma and van der Waerden Number

Let us begin the initial step. Set

𝑌0
1 = 𝑉𝜒 (1) , 𝑌

0
2 = 𝑉𝜒 (2) , . . . , 𝑌

0
𝑛 = 𝑉𝜒 (𝑛) .

Note that 𝑌0
𝑖

and 𝑌0
𝑗

are not necessarily distinct sets.
We first consider 𝑢1 ∈ 𝑉 (𝐺) with degree 𝑑𝐺 (𝑢1) = 𝑑. Denote its neighbors by

𝑢𝛼1 , . . . , 𝑢𝛽1 . Since (𝑌0
1 , 𝑌

0
𝑗
) is 𝜖-regular for 𝑗 = 𝛼1, . . . , 𝛽1, by using Lemma 11.7

repeatedly, there exists a subset 𝑌1
1 ⊆ 𝑌0

1 with

|𝑌1
1 | ≥ (1 − 𝑑𝜖) |𝑌0

1 | ≥ 𝑛

such that each vertex in 𝑌1
1 has at least (1/2 − 𝜖) |𝑌0

𝑗
| neighbors in 𝑌0

𝑗
. Choose a

vertex 𝑣1 from 𝑌1
1 arbitrarily. For 𝑗 = 𝛼1, . . . , 𝛽1, define 𝑌1

𝑗
as the neighborhood of

𝑣1 in 𝑌0
𝑗
. For 𝑗 ≥ 2, 𝑗 ≠ 𝛼1, . . . , 𝛽1, define 𝑌1

𝑗
= 𝑌0

𝑗
, that is, no vertices are deleted

from such 𝑌0
𝑗
. In this step, 𝑣1 has been chosen which is completely adjacent to 𝑌1

𝑗
in

𝑅 whenever 𝑢1 and 𝑢 𝑗 are adjacent in 𝐺. See Fig. 13.1 for 𝑖 = 1.

𝐺 :

𝑅 :

𝑢𝑖 𝑢 𝑗 : 𝑗 = 𝛼𝑖 , . . . , 𝛽𝑖

↓
↓

𝑌 𝑖−1
𝑖

𝑌 𝑖−1
𝑗

✬

✫

✩

✪

✬

✫

✩

✪

★
✧
✥
✦

★
✧
✥
✦· · · · · ·𝑌 𝑖

𝑖
𝑌 𝑖
𝑗

𝑣𝑖 ❤❤❤❤❤❤❤❤❤❤

Fig. 13.1 Embed 𝐺 into 𝑅

Generally, we consider 𝑢𝑖 and its neighbors. We will choose 𝑣𝑖 from𝑌 𝑖−1
𝑖

. Suppose
that 𝑢𝑖 has 𝑑1 neighbors in {𝑢1, . . . , 𝑢𝑖−1}, and 𝑑2 neighbors, say 𝑢𝛼𝑖 , . . . , 𝑢𝛽𝑖 , in
{𝑢𝑖+1, . . . , 𝑢𝑛}. It is clear that 𝑑1 + 𝑑2 ≤ Δ, and

|𝑌 𝑖−1
𝑖 | ≥ (1/2 − 𝜖)𝑑1 |𝑌0

𝑖 |,

i.e., the current set 𝑌 𝑖−1
𝑖

are obtained from 𝑌0
𝑖

by deleting some vertices 𝑑1 times
before this step. By using Lemma 11.7 repeatedly again, we have a subset 𝑌 𝑖

𝑖
⊆ 𝑌 𝑖−1

𝑖

with
|𝑌 𝑖𝑖 | ≥ |𝑌 𝑖−1

𝑖 | − 𝑑2𝜖 |𝑌0
𝑖 |

so that each vertex in 𝑌 𝑖
𝑖

has at least (1/2 − 𝜖) |𝑌 𝑖−1
𝑗

| neighbors in 𝑌 𝑖−1
𝑗

, where
𝑗 = 𝛼𝑖 , . . . , 𝛽𝑖 . Note that

|𝑌 𝑖𝑖 | ≥ |𝑌 𝑖−1
𝑖 | − 𝑑2𝜖 |𝑌0

𝑖 | ≥
(
(1/2 − 𝜖)𝑑1 − 𝑑2𝜖

)
|𝑌0
𝑖 |

≥
(
(1/2 − 𝜖)Δ − Δ𝜖

)
|𝑌0
𝑖 | ≥ 𝑛,
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11.5 Extensions on the Regularity Lemma 273

thus we can choose a vertex 𝑣𝑖 from 𝑌 𝑖
𝑖
, which is distinct from 𝑣1, . . . , 𝑣𝑖−1 that

have been chosen before this step. For 𝑗 = 𝛼𝑖 , . . . , 𝛽𝑖 , define 𝑌 𝑖
𝑗

as the neighborhood
of 𝑣𝑖 in 𝑌 𝑖−1

𝑗
. For 𝑗 ≥ 𝑖 + 1, 𝑗 ≠ 𝛼𝑖 , . . . , 𝛽𝑖 , define 𝑌 𝑖

𝑗
= 𝑌 𝑖−1

𝑗
, i.e., no vertices are

deleted from such 𝑌 𝑖−1
𝑗

. Note that for 𝑗 < 𝑖, 𝑣𝑖 is adjacent to 𝑣 𝑗 in 𝑅 whenever 𝑢 𝑗 is
adjacent to 𝑢𝑖 in 𝐺. Moreover, 𝑣𝑖 is completely connected with each set 𝑌 𝑖

𝑗
, in which

a neighbor of 𝑣𝑖 will be selected after this step. This finishes the general step and
hence the proof of Theorem 11.13. □

More generally, we have the following result, in which the proof will use the
multicolor Regularity Lemma, i.e., Theorem 11.10.

Theorem 11.14 For any positive integers 𝑘 andΔ, there is a constant 𝑐 = 𝑐(𝑘,Δ) > 0
such that 𝑟𝑘 (𝐺) ≤ 𝑐𝑛 for any graph 𝐺 of order 𝑛 with maximum degree Δ(𝐺) ≤ Δ.

A problem needed to consider is that the huge constant obtained in Theorem 11.13
by using the Regularity Lemma. Some improvements on the constant have been
done by Eaton (1998), and further by Graham, Rödl, and Ruciński (2000, 2001), in
which they showed that the constant can be bounded from above by 2𝑐Δ(logΔ)2 , and
particularly 2(Δ+𝑐) logΔ for bipartite graphs, one can see Chapter 9 for more better
bounds of that for bipartite graphs. The authors also showed that there is a positive
constant 𝑐′ such that for each Δ and 𝑛 sufficiently large there is a bipartite graph 𝐻
on 𝑛 vertices with maximum degree Δ for which 𝑟 (𝐻) > 2𝑐′Δ𝑛. Therefore, one can
only improve the constant of the exponent by noting Theorem 9.5.

The constant for the 𝑑-degenerate graphs due to Lee (2017) is as follows, which
confirms a conjecture of Burr and Erdős. Let us point out that the following result
does not apply the regularity method.

Theorem 11.15 There exists a constant 𝑐 such that the following holds for every
natural number 𝑑 and 𝑟 . For every edge two-coloring of the complete graph on at
least 2𝑑2𝑐𝑟 𝑛 vertices, one of the colors is universal for the family of 𝑑-degenerate
𝑟-chromatic graphs on at most 𝑛 vertices.

11.5 Extensions on the Regularity Lemma

There are many generalizations of Szemerédi’s Regularity Lemma. In this section,
we will introduce more forms on the Regularity Lemma.

At first, we would like to introduce the sparse Regularity Lemma. Let𝐺 = (𝑉, 𝐸)
be a graph. Let 0 < 𝑝 ≤ 1, 𝜂 > 0 and 𝐾 > 1. For two disjoint subsets 𝑋,𝑌 of 𝑉 , let

𝑑𝐺,𝑝 (𝑋,𝑌 ) =
𝑒𝐺 (𝑋,𝑌 )
𝑝 |𝑋 | |𝑌 | ,

which is referred to as the 𝑝-density of the pair (𝑋,𝑌 ). We say that 𝐺 is an (𝜂, 𝜆)-
bounded graph with respect to the 𝑝-density if any disjoint subsets 𝑋,𝑌 of 𝑉 with
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274 11 Regularity Lemma and van der Waerden Number

|𝑋 | ≥ 𝜂 |𝑉 |, |𝑌 | ≥ 𝜂 |𝑉 | satisfy

𝑒𝐺,𝑝 (𝑋,𝑌 ) ≤ 𝜆𝑝 |𝑋 | |𝑌 |.

For fixed 𝜖 > 0, we say such a pair (𝑋,𝑌 ) is (𝜖, 𝑝)-regular if for all 𝑋 ′ ⊆ 𝑋 and
𝑌 ′ ⊆ 𝑌 with

|𝑋 ′ | ≥ 𝜖 |𝑋 | and |𝑌 ′ | ≥ 𝜖 |𝑌 |,

we have
|𝑑𝐺,𝑝 (𝑋,𝑌 ) − 𝑑𝐺,𝑝 (𝑋 ′, 𝑌 ′) | ≤ 𝜖 .

The following is a variant of the Szemerédi’s Regularity Lemma for sparse graphs,
developed by Kohayakawa and Rödl (1997, 2003).
Theorem 11.16 For any fixed 𝜖 > 0, 𝜆 > 1 and 𝑡0 ≥ 1, there exist 𝑇0, 𝜂 and 𝑁0, such
that each graph 𝐺 = (𝑉, 𝐸) with at least 𝑁0 vertices that is (𝜂, 𝜆)-bounded with
respect to density 𝑝 with 0 < 𝑝 ≤ 1, has a partition {𝑉0, 𝑉1, . . . , 𝑉𝑡 } with 𝑡0 ≤ 𝑡 ≤ 𝑇0
such that

(i) |𝑉0 | ≤ 𝜖𝑁 and |𝑉1 | = |𝑉2 | = · · · = |𝑉𝑡 |;
(ii) all but at most 𝜖𝑡2 pairs (𝑉𝑖 , 𝑉 𝑗 ) are (𝜖, 𝑝)-regular for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑡.
Denote

H(Δ, 𝑛) = {𝐻 ⊆ 𝐾𝑛 : Δ(𝐻) ≤ Δ},

where 𝐻 ⊆ 𝐾𝑛 means that 𝐻 is a spanning subgraph of 𝐾𝑛. We say that a graph
𝐹 is partition universal for H(Δ, 𝑛), if 𝐹 → (𝐻, 𝐻) for each 𝐻 ∈ H (Δ, 𝑛). The
well-known result of Chvátal, Rödl, Szemerédi and Trotter (1983) implies that 𝐾𝑁
is partition universal for H(Δ, 𝑛). Applying the above sparse Regularity Lemma Ko-
hayakawa, Rödl, Schacht and Szemerédi (2011) strengthened this result by replacing
𝐾𝑁 with sparse graphs as follows.
Theorem 11.17 For fixed Δ ≥ 2, there exist constants 𝐵 = 𝐵(Δ) and 𝐶 = 𝐶 (Δ)
such that if 𝑁 ≥ 𝐵𝑛 and 𝑝 = 𝐶 (log 𝑁/𝑁)1/Δ, then

lim
𝑛→∞

Pr(𝐺 (𝑁, 𝑝) is partition universal for H(Δ, 𝑛)) = 1.

The above result implies the following result.
Corollary 11.1 For fixed Δ ≥ 2, there exist constants 𝐵 = 𝐵(Δ) and 𝐶 = 𝐶 (Δ)
such that for every 𝑛 and 𝑁 ≥ 𝐵𝑛 there exists a graph 𝐹 on 𝑁 vertices and at most
𝐶𝑁2−1/Δ (log 𝑁)1/Δ edges that is partition universal for H(Δ, 𝑛)).

The size Ramsey number 𝑟 (𝐻) is defined as min{𝑒(𝐺) : 𝐺 → (𝐻, 𝐻)} in Erdős,
Faudree, Rousseau and Schelp (1978). Rödl and Szemerédi (2000) conjectured that,
for every Δ ≥ 3, there exists 𝜖 = 𝜖 (Δ) > 0 such that

𝑛1+𝜖 ≤ 𝑟̂Δ,𝑛 := max{𝑟 (𝐻) : 𝐻 ∈ H (Δ, 𝑛)} ≤ 𝑛2−𝜖 .

For the lower bound, Rödl and Szemerédi proved that there exists a constant 𝑐 > 0
such that 𝑟 (𝐻) ≥ 𝑛 log𝑐 𝑛 for some graphs 𝐻 of order 𝑛with maximum degree three.
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11.5 Extensions on the Regularity Lemma 275

From Corollary 11.1, we have 𝑟 (𝐻) ≤ Θ(𝑛2−1/Δ (log 𝑛)1/Δ) for 𝐻 ∈ H (Δ, 𝑛). Hence
this confirms the upper bound of the conjecture in a stronger form.

Note that, for 𝑝 = 𝐶 (log 𝑁/𝑁)1/Δ, we have a.a.s. the chromatic number
𝜒(𝐺 (𝑁, 𝑝)) = Θ((𝑁/log 𝑁)1−1/Δ), see e.g. Bollobás (2000, Theorem 11.29) and
Łuczak (1991). A natural problem is that do there exist some sparse graphs with
small chromatic number such that they are also partition universal for H(Δ, 𝑛). The
answer is yes. Indeed, as an application of the sparse Regularity Lemma we obtain
that the 𝑟-partite random graph 𝐺𝑟 (𝑁, 𝑝) is also partition universal for H(Δ, 𝑛),
where 𝑟 = 𝑟 (Δ) is a constant, see Lin and Li (2018).

Another extension of the Regularity Lemma is the following multi-partite Regu-
larity Lemma, one can find a detailed proof in Lin and Li (2015).

Lemma 11.9 For any 𝜖 > 0 and integers 𝑚 ≥ 1, 𝑝 ≥ 2 and 𝑟 ≥ 1, there exists an
𝑀 = 𝑀 (𝜖, 𝑚, 𝑝, 𝑟) such that if the edges of a 𝑝-partite graph 𝐺 (𝑉 (1) , . . . , 𝑉 (𝑝) )
with |𝑉 (𝑠) | ≥ 𝑀 , 1 ≤ 𝑠 ≤ 𝑝 are 𝑟-colored, then all monochromatic graphs have the
same partition

{
𝑉

(𝑠)
1 , · · · , 𝑉 (𝑠)

𝑘

}
for each 𝑉 (𝑠) , where 𝑘 is same for each part 𝑉 (𝑠)

and 𝑚 ≤ 𝑘 ≤ 𝑀 , such that

(1)
��|𝑉 (𝑠)
𝑖

| − |𝑉 (𝑠)
𝑗

|
�� ≤ 1 for each 𝑠;

(2) All but at most 𝜖 𝑘2𝑟
(𝑝
2
)

pairs
(
𝑉

(𝑠)
𝑖
, 𝑉

(𝑡 )
𝑗

)
, 1 ≤ 𝑠 < 𝑡 ≤ 𝑝, 1 ≤ 𝑖, 𝑗 ≤ 𝑘 , are

𝜖-regular in each monochromatic graph.

Proof of Lemma 11.9. A similar proof as Theorem 11.6, but modify the definition
of index by summing the indices for each color,

𝑞(P) = 1
𝑘2

∑︁
1≤ℎ≤𝑟

∑︁
1≤𝑠<𝑡≤𝑝

∑︁
1≤𝑖, 𝑗≤𝑘

𝑑2 (𝑉 (𝑠)
𝑖
, 𝑉

(𝑡 )
𝑗

)
.

Then we have analogy of Lemma 11.6, and the proof follows. □

Define a family F (𝐺; 𝑝) of graphs as

F (𝐻; 𝑝) = {𝐹 : 𝐹 → (𝐻, 𝐻) and 𝜔(𝐹) ≤ 𝑝},

where 𝜔(𝐹) is the order of the maximum clique of graph 𝐹, and define 𝑓 (𝐻; 𝑝) =
min{|𝑉 (𝐹) | : 𝐹 ∈ F (𝐻; 𝑝)}, which is called the Folkman number. We admit that
𝑓 (𝐻; 𝑝) = ∞ if F (𝐻; 𝑝) = ∅, and thus 𝑓 (𝐻; 𝑝) = ∞ if 𝑝 < 𝜔(𝐻).

Let us call a family H of graphs 𝐻𝑛 of order 𝑛 Ramsey linear if there exists a
constant 𝑐 = 𝑐(H) > 0 such that 𝑅(𝐻𝑛) ≤ 𝑐𝑛 for any 𝐻𝑛 ∈ H . Similarly, we call
H to be Folkman 𝑝-linear if 𝑓 (𝐻𝑛; 𝑝) ≤ 𝑐𝑛 for any 𝐻𝑛 ∈ G, where 𝑝 is a constant.

The multicolor multi-partite Regularity Lemma has many applications. A classic
result of Chvátal, Rödl, Szemerédi and Trotter (1983) tells that the family H(Δ, 𝑛)
is Ramsey linear. Lin and Li (2015) extended this result to that the family H(Δ, 𝑛)
is Folkman 𝑝-linear, where 𝑝 = 𝑝(Δ).
Theorem 11.18 Let Δ ≥ 3 be an integer and 𝑝 = 𝑅(𝐾Δ). Then there exists a
constant 𝑐 = 𝑐(Δ) > 0 such that 𝐾𝑝 (𝑐𝑛) → (𝐻, 𝐻) for any graph with 𝑛 vertices
and Δ(𝐻) ≤ Δ. Particularly, the family H(Δ, 𝑛) is Folkman 𝑝-linear.



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

276 11 Regularity Lemma and van der Waerden Number

The above result can easily generalized to multicolor case. For more applications,
see e.g. Böttcher, Heinig and Taraz (2010), Shen, Lin and Liu (2018), etc.

For graph 𝐺 = (𝑉, 𝐸), recall that a partition A = {𝑉𝑖 : 1 ≤ 𝑖 ≤ 𝑘} of 𝑉 is an
equipartition if |𝑉𝑖 | and |𝑉 𝑗 | differ by no more than 1 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . A
refinement of such an equipartition is an equipartition of the form B = {𝑉𝑖, 𝑗 : 1 ≤
𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ ℓ} such that 𝑉𝑖, 𝑗 is a subset of 𝑉𝑖 for every 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ ℓ.
Now, we will introduce another variant of Szemerédi’s Regularity Lemma due to
Alon, Fischer, Krivelevich and Szegedy (2000), which can be used to find induced
subgraphs in graph 𝐺.

Lemma 11.10 For every natural number 𝑚 and function 0 < 𝜖 (𝑟) < 1, there exists
a natural number 𝑆 = 𝑆(𝑚, 𝜖) with the following property.

For any graph𝐺 on 𝑛 ≥ 𝑆 vertices, there is an equipartitionA = {𝑉𝑖 : 1 ≤ 𝑖 ≤ 𝑘}
and a refinement B = {𝑉𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ ℓ} that satisfy:

(1) |A| = 𝑘 ≥ 𝑚 but |B| = 𝑘ℓ ≤ 𝑆.

(2) For all 1 ≤ 𝑖 < 𝑖′ ≤ 𝑘 but at most 𝜖 (0)
(𝑘
2
)

of them the pair (𝑉𝑖 , 𝑉𝑖′ ) is
𝜖 (0)-regular.

(3) For all 1 ≤ 𝑖 < 𝑖′ ≤ 𝑘 , for all 1 ≤ 𝑗 , 𝑗 ′ ≤ ℓ but at most 𝜖 (𝑘)ℓ2 of them the
pair (𝑉𝑖, 𝑗 , 𝑉𝑖′ , 𝑗′ ) is 𝜖 (𝑘)-regular.

(4) All 1 ≤ 𝑖 < 𝑖′ ≤ 𝑘 but at most 𝜖 (0)
(𝑘
2
)
of them are such that for all 1 ≤ 𝑗 , 𝑗 ′ ≤ ℓ

but at most 𝜖 (0)ℓ2 of them |𝑑𝐺 (𝑉𝑖 , 𝑉𝑖′ ) − 𝑑𝐺 (𝑉𝑖, 𝑗 , 𝑉𝑖′ , 𝑗′ ) | < 𝜖 (0) holds.

The following lemma implies that for any graph 𝐺, there exists an induced
subgraph having an equipartition in which all pairs are regular.

Lemma 11.11 For every 𝑚 and 0 < 𝜖 (𝑟) < 1, there exist 𝑆 = 𝑆(𝑚, 𝜖) and 𝛿 =

𝛿(𝑚, 𝜖) with the following property.
For any graph𝐺 on 𝑛 ≥ 𝑆 vertices, there is an equipartitionA = {𝑉𝑖 : 1 ≤ 𝑖 ≤ 𝑘}

and an induced subgraph 𝐺′ of 𝐺, with an equipartition A′ = {𝑉 ′
𝑖

: 1 ≤ 𝑖 ≤ 𝑘} of
vertices of 𝐺′, that satisfy:

(1) 𝑚 ≤ 𝑘 ≤ 𝑆.

(2) 𝑉 ′
𝑖
⊂ 𝑉𝑖 for all 𝑖 ≥ 1, and 𝑉 ′

𝑖
≥ 𝛿𝑛.

(3) In the equipartition A′, all pairs are 𝜖 (𝑘)-regular.

A graph 𝐻 is 𝜖-unavoidable in 𝐺 if no adding and removing more than 𝜖 |𝐺 |2
edges results in 𝐺 not having an induced subgraph isomorphic to 𝐻. 𝐻 is called
𝛿-abundant if 𝐺 contains at least 𝛿 |𝐺 | |𝐻 | (distinct) induced subgraphs isomorphic
to 𝐻.

As an application of Lemma 11.11, Alon, Fischer, Krivelevich and Szegedy
(2000) showed that a certain degree of unavoidability also implies a certain degree
of abundance.

Theorem 11.19 For every ℓ and 𝜖 , there is 𝛿 = 𝛿(ℓ, 𝜖), such that for any graph 𝐻
with ℓ vertices, if 𝐻 is 𝜖-unavoidable in a graph 𝐺, then it is also 𝛿-abundant in 𝐺.
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11.5 Extensions on the Regularity Lemma 277

We conclude this section with a refined Regularity Lemma. For graph 𝐺 defined
on vertex set𝑉 = 𝑉 (𝐺) and 𝑋,𝑌 ⊆ 𝑉 , recall that the edge density 𝑑𝐺 (𝑋,𝑌 ) = 𝑒 (𝑋,𝑌 )

|𝑋 | |𝑌 | ,
we admit that if 𝑋 ∩ 𝑌 ≠ ∅, then edges in 𝑋 ∩ 𝑌 are counted twice. We say a subset
𝑈 is 𝜖-regular if the pair (𝑈,𝑈) is 𝜖-regular.

The following lemma due to Conlon and Fox (2012) tells that every graph contains
a large 𝜖-regular subset.

Lemma 11.12 For every 0 < 𝜖 < 1, there exists a constant 𝛿 such that every graph
𝐺 contains an 𝜖-regular vertex subset𝑈 with |𝑈 | ≥ 𝛿 |𝑉 (𝐺) |.

The following is a refined version of the Regularity Lemma by Conlon (2019).

Lemma 11.13 For every 0 < 𝜂 < 1 and natural number 𝑚0, there exists a natural
number 𝑀 such that every graph 𝐺 with at least 𝑚0 vertices has an equipartition
𝑉 (𝐺) = ∪𝑚

𝑖=1𝑉𝑖 with 𝑚0 ≤ 𝑚 ≤ 𝑀 parts and subsets 𝑊𝑖 ⊂ 𝑉𝑖 such that 𝑊𝑖 is 𝜂-
regular for all 𝑖 and, for all but 𝜂𝑚2 pairs (𝑖, 𝑗) with 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, (𝑉𝑖 , 𝑉 𝑗 ), (𝑊𝑖 , 𝑉 𝑗 )
and (𝑊𝑖 ,𝑊 𝑗 ) are 𝜂-regular with |𝑑𝐺 (𝑊𝑖 , 𝑉 𝑗 ) − 𝑑𝐺 (𝑉𝑖 , 𝑉 𝑗 ) | ≤ 𝜂 and |𝑑𝐺 (𝑊𝑖 ,𝑊 𝑗 ) −
𝑑𝐺 (𝑉𝑖 , 𝑉 𝑗 ) | ≤ 𝜂.

Proof. Apply the Regularity Lemma (Theorem 11.7) to 𝐺 with 𝜖 = 𝜂 · 𝛿(𝜂), with 𝛿
as in Lemma 11.12. This yields an equitable partition 𝑉 (𝐺) = ∪𝑚

𝑖=1𝑉𝑖 where all but
𝜖𝑚2 ≤ 𝜂𝑚2 pairs (𝑉𝑖 , 𝑉 𝑗 ) with 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚 are 𝜖-regular. Within each piece 𝑉𝑖 ,
now apply Lemma 11.12 to find a set𝑊𝑖 of order at least 𝛿(𝜂) |𝑉𝑖 | which is 𝜂-regular.
Note that if (𝑉𝑖 , 𝑉 𝑗 ) is 𝜖-regular, then, since |𝑊𝑖 | ≥ 𝛿(𝜂) |𝑉𝑖 | and 𝜖 = 𝜂 ·𝛿(𝜂), the pairs
(𝑊𝑖 , 𝑉 𝑗 ) and (𝑊𝑖 ,𝑊 𝑗 ) are 𝜂 are 𝜂-regular with |𝑑𝐺 (𝑊𝑖 , 𝑉 𝑗 ) − 𝑑𝐺 (𝑉𝑖 , 𝑉 𝑗 ) | ≤ 𝜖 ≤ 𝜂

and |𝑑𝐺 (𝑊𝑖 ,𝑊 𝑗 ) − 𝑑𝐺 (𝑉𝑖 , 𝑉 𝑗 ) | ≤ 𝜂. □

Using the above refined Regularity Lemma, Conlon (2019) proved that the fol-
lowing result.

Theorem 11.20 For each fixed integer 𝑚 ≥ 2, 𝑟 (𝐵 (𝑚)
𝑛 ) ≤ (2𝑚 + 𝑜(1))𝑛.

This upper bound together with the lower bound obtained by Erdős et al. (1978)
yield that 𝑟 (𝐵 (𝑚)

𝑛 ) ∼ 2𝑚𝑛 as 𝑛 → ∞. This answers a question of Erdős et al. (1978)
and confirms a conjecture of Thomason (1982) asymptotically.

The following refined Regularity Lemma due to Conlon, Fox and Wigderson
(2021) is a further strengthening of that due to Conlon (2019), which guarantees that
each part itself is regular.

Lemma 11.14 For every 𝜖 > 0 and 𝑀0 ∈ N, there is some 𝑀 = 𝑀 (𝜖, 𝑀0) > 𝑀0
such that for every graph 𝐺, there is an equitable partition 𝑉 (𝐺) = ∪𝑘

𝑖=1𝑉𝑖 into
𝑀0 ≤ 𝑘 ≤ 𝑀 parts so that the following hold:

(1) Each part 𝑉𝑖 is 𝜖-regular.
(2) For every 1 ≤ 𝑖 ≤ 𝑘 , there are at most 𝜖 𝑘 values 1 ≤ 𝑗 ≤ 𝑘 such that the pair

(𝑉𝑖 , 𝑉 𝑗 ) is not 𝜖-regular.

By using the above refined Regularity Lemma, Conlon, Fox and Wigderson (2021)
further improved the upper bound of 𝑟 (𝐵 (𝑚)

𝑛 , 𝐵
(𝑚)
𝑛 ) as that for each 𝑚 ≥ 2,
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278 11 Regularity Lemma and van der Waerden Number

𝑟 (𝐵 (𝑚)
𝑛 , 𝐵

(𝑚)
𝑛 ) ≤ 2𝑚𝑛 +𝑂

(
𝑛

(log log log 𝑛)1/25

)
.

For hypergraph Regularity Lemma, one can see Frankl and Rödl (1992) and
later Chung (1991) in which the author discussed the problems of quasi-random
hypergraphs.

11.6 Exercises

1. Show that 𝑤(3) = 9.

2. Show that 𝑤(4) > 34 by red/blue coloring {0, 1, . . . , 33}, in which 𝑥 is red if
𝑥 = 0, 11 or a quadratic non-residue (mod 11).

3. Prove that for 𝑛 ≥ 2, the off-diagonal van der Waerden numbers 𝑤(1, 𝑛) = 𝑛
and 𝑤(2, 𝑛) is 2𝑛 − 1 if 𝑛 is even and 2𝑛 otherwise.

4.∗ The following conjecture was due to Baudet, which is a weaker version of
van der Waerden Theorem “𝑤𝑘 (𝑡) < ∞”. If all natural numbers are 𝑘-colored, then
there is a monochromatic and arbitrarily long AP. Assuming the conjecture is true,
give a short proof for “𝑤𝑘 (𝑡) < ∞”. (Hint: See Schreier (1926), reported in van der
Waerden (1971). For 𝑘 and 𝑡, let us call a 𝑘-partition to be bad if no class contains
a 𝑡-AP. Suppose the statement “𝑤𝑘 (𝑡) < ∞” is not true for some 𝑘 and 𝑡, we shall
find a bad 𝑘-partition of N = {1, 2, . . . } for this 𝑡. Assume 𝑘 = 2. Suppose for each
𝑤, there is a bad partition [𝑤] as [𝑤] = 𝐶

(𝑤)
1 ∪ 𝐶 (𝑤)

2 . For any 𝑤1 and 𝑤 > 𝑤1,
𝐶

(𝑤)
1 ∩ [𝑤1] and 𝐶 (𝑤)

2 ∩ [𝑤1] form a bad partition of [𝑤1]. Since the number of bad
partitions of [𝑤1] is finite, there is 𝑤2 > 𝑤1 such that

𝐶
(𝑤2 )
1 ∩ [𝑤1] = 𝐶 (𝑤1 )

1 , 𝐶
(𝑤2 )
2 ∩ [𝑤1] = 𝐶 (𝑤1 )

2 .

Generally, we can find a sequence 𝑤1 < 𝑤2 < 𝑤3 < · · · such that

𝐶
(𝑤 𝑗 )
1 ∩ [𝑤𝑖] = 𝐶 (𝑤𝑖 )

1 , 𝐶
(𝑤 𝑗 )
2 ∩ [𝑤𝑖] = 𝐶 (𝑤𝑖 )

2

for all 𝑖 < 𝑗 . Then, we define 𝐶1, . . . , 𝐶𝑘 by 𝑥 ∈ 𝐶𝑖 if and only if 𝑥 ∈ 𝐶 (𝑤𝑛 )
𝑖

for all
𝑤𝑛 ≥ 𝑥, and {𝐶1, . . . , 𝐶𝑘} is a bad 𝑘-partition of N .)

5. Give a 2-coloring for natural numbers such that there exists no monochromatic
AP of infinite length.

6. Prove that 𝑤𝑘 (𝑡+1) >
√

2𝑡𝑘 𝑡 as follows. (Hint: Show the number of (𝑡+1)-APs
in [𝑁] is less than 𝑁2

2𝑡 from the fact that the number of APs with common difference
𝑑 in [𝑁] is at most 𝑁 − 𝑑𝑡 for 𝑑 ≤ 𝑁/𝑡. Then let 𝑋 be the number of monochromatic
(𝑡+1)-APs in a uniform random 𝑘-coloring of [𝑁]. Then 𝐸 (𝑋) < 𝑁2

2𝑡 𝑘𝑡 . (Erdős-Rado,
1952))
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11.6 Exercises 279

7. Let 𝑁 = 𝑤𝑘 (𝑡2 + 1), and let 𝜒 be a coloring of [𝑁] in two colors. Show that
there exists a 𝑡-AP {𝑎 + 𝑖𝑑 : 0 ≤ 𝑖 ≤ 𝑡 − 1} which together with 𝑑 is monochromatic.
(Hint: Consider a monochromatic 𝑡2-AP with difference 𝑑, and {𝑑, 2𝑑, . . . , 𝑡𝑑}.)

8. Let (𝑋,𝑌 ) be a pair of disjoint subsets of a graph 𝐺 and let 𝜖 ′ ≥ 𝜖 > 0. If
(𝑋,𝑌 ) is 𝜖-regular, then they are 𝜖 ′-regular.

9. Let 𝐺 = (𝐴, 𝐵, 𝐸) be a bipartite graph with |𝐴| = |𝐵| = 𝑛 and 𝑑 = 𝑑 (𝐴, 𝐵),
where (𝐴, 𝐵) is an 𝜖-regular pair.

(1) There are 𝐴1 ⊆ 𝐴 and 𝐵1 ⊆ 𝐵 such that |𝐴1 | ≥ (1 − 𝜖)𝑛 and |𝐵1 | ≥ (1 − 𝜖)𝑛,
and the subgraph of 𝐺 induced by 𝐴1 ∪ 𝐵1 has minimum degree at least (𝑑 − 2𝜖)𝑛.

(2) There are 𝐴2 ⊆ 𝐴 and 𝐵2 ⊆ 𝐵 such that |𝐴2 | ≥ (1 − 𝜖)𝑛 and |𝐵2 | ≥ (1 − 𝜖)𝑛,
and the subgraph of 𝐺 induced by 𝐴2 ∪ 𝐵2 has maximum degree at most (𝑑 + 2𝜖)𝑛.

(3) What can we say about the subgraph of 𝐺 induced by 𝐴1 ∩ 𝐴2 and 𝐵1 ∩ 𝐵2?

10.∗ Sketch the proof of Theorem 11.6. In particular, define the function 𝑞(P)
for a partition P.
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Chapter 12
More Ramsey Linear Functions

From an application of the regularity lemma by Chvátal, Rödl, Szemerédi and Trotter
(1983) introduced in the last chapter, we know that the family of graphs with bounded
maximum degree is Ramsey linear. The Ramsey linearity of families of graphs with
bounded degeneracy is confirmed by Lee (2017), which confirms a conjecture of Burr
and Erdős (1975). In this chapter, we shall discuss more Ramsey linear functions.
The first section discusses the linearity of subdivided graphs, and the second is on a
special linearity: so called Ramsey goodness. All results on Ramsey goodness may
be viewed as the generalizations of Chvátal’s result (1977).

12.1 Subdivided Graphs

The following result is due to Alon (1994), whose original constant was 12. The
improved constant 6 is due to Li, Rousseau, and Šoltés (1997). Note that if 𝐺 is
an essential subdivided graph, then all vertices on 𝐺 of degree at least three are
independent.

Theorem 12.1 If 𝐺 is a graph of order 𝑛 ≥ 3 in which all vertices of degree at least
three are independent, then 𝑟 (𝐺) ≤ 6𝑛 − 12.

Corollary 12.1 The family of essential subdivided graphs is Ramsey linear.

We need two lemmas for the proof.

Lemma 12.1 Let 𝐺 be a graph without isolated vertices. Then

𝑟 (𝐾3, 𝐺) ≤ 3𝑞,

where 𝑞 is the number of edges of 𝐺.

Proof. For 𝑞 = 1, the assertion is trivial. It is easy to see that

𝑟 (𝐾3, 𝐺1 ∪ 𝐺2) ≤ 𝑟 (𝐾3, 𝐺1) + 𝑟 (𝐾3, 𝐺2),

281© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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282 12 More Ramsey Linear Functions

so we may assume that 𝐺 is connected and 𝑞 ≥ 2.
Suppose to the contrary, the assertion fails, then there is a connected graph 𝐺

with 𝑞 edges, where 𝑞 is minimal such that 𝑟 (𝐾3, 𝐺) > 3𝑞. Let us write 𝑛 for the
order of 𝐺 and 𝑁 for 3𝑞. From the definition, there is a red-blue edge coloring of
𝐾𝑁 on vertex set 𝑉 such that there is neither red 𝐾3 nor blue 𝐺. Denote by 𝑅 and 𝐵
for the subgraphs on 𝑉 with edge sets consisting of all red edges or all blue edges,
respectively. Note that for any vertex 𝑢 ∈ 𝑉 , 𝑑𝑅 (𝑢) ≤ 𝑛 − 1 since 𝑅 is triangle-free
thus the subgraph induced by 𝑁𝑅 (𝑢) is completely blue.

Let 𝛿 = 𝛿(𝐺) ≥ 1 be the minimum degree of 𝐺, and let 𝐺′ be the subgraph of
𝐺 by deleting a vertex 𝑣 of degree 𝛿. By the minimality of 𝑞, we have 𝑟 (𝐾3, 𝐺

′) ≤
3(𝑞 − 𝛿) < 3𝑞 and thus 𝐵 contains 𝐺′ as a subgraph. Let 𝑋 ⊆ 𝑉 be the subset of
vertices not belonging to 𝑉 (𝐺′) in 𝐵. Since 𝐵 contains no 𝐺 and 𝑑𝐺 (𝑣) = 𝛿 ≥ 1,
we have that each vertex 𝑢 ∈ 𝑋 is adjacent to at least one vertex in 𝑁𝐺 (𝑣) in 𝑅.
However, each vertex in 𝑁𝐺 (𝑣) can be adjacent to at most 𝑛 − 1 vertices of 𝑋 in 𝑅,
so |𝑋 | = 𝑁 − (𝑛 − 1) ≤ 𝛿(𝑛 − 1), implying 𝑁 ≤ (𝛿 + 1) (𝑛 − 1), which with the facts
that 𝛿𝑛 ≤ 2𝑞 and 𝑛 − 1 ≤ 𝑞 yield

𝑁 ≤ 3𝑞 − 𝛿 ≤ 3𝑞 − 1,

leading to a contradiction. □

The above lemma has been improved as 𝑟 (𝐾3, 𝐺) ≤ 2𝑞 + 1 by Sidorenko (1993),
and Goddard and Kleitman (1994), which was conjectured by Harary.

Another lemma for the proof of main result is as follows.

Lemma 12.2 Let 𝑚 ≥ 1 and 𝑛 ≥ 2 be integers. Then

𝑟 (𝐾𝑛, 𝑚𝐾2) = 𝑛 + 2𝑚 − 2.

Proof. The graph 𝐾𝑛−2 + 𝐾2𝑚−1 does not contain 𝐾𝑛 and its complement, 𝐾𝑛−2 ∪
𝐾2𝑚−1 does not contain 𝑚 independent edges. Hence 𝑟 (𝐾𝑛, 𝑚𝐾2) ≥ 𝑛 + 2𝑚 − 2.

On the other hand, let 𝐺 be a graph of order 𝑛 + 2𝑚 − 2 that does not contain
𝐾𝑛. We shall prove that 𝐺 contains 𝑚 independent edges by induction on 𝑚. This is
clear if 𝑚 = 1. For general 𝑚 ≥ 2, by deleting a pair of non-adjacent vertices 𝑢 and
𝑣, which form an edge in 𝐺, we have a graph 𝐻 of order 𝑛 + 2(𝑚 − 1) − 2, which
does not contain 𝐾𝑛. By induction hypothesis, the complement of 𝐻 contains 𝑚 − 1
independent edges, which with the edge 𝑢𝑣 give 𝑚 independent edges of 𝐺. □

We will need that 𝑟 (𝐾2, 𝑛) ≤ 4𝑛 − 2 and the equality holds for infinitely many
𝑛, proved in Chapter 8. This indicates that the constant in Theorem 12.1 cannot be
replaced by one less than 4.

Proof of Theorem 12.1. With the fact 𝑟 (𝐾3) = 6, we may assume that 𝑛 ≥ 4. We
also assume that 𝐺 is not a subgraph of 𝐾2, 𝑛−2 by the upper bound just mentioned.
Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be the vertex set of 𝐺, without loss of generality, let

𝐼 = {𝑣1, 𝑣2, . . . , 𝑣𝑚} ⊆ 𝑉
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12.1 Subdivided Graphs 283

be a maximal independent set containing all vertices of degree at least three, where
𝑚 < 𝑛. Since 𝐼 is maximal, each vertex in 𝑉 \ 𝐼 has at least one neighbor in 𝐼. Thus
each component 𝐶 of 𝐺 − 𝐼 is a single vertex or an edge. If 𝐶 is a single vertex, it
has either one or two neighbors in 𝐼; and if𝐶 is an edge, then each of its end-vertices
has exactly one neighbor in 𝐼.

We now define a new graph 𝐻 with vertex set 𝑉 (𝐻) = {1, 2, . . . , 𝑚}, and {𝑖, 𝑗}
is an edge of 𝐻 if 𝑣𝑖 and 𝑣 𝑗 are commonly in the neighborhood of some component
of 𝐺 − 𝐼. Since there are at most 𝑛 − 𝑚 components of 𝐺 − 𝐼, we have |𝐸 (𝐻) | ≤
𝑛 − 𝑚 as any component associates at most one such pair (𝑣𝑖 , 𝑣 𝑗 ). Consider a
red-blue edge coloring of the complete graph of order 6𝑛 − 12 on vertex set 𝑈 =

{𝑢1, 𝑢2, . . . , 𝑢6𝑛−12}. Denote by 𝑅 and 𝐵 for the subgraph with vertex set𝑈 and edge
set consisting of all red edges or all blue edges, respectively. By symmetry, we may
assume that at least half of the vertices in𝑈 have red degrees at least 3𝑛−6. Therefore
there is a subset𝑈1 ⊆ 𝑈, say𝑈1 = {𝑢1, 𝑢2, . . . , 𝑢3𝑛−6}, such that |𝑁𝑅 (𝑢𝑖) | ≥ 3𝑛 − 6
for 1 ≤ 𝑖 ≤ 3𝑛 − 6. We then define a yellow graph 𝐹 on vertex set𝑈1 with 𝑢𝑖 and 𝑢 𝑗
are connected by a yellow edge if and only if |𝑁𝑅 (𝑢𝑖) ∩ 𝑁𝑅 (𝑢 𝑗 ) | ≥ 𝑛 − 3.

We claim that the independent number of the graph 𝐹 is at most two. In fact, if
𝑢1, 𝑢2 and 𝑢3 are independent in 𝐹, then

��∪3
𝑖=1𝑁𝑅 (𝑢𝑖)

�� = 3∑︁
𝑖=1

|𝑁𝑅 (𝑢𝑖) | −
∑︁

1≤𝑖< 𝑗≤3
|𝑁𝑅 (𝑢𝑖) ∩ 𝑁𝑅 (𝑢 𝑗 ) | +

��∩3
𝑖=1𝑁𝑅 (𝑢 𝑗 )

��
≥ 3(3𝑛 − 6) − 3(𝑛 − 4) > 6𝑛 − 12,

a contradiction. Then by the fact from Lemma 12.1, we know that 𝐹 contains 𝐻 as
a subgraph including all isolated vertices since 𝐹 has enough vertices.

Therefore, by the definitions of 𝐻 and 𝐹, we obtain a subset

𝐼 ′ = {𝑣′1, 𝑣
′
2, . . . , 𝑣

′
𝑚} ⊆ 𝑈1

with |𝑁𝑅 (𝑣′𝑖) | ≥ 3𝑛 − 6 for 1 ≤ 𝑖 ≤ 𝑚, and |𝑁𝑅 (𝑣′𝑖) ∩ 𝑁𝑅 (𝑣′𝑗 ) | ≥ 𝑛 − 3 if both 𝑣𝑖
and 𝑣 𝑗 are commonly in the neighborhood of some component of 𝐺 − 𝐼.

We shall seek to embed 𝐺 into the red graph 𝑅 such that 𝑣𝑖 → 𝑣′
𝑖

for 1 ≤ 𝑖 ≤ 𝑚.
Suppose that we have constructed the appropriate embedding of some components
of 𝐺 − 𝐼. We now wish to extend this embedding to one more component 𝐶.

Case 1 𝐶 = {𝑣} is a single vertex.

Subcase 1.1 𝑣 has two neighbors 𝑣𝑖 and 𝑣 𝑗 in 𝐼.

Since we have chosen at most 𝑛−3 vertices previously that are not all in 𝑁𝑅 (𝑣′𝑖) ∩
𝑁𝑅 (𝑣′𝑗 ) as 𝐺 is not isomorphic to 𝐾2, 𝑛−2, there is at least one vertex in 𝑁𝑅 (𝑣′𝑖) ∩
𝑁𝑅 (𝑣′𝑗 ) left that can be chosen for 𝑣.

Subcase 1.2 𝑣 has only one neighbor 𝑣𝑖 in 𝐼.

Simply take any vertex that has not been chosen in 𝑁𝑅 (𝑣′𝑖).

Case 2 𝐶 = 𝑒 is an edge.
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284 12 More Ramsey Linear Functions

Subcase 2.1 Two end-vertices of 𝑒 have a common neighbor 𝑣𝑖 in 𝐼.

We can choose any red edge in 𝑁𝑅 (𝑣′𝑖) for 𝑒. If no such red edge available, then
𝑁𝑅 (𝑣′𝑖) induces a complete blue graph of order at least 3𝑛 − 6 ≥ 𝑛. We thus have a
blue graph 𝐺.

Subcase 2.2 Each end-vertex of 𝑒 has a (different) neighbor in 𝐼, say 𝑣𝑖 and 𝑣 𝑗
with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, respectively.

We shall seek a red path of length three with end-vertices 𝑣′
𝑖

and 𝑣′
𝑗
, and one

internal vertex in 𝑁𝑅 (𝑣′𝑖) and one in 𝑁𝑅 (𝑣′𝑗 ), which have not been chosen previously.
Suppose that no such path exists, then any edge between 𝑁𝑅 (𝑣′𝑖) and 𝑁𝑅 (𝑣′𝑗 ) is blue
unless one of its end vertices has been chosen previously. We shall construct a blue
𝐺 in another way. Let 𝑊 be the set of vertices chosen so far and all vertices of 𝐼 in
the embedding of 𝐺 into red graph 𝑅, then |𝑊 | ≤ 𝑛 − 2. And let

𝑋 = (𝑁𝑅 (𝑣′𝑖) ∩ 𝑁𝑅 (𝑣′𝑗 )) \𝑊,
𝑌 = 𝑁𝑅 (𝑣′𝑖) \ (𝑊 ∪ 𝑁𝑅 (𝑣′𝑗 )),
𝑍 = 𝑁𝑅 (𝑣′𝑗 ) \𝑊.

We may assume that |𝑋 | ≤ 𝑛 − 2 since otherwise we have a complete blue graph
induced by 𝑋 and a vertex in 𝑌 of order at least 𝑛 hence a blue 𝐺. Since 𝑌 =

𝑁𝑅 (𝑣′𝑖) \ (𝑊 ∪ 𝑋) and |𝑊 ∪ 𝑋 | ≤ 2𝑛 − 4, we have |𝑌 | ≥ 3𝑛 − 6 − (2𝑛 − 4) = 𝑛 − 2.
Also |𝑍 | ≥ 3𝑛−6−(𝑛−2) = 2𝑛−4. By Lemma 12.2, 𝑟 (𝐾𝑛, (⌊𝑛/2⌋−1)𝐾2) ≤ 2𝑛−4,
we assume that there is a blue matching 𝑀 on 𝑛 − 2 or 𝑛 − 3 vertices in 𝑍 if 𝑛 is
even or odd, respectively. Take a subset 𝐽 ⊆ 𝑌 with |𝐽 | = |𝐼 | = 𝑚 < 𝑛. Let 𝑀 ′ be
the set of union of 𝑀 and one more vertex from 𝑍 , then all edges between 𝐽 and 𝑀
are blue. We can use 𝐽 and 𝑀 to construct a blue 𝐺 with 𝐽 corresponding to 𝐼. This
completes the proof. □

Recently, a result of Chen, Yu and Zhao (2021) states that for any 𝑛,

4.5𝑛 − 5 ≤ 𝑟 (𝐹𝑛) ≤ 5.5𝑛 + 6.

where 𝐹𝑛 = 𝐾1 + 𝑛𝐾2 is an 𝑛-fan, or a friendship graph, see Chapter 7. The above
lower bound follows from the following construction. Let 𝑡 be the largest even number
less than 3𝑛/2. Thus 𝑡 ≥ 3𝑛/2 − 2. We construct a graph 𝐺 = (𝑉, 𝐸) on 3𝑡 vertices
as follows. Let 𝑉1 ∪ 𝑉2 ∪ 𝑉3 be a partition of 𝑉 such that |𝑉1 | = |𝑉2 | = |𝑉3 | = 𝑡

and all 𝐺 [𝑉𝑖] are complete graphs. For each 𝑖 ∈ [3], further partition 𝑉𝑖 into two
subsets 𝑋𝑖 and 𝑌𝑖 with |𝑋𝑖 | = |𝑌𝑖 | = 𝑡/2, and add edges between 𝑋𝑖 and 𝑌𝑖+1 such
that 𝐺 [𝑋𝑖 , 𝑌𝑖+1] is an ⌈𝑛/2⌉-regular bipartite graph, where we assume 𝑌4 = 𝑌1. It is
not difficult to check that both 𝐺 and 𝐺 do not contain a copy of 𝐹𝑛.

Note that the graph 𝐹𝑛 has at most one vertex of degree more than two, so 𝐹𝑛
satisfies the condition of Theorem 12.1. Therefore, we cannot expect the upper bound
of Theorem 12.1 to go down to less than 4.5𝑛 − 5.

We conclude this section with the following problem.
Problem 12.1 Determine 𝑟 (𝐹𝑛).
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12.2 Ramsey Goodness 285

12.2 Ramsey Goodness

Recall a result of Chvávtal in Chapter 1 that for 𝑘, 𝑛 ≥ 1,

𝑟 (𝐾𝑘 , 𝑇𝑛) = (𝑘 − 1) (𝑛 − 1) + 1.

Burr (1981) generalized Chvátal’s result in the following way. Denote by 𝑠(𝐺) for
the minimum number of vertices in a color class among all proper vertex colorings
of 𝐺 by 𝜒(𝐺) colors and call 𝑠(𝐺) the chromatic surplus. For example, 𝑠(𝐾𝑘) = 1,
𝑠(𝐶2𝑚) = 𝑚 and 𝑠(𝐶2𝑚+1) = 1.

Theorem 12.2 Let 𝐺 be a graph with 𝜒(𝐺) = 𝑘 and let 𝐻 be a connected graph of
order 𝑛 ≥ 𝑠(𝐺), then

𝑟 (𝐺, 𝐻) ≥ (𝑘 − 1) (𝑛 − 1) + 𝑠(𝐺).

Proof. Let 𝑠 = 𝑠(𝐺) and 𝑁 = (𝑘 − 1) (𝑛 − 1) + 𝑠 − 1. Color the edges of 𝐾𝑁 red and
blue such that the blue graph is isomorphic to (𝑘 − 1)𝐾𝑛−1 ∪ 𝐾𝑠−1, so it contains no
𝐻. The chromatic number of the red graph is 𝑘 , and the smallest vertex color class
has size 𝑠 − 1, so it contains no 𝐺. Thus 𝑟 (𝐺, 𝐻) ≥ 𝑁 + 1 as desired. □

Burr and Erdős (1983) initiated the study of Ramsey goodness problems. We say
that the connected graph 𝐻 is 𝐺-good if

𝑟 (𝐺, 𝐻) = (𝜒(𝐺) − 1) (𝑛 − 1) + 𝑠(𝐺).

A 𝐾𝑘-good graph is also called a 𝑘-good graph. So any tree is 𝑘-good from Chvátal’s
result, but the edge density of a tree is less than 1. We shall prove 𝐹𝑛 is 3-good. Let us
recall a lemma in the last section, 𝑟 (𝐾𝑘 , 𝑚𝐾2) = 𝑘+2𝑚−2, thus 𝑟 (𝐾3, 𝑛𝐾2) = 2𝑛+1.
The following result is due to Li and Rousseau (1996). Generally, we have that for
any fixed graph 𝐹 and 𝐺, 𝐾1 + 𝑛𝐹 is (𝐾2 + 𝐺)-good for large 𝑛 by using stability
lemma.

Theorem 12.3 Let 𝑛 ≥ 2 be an integer, then 𝐹𝑛 is 3-good, that is

𝑟 (𝐾3, 𝐹𝑛) = 4𝑛 + 1.

Proof. Theorem 12.2 yields 𝑟 (𝐾3, 𝐹𝑛) ≥ 4𝑛+1. We then verify the inverse inequality.
For an arbitrary two-coloring of edges of 𝐾4𝑛+1, let 𝑅 and 𝐵 be the subgraph induced
by all red edges and all blue edges, respectively. Suppose that 𝑅 contains no 𝐾3 and
𝐵 contains no 𝐹𝑛. For any vertex 𝑢, the absence of 𝐾3 implies that 𝑁𝑅 (𝑢) induces
a complete graph in 𝐵, and thus |𝑁𝑅 (𝑢) | ≤ 2𝑛. Also, by 𝑟 (𝐾3, 𝑛𝐾2) = 2𝑛 + 1 as
mentioned, the absence of a blue 𝐹𝑛 implies |𝑁𝐵 (𝑢) | ≤ 2𝑛. It follows that both
graphs 𝑅 and 𝐵 are regular of degree 2𝑛.

Suppose that 𝑢 and 𝑣 are adjacent in 𝑅. Then 𝑁𝑅 (𝑢) and 𝑁𝑅 (𝑣) are disjoint sets,
each inducing a complete graph in 𝐵 of order 2𝑛, and 𝑁𝐵 (𝑢) ∩ 𝑁𝐵 (𝑣) has a single
vertex, which we denote by 𝑤. If 𝑤 were adjacent to one or more vertices of 𝑁𝑅 (𝑢)
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286 12 More Ramsey Linear Functions

or to one or more vertices of 𝑁𝑅 (𝑣), there would yield a blue 𝐹𝑛. It follows that the
degree of 𝑤 in 𝐵, already determined to be 2𝑛, is 2, so 𝑛 = 1. This contradiction
proves that 𝑟 (𝐾3, 𝐹𝑛) ≤ 4𝑛 + 1. □

We have seen that any tree 𝑇 is 𝑘-good and 𝐹𝑛 = 𝐾1 + 𝑛𝐾2 is 3-good if 𝑛 ≥ 2.
For more Ramsey numbers on fans, we refer the reader to Lin and Li (2009, 2010),
Zhang, Broersma and Chen (2015), and Chen, Yu and Zhao (2021), etc. We shall
discuss Ramsey goodness more in this section. Before goodness was defined, Bondy
and Erdős (1973) proved that a long cycle (hence a long path) is𝐶𝑚-good and 𝐾𝑟 (𝑡)-
good. Rosta (1973), and Faudree and Schelp (1974) independently proved that when
𝑚 is odd, 𝐶𝑛 is 𝐶𝑚-good for 𝑛 ≥ 𝑚 and (𝑚, 𝑛) ≠ (3, 3). When 𝑚 is even, 𝐶𝑛 is
𝐶𝑚-good for 𝑛 ≥ 𝑚 and (𝑚, 𝑛) ≠ (4, 4) unless 𝑛 is odd and 3𝑚/2 > 𝑛 ≥ 𝑚, in which
case 𝑟 (𝐶𝑚, 𝐶𝑛) = 2𝑚 − 1. This and 𝑟 (𝐶3, 𝐶3) = 𝑟 (𝐶4, 𝐶4) = 6 gave all Ramsey
numbers 𝑟 (𝐶𝑚, 𝐶𝑛). In particular, we have that

𝑟2 (𝐶𝑛) =
{

2𝑛 − 1 for odd 𝑛 ≥ 5,
3𝑛/2 − 1 for even 𝑛 ≥ 6.

Lemma 12.3 If 𝑛 ≥ 3 is an odd integer, then

𝑟𝑘 (𝐶𝑛) ≥ 2𝑘−1 (𝑛 − 1) + 1.

If 𝑛 ≥ 2 is an even integer, then

𝑟𝑘 (𝐶𝑛) ≥
𝑘 + 1

2
𝑛 − 𝑘 + 1.

Proof. It is easy to see, as proved in Chapter 8, we have

𝑟𝑘 (𝐺) ≥ (𝜒 − 1) (𝑟𝑘−1 (𝐺) − 1) + 1,

where 𝜒 = 𝜒(𝐺), the first lower bound follows immediately. The second is also
easy. For an even integer 𝑛 ≥ 2, let 𝑁𝑘 = 𝑟𝑘 (𝐶𝑛) − 1. There is an edge-coloring of
complete graph of order 𝑁𝑘 by 𝑘 colors such that there is no monochromatic 𝐶𝑛.
Consider such a colored complete graphs and a new complete graph of order 𝑛/2−1.
Color all edges of the new graph and all edges between the two complete graphs by a
new color. Clearly, there is no monochromatic 𝐶𝑛, thus 𝑁𝑘+1 ≥ 𝑁𝑘 + 𝑛/2− 1, which
and the fact that 𝑁1 = 𝑟1 (𝐶𝑛) − 1 = 𝑛 − 1 imply the assertion. □

An application of the regularity lemma showed that for three colors, the above
lower bounds are asymptotical equalities. Namely, it was shown that

𝑟3 (𝐶𝑛) =
{
(4 + 𝑜(1))𝑛 for odd 𝑛,
(2 + 𝑜(1))𝑛 for even 𝑛.

The result for the odd length 𝑛 case was obtained by Luczak (1999), and Gyárfás,
Ruszinkó, Sárközy and Szemerédi (2007), and the other by Figaj and Luczak (2007).
Kohayakawa, Simonovits and Skokan (2005) used Luczak’s method together with
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stability methods proved that 𝑟3 (𝐶𝑛) = 4𝑛 − 3 for sufficiently large odd 𝑛. By using
the regularity method together with nonlinear optimisation, Jenssen and Skokan
(2021) established that

𝑟𝑘 (𝐶𝑛) = 2𝑘−1 (𝑛 − 1) + 1

for all fixed 𝑘 ≥ 2 and sufficiently large odd 𝑛, which confirms a conjecture by
Bondy and Erdős (1973). For each fixed 𝑘 ≥ 3 and large even 𝑛, we have

(𝑘 − 1 + 𝑜(1))𝑛 ≤ 𝑟𝑘 (𝐶𝑛) ≤ (𝑘 − 1/2 + 𝑜(1))𝑛

where the lower bound is due to Yongqi, Yuansheng, Feng and Bingxi (2006) while
the upper bound by Knierim and Su (2019) improves that of Davies, Jenssen and
Roberts (2017) and an earlier upper bound by Sárközy (2016).

Burr (1981) generalized the above results for long cycle 𝐶𝑛 to a graph 𝐻 that
contains a long suspended path. A path of 𝐻 is called suspended if the degree of
each internal vertex is two.

Lemma 12.4 Let 𝐺 be a graph of order 𝑚, and 𝐻 a connected graph of order 𝑛
that contains a suspended path of length ℓ. Let 𝐺1 be a graph from 𝐺 by deleting
an independent set of 𝑡 vertices, and let 𝐻1 be a graph from 𝐻 by shortening the
suspended path by 1. If ℓ ≥ (𝑚 − 2) (𝑚 − 𝑡) + 𝑡 + 1, then

𝑟 (𝐺, 𝐻) ≤ max{𝑟 (𝐺, 𝐻1), 𝑟 (𝐺1, 𝐻) + 𝑛 − 1}.

Proof. For 𝑚 = 1 or 𝑚 = 2, the assertion holds trivially. So we assume that 𝑚 ≥ 3.
Write the right-hand side of the above by 𝑁 . Consider a red-blue edge coloring of
𝐾𝑁 . We shall prove that there is either a red 𝐺 or a blue 𝐻. Since 𝑁 ≥ 𝑟 (𝐺, 𝐻1), we
are done unless there is a blue 𝐻1. Delete 𝑛 − 1 vertices of this blue 𝐻1, there are at
least 𝑟 (𝐺1, 𝐻) vertices left, so we may assume that there is a red𝐺1. Thus we obtain
a blue 𝐻1 and a red 𝐺1. Let 𝑋 and 𝑌 be their disjoint vertex sets with |𝑋 | = 𝑛 − 1
and |𝑌 | = 𝑚 − 𝑡, respectively.

The blue 𝐻1 has a suspended path with ℓ vertices, say

𝑋 ′ = {𝑥1, 𝑥2, . . . , 𝑥ℓ } ⊆ 𝑋

in order. Write 𝑋 ′′ = {𝑥1, 𝑥2, . . . , 𝑥ℓ−1} ⊆ 𝑋 ′. For any 𝑦 ∈ 𝑌 , consider all ℓ−1 edges
between 𝑦 and 𝑋 ′′. We assume that no two consecutive edges 𝑦𝑥𝑖 and 𝑦𝑥𝑖+1 are both
blue, since otherwise we have a blue 𝐻. Furthermore, suppose that 𝑚 − 1 of these
edges are blue, say 𝑦𝑥𝑖1 , 𝑦𝑥𝑖2 , . . . , 𝑦𝑥𝑖𝑚−1 are blue. Consider any edge 𝑥𝑖 𝑗+1𝑥𝑖𝑘+1, if
this edge is blue, we have a blue 𝐻 with the new suspended path

𝑥1 . . . 𝑥𝑖 𝑗 𝑦𝑥𝑖𝑘𝑥𝑖𝑘+1 . . . 𝑥𝑖 𝑗+1 . . . 𝑥ℓ .

If all edges 𝑥𝑖 𝑗+1𝑥𝑖𝑘+1 are red, then 𝑥𝑖1+1, 𝑥𝑖2+1, . . . , 𝑥𝑖𝑚−1+1 and 𝑦 will form a red 𝐾𝑚
hence a red 𝐺. Consequently, we may assume that any 𝑦 ∈ 𝑌 is connected with 𝑋 ′′

in at most 𝑚 − 2 blue edges. Therefore there are at most (𝑚 − 2) (𝑚 − 𝑡) blue edges
between 𝑌 and 𝑋 ′′. Hence at least
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288 12 More Ramsey Linear Functions

ℓ − 1 − (𝑚 − 2) (𝑚 − 𝑡) ≥ 𝑡

vertices in 𝑋 ′′ are connected with each vertex of 𝑌 in red completely. These vertices
and 𝑌 yield a red 𝐺, completing the proof. □

Theorem 12.4 Let 𝐺 be any graph and let 𝐻 be a connected graph of order 𝑝.
Choose an edge of 𝐻 and form a sequence of graphs 𝐻𝑛 by putting 𝑛 − 𝑝 extra
vertices to that edge. If 𝑛 is sufficiently large, then 𝐻𝑛 is 𝐺-good.

Proof. Set 𝑘 = 𝜒(𝐺), 𝑠 = 𝑠(𝐺) and 𝑚 = |𝑉 (𝐺) |. We shall use the induction on 𝑘
to show that 𝑟 (𝐺, 𝐻𝑛) = (𝑘 − 1) (𝑛 − 1) + 𝑠 for sufficiently large 𝑛. The assertion
is trivial for 𝑘 = 1 since 𝑟 (𝐾𝑠 , 𝐻𝑛) = 𝑠 if 𝑛 ≥ 2, so we assume that 𝑘 ≥ 2 and the
assertion holds for 𝑘 − 1. Note that 𝐻𝑛 has a suspended path of length 𝑛 − 𝑝 + 1,
which would yield graph 𝐻𝑛−1 by shortening the suspended path by 1. Let 𝐻𝑛 and
𝐻𝑛−1 play the roles of 𝐻 and 𝐻1 in Lemma 12.4. Consider a vertex coloring of 𝐺
with 𝑘 colors such that there is a color class with 𝑠 vertices. Let 𝑡 ≥ 𝑠 be the number
of vertices in some other color class and let 𝐺1 be the graph from 𝐺 by deleting
those 𝑡 vertices. Applying Lemma 12.4, we have

𝑟 (𝐺, 𝐻𝑛) ≤ max{𝑟 (𝐺, 𝐻𝑛−1), 𝑟 (𝐺1, 𝐻𝑛) + 𝑛 − 1}.

By the induction hypothesis, 𝑟 (𝐺1, 𝐻𝑛) = (𝑘 − 2) (𝑛 − 1) + 𝑠 when 𝑛 ≥ 𝑛0 for some
𝑛0 ≥ 𝑝. Consequently, for 𝑛 ≥ 𝑛0,

𝑟 (𝐺, 𝐻𝑛) ≤ max{𝑟 (𝐺, 𝐻𝑛−1), (𝑘 − 1) (𝑛 − 1) + 𝑠}.

Using Lemma 12.4 repeatedly, we have

𝑟 (𝐺, 𝐻𝑛−1) ≤ max{𝑟 (𝐺, 𝐻𝑛−2), (𝑘 − 1) (𝑛 − 1) + 𝑠},

and

𝑟 (𝐺, 𝐻𝑛) ≤ max{𝑟 (𝐺, 𝐻𝑛−2), (𝑘 − 1) (𝑛 − 1) + 𝑠}
≤ max{𝑟 (𝐺, 𝐻𝑛0 ), (𝑘 − 1) (𝑛 − 1) + 𝑠}

for all 𝑛 ≥ 𝑛0. Hence if (𝑘 − 1) (𝑛 − 1) + 𝑠 ≥ 𝑟 (𝐺, 𝐻𝑛0 ), then

𝑟 (𝐺, 𝐻𝑛) = (𝑘 − 1) (𝑛 − 1) + 𝑠,

completing the proof. □

Recall that a graph 𝐻 is called a subdivision of 𝐹 if it is obtained by replacing
each edge of 𝐹 by a path. We shall say that 𝐻1 is homeomorphic to 𝐻2 if they have
isomorphic subdivisions.

Theorem 12.5 Let 𝐺 be a graph and let 𝐻 be a connected graph. Let 𝐻𝑛 be a graph
of order 𝑛 which is homeomorphic to 𝐻. Then if 𝑛 is large enough, then 𝐻𝑛 is
𝐺-good.
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12.2 Ramsey Goodness 289

Proof. Let 𝑘 = 𝜒(𝐺), 𝑠 = 𝑠(𝐺), 𝑚 = |𝑉 (𝐺) | and 𝑝 = |𝑉 (𝐻) |. We shall proceed the
proof by induction on 𝑘 as that in the proof of Theorem 12.4. The assertion is trivial
for 𝑘 = 1, so we assume that 𝑘 ≥ 2 and the assertion holds for 𝑘−1. If 𝐻 has 𝑞 edges,
then 𝐻𝑛 has a suspended path of length at least (𝑛 − 𝑝)/𝑞 + 1. Let 𝐻𝑛−1 be formed
from 𝐻𝑛 by shortening the suspended path by 1 and let 𝐺1 be a graph as defined in
the proof of Theorem 12.4. Therefore, if (𝑛 − 𝑝)/𝑞 + 1 ≥ (𝑚 − 2) (𝑚 − 𝑡) + 𝑡 + 1,
then Lemma 12.4 gives that

𝑟 (𝐺, 𝐻𝑛) ≤ max{𝑟 (𝐺, 𝐻𝑛−1), 𝑟 (𝐺1, 𝐻𝑛) + 𝑛 − 1}.

Applying the induction hypothesis on 𝑟 (𝐺1, 𝐻𝑛), we know that there is some 𝑛0 ≥ 𝑝,
such that for all 𝑛 ≥ 𝑛0,

𝑟 (𝐺, 𝐻𝑛) ≤ max{𝑟 (𝐺, 𝐻𝑛−1), (𝑘 − 1) (𝑛 − 1) + 𝑠}.

The proof concludes as before. □

Theorem 12.4 has been generalized to multi-color cases 𝑟 (𝐵1, . . . , 𝐵𝑘 , 𝐻𝑛) where
𝐵𝑖 are bipartite graphs, and

𝑟 (𝐾𝑖 , . . . , 𝐾 𝑗 , 𝐶2𝑘+1, . . . , 𝐶2ℓ+1, 𝐻𝑛),

see Burr (1982).
One can find the following result in Lin, Li and Dong (2009).

Theorem 12.6 Let 𝐺 be a graph with 𝑠(𝐺) = 1 and let 𝑇 be a tree. If 𝑇 is 𝐺-good,
then it is (𝐾1 + 𝐺)-good.

Proof. Let 𝑛 be the order of 𝑇 . As 𝜒(𝐾1 + 𝐺) = 𝜒(𝐺) + 1 and 𝑠(𝐾1 + 𝐺) = 1 we
have

𝑟 (𝐾1 + 𝐺,𝑇) ≥ 𝜒(𝐺) (𝑛 − 1) + 1,

so the assertion follows from

𝑟 (𝐾1 + 𝐺,𝑇) ≤ 𝑟 (𝐺,𝑇) + 𝑛 − 1.

Let 𝑁 = 𝑟 (𝐺,𝑇) + 𝑛 − 1 and consider any red-blue edge coloring of 𝐾𝑁 . Let 𝑇 ′ be
the maximum subtree of 𝑇 in color blue. If 𝑇 ′ = 𝑇 , we are done. So we assume that
the order of 𝑇 ′ is at most 𝑛 − 1, and delete these vertices. There are at least 𝑟 (𝐺,𝑇)
vertices left. Since there is no blue 𝑇 , we have a red 𝐺 on a vertex set 𝑋 . Among
deleted vertices, there is a vertex, say 𝑣, from which one blue edge to a vertex in 𝑋
will yield a large blue subtree of 𝑇 . By this reason, 𝑣 is connected to 𝑋 completely
red, so we have a red 𝐾1 + 𝐺. □

Let 𝐺 be a fixed graph. We may wonder whether or not an enough sparse large
connected graph is 𝐺-good. The answer for general graph 𝐺 is negative such as
𝐺 = 𝐶4.

Recall graph 𝐸𝑅𝑞 constructed by Erdős, Rényi, Sós and Brown in Chapter 9. The
order of 𝐸𝑅𝑞 is 𝑞2 + 𝑞 + 1 and 𝐸𝑅𝑞 contains no 𝐶4 as a subgraph. From the fact that
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290 12 More Ramsey Linear Functions

each vertex has a degree 𝑞 or 𝑞 + 1, we know that the maximum degree of 𝐸𝑞 is 𝑞2.
Hence for 𝑛 = 𝑞2 + 1,

𝑟 (𝐶4, 𝐾1,𝑛) ≥ 𝑛 +
√
𝑛 − 1 + 1.

The above lower bound means that 𝑟 (𝐶4, 𝐾1,𝑛) > 𝑛 + 2 for 𝑛 = 𝑞2 + 1.

Proposition 12.1 The star 𝐾1,𝑛 is not 𝐶4-good for 𝑛 = 𝑞2 + 1.

For more non-goodness examples, we refer the reader to Lin, Li and Dong (2010),
and Lin and Liu (2021).

However, we can find some star-like graphs are𝐺-good for any𝐺. Before giving a
result, we define the upper chromatic surplus 𝑠(𝐺) as maximum number of vertices
in a color class among all proper vertex coloring of 𝐺 using 𝜒(𝐺) colors. Clearly,
𝑠(𝐺) ≥ 𝑠(𝐺). Also, a pendant edge of a graph 𝐻 is an edge that has an end vertex
of degree one.

Theorem 12.7 Let 𝐺 be any graph without isolates and let 𝐻 be a connected graph
of order 𝑝 ≥ 𝑠(𝐺). For any 𝑈 ⊆ 𝑉 (𝐻) with |𝑈 | = 𝑠(𝐺), let H𝑛 denote the class of
graphs obtained from 𝐻 by adding 𝑛 − 𝑝 pendent edges joining with vertices in 𝑈.
If 𝑛 is sufficiently large, then 𝐻𝑛 is 𝐺-good for some 𝐻𝑛 ∈ H𝑛.

Proof. Let 𝑘 = 𝜒(𝐺) and 𝑠 = 𝑠(𝐺). We shall prove that for some 𝐻𝑛 ∈ H𝑛,

𝑟 (𝐺, 𝐻𝑛) ≤ (𝑘 − 1) (𝑛 − 1) + 𝑠

if 𝑛 is sufficiently large. For 𝑘 = 1,𝐺 = 𝐾1 and the assertion is trivial. Here we admit
that the only vertex in 𝐾1 is not an isolate. Suppose that 𝑘 ≥ 2 and the assertion
holds for 𝑘 − 1. Consider a vertex coloring of 𝐺 by 𝑘 colors with color classes
𝐶1, 𝐶2, . . . , 𝐶𝑘 satisfying

𝑠 = |𝐶1 | ≤ |𝐶2 | ≤ · · · ≤ |𝐶𝑘 | ≤ 𝑠(𝐺).

Denote by 𝐺′ for the graph from 𝐺 by deleting 𝐶𝑘 . Then 𝜒(𝐺′) = 𝑘 − 1 and
𝑠(𝐺′) = 𝑠. By the induction hypothesis, there exists 𝑁 > 0 such that if 𝑛 ≥ 𝑁 we
can find some specific 𝐻′ ∈ H𝑛 that is 𝐺′−good, namely

𝑟 (𝐺′, 𝐻′) = (𝑘 − 2) (𝑛 − 1) + 𝑠.

Take 𝑁1 ≥ 𝑁 such that (𝑘 − 1) (𝑁1 − 1) + 𝑠 ≥ 𝑟 (𝐺, 𝐻). For 𝑛 ≥ 𝑁1 set 𝑞 =

(𝑘 − 1) (𝑛− 1) + 𝑠 and let (𝑅, 𝐵) be an edge-coloring of 𝐾𝑞 in red and blue. We want
to show that either 𝐺 ⊂ ⟨𝑅⟩ or 𝐻′′ ⊂ ⟨𝐵⟩ for some 𝐻′′ ∈ H𝑛.

Suppose to the contrary, that ⟨𝑅⟩ contains no 𝐺 and ⟨𝐵⟩ contains no any member
of H𝑛. Since 𝑞 ≥ 𝑟 (𝐺, 𝐻), we have 𝐻 ⊂ ⟨𝐵⟩. We thus assume that there is some
𝑚 with 𝑝 ≤ 𝑚 < 𝑛 such that ⟨𝐵⟩ contains some member of H𝑚 but no member of
H𝑚+1. Then there is a partition 𝑋 ∪ 𝑌 of vertex set 𝐾𝑞 with |𝑋 | = 𝑚 and

|𝑌 | = 𝑞 − 𝑚 ≥ (𝑘 − 2) (𝑛 − 1) + 𝑠 = 𝑟 (𝐺′, 𝐻′)
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such that ⟨𝑋⟩𝐵 (the blue graph induced by 𝑋) contains some member of H𝑚 and all
edges 𝑥𝑦 with 𝑥 ∈ 𝑈 ⊆ 𝑉 (𝐻) ⊆ 𝑋 and 𝑦 ∈ 𝑌 are red. Since ⟨𝑌⟩𝐵 contains no 𝐻′,
we have that ⟨𝑌⟩𝑅 contains 𝐺′. Finally from the fact |𝑈 | = 𝑠(𝐺) ≥ |𝐶𝑘 |, we obtain
a red 𝐺. This contradiction completes the proof. □

We have seen that any tree is 𝑘-good for any 𝑘 , and a long path is 𝐺-good for
any fixed 𝐺. Negatively, all large stars are not 𝐶4-good. So we do not expect that a
large sparse graph is 𝐺-good for a non-complete graph 𝐺. But we may believe that
𝑟 (𝐺, 𝐾1,𝑛) achieves the maximum value among all 𝑟 (𝐺,𝑇𝑛), where 𝑇𝑛 is a tree on 𝑛
vertices.

However, for fixed 𝑘 and 𝑑, if 𝐻 is 𝑑-degenerate, then 𝑟 (𝐾𝑘 , 𝐻) grows linearly on
the order of 𝐻.

Theorem 12.8 Let 𝑘 and 𝑑 be fixed positive integers. Then there exists a constant
𝑐 = 𝑐(𝑘, 𝑑) > 0 such that for any 𝑑-degenerate graph 𝐻 of order 𝑛,

𝑟 (𝐾𝑘 , 𝐻) ≤ 𝑐𝑛.

Proof. For 𝑘 = 1, the assertion is trivial. Noting the fact that 𝑟 (𝐾2, 𝐻) = 𝑛, we
recursively define a sequence of constants {𝑐𝑖} by setting 𝑐2 = 1 and 𝑐𝑘 = 𝑑𝑐𝑘−1 + 1
for 𝑘 ≥ 3. We shall prove that 𝑟 (𝐾𝑘 , 𝐻) ≤ 𝑐𝑘 𝑛. Suppose to the contrary that there
is a red-blue coloring of edges of 𝐾𝑁 , where 𝑁 = 𝑐𝑘𝑛, that contains neither a
red 𝐾𝑘 nor a blue 𝐻. Moreover, suppose 𝑘 ≥ 3 is the smallest integer with this
property. If the colored 𝐾𝑁 has a vertex 𝑣 incident with at least 𝑐𝑘−1𝑛 red edges,
since 𝑟 (𝐾𝑘−1, 𝐻) ≤ 𝑐𝑘−1𝑛 with the choice of 𝑘 , then we obtain a blue 𝐻 or a red
𝐾𝑘−1 extendable to a red 𝐾𝑘 by the addition of 𝑣. Both cases violate our assumption.
Thus each vertex is incident with at most 𝑐𝑘−1𝑛 − 1 red edges.

Now we shall show that any 𝑑 vertices have at least 𝑛 common blue neighbors. To
see this, fixed 𝑑 vertices and remove them and their red neighbors. Since each vertex
is incident with at most 𝑐𝑘−1𝑛 − 1 red edges, we delete at most 𝑑𝑐𝑘−1𝑛 vertices.
The remaining set, which is the intersection of blue neighborhoods of fixed vertices,
contains at least 𝑐𝑘𝑛 − 𝑑𝑐𝑘−1𝑛 = 𝑛 vertices.

Since 𝐻 is 𝑑-degenerate, we may set 𝑉 (𝐻) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} with the property
that any vertex 𝑣𝑖 has at most 𝑑 neighbors in {𝑣1, . . . , 𝑣𝑖−1}. Let 𝐻𝑚 be the subgraph
of 𝐻 induced by {𝑣1, . . . , 𝑣𝑚}. Since the colored 𝐾𝑁 contains neither red 𝐾𝑘 nor
blue 𝐻, we may assume that 𝑚 is the largest integer such that a blue 𝐻𝑚 exists with
1 ≤ 𝑚 ≤ 𝑛−1. However, 𝑣𝑚+1 has at most 𝑑 neighbors in {𝑣1, . . . , 𝑣𝑚}, we can easily
obtain a blue 𝐻𝑚+1 since any 𝑑 vertices have at least 𝑛 common blue neighbors, and
fewer than 𝑛 of them have been used. This is a contradiction. □

12.3 Large Books Are 𝒑-Good

Burr and Erdős (1983) asked a problem as follows. Let 𝑝 and 𝑑 be fixed. Let 𝐺
be large connected graphs with Δ(𝐺) ≤ 𝑑. Is 𝐺 𝑝-good? This was disproved by
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292 12 More Ramsey Linear Functions

Brandt (unpublished), see ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/1996/pr-a-
96-24.ps. Nikiforov and Rousseau (2009) mentioned that they showed that almost all
100-regular graphs are not 3-good. Their paper contains positive answers for almost
all problems of Burr and Erdős on Ramsey goodness. Define the 𝑚-th power 𝐻𝑚
of a graph 𝐻 as a graph on vertex set 𝑉 (𝐻) and 𝑢𝑣 is an edge of 𝐻𝑚 if and only if
the distance of 𝑢 and 𝑣 in 𝐻 is at most 𝑚. Nikiforov and Rousseau (2009) showed
that for fixed graph 𝐻 and integers 𝑘, ℓ and 𝑚, if 𝐻1 is large and homeomorphic to
𝐻, then 𝐾ℓ + 𝐻𝑚1 is 𝑘-good; and the essential subdivision of large 𝐾𝑛 is 𝑝-good.
Allen, Brightwell and Skokan (2013) proved that for any fixed integer 𝑚 ≥ 1 and
graph 𝐺, then 𝑃𝑚𝑛 (hence the connected subgraph of order 𝑛) is 𝐺-good for large 𝑛.
Their method is a mix of the regularity lemma and Turán type stability. Before these
results, Nikiforov and Rousseau (2004) already proved that the large book graph 𝐵 (𝑘 )

𝑛

are 𝑝-good. However, all of the bounds on 𝑛 of these results are of tower type when
the proofs rely on the regularity lemma. Recently, avoiding to use regularity lemma,
Fox, He and Wigderson (2021+) obtain that if 𝑛 ≥ 2𝑘10𝑝 , then the book graph 𝐵 (𝑘 )

𝑛

is 𝑝-good. For more results on Ramsey goodness, we refer the reader to the survey
by Conlon, Fox and Sudakov (2015, Section 2.5) and other related references.

Theorem 12.9 If 𝑛 ≥ 2𝑘10𝑝 , then 𝐵 (𝑘 )
𝑛 is 𝐾𝑝-good.

We first have the following lemmas. For convenience, we use 𝐵𝑘,𝑛 to denote the
book graph 𝐵 (𝑘 )

𝑛−𝑘 .

Lemma 12.5 Let 𝑘, 𝑟, 𝑠, 𝑡 be positive integers with 𝑠 ≤ 𝑡 and 2𝑘 ≤ 𝑡, and let𝐺 be any
graph. Let Γ be a 𝐺-free graph with 𝑁 ≥

(𝑡
𝑠

)𝑟 𝑡
2𝑘𝑠 𝑟 (𝐺, 𝐾𝑠) vertices which contains

𝐾𝑟 (𝑡) as an induced subgraph, with parts 𝑉1, . . . , 𝑉𝑟 . If Γ does not contain a book
𝐵𝑘,𝑛 with 𝑛 ≥ (1 − 4𝑘𝑠/𝑡)𝑁/𝑟 vertices, then Γ contains an induced copy of 𝐾𝑟+1 (𝑠)
with parts𝑊0, . . . ,𝑊𝑟 , where𝑊𝑖 ⊆ 𝑉𝑖 for every 1 ≤ 𝑖 ≤ 𝑟.

Proof. Let 𝜖 = 𝑠/𝑡. Partition the vertex set of Γ into 𝑟 + 1 parts 𝑈0,𝑈1, . . . ,𝑈𝑟 ,
where, for each 𝑖 ∈ [𝑟], every vertex in 𝑈𝑖 has degree at most 𝜖𝑡 to 𝑉𝑖 , and every
vertex in𝑈0 has degree at least 𝜖𝑡 to each 𝑉 𝑗 . Note that by construction, 𝑉𝑖 ⊆ 𝑈𝑖 for
𝑖 ∈ [𝑟].

Suppose there is 𝑖 ∈ [𝑟] such that |𝑈𝑖 | ≥ (1 − 2𝑘𝜖)𝑁/𝑟. Let 𝑋 denote the set of
all vertices 𝑣 ∈ 𝑉𝑖 with at most 2𝜖 |𝑈𝑖 \ 𝑉𝑖 | neighbors in 𝑈𝑖 \ 𝑉𝑖 . Since each vertex
in 𝑈𝑖 has density at most 𝜖 to 𝑉𝑖 , we have |𝑋 | ≥ |𝑉𝑖 | \ 2 = 𝑡/2 ≥ 𝑘 . Let 𝑄 be any
𝑘 vertices in 𝑋 . Then all but at most a 2𝑘𝜖 fraction of the vertices in 𝑈𝑖 \ 𝑉𝑖 are
empty to 𝑄. So 𝑄 together with the vertices of𝑈𝑖 that have no neighbors in 𝑄 form
a 𝑘-book in Γ with at least (1 − 2𝑘𝜖) |𝑈𝑖 \𝑉𝑖 | + |𝑉𝑖 | ≥ (1 − 4𝑘𝜖)𝑁/𝑟 vertices.

So we may assume that there is no 𝑖 ∈ [𝑟] with |𝑈𝑖 | ≥ (1− 2𝑘𝜖)𝑁/𝑟. In this case,
we have |𝑈0 | ≥ 𝑁 − 𝑟 (1 − 2𝑘𝜖)𝑁/𝑟 = 2𝑘𝜖𝑁 . By the pigeonhole principle, there is
a subset 𝑇 ⊂ 𝑈0 of size at least

(𝑡
𝑠

)−𝑟 |𝑈0 | ≥ 𝑟 (𝐺, 𝐾𝑠) such that there are subsets
𝑊𝑖 ⊆ 𝑉𝑖 with |𝑊𝑖 | = 𝑠 for 𝑖 ≥ 1 such that every vertex in 𝑇 is complete to each
𝑊𝑖 . As Γ and hence the induced subgraph Γ[𝑇] is 𝐺-free and |𝑇 | ≥ 𝑟 (𝐺, 𝐾𝑠), we
know that 𝑇 contains an independent set 𝑊0 of order 𝑠. Then 𝑊0,𝑊1, . . . ,𝑊𝑟 form
a complete induced (𝑟 + 1)-partite subgraph of Γ with parts of size 𝑠. □

ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/1996/pr-a-96-24.ps
ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/1996/pr-a-96-24.ps


Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly
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The next lemma shows that, once we find a large induced complete multipartite
subgraph of Γ, we can find a large book in Γ.

Lemma 12.6 If a 𝐾𝑝-free graph Γ on 𝑛 vertices contains 𝐾𝑝−1 (𝑘) as an induced
subgraph, then its vertex set can be partitioned into 𝑝 − 1 subsets that each span a
𝑘-book in Γ.

Proof. Let 𝑉1, . . . , 𝑉𝑝−1 be the 𝑝 − 1 parts of the induced 𝐾𝑝−1 (𝑘). As Γ is 𝐾𝑝-free,
each vertex in Γ has no neighbors in some 𝑉𝑖 . Partition the vertex set of Γ into 𝑝 − 1
parts𝑈1, . . . ,𝑈𝑝−1, where, for each 𝑖 ∈ [𝑝 − 1], each vertex in𝑈𝑖 has no neighbors
in 𝑉𝑖 . Then each𝑈𝑖 spans a 𝑘-book in Γ with spine 𝑉𝑖 . □

The next result is the main form in which we use Lemma 12.5, and follows from
it by a simple inductive argument.

Lemma 12.7 Let 𝑘, 𝑝, 𝑥 be positive integers, and let 𝑧 = 𝑥 · (20𝑘) 𝑝 . Let Γ be a
𝐾𝑝-free graph on at least 𝑁 = (𝑝 − 1) (𝑛 − 1) + 1 vertices, and suppose 𝑆 ⊆ 𝑉 (Γ)
satisfies |𝑆 | ≥ 𝑧𝑧 · 𝑟 (𝐾𝑝 , 𝐾𝑧). Then either Γ contains a copy of 𝐵𝑘,𝑛, or else Γ

contains 𝐾𝑝−1 (𝑥) as an induced subgraph, one part of which is a subset of 𝑆.

Proof. For 𝑟 = 1, . . . , 𝑝 − 2, let 𝜖𝑟 = (1 − 𝑟/(𝑝 − 1))/(4𝑘) so that (1 − 4𝑘𝜖𝑟 )/𝑟 =

1/(𝑝 − 1). Let 𝑡𝑝−1 = 𝑥 and 𝑡𝑟 = 𝑡𝑟+1/𝜖𝑟 for 𝑟 = 𝑝 − 2, . . . , 1. Observe that

𝑡1 = 𝑡𝑝−1/Π𝑝−2
𝑟=1 𝜖𝑟 = 𝑥(4𝑘)

𝑝−2 (𝑝 − 1) 𝑝−2/(𝑝 − 2)! < (20𝑘) 𝑝𝑥 = 𝑧.

Since 𝑡1 ≥ 𝑡2 ≥ · · · ≥ 𝑡𝑝−1, this implies that 𝑡𝑟 < 𝑧 for all 𝑟. We now prove by
induction on 𝑟 for 𝑟 ∈ [𝑝 − 1] that Γ contains 𝐾𝑟 (𝑡𝑟 ) as an induced subgraph,
with the first part of 𝐾𝑟 (𝑡𝑟 ) being a subset of 𝑆. For the base case 𝑟 = 1, we have
|𝑆 | ≥ 𝑟 (𝐾𝑝 , 𝐾𝑧) > 𝑟 (𝐾𝑝 , 𝐾𝑡1 ), so Γ contains an independent set of order 𝑡1, that is,
Γ[𝑆] contains 𝐾𝑟 (𝑡𝑟 ) with 𝑟 = 1 as an induced subgraph. Now suppose Γ contains
𝐾𝑟 (𝑡𝑟 ) as an induced subgraph, with the first part a subset of 𝑆. We apply Lemma
12.5 with 𝑠 = 𝑡𝑟 + 1, 𝑡 = 𝑡𝑟 , and 𝐺 = 𝐾𝑝 . Observe that(

𝑡𝑟+1
𝑡𝑟

) (
2𝑘𝑡𝑟+1
𝑡𝑟

)−1
𝑟 (𝐾𝑝 , 𝐾𝑡𝑟+1 ) ≤

(
𝑒

𝜖𝑟

)𝑟𝑡𝑟 (
2𝑘𝑡𝑟+1
𝑡𝑟

)−1
𝑟 (𝐾𝑝 , 𝐾𝑡𝑟+1 )

≤ 𝑧𝑧 · 𝑟 (𝐾𝑝 , 𝐾𝑧) ≤ |𝑆 |.

So either Γ contains a 𝑘-book with at least (1 − 4𝑘𝜖𝑟)𝑁/𝑟 = 𝑁/(𝑝 − 1) ≥ 𝑛

vertices, in which case we are done, or Γ contains an induced 𝐾𝑟+1 (𝑡𝑟+1) whose first
𝑟 parts are subsets of the 𝑟 parts of the 𝐾𝑟 (𝑡𝑟 ). In particular, the first part of this
induced 𝐾𝑟+1 (𝑡𝑟 ) is a subset of 𝑆. This proves the claimed inductive statement. The
desired statement is just then the case 𝑟 = 𝑝 − 1. □

Proof of Theorem 12.9. Let 𝑁 = (𝑝 − 1) (𝑛 − 1) + 1. Our choice of 𝑛 guarantees
that if 𝑧 = 𝑘 (20𝑘) 𝑝 , then 𝑁 ≥ 𝑧𝑧 · 𝑟 (𝐾𝑝 , 𝐾𝑧). Suppose for the sake of contradiction
that there is a 𝐾𝑝-free graph on 𝑁 vertices such that Γ does not contain a 𝑘-book
with vertices. By Lemma 12.7, applied with 𝑆 = 𝑉 (Γ) and 𝑥 = 𝑘 , we see that Γ𝑛
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294 12 More Ramsey Linear Functions

must contain 𝐾𝑝−1 (𝑘) as an induced subgraph. But then Lemma 12.5 implies that Γ
contains a 𝑘-book with 𝑛 vertices as a subgraph, completing the proof. □

Note that all bounds on the parameters are of tower types whenever the proofs
depend on the regularity lemma. Fox, He and Wigderson (2021+) also obtain general
goodness results involving books. As pointed out by Fox, He and Wigderson (2021+),
it would be very interesting to see how far one can push these ideas. In particular, is
it possible to completely eliminate the use of the regularity lemma from the proof of
Nikiforov and Rousseau (Theorem 2.1, 2009)?

12.4 Exercises

1. Let 𝑎, 𝑏, 𝑘 be positive integers and let 𝐺1, · · · , 𝐺𝑘 be graphs of order 𝑛. If in
each 𝐺𝑖 the number of vertices with degrees greater than 𝑎 is at most 𝑏, then there
exists a constant 𝑐 = 𝑐(𝑎, 𝑏, 𝑘) such that 𝑟 (𝐺1, · · · , 𝐺𝑘) ≤ 𝑐𝑛.

2. Prove that 𝐵𝑛 is 3-good for 𝑛 ≥ 2.

3. Prove that 𝑟𝑘 (𝐾1,ℓ , . . . , 𝐾1,𝑚) = ℓ + · · · +𝑚 − 𝑘 + 𝜏, where 𝜏 = 1 if the number
of even integers in {ℓ, . . . , 𝑚} is even and positive, and 𝜏 = 2 otherwise.

4. Prove that 𝑟 (𝐾1,ℓ , . . . , 𝐾1,𝑚, 𝐾𝑝) = (𝑟−1) (𝑝−1)+1, where 𝑟 = 𝑟 (𝐾1,ℓ , . . . , 𝐾1,𝑚).

5. Let 𝐺1, . . . , 𝐺𝑘 be connected graphs. Denote 𝑟1 = 𝑟 (𝐺1, . . . , 𝐺𝑘) and 𝑟2 =

𝑟 (𝐾𝑚, . . . , 𝐾𝑛).
(1) Prove that if 𝑟 (𝐺1, . . . , 𝐺𝑘 , 𝐾ℓ) = (𝑟1 − 1) (ℓ − 1) + 1 for any ℓ ≥ 2, then

𝑟 (𝐺1, . . . , 𝐺𝑘 , 𝐾𝑚, . . . , 𝐾𝑛) = (𝑟1 − 1) (𝑟2 − 1) + 1. (Hint: Omidi and Raeisi, 2011)
(2) Prove taht 𝑟 (𝐾1,ℓ , . . . , 𝐾1,𝑚, 𝐾𝑝 , . . . , 𝐾𝑞) = (𝑟1 − 1) (𝑟2 − 1) + 1, where 𝑟1 =

𝑟 (𝐾1,ℓ , . . . , 𝐾1,𝑚) and 𝑟2 = 𝑟 (𝐾𝑝 , . . . , 𝐾𝑞).
(3) Given 𝑝, . . . , 𝑞, prove 𝑟 (𝐶𝑛, 𝐾𝑝 , . . . , 𝐾𝑞) = (𝑛 − 1) (𝑟 − 1) + 1 for large 𝑛,

where 𝑟 = 𝑟 (𝐾𝑝 , . . . , 𝐾𝑞).

6.∗ Prove that for any 𝑘 ≥ 1 and large 𝑛, 𝑟 (𝐾𝑘 , 𝐹𝑛) = 2(𝑘 − 1)𝑛 + 1. (Hint: Li and
Rousseau, 1996)

7.∗ Let𝐺 be a graph of order 𝑚, and 𝐻 a connected graph of order 𝑛 that contains
a suspended path of length ℓ. Let 𝐺1 be a graph from 𝐺 by deleting an independent
set of 𝑡 vertices, and 𝐻1 a graph from 𝐻 by shortening the suspended path by 1.
Prove that if ℓ ≥ (𝑚 − 2) (𝑚 − 𝑡) + 𝑡 + 1, then

𝑟 (𝐺, 𝐻) ≤ max{𝑟 (𝐺, 𝐻1), 𝑟 (𝐺1, 𝐻) + 𝑛 − 1}.

(Hint: Burr, 1981)

8.∗ Let 𝑘 and 𝑑 be fixed positive integers. Prove that there exists a constant
𝑐 = 𝑐(𝑘, 𝑑) > 0 such that for any 𝑑-degenerate graph 𝐻 of order 𝑛, 𝑟 (𝐾𝑘 , 𝐻) ≤ 𝑐𝑛.
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9.∗ Chen, Yu and Zhao (2021) obtained that 4.5𝑛 − 5 ≤ 𝑟 (𝐹𝑛) ≤ 5.5𝑛 + 6. Prove
the upper bound.
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Chapter 13
Various Ramsey Problems

Ramsey theorem has inspired many striking and difficult problems with a lot of vari-
ations. We discuss some of them in this chapter, particularly size Ramsey numbers,
bipartite Ramsey numbers, and Folkman numbers, etc.

13.1 Size Ramsey Numbers

For graphs 𝐺, 𝐺1 and 𝐺2, let

𝐺 → (𝐺1, 𝐺2)

signify that any red-blue edge coloring of 𝐺 contains a red 𝐺1 or a blue 𝐺2. So
Ramsey number 𝑟 (𝐺1, 𝐺2) is the smallest 𝑁 such that 𝐾𝑁 → (𝐺1, 𝐺2), namely

𝑟 (𝐺1, 𝐺2) = min{𝑁 : 𝐾𝑁 → (𝐺1, 𝐺2)}
= min{|𝑉 (𝐺) | : 𝐺 → (𝐺1, 𝐺2)},

where the second equality holds as 𝐺 → (𝐺1, 𝐺2) implies 𝐾𝑁 → (𝐺1, 𝐺2) with
𝑁 = |𝑉 (𝐺) |. As the number of edges 𝑒(𝐺) of a graph 𝐺 is often called the size of
𝐺, Erdős, Faudree, Rousseau and Schelp (1978) introduced an idea of measuring
minimality with respect to size rather than order of the graphs with 𝐺 → (𝐺1, 𝐺2).
Recall the size Ramsey number

𝑟 (𝐺1, 𝐺2) = min{𝑒(𝐺) : 𝐺 → (𝐺1, 𝐺2)}.

Directly from the definition, we see that 𝑟 (𝐺1, 𝐺2) ≤ 𝑞 is equivalent to the
existence of a graph 𝐺 with 𝑞 = 𝑒(𝐺) such that 𝐺 → (𝐺1, 𝐺2). However, a
statement 𝑟 (𝐺1, 𝐺2) > 𝑞 is equivalent to that for any graph 𝐺 with 𝑒(𝐺) = 𝑞, there
is a coloring of 𝐸 (𝐺) in red and blue, such that there is neither red 𝐺1 nor blue 𝐺2

297© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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298 13 Various Ramsey Problems

that is denoted by 𝐺 ̸→ (𝐺1, 𝐺2). Needless to say, an edge coloring in two colors is
equivalent to a partition of edge set into two subsets.

Lemma 13.1 Let 𝐺1 and 𝐺2 be graphs. Then

𝑟 (𝐺1, 𝐺2) ≤
(
𝑟 (𝐺1, 𝐺2)

2

)
.

Proof. Set 𝑟 = 𝑟 (𝐺1, 𝐺2). Then 𝐾𝑟 → (𝐺1, 𝐺2), so

𝑟 (𝐺1, 𝐺2) ≤ 𝑒(𝐾𝑟 ) =
(
𝑟

2

)
as claimed. □

The following result is due to Chvátal, reported in Erdős, Faudree, Rousseau and
Schelp (1978), which indicates that the problem is not new if both 𝐺1 and 𝐺2 are
complete graphs.

Theorem 13.1 Let 𝑟 = 𝑟 (𝑚, 𝑛). Then

𝑟 (𝐾𝑚, 𝐾𝑛) =
(
𝑟

2

)
.

Furthermore, if 𝐺 is a connected graph with 𝑒(𝐺) ≤
(𝑟
2
)

such that 𝐺 → (𝐾𝑚, 𝐾𝑛),
then 𝐺 = 𝐾𝑟 .

Proof. To avoid the trivial case, we assume that 𝑚, 𝑛 ≥ 2. Let us begin with an
observation. Let the edge set of a graph 𝐺 be colored by red and blue and let 𝑢
and 𝑣 be two non-adjacent vertices of 𝐺. Consider the induced edge colorings of
graphs 𝐺 − 𝑢 and 𝐺 − 𝑣. If there is neither a monochromatic 𝐾𝑚 in 𝐺 − 𝑢 nor a
monochromatic 𝐾𝑛 in 𝐺 − 𝑣, then the same is true in 𝐺. The reason is simple. Any
assumed monochromatic complete graph in 𝐺 cannot contain both 𝑢 and 𝑣, since
these two vertices are not adjacent. Hence, any monochromatic complete graph
would appear in the induced coloring of either 𝐺 − 𝑢 or 𝐺 − 𝑣.

Set 𝑅 =
(𝑟
2
)
. Let 𝐺 = (𝑉, 𝐸) be a connected graph of size 𝑞 with 𝑞 ≤ 𝑅. We shall

prove the following claim first.

Claim If 𝐺 ≠ 𝐾𝑟 , then 𝐺 ̸→ (𝐾𝑚, 𝐾𝑛).

Proof. Let 𝑝 be the order of 𝐺. We shall prove the claim by induction on 𝑝.
The claim is certainly true for 𝑝 < 𝑟 = 𝑟 (𝑚, 𝑛), since 𝐾𝑝 ̸→ (𝐾𝑚, 𝐾𝑛) induces an
edge coloring of 𝐺 for 𝐺 ̸→ (𝐾𝑚, 𝐾𝑛). So we assume that 𝑝 ≥ 𝑟. Since 𝑞 ≤ 𝑅 and
𝐺 ≠ 𝐾𝑟 , we know that 𝐺 is not a complete graph. Let 𝑢 and 𝑣 be two non-adjacent
vertices of 𝐺 and set

𝑊 = 𝑉 \ {𝑢, 𝑣}, 𝐻 = 𝐺 − {𝑢, 𝑣}.
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13.1 Size Ramsey Numbers 299

If there exist red-blue edge colorings of 𝐺 − 𝑢 and 𝐺 − 𝑣, respectively, which agree
on 𝐻, such that there is neither red 𝐾𝑚 nor blue 𝐾𝑛, then, by the observation made
before, 𝐺 ̸→ (𝐾𝑚, 𝐾𝑛). The proof is then to establish such an edge coloring.

Let 𝑋 = 𝑁𝐺 (𝑢) ∪𝑁𝐺 (𝑣). Denote by 𝐻′ for the graph obtained from 𝐻 by adding
a new vertex 𝑥 and joining 𝑥 and each vertex in 𝑋 . That is to say, the vertices 𝑢 and 𝑣
are contracted to a new vertex 𝑥 in 𝐺. Note that the order of 𝐻′ is 𝑝 − 1 and its size
is at most 𝑞.

For the reasons which follow, we may assume 𝐻′ ≠ 𝐾𝑟 , where 𝑟 = 𝑟 (𝑚, 𝑛). In
fact, if 𝐻′ = 𝐾𝑟 , then 𝐻 = 𝐾𝑟−1 and 𝑋 = 𝑊 . It is clear 𝑁 (𝑢) ∩𝑁 (𝑣) = ∅ since 𝑞 ≤ 𝑅.
By taking 𝑤 ∈ 𝑊 with 𝑑𝑖𝑠𝑡 (𝑢, 𝑤) = 2 so 𝑤 ∈ 𝑁 (𝑣), we may simply consider 𝐺 − 𝑢
and 𝐺 − 𝑤 at the beginning since 𝑢 and 𝑤 are not adjacent and 𝑁 (𝑢) ∩ 𝑁 (𝑤) ≠ ∅.
Hence, we can apply the induction hypothesis on 𝐻′. The existence of the desired
edge coloring which agree on 𝐻 is manifest. Clearly, the deletion of edges so that
𝐻′ returns to 𝐺 − 𝑢 and 𝐺 − 𝑣 spoils nothing so the desired edge coloring of 𝐺 has
been constructed. This proves the claim. □

Now we return to the main proof. Suppose that the size 𝑞 of a graph 𝐺 is less
than 𝑅, then if 𝐺 is complete, its order is less than 𝑟, so 𝐺 ̸→ (𝐾𝑚, 𝐾𝑛). If 𝐺 is not
complete, the claim shows that 𝐺 ̸→ (𝐾𝑚, 𝐾𝑛). Thus 𝑟 (𝐾𝑚, 𝐾𝑛) > 𝑞, in particular
𝑟 (𝐾𝑚, 𝐾𝑛) > 𝑅 − 1, which and Lemma 13.1 yield the desired assertion. □

We shall see that the values of 𝑟 (𝐾1,𝑚, 𝐾1,𝑛) and 𝑟 (𝐾1,𝑚, 𝐾1,𝑛) are very close.

Theorem 13.2 For any positive integers 𝑚 and 𝑛,

𝑟 (𝐾1, 𝑚, 𝐾1, 𝑛) = 𝑚 + 𝑛 − 1.

Proof. Since in any edge coloring of 𝐾1, 𝑚+𝑛−1 by red and blue, there is either a
red 𝐾1, 𝑚 or a blue 𝐾1, 𝑛, we have 𝑟 (𝐾1, 𝑚, 𝐾1, 𝑛) ≤ 𝑚 + 𝑛 − 1. In what follows, we
suppose 𝑚 ≤ 𝑛. Let 𝐺 be a graph of size 𝑞 ≤ 𝑚 + 𝑛 − 2. It is clear that 𝐺 has
at most one vertex 𝑣 with 𝑑 (𝑣) ≥ 𝑛. If this is the case, then every other vertex 𝑢
satisfies 𝑑 (𝑢) ≤ 𝑚 − 1. We may color all edges of 𝐺 − 𝑣 red. Then at most 𝑚 − 1
edges incident with 𝑣 have been colored. We shall color other edges incident with 𝑣
in such a way that there is neither red 𝐾1, 𝑚 nor blue 𝐾1, 𝑛. If every vertex has degree
at most 𝑛 − 1, we may color all edges of 𝐺 in blue. We thus reach a conclusion that
𝐺 ̸→ (𝐾1, 𝑚, 𝐾1, 𝑛). Since 𝐺 is arbitrary, we have 𝑟 (𝐾1, 𝑚, 𝐾1, 𝑛) ≥ 𝑚 + 𝑛 − 1. □

We shall write 𝑟 (𝐺) for 𝑟 (𝐺,𝐺). The above theorem gives that 𝑟 (𝐾1,𝑛) = 2𝑛− 1.
However, it is difficult to find the exact values of 𝑟 (𝑃𝑛). With an impressive proof and
disproving a conjecture of Erdős (1981), Beck (1983) showed that 𝑟 (𝑃𝑛) ≤ 900𝑛. In
the proof he used transforms defined by Pósa (1976) for finding an upper threshold
function 𝑝 = 𝑐 log 𝑛/𝑛 in random graph𝐺 ∈ G(𝑛, 𝑝) of being Hamiltonian. Bollobás
(2001) noted a better bound, and the current best upper bound due to Dudek and
Pra Lat (2017) gives that 𝑟 (𝑃𝑛) ≤ 74𝑛. In this section, we will include a slightly
weak result by Letzter (2016).

The following lemma was obtained independently by Dudek and Pra Lat (2015)
and Pokrovskiy (2014).
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300 13 Various Ramsey Problems

Lemma 13.2 For every graph 𝐺 there exist two disjoint subsets 𝑈,𝑊 ⊆ 𝑉 (𝐺) of
equal size such that there are no edges between them and𝐺 \ (𝑈∪𝑊) has a Hamilton
path.

Proof. In order to find sets with the desired properties, we apply the following
algorithm, maintaining a partition of 𝑉 (𝐺) into subsets 𝑈,𝑊 and a path 𝑃. Start
with𝑈 = 𝑉 (𝐺),𝑊 = ∅ and 𝑃 an empty path. At each stage of the algorithm, do the
following. If |𝑈 | ≤ |𝑊 |, stop. Otherwise, if 𝑃 is empty, move a vertex from 𝑈 to 𝑃
(note that𝑈 ≠ ∅). If 𝑃 is non-empty, let 𝑣 be its endpoint. If 𝑣 has a neighbor 𝑢 ∈ 𝑈,
then put 𝑢 in 𝑃, otherwise move 𝑣 to𝑊 .

Note that at any given point in the algorithm there are no edges between 𝑈 and
𝑊 . Moreover, |𝑈 | − |𝑊 | is positive at the beginning of the algorithm and decreases
by one at every stage, thus at some point the algorithm will stop and will produce
sets𝑈,𝑊 with the required properties. □

It is easier to use the following immediate consequence of Lemma 13.2.

Corollary 13.1 If 𝐺 is a balanced bipartite graph on 𝑛 vertices with bipartition
{𝑉1, 𝑉2} which has no path of length 𝑘 , then there exist disjoint subsets 𝑋𝑖 ⊆ 𝑉𝑖 such
that |𝑋1 | = |𝑋2 | ≥ (𝑛 − 𝑘)/4 and 𝑒𝐺 (𝑋,𝑌 ) = 0.

Proof. By Lemma 13.2, there exist disjoint subsets 𝑈,𝑊 ⊆ 𝑉 (𝐺) of equal size
such that 𝑒𝐺 (𝑈,𝑊) = 0 and 𝑉 (𝐺) \ (𝑈 ∪ 𝑊) has a Hamilton path 𝑃. Note that
𝑃 must alternate between 𝑉1 and 𝑉2 and has an even number of vertices, implying
that |𝑉1 ∩ 𝑉 (𝑃) | = |𝑉2 ∩ 𝑉 (𝑃) |. It follows that |𝑈1 | + |𝑊1 | = |𝑈2 | + |𝑊2 |, where
𝑈𝑖 = 𝑈 ∩ 𝑉𝑖 and 𝑊𝑖 = 𝑊 ∩ 𝑉𝑖 . Since |𝑈 | = |𝑊 |, we conclude that |𝑈1 | = |𝑊2 |
and |𝑈2 | = |𝑊1 |. Without loss of generality, suppose that |𝑈1 | ≥ |𝑈2 |. Then |𝑈1 | =
|𝑊2 | ≥ (𝑛 − |𝑉 (𝑃) |)/4 ≥ (𝑛 − 𝑘)/4. Take 𝑋1 = 𝑈1 and 𝑋2 = 𝑊2. □

The following is an easy consequence of Corollary 13.1.

Corollary 13.2 If 𝐺 is a graph on 𝑛 vertices such that 𝐺 ↛ 𝑃𝑘+1, then there exist
disjoint subsets 𝑋,𝑌 ⊆ 𝑉 (𝐺) of size at least (𝑛 − 2𝑘)/4 such that 𝑒𝐺 (𝑋,𝑌 ) = 0.

Proof. Consider a red-blue coloring of edges of𝐺 with no monochromatic 𝑃𝑘+1. Let
𝐺𝑅 and 𝐺𝐵 be the graphs induced by all red and blue edges, respectively. Since 𝐺𝑅
contains no 𝑃𝑘+1, we can apply Lemma 13.2 to 𝐺𝑅 to obtain disjoint sets𝑈 and𝑊 ,
both of size at least (𝑛 − 𝑘)/2, with no red edges between them. Now we consider
the subgraph 𝐺𝐵 [𝑈,𝑊] induced by blue edges between𝑈 and𝑊 . Since 𝐺𝐵 [𝑈,𝑊]
contains no 𝑃𝑘+1, it follows from Corollary 13.1 that there exist sets 𝑋 ⊆ 𝑈, 𝑌 ⊆ 𝑊
of size at least (𝑛− 2𝑘)/4, with no blue edges between them. We conclude that there
are no edges of 𝐺 between 𝑋 and 𝑌 . □

We now have the following lemma.

Lemma 13.3 Let 𝑐 = 4.86, 𝑑 = 7.7 and 𝐺 = 𝐺 (𝑐𝑛, 𝑑/𝑛). Then w.h.p. (with high
probability) the following two conditions hold.

(i) |𝐸 (𝐺) | ≤ (1 + 𝑜(1))𝑐2𝑑𝑛/2.

(ii) For every two disjoint sets 𝑈,𝑊 ⊆ 𝑉 (𝐺) of size at least (𝑐 − 2)𝑛/4, we have
𝑒𝐺 (𝑈,𝑊) > 0.
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13.1 Size Ramsey Numbers 301

Proof. The number of edges in 𝐺 is a binomial random variable with mean(
𝑐𝑛

2

)
· 𝑑
𝑛
= (1 + 𝑜(1)) 𝑐

2𝑑

2
𝑛.

Thus (i) follows immediately from the concentration of binomial random variables
around their mean.

For (ii), we will apply the first moment method. Let 𝑍 denote the number of pairs
(𝑈,𝑊) of disjoint subsets of 𝑉 (𝐺) of size (𝑐 − 2)𝑛/4 with 𝑒𝐺 (𝑈,𝑊) = 0. The
expectation of 𝑍 satisfies the following, where 𝛼 = (𝑐 − 2)/4:

𝐸 (𝑍) =
(
𝑐𝑛

𝛼𝑛

) (
(𝑐 − 𝛼)𝑛
𝛼𝑛

) (
1 − 𝑑

𝑛

) (𝛼𝑛)2

≤ (𝑐𝑛)!
((𝛼𝑛)!)2 ((𝑐 − 2𝛼)𝑛)!

exp{−𝑑𝛼2𝑛} ≤ exp{𝛽𝑛}.

By Stirling’s formula, we can take

𝛽 = 𝑐 log 𝑐 − 2𝛼 − (𝑐 − 2𝛼) log(𝑐 − 2𝛼) − 𝑑𝛼2 ≤ −0.0005.

It follows that 𝐸 (𝑍) → 0 as 𝑛 → ∞, implying that w.h.p. 𝑍 = 0, and hence (ii)
holds. □

The constants 𝑐, 𝑑 in the above lemma were chosen to minimize the number of
edges in 𝐺 under condition (ii).

Theorem 13.3 For all large 𝑛,

𝑟 (𝑃𝑛) ≤ 91𝑛.

Proof. Let 𝑐 = 4.86 and 𝑑 = 7.7. Take a graph 𝐺 ∈ G(𝑐𝑛, 𝑑/𝑛) such that it satisfies
conditions (i) and (ii) in Lemma 13.3. If 𝐺 ↛ 𝑃𝑛 then Corollary 13.2 implies
that there exist disjoint subsets 𝑋,𝑌 ⊆ 𝑉 (𝐺) of size at least (𝑐 − 2)𝑛/4 such that
𝑒𝐺 (𝑋,𝑌 ) = 0, contradiction condition (ii) from Lemma 13.3. We conclude that
𝐺 → 𝑃𝑛. Note that |𝐸 (𝐺) | ≤ 91𝑛 by condition (i) of Lemma 13.3, it follows that
𝑟 (𝑃𝑛) ≤ 91𝑛 for large 𝑛 as desired. □

Friedman and Pippenger (1987) generalized Beck’s linear bound of 𝑟 (𝑃𝑛) for
proving that there is some constant 𝑐 = 𝑐(Δ) > 0 such that 𝑟 (𝑇𝑛) ≤ 𝑐𝑛 for any
tree 𝑇𝑛 on 𝑛 vertices and maximum degree Δ. Subsequently, this was improved
by Ke (1993), and Haxell and Kohayakawa (1995). Let 𝑉 (𝑇) = 𝑉0 (𝑇) ∪ 𝑉1 (𝑇)
be the partition determined by the unique proper two-coloring of the vertex set of
𝑉 (𝑇). Set Δ𝑖 = max{𝑑𝑇 (𝑣) : 𝑣 ∈ 𝑉𝑖 (𝑇)} and 𝑛𝑖 = |𝑉𝑖 (𝑇) | for 𝑖 = 0, 1 and let
𝛽(𝑇) = 𝑛0Δ0 + 𝑛1Δ1. Solving a conjecture of Beck (1990), Dellamonica (2012)
proved that 𝑟 (𝑇) = Θ(𝛽(𝑇)).

Beck (1990) even asked if there is some constant 𝑐 = 𝑐(Δ) > 0 such that
𝑟 (𝐺) ≤ 𝑐𝑛 for any graph with 𝑛 vertices and maximum degree at most Δ. Rödl
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302 13 Various Ramsey Problems

and Szemerédi (2000) answered the question of Beck negatively for even Δ = 3. By
applying the sparse regularity lemma, Kohayakawa, Rödl, Schacht and Szemeredi
(2011) proved that 𝑟 (𝐺) ≤ 𝑐𝑛2−1/Δ (log 𝑛)1/Δ for any graph 𝐺 with 𝑛 vertices
and maximum degree at most Δ. For the size Ramsey number of cycle, Haxell,
Kohayahawa and Łuczak (1995) proved that 𝑟 (𝐶𝑛) ≤ 𝑐𝑛. This upper bound has been
improved by Javadi, Khoeini, Omidi and Pokrovskiy (2019) to that 𝑟 (𝐶𝑛) ≤ 105×𝑐𝑛,
where 𝑐 = 6.5 is 𝑛 is even and 𝑐 = 1989 otherwise.

The size Ramsey numbers of graphs with bounded degrees can not be bounded
linearly as mentioned above even for maximum degree Δ = 3. However, 𝑟 (𝐾𝑚,𝑛)
has a linear upper bound if 𝑚 is fixed. The following result was proved by Erdős,
Faudree, Rousseau and Schelp (1978).

Theorem 13.4 For any fixed positive integer 𝑚, if 𝑛 is sufficiently large, then

1
2𝑒
𝑚2𝑚𝑛 ≤ 𝑟 (𝐾𝑚,𝑛) ≤ 4𝑚22𝑚𝑛.

Let us have a lemma at first.

Lemma 13.4 Suppose that 𝐺 is a subgraph of 𝐾𝑀, 𝑁 with 𝑒(𝐺) ≥ 𝑁𝑝 and

𝑁

(
𝑝

𝑚

)
> (𝑛 − 1)

(
𝑀

𝑚

)
,

then 𝐺 contains 𝐾𝑚, 𝑛.

Proof. The proof is similar to that of Theorem 8.4. The key for the proof is so
called “double counting argument”. Without loss of generality, we assume that 𝐺 is
a spanning subgraph of 𝐾𝑀,𝑁 that contains no 𝐾𝑚, 𝑛. Let the bipartition of 𝐾𝑀,𝑁 be
𝑋 and 𝑌 with |𝑋 | = 𝑀 and |𝑌 | = 𝑁 , and let 𝑑1, 𝑑2, . . . , 𝑑𝑁 be the degree sequence
of vertices in 𝑌 of 𝐺. For any vertex 𝑣 ∈ 𝑌 , an 𝑚-set in neighborhood of 𝑣 is covered
by at most 𝑛 − 1 vertices in 𝑌 . So

𝑁∑︁
𝑘=1

(
𝑑𝑘

𝑚

)
≤ (𝑛 − 1)

(
𝑀

𝑚

)
.

The left hand side is at least 𝑁
( 𝑝
𝑚

)
by the convexity of the function

( 𝑥
𝑚

)
since

(∑ 𝑑𝑘) /𝑁 = 𝑒(𝐺)/𝑁 ≥ 𝑝, which leads to a contradiction. □

Proof of Theorem 13.4. The assertion is obvious for 𝑚 = 1 by Theorem 13.2, so
we assume 𝑚 ≥ 2. For the upper bound, let us consider a complete bipartite graph
𝐾𝑀, 𝑁 on bipartition (𝐴, 𝐵) and an edge partition (𝐸1, 𝐸2). We may assume that
|𝐸1 | ≥ 𝑀𝑁/2. Hence, by setting 𝑝 = 𝑀/2 in Lemma 13.4, the subgraph induced by
𝐸1 contains 𝐾𝑚,𝑛 if

𝑁

(
𝑀/2
𝑚

)
> (𝑛 − 1)

(
𝑀

𝑚

)
.



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

13.1 Size Ramsey Numbers 303

This will certainly be the case if we set 𝑁 =

⌊ (𝑀
𝑚

)
𝑛/

(𝑀/2
𝑚

) ⌋
. It follows that for all

𝑀 ≥ 2𝑚,
𝑟 (𝐾𝑚, 𝑛) ≤ 𝑀𝑁 ≤ 𝐶𝑛,

where

𝐶 =
𝑀

(𝑀
𝑚

)(𝑀/2
𝑚

) = 2𝑚−1𝑀
(𝑀 − 1) (𝑀 − 2) · · · [𝑀 − (𝑚 − 1)]
(𝑀 − 2) (𝑀 − 4) · · · [𝑀 − 2(𝑚 − 1)] .

By taking 𝑀 = ⌊𝑚2/2⌋, we have 𝐶 ≤ 4𝑚22𝑚 for 𝑚 ≤ 8. For 𝑚 ≥ 9,

𝐶 ≤ 𝑚22𝑚−2
(
1 + 2(𝑚 − 1)

(𝑚 − 2)2

)𝑚−1
≤ 𝑚22𝑚−2 exp

(
2(𝑚 − 1)2

(𝑚 − 2)2

)
< 4𝑚22𝑚,

where we use the facts that 1 + 𝑥 ≤ 𝑒𝑥 and the minimum value of 2(𝑚−1)2

(𝑚−2)2 attains at
𝑚 = 9, so the desired upper bound follows.

The proof of the lower bound employs the probabilistic method. Suppose that
𝐺 = (𝑉, 𝐸) is a graph in which every edge coloring in two colors produces a
monochromatic 𝐾𝑚,𝑛. Let

𝑉𝑘 = {𝑣 ∈ 𝑉 : 𝑑 (𝑣) ≥ 𝑘}.

Then |𝑉𝑘 | ≤ 2|𝐸 |/𝑘 . If 𝐺 contains 𝐾𝑚, 𝑛 on bipartition (𝐴, 𝐵) as a subgraph, then,
clearly, 𝐴 ⊆ 𝑉𝑛 and 𝐵 ⊆ 𝑉𝑚. Hence, setting 𝑀 = |𝑉𝑛 | and 𝑁 = |𝑉𝑚 |, it must be
true that every two-coloring of edges of 𝐾𝑀,𝑁 produces a monochromatic 𝐾𝑚,𝑛.
However, in a random edge coloring of 𝐾𝑀, 𝑁 in red and blue in which

Pr[𝑒 is red] = Pr[𝑒 is blue] = 1
2
,

the probability that there is a monochromatic 𝐾𝑚,𝑛 is at most

2
(𝑀
𝑚

) (𝑁
𝑛

)
2𝑚𝑛

≤ 2
(
𝑒𝑀

𝑚

)𝑚 (
𝑒𝑁

𝑛

)𝑛 1
2𝑚𝑛

= 2
(
𝑒𝑀

𝑚

)𝑚 (
𝑒𝑁

2𝑚𝑛

)𝑛
.

Now suppose that 𝑒(𝐺) < 𝑚2𝑚−1𝑛/𝑒. Then 𝑀 = |𝑉𝑛 | < 𝑚2𝑚/𝑒 and 𝑁 = |𝑉𝑚 | <
𝑛2𝑚/𝑒 so that 𝑒𝑁/(2𝑚𝑛) ≤ 1 − 𝜖 for some 𝜖 > 0. It follows that if 𝑛 is sufficiently
large, then the probability there is a monochromatic 𝐾𝑚,𝑛 is less than one. Hence, for
any graph 𝐺 if 𝑒(𝐺) < 𝑚2𝑚−1𝑛/𝑒, then 𝐺 ̸→ (𝐾𝑚,𝑛), which follows by the desired
lower bound follows. □

It is natural to believe that 𝑟 (𝐾𝑛, 𝑛) = (2 + 𝑜(1))𝑛, which is exactly the case. The
following result is due to Erdős and Rousseau (1993).

Theorem 13.5 For all large integer 𝑛,

1
30
𝑛22𝑛 < 𝑟 (𝐾𝑛, 𝑛) <

3
2
𝑛32𝑛.
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304 13 Various Ramsey Problems

Proof. The proof for the upper bound is similar with that in Theorem 13.4 as if 𝑀
and 𝑁 satisfy

𝑁

(
𝑀/2
𝑛

)
> (𝑛 − 1)

(
𝑀

𝑛

)
,

then 𝐾𝑀,𝑁 → 𝐾𝑛, 𝑛. In particular, if we set 𝑁 = ⌊𝑛2/2⌋ and 𝑀 = 3𝑛2𝑛, then the
above holds for all 𝑛 ≥ 6 and we have the upper bound as desired.

The proof of the lower bound depends on the following counting result.

Lemma 13.5 A graph with 𝑞 edges contains at most(
2𝑒𝑞
𝑛

) (
2𝑒2𝑞

𝑛2

)𝑛
copies of 𝐾𝑛, 𝑛.

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑞 edges and let

𝑚 =

⌈
𝑛

2
log

(
2𝑞
𝑛2

)⌉
.

Without loss of generality, we assume that 𝐺 contains no isolated vertices. To
distinguish the magnitude of the degrees of vertices, we set

𝑑−1 = 1, 𝑑𝑘 = 𝑛𝑒𝑘/𝑛 (𝑘 = 0, 1, . . . , 𝑚), 𝑑𝑚+1 = ∞,

and set
𝑋𝑘 = {𝑥 ∈ 𝑉 : 𝑑𝑘 ≤ 𝑑 (𝑥) < 𝑑𝑘+1}

for 𝑘 = −1, 0, . . . , 𝑚. Then 𝑋−1, 𝑋0, . . . , 𝑋𝑚 form a partition of 𝑉 . Let

𝑊𝑘 = ∪𝑚𝑗=𝑘𝑋 𝑗 = {𝑥 ∈ 𝑉 : 𝑑 (𝑥) ≥ 𝑑𝑘}.

Let us say that a subgraph 𝐾𝑛,𝑛 in 𝐺 on vertex set 𝑈 ⊆ 𝑉 is of type 𝑘 if 𝑘 is
minimum such that 𝑋𝑘 ∩𝑈 ≠ ∅. Equivalently a copy of 𝐾𝑛,𝑛 on𝑈 is of type 𝑘 if and
only if 𝑑𝑘 ≤ min{𝑑𝐺 (𝑣) : 𝑣 ∈ 𝑈} < 𝑑𝑘+1, where 𝑑𝐺 (𝑣) is the degree of 𝑣 in 𝐺 not
that in 𝐾𝑛,𝑛. Denote by 𝑀𝑘 for the number of type 𝑘 copies of 𝐾𝑛,𝑛 in 𝐺. Note there
is no 𝐾𝑛,𝑛 of type −1 and 𝑀 =

∑𝑚
𝑘=0 𝑀𝑘 is the total number of copies of 𝐾𝑛,𝑛 in 𝐺.

In a type 𝑘 copy of 𝐾𝑛,𝑛 every vertex belongs to𝑊𝑘 and at least one vertex belongs
to 𝑋𝑘 . Thus one side of the 𝐾𝑛,𝑛 is an 𝑛-element subset of the neighborhood of a
vertex in 𝑋𝑘 and the other side is an 𝑛-element subset of𝑊𝑘 . It follows that

𝑀𝑘 ≤ |𝑋𝑘 |
(
𝑑𝑘+1
𝑛

) (
|𝑊𝑘 |
𝑛

)
.

Note that
(𝑁
𝑛

)
≤ (𝑒𝑁/𝑛)𝑛 and |𝑊𝑘 | ≤ 2𝑞/𝑑𝑘 , so we have that for 𝑘 = 0, 1, . . . , 𝑚−1,

𝑀𝑘 ≤ |𝑋𝑘 |
(
𝑒𝑑𝑘+1
𝑛

)𝑛 (2𝑒𝑞
𝑑𝑘𝑛

)𝑛
= 𝑒 |𝑋𝑘 |

(
2𝑒2𝑞

𝑛2

)𝑛
.
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13.2 Induced Ramsey Numbers★ 305

Since 𝑑𝑚 ≥
√︁

2𝑞, we have that |𝑋𝑚 | ≤
√︁

2𝑞, and each vertex of a type 𝑚 subgraph
must belong to 𝑋𝑚. Thus

𝑀𝑚 ≤
(
|𝑋𝑚 |
𝑛

)2
≤

(
2𝑒2𝑞

𝑛2

)𝑛
.

If |𝑋𝑚 | = 0, then 𝑀𝑚 = 0. Hence we can write

𝑀𝑚 ≤ 𝑒 |𝑋𝑚 |
(
2𝑒2𝑞

𝑛2

)𝑛
,

which coincides with the upper bound of 𝑀𝑘 with 0 ≤ 𝑘 ≤ 𝑚 − 1. Therefore we
obtain

𝑀 =

𝑚∑︁
𝑘=0

𝑀𝑘 ≤
𝑚∑︁
𝑘=0

𝑒 |𝑋𝑘 |
(
2𝑒2𝑞

𝑛2

)𝑛
= 𝑒 |𝑊0 |

(
2𝑒2𝑞

𝑛2

)𝑛
≤

(
2𝑒𝑞
𝑛

) (
2𝑒2𝑞

𝑛2

)𝑛
,

completing the proof. □

Proof for the lower bound in Theorem 13.5. Now let 𝐺 be an arbitrary graph with
𝑞 edges with 𝑞 ≤ 𝑛22𝑛/30. Consider a random red-blue edge coloring of𝐺 in which
each edge is red with probability 1/2 and colorings of distinct edges are independent.
In view of the lemma, we find that the probability 𝑃 that such a random coloring
yields a monochromatic 𝐾𝑛,𝑛 satisfies

𝑃 < 2
(
2𝑒𝑞
𝑛

) (
2𝑒2𝑞

𝑛2

)𝑛
2−𝑛2 ≤ 2𝑒𝑛

15

(
4𝑒2𝑞

𝑛2

)𝑛
2−𝑛2 ≤ 𝑛

(
2𝑒2

15

)𝑛
→ 0

as 𝑛→ ∞. Thus 𝐺 ̸→ (𝐾𝑛,𝑛), and the desired lower bound follows. □

13.2 Induced Ramsey Numbers★

In the definition of Ramsey number 𝑟 (𝐾𝑛), we ask what is the smallest 𝑁 such that
in any red-blue edge coloring of 𝐾𝑁 , there is either a red 𝐾𝑛 or a blue 𝐾𝑛. Here the
clique 𝐾𝑛 is an induced subgraph. Let us change the problem for a general graph 𝐻
and ask what for a graph 𝐺 such that in any red-blue edge coloring of 𝐺, there is
a monochromatic induced graph 𝐻. This slightly modification changes the problem
dramatically. A substantial question is whether or not such graph 𝐺 exists for an
arbitrary given graph 𝐻. We call such a graph 𝐺 a Ramsey graph for 𝐻. This should

graph for a Ramsey number 𝑟 (𝐻) if the order of 𝐺 is 𝑟 (𝐻) − 1 such that neither 𝐺
nor 𝐺̄ contains 𝐻 as a subgraph, in which the subgraph is not necessarily induced.

The following existence theorem was proved independently by Deuber (1975), by
Erdős, Hajnal and Pósa (1975), and by Rödl (1973).

be different from a definition in Chapter 1, where a graph 𝐺 was called a Ramsey
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306 13 Various Ramsey Problems

Theorem 13.6 Every graph has a Ramsey graph.

The remainder of the section is the proof for this theorem, which begins with its
version on bipartite graphs.

We shall write a bipartite graph 𝐵 as triples (𝑉1, 𝑉2, 𝐸), where 𝑉1 and 𝑉2 are
bipartition of 𝐵 and 𝐸 is the edge set. Given another bipartite graph 𝐵̄ = (𝑉̄1, 𝑉̄2, 𝐸̄),
if 𝐵 is isomorphic to an induced subgraph of 𝐵̄, in which 𝑉𝑖 corresponds 𝑉̄𝑖 for
𝑖 = 1, 2, then there is an injective map 𝜙 : 𝑉1 ∪𝑉2 → 𝑉̄1 ∪ 𝑉̄2 so that 𝜙(𝑉𝑖) ⊆ 𝑉̄𝑖 for
𝑖 = 1, 2, and 𝜙(𝑣1)𝜙(𝑣2) ∈ 𝐸̄ if and only 𝑣1𝑣2 ∈ 𝐸 . We will call such a map 𝜙 as an
embedding of 𝐵 in 𝐵̄, denoted by 𝜙 : 𝐵 → 𝐵̄.

As before, let 𝑋 (𝑘 ) denote the family of all 𝑘-subsets of 𝑋 . Define a bipartite
graph (𝑋, 𝑋 (𝑘 ) , 𝐸𝑘), in which the edge set 𝐸𝑘 contains all edges of the form 𝑥𝑌 with
𝑌 ∈ 𝑋 (𝑘 ) and 𝑥 ∈ 𝑌 .

Lemma 13.6 Every bipartite graph 𝐵 = (𝑉1, 𝑉2, 𝐸) can be embedded in a bipartite
graph of the form 𝐵̄ = (𝑋, 𝑋 (𝑘 ) , 𝐸𝑘).

Proof. Let 𝐵 be a bipartite graph with vertex classes 𝑉1 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and
𝑉2 = {𝑏1, 𝑏2, . . . , 𝑏𝑚}. Denote by 𝑋 for a set of 2𝑛 + 𝑚 vertices as

𝑋 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑧1, . . . , 𝑧𝑚}.

Let 𝐵̄ = (𝑋, 𝑋 (𝑛+1) , 𝐸𝑛+1). We shall show that there is an embedding 𝜙 of 𝐵 in 𝐵̄.
Set 𝜙(𝑎𝑖) = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛 first. Then for any 𝑗 = 1, . . . , 𝑚, a member

𝑌 ∈ 𝑋 (𝑛+1) will be chosen as 𝜙(𝑏 𝑗 ), which is denoted by 𝑌 𝑗 . We in fact construct
𝑌𝑖 as follows. Since 𝜙(𝑏 𝑗 ) = 𝑌 𝑗 , we have that the neighbors of 𝑏 𝑗 in 𝐵 should be
mapped into 𝑌 𝑗 , that is to say,

𝜙(𝑁 (𝑏 𝑗 )) ⊆ 𝑌 𝑗 .

In order to distinguish different𝑌 𝑗 , we put 𝑧 𝑗 into𝑌 𝑗 as a label. So far we have chosen

|𝜙(𝑁 (𝑏 𝑗 )) | + 1 = 𝑑 (𝑏 𝑗 ) + 1 ≤ 𝑛 + 1

elements for 𝑌 𝑗 . If the inequality is strict, we then simply fill 𝑌 𝑗 with elements from
{𝑦1, . . . , 𝑦𝑛} until 𝑌 𝑗 has 𝑛 + 1 elements.

Note that 𝜙(𝑉1) = {𝑥1, . . . , 𝑥𝑛} and 𝜙(𝑉2) = {𝑌1, . . . , 𝑌𝑚}, and 𝑥𝑖 is a neighbor
of𝑌 𝑗 in 𝐵̄ if and only if 𝑎𝑖 is a neighbor of 𝑏 𝑗 in 𝐵. The other neighbors of𝑌 𝑗 are out
of {𝑥1, . . . , 𝑥𝑛}. Thus 𝐵 is isomorphic to the subgraph induced by {𝑥1, . . . , 𝑥𝑛} and
{𝑌1, . . . , 𝑌𝑚} in 𝐵̄. It follows that the map 𝜙 is an embedding of 𝐵 in 𝐵̄ as desired. □

The next lemma is the bipartite case of Theorem 13.6, which says that every
bipartite graph has a bipartite Ramsey graph.

Lemma 13.7 Let 𝐵 be a bipartite graph. Then there exists a bipartite graph 𝐵̄ such
that for any two-coloring of edges of 𝐵̄ there is an embedding 𝜙 : 𝐵 → 𝐵̄ in which
all edges of 𝜙(𝐵) are monochromatic.
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13.2 Induced Ramsey Numbers★ 307

Proof. It is easy to see that if 𝜙1 is an embedding of 𝐵1 in 𝐵2 and 𝜙2 is an embedding
of 𝐵2 in 𝐵3, then 𝜙2𝜙1 is an embedding of 𝐵1 in 𝐵3. Thus by Lemma 13.6 we may
assume that 𝐵 = (𝑋, 𝑋 (𝑘 ) , 𝐸𝑘). Let 𝑛 = |𝑋 |, ℓ = 2𝑘 − 1 and 𝑠 = 2

(ℓ
𝑘

)
. Let 𝑋̄ be a set

whose cardinality is an 𝑠-color Ramsey number for ℓ-uniform hypergraph as

| 𝑋̄ | = 𝑟 (ℓ )𝑠 (𝑘𝑛 + 𝑘 − 1).

We shall show the assertion in the lemma with 𝐵̄ = ( 𝑋̄, 𝑋̄ (ℓ ) , 𝐸ℓ).
Let us fix a coloring on 𝐸ℓ with colors 𝛼 and 𝛽. Among ℓ = 2𝑘 −1 edges incident

to a vertex 𝑌 ∈ 𝑋̄ (ℓ ) in 𝐵̄, at least 𝑘 of them are monochromatic. Define 𝑍̄ ⊆ 𝑌 with
|𝑍̄ | = 𝑘 so that all edges 𝑥𝑌 for 𝑥 ∈ 𝑍̄ are in the same color. The color and the set 𝑍̄
are called as the color and the set associated with 𝑌 , respectively.

Assign a linear order to 𝑋̄ as

𝑋̄ = {𝑥1, 𝑥2, 𝑥3, . . . }.

For every 𝑌 ∈ 𝑋̄ (ℓ ) with 𝑌 = {𝑥𝑖1 , . . . , 𝑥𝑖ℓ }, denote by 𝜎𝑌̄ for the order-preserving
map with 𝜎𝑌̄ (𝑥𝑖 𝑗 ) = 𝑗 , then 𝜎𝑌̄ (𝑍̄) ∈ [ℓ] (𝑘 ) .

We now color 𝑋̄ (ℓ ) with 𝑠 = 2
(ℓ
𝑘

)
elements of the set [ℓ] (𝑘 ) × {𝛼, 𝛽} as colors.

For a given 𝑌 ∈ 𝑋̄ (ℓ ) , color 𝑌 with the pair (𝜎𝑌̄ (𝑍̄), 𝛾), where 𝑍̄ and 𝛾 ∈ {𝛼, 𝛽} are
the set and the color associated with 𝑌 , respectively. By the definition of Ramsey
number for uniform hypergraph, we know that there is𝑊 ⊆ 𝑋̄ with |𝑊 | = 𝑘𝑛+ 𝑘 − 1
such that all elements of𝑊 (ℓ ) are monochromatic. Thus there exists 𝑆 ∈ [ℓ] (𝑘 ) and a
color 𝛾, say 𝛼, such that all 𝑌 ∈ 𝑊 (ℓ ) are colored (𝑆, 𝛼). That is to say, all 𝑌 ∈ 𝑊 (ℓ )

satisfy that 𝜎𝑌̄ (𝑍̄) = 𝑆 and they are all associated with the same color 𝛼.
We now construct the desired embedding 𝜙 of 𝐵 in 𝐵̄. The elements of 𝑊 have

an order preserved from that in 𝑋̄ . Without loss of generality, we assume that 𝑊
contains the first 𝑘𝑛 + 𝑘 − 1 elements of 𝑋̄ ,

𝑊 = {𝑥𝑖 : 𝑖 = 1, 2, . . . , 𝑘𝑛 + 𝑘 − 1}.

Set
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛},

and define 𝜙(𝑥𝑖) = 𝑥𝑖𝑘 . Denote by 𝑤𝑖 for 𝑥𝑖𝑘 , so 𝜙(𝑋) = {𝑤1, . . . , 𝑤𝑛} and there are
exactly 𝑘 − 1 elements of𝑊 between 𝑤𝑖 and 𝑤𝑖+1 in the order.

We then define 𝜙 on 𝑋 (𝑘 ) . Given 𝑌 ∈ 𝑋 (𝑘 ) , we shall choose 𝜙(𝑌 ) = 𝑌 ∈ 𝑋̄ℓ so
that the neighbors of 𝑌 among the vertices in 𝜙(𝑋) are precisely the images of the
neighbors of 𝑌 in 𝐵, i.e., the vertices 𝜙(𝑥) with 𝑥 ∈ 𝑌 , and so that all these edges
incident to 𝑌 in 𝐵̄ are colored 𝛼. To find such 𝑌 , we first construct its subset 𝑍̄ as
{𝜙(𝑥) : 𝑥 ∈ 𝑌 }, which are 𝑘 vertices of type 𝑤𝑖 . Then extend 𝑍̄ by ℓ − 𝑘 further
vertices 𝑢 ∈ 𝑊 \ 𝜙(𝑋) to a set 𝑌 ∈ 𝑊 (ℓ ) , in such a way that 𝜎𝑌̄ (𝑍̄) = 𝑆. This is
possible since there are 𝑘 − 1 = ℓ− 𝑘 other vertices of𝑊 between 𝑤𝑖 and 𝑤𝑖+1. Then

𝑌 ∩ 𝜙(𝑋) = 𝑍̄ = {𝜙(𝑥) : 𝑥 ∈ 𝑌 },



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

308 13 Various Ramsey Problems

so𝑌 has the right neighbors in 𝜙(𝑋), and all the edges between𝑌 and these neighbors
are colored𝛼. The images𝑌 of different vertices𝑌 are distinct since their intersections
with 𝜙(𝑋) differ, so 𝜙 is an injective map on 𝑋 (𝑘 ) . Hence, the map 𝜙 is indeed an
embedding of 𝐵 in 𝐵̄ satisfied the desired condition. □

Proof of Theorem 13.6. The idea of the proof is to reduce the general case of the
theorem to the bipartite case, where Lemma 13.7 can be employed. Let 𝐻 be a given
graph of order 𝑠 and let 𝑛 = 𝑟 (𝑠, 𝑠). Then in any edge coloring of 𝐾𝑛 by two colors,
there is a monochromatic 𝐾𝑠 hence a monochromatic copy of𝐻. Denote by𝐾 for this
𝐾𝑛. Note that the monochromatic subgraph 𝐻 in 𝐾 may be not an induced subgraph
in that color.

We will construct a graph 𝐺0. Let ℓ =
(𝑛
𝑠

)
. Arrange the vertices of 𝐾 in a column,

and replace every vertex by a row of ℓ vertices. In each of the ℓ columns, choose an
𝑠−set so that any pair of such sets contain vertices coming from different rows. Let
us furnish each column in the chosen 𝑠−set with the edges of a copy of 𝐻. The graph
𝐺0 consists of ℓ disjoint copies of 𝐻 and (𝑛 − 𝑠)ℓ isolated vertices.

We define 𝐺0 formally as follows. Assume that 𝑉 (𝐾) = {1, . . . , 𝑛} and choose
copies 𝐻1, . . . , 𝐻ℓ of 𝐻 in 𝐾 with pairwise distinct (not necessarily disjoint) vertex
sets. We then define

𝑉 (𝐺0) = {(𝑖, 𝑗) : 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , ℓ}
𝐸 (𝐺0) = ∪ℓ𝑗=1{(𝑖, 𝑗) (𝑖

′, 𝑗) : 𝑖𝑖′ ∈ 𝐸 (𝐻 𝑗 )},

where the end vertices of each edge (𝑖, 𝑗) (𝑖′, 𝑗) are in the same column.
Applying Lemma 13.7 iteratively to all the pairs of rows of 𝐺0, we construct a

large graph 𝐺 such that for every edge coloring of 𝐺 there is an induced copy of
𝐺0 in 𝐺 that is monochromatic on all the bipartite subgraph induced by its pairs of
rows. By contracting its rows the projection of this 𝐺0 ⊆ 𝐺 to {1, . . . , 𝑛}, we define
an edge coloring of 𝐾 . Thus one of the 𝐻 𝑗 ⊆ 𝐾 will be monochromatic. But this 𝐻 𝑗
occurs with the same coloring in the 𝑗 th column of𝐺0, and it is an induced subgraph
of 𝐺0 hence an induced subgraph of 𝐺. We omit the formal definition of desired
embedding map described the above procedure. □

Define the induced Ramsey number 𝑟𝑖𝑛𝑑 (𝐻) to be the minimum 𝑛 such that
there exists a graph 𝐺 on 𝑛 vertices satisfying that every 2-edge-coloring of 𝐺
contains a monochromatic induced copy of 𝐻 in 𝐺. Theorem 13.6 implies that
𝑟𝑖𝑛𝑑 (𝐻) exists. Erdős (1975) conjectured that there is a constant 𝑐 such that every
graph 𝐻 on 𝑘 vertices satisfies 𝑟𝑖𝑛𝑑 (𝐻) ≤ 2𝑐𝑘 . The result of Rödl (1973) implies
that this conjecture holds if 𝐻 is bipartite. Erdős and Hajnal (1984) proved that
𝑟𝑖𝑛𝑑 (𝐻) ≤ 22𝑘1+𝑜 (1)

holds for every graph 𝐻 on 𝑘 vertices. Kohayakawa, Prömel, and
Rödl (1998) improved this bound substantially and showed that if a graph 𝐻 has 𝑘
vertices and chromatic number 𝜒, then 𝑟𝑖𝑛𝑑 (𝐻) ≤ 𝑘𝑐𝑘 log 𝜒, where 𝑐 is a constant. In
particular, their result implies that 𝑟𝑖𝑛𝑑 (𝐻) ≤ 𝑘𝑐𝑘 (log 𝑘 )2 for any graph on 𝑘 vertices.
In their proof, the graph 𝐺 which gives this bound is randomly constructed using
projective planes. For more special classes of (sparse) graphs, see e.g. Beck (1990)
in which the author considered the case when 𝐻 is a tree; Haxell, Kohayakawa, and
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13.3 Bipartite Ramsey Numbers 309

Łuczak (1995) proved that the induced Ramsey number of cycle 𝐶𝑘 is linear in 𝑘;
Łuczak and Rödl (1996) showed that the induced Ramsey number of a graph with
bounded degree is at most polynomial in the number of its vertices, which confirms
a conjecture of Trotter; Fox and Sudakov (2008) obtained that there is a positive
constant 𝑐 such that 𝑟𝑖𝑛𝑑 (𝐻) ≤ 𝑘𝑐𝑑 log 𝜒 for every 𝑑-degenerate graph 𝐻 with 𝑘

vertices and chromatic number 𝜒 ≥ 2.

13.3 Bipartite Ramsey Numbers

It is likely that there are some similarities between Ramsey numbers of complete
graphs and that of complete bipartite graphs, such as 𝑟 (𝐾𝑛) and 𝑟 (𝐾𝑛,𝑛). However,
the Ramsey number of bipartite graphs has the bipartite version. Let 𝐵1 and 𝐵2
be bipartite graphs. We define the bipartite Ramsey number 𝑏𝑟 (𝐵1, 𝐵2) to be the
smallest integer 𝑁 such that in any red-blue edge-coloring of 𝐾𝑁,𝑁 , there is a red
𝐵1 or a blue 𝐵2. As usual, we shall write 𝑏𝑟 (𝐵, 𝐵) as 𝑏𝑟2 (𝐵) or 𝑏𝑟 (𝐵). An obvious
relation is as follows.

Lemma 13.8 Let 𝐵1 and 𝐵2 be bipartite graphs. Then

𝑟 (𝐵1, 𝐵2) ≤ 2 𝑏𝑟 (𝐵1, 𝐵2).

Proof. Set 𝑁 = 𝑏𝑟 (𝐵1, 𝐵2). Consider a red-blue edge-coloring of 𝐾2𝑁 on the vertex
set 𝑋 ∪ 𝑌 , where 𝑋 and 𝑌 are disjoint and |𝑋 | = |𝑌 | = 𝑁 . The coloring induces an
edge-coloring of 𝐾𝑁,𝑁 on the bipartition 𝑋 and 𝑌 , thus we have a red 𝐵1 or a blue
𝐵2 from the definition for 𝑁 . □

The following result is due to Thomason (1982).

Theorem 13.7 For any integers 𝑛 ≥ 𝑚 ≥ 1,

𝑏𝑟 (𝐾𝑚,𝑛) ≤ 2𝑚 (𝑛 − 1) + 1.

The result will follow the following lemma immediately. Let 𝐺 be a bipartite
graph, whose first vertex class is 𝑋 and the second is 𝑌 . As mentioned in Section 2
of Chapter 7, we signify the fact that 𝐾𝑚,𝑛 is a subgraph of 𝐺 with 𝑚 vertices in 𝑋
and 𝑛 vertices in 𝑌 by saying that 𝐾 (𝑚,𝑛) is a subgraph of 𝐺.

Lemma 13.9 Let 𝑁 = 2𝑚 (𝑛 − 1) with 𝑛 ≥ 𝑚 ≥ 1. Suppose that the edges of 𝐾𝑁,𝑁
are red-blue colored such that there is neither a red 𝐾 (𝑚,𝑛) nor a blue 𝐾 (𝑛,𝑚) . Then
each vertex of 𝐾𝑁,𝑁 is incident with exactly 𝑁/2 red edges and 𝑁/2 blue edges
unless 𝑚 = 𝑛 = 2. Furthermore, any red-blue edge colored 𝐾𝑁,𝑁+1 yields a red
𝐾 (𝑚,𝑛) or a blue 𝐾 (𝑛,𝑚) .

Proof. Observe that if the first part of the lemma is proven, then the second part
follows. Suppose that the edges of 𝐾𝑁,𝑁+1 are red-blue colored without a red 𝐾 (𝑚,𝑛)
nor a blue 𝐾 (𝑛,𝑚) . Choose 𝑥 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌 such that 𝑥𝑦1 is red and 𝑥𝑦2 is



Boo
k R

ev
iew

 C
op

y

For 
pe

rso
na

l u
se

 on
ly

310 13 Various Ramsey Problems

blue. Then for 𝑖 = 1, 2, 𝐾𝑁,𝑁+1 − {𝑦𝑖} has a red-blue edge coloring with neither red
𝐾 (𝑚,𝑛) nor blue 𝐾 (𝑛,𝑚) so 𝑥 is incident with exactly 𝑁/2 red edges in each. This is
impossible since 𝑥 is incident with more red edges in 𝐾𝑁,𝑁+1 − {𝑦2} than that in
𝐾𝑁,𝑁+1 − {𝑦1}.

The proof for the first part is by induction on 𝑚. Let the vertex sets of 𝐾𝑁,𝑁 be
𝑋 and 𝑌 with |𝑋 | = |𝑌 | = 𝑁 = 2𝑚 (𝑛 − 1). Suppose its edges are red-blue colored
that contains neither a red 𝐾 (𝑚,𝑛) nor a blue 𝐾 (𝑛,𝑚) . If 𝑚 = 1, then 𝑁 = 2(𝑛 − 1)
and 𝐾𝑁,𝑁 has at most 𝑁 (𝑛 − 1) red edges and at most 𝑁 (𝑛 − 1) blue edges. So

𝑁2 =
∑︁
𝑥∈𝑋

𝑑𝑅 (𝑥) +
∑︁
𝑦∈𝑌

𝑑𝐵 (𝑦) ≤ 2𝑁 (𝑛 − 1) = 𝑁2,

hence the equalities hold throughout, implying that 𝑑𝑅 (𝑥) = 𝑑𝐵 (𝑦) = 𝑛 − 1 for any
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

Let 𝑚 ≥ 2 be fixed. Suppose that the theorem holds for smaller values of 𝑚. Let
𝑡 = 𝑁/2 = 2𝑚−1 (𝑛 − 1). Suppose that there is vertex 𝑥0 ∈ 𝑋 with 𝑑𝑅 (𝑥0) > 𝑡.

Case 1 There is a vertex 𝑦0 ∈ 𝑌 with 𝑑𝐵 (𝑦0) > 𝑡.

We assume that the edge 𝑥0𝑦0 is blue, say. Consider the subgraph induced by
𝑁𝑅 (𝑥0) and 𝑁𝐵 (𝑦0) \ {𝑥0}. This is a complete bipartite graph. Its vertex class in 𝑋
has at least 𝑡 vertices and that in 𝑌 has at least 𝑡 + 1 = 2𝑚−1 (𝑛 − 1) + 1 vertices. We
thus have a complete bipartite graph 𝐾𝑡+1,𝑡 . From the induction hypothesis, we have
either a red 𝐾 (𝑚−1,𝑛) or a blue 𝐾 (𝑛,𝑚−1) . Together with the vertex 𝑥0 or 𝑦0, we get a
red 𝐾 (𝑚,𝑛) or a blue 𝐾 (𝑛,𝑚) . This is impossible. The situation is similar if we assume
that the edge 𝑥0𝑦0 is red.

Case 2 Each vertex 𝑦 ∈ 𝑌 satisfies that 𝑑𝐵 (𝑦) ≤ 𝑡.

We shall show that for 1 ≤ 𝑠 ≤ 𝑚 − 1, a red 𝐾 (𝑠,2𝑚−𝑠 (𝑛−1)+1) yields a red
𝐾 (𝑠+1,2𝑚−𝑠−1 (𝑛−1)+1) . The existence of such a red 𝐾 (𝑠,2𝑚−𝑠 (𝑛−1)+1) for 𝑠 = 1 is just
the condition 𝑑𝑅 (𝑥0) > 𝑡 as given. Suppose that there is a red 𝐾 (𝑠,2𝑚−𝑠 (𝑛−1)+1) on
vertex classes 𝑃 and𝑄 with 𝑃 ⊆ 𝑋 , |𝑃 | = 𝑠,𝑄 ⊆ 𝑌 , |𝑄 | = 2𝑚−𝑠 (𝑛− 1) + 1 = 2𝜆 + 1,
where 𝜆 = 2𝑚−𝑠−1 (𝑛 − 1). Then the number of red edges between 𝑋 \ 𝑃 and 𝑄 is at
least |𝑄 | (𝑁/2 − 𝑠) since each 𝑦 ∈ 𝑌 satisfies 𝑑𝑅 (𝑦) ≥ 𝑁/2.

Suppose that each 𝑥 ∈ 𝑋 \ 𝑃 satisfies |𝑁𝑅 (𝑥) ∩𝑄 | ≤ 𝜆 = 2𝑚−𝑠−1 (𝑛 − 1). Then

|𝑋 \ 𝑃 |𝜆 ≥ |𝑄 | (𝑁/2 − 𝑠),

which gives
(𝑁 − 𝑠)𝜆 ≥ (2𝜆 + 1) (𝑁/2 − 𝑠).

We thus have
𝑠(𝜆 + 1) ≥ 𝑁/2 = 2𝑠+1𝜆,

which is impossible unless 𝑠 = 1 and 𝑚 = 𝑛 = 2.
So we assume that some 𝑥 ∈ 𝑋 \ 𝑃 satisfies |𝑁𝑅 (𝑥) ∩ 𝑄 | ≥ 2𝑚−𝑠−1 (𝑛 − 1) + 1.

Thus 𝑁𝑅 (𝑥) ∩𝑄 and 𝑃∪ {𝑥} induce a red 𝐾 (𝑠+1,2𝑚−𝑠−1 (𝑛−1)+1) as desired. We hence
obtain a red 𝐾 (𝑚,𝑛) with 𝑚 = 𝑠 + 1.
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13.3 Bipartite Ramsey Numbers 311

Therefore, in any edge-coloring of 𝐾𝑁,𝑁 that contains neither a red 𝐾 (𝑚,𝑛) nor a
blue 𝐾 (𝑛,𝑚) , there is no vertex 𝑥 with 𝑑𝑅 (𝑥) > 𝑁/2. So each vertex 𝑥 ∈ 𝑋 satisfies
𝑑𝑅 (𝑥) ≤ 𝑁/2. Similarly each 𝑦 ∈ 𝑌 satisfies 𝑑𝑅 (𝑦) ≤ 𝑁/2. The same argument
will yield that each vertex 𝑣 satisfies 𝑑𝐵 (𝑣) ≤ 𝑁/2, so the desired statement follows
immediately. □

For fixed 𝑚 and large 𝑛, the asymptotic formula of 𝑏𝑟 (𝐾𝑚,𝑛) is 2𝑚𝑛, which is
also that of 𝑟 (𝐾𝑚,𝑛).

Theorem 13.8 For fixed 𝑚, as 𝑛→ ∞,

𝑏𝑟 (𝐾𝑚,𝑛) ∼ 2𝑚𝑛.

Proof. The upper bound follows from Theorem 13.7. The proof for the desired lower
bound 𝑏𝑟 (𝐾𝑚,𝑛) ≥ (1− 𝑜(1))2𝑚𝑛 is similar to that for 𝑟 (𝐾𝑚,𝑛) in Theorem 3.16, so
we omit it. □

Theorem 13.7 gives that 𝑏𝑟 (𝐾𝑛,𝑛) ≤ 2𝑛 (𝑛 − 1) + 1, which was improved by
Conlon (2008).

Theorem 13.9 For all large 𝑛,

(1 − 𝑜(1))
√

2
𝑒
𝑛 2𝑛/2 ≤ 𝑏𝑟 (𝐾𝑛,𝑛) ≤ (1 + 𝑜(1))2𝑛+1 log2 𝑛.

The lower bound can be proved by the symmetric form of Local Lemma in the same
manner as that for the lower bound of 𝑟 (𝑛, 𝑛) in Chapter 5, we thus omit it. For
the upper bound, we shall establish a lemma first. From the upper bounds of the
Zarankiewicz number in Chapter 7, we see that an 𝑀 ×𝑁 bipartite graph𝐺 contains
𝐾𝑚,𝑛 if the density 𝑝 =

𝑒 (𝐺)
𝑀𝑁

is positively bounded from below and 𝑀 and 𝑁 are
large.

Lemma 13.10 Let𝐺 be a bipartite graph on vertex sets 𝑋 and𝑌 , whose edge density
𝑝 ≥ 𝑎 for some constant 𝑎 > 0. If for any 𝜖 > 0, as 𝑡 → ∞,

|𝑋 |
𝑡2

→ ∞, and |𝑌 | ≥ (1 + 𝜖) 𝑠 − 1
𝑝𝑡

,

then 𝐺 must contain 𝐾 (𝑡 ,𝑠) for large 𝑡.

Proof. Let 𝑀 = |𝑋 | and 𝑁 = |𝑌 |. If 𝐺 contains no 𝐾 (𝑡 ,𝑠) , from the double-counting
argument used in Chapter 7 and Jensen’s inequality, we have

𝑁

(
𝑝𝑀

𝑡

)
= 𝑁

( 1
𝑁

∑
𝑣∈𝑌 𝑑 (𝑣)
𝑡

)
≤

∑︁
𝑣∈𝑌

(
𝑑 (𝑣)
𝑡

)
≤ (𝑠 − 1)

(
𝑀

𝑡

)
.

Note that
(𝑀
𝑡

)
/
(𝑝𝑀
𝑡

)
can be bounded as

𝑀 (𝑀 − 1) · · · (𝑀 − 𝑡 + 1)
𝑝𝑀 (𝑝𝑀 − 1) · · · (𝑝𝑀 − 𝑡 + 1) ≤

( 𝑀 − 𝑡
𝑝𝑀 − 𝑡

) 𝑡
=

1
𝑝𝑡

( 𝑀 − 𝑡
𝑀 − 𝑡/𝑝

) 𝑡
.
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312 13 Various Ramsey Problems

Using the fact that log(1 + 𝑥) = 𝑥 + 𝑜(𝑥) as 𝑥 → 0 and the condition that 𝑡2/𝑀 → 0
as 𝑡 → ∞, we have( 𝑀 − 𝑡

𝑀 − 𝑡/𝑝

) 𝑡
= exp

(
𝑡 log

𝑀 − 𝑡
𝑀 − 𝑡/𝑝

)
= exp

(
𝑡 log

(
1 + 𝑡 (1 − 𝑝)

𝑝𝑀 − 𝑡

))
→ 1.

Hence 𝑁 ≤ (1 + 𝑜(1)) (𝑠 − 1)/𝑝𝑡 , which is a contradiction. □

Proof of the upper bound in Theorem 13.9. For any 𝜖 > 0, set

𝑁 = (1 + 3𝜖)2𝑛+1 log2 𝑛.

Suppose that edges of 𝐾𝑁,𝑁 on vertex sets 𝑋 and 𝑌 are red/blue colored. Let

𝑌𝑅 = {𝑣 ∈ 𝑌 : 𝑑𝑅 (𝑣) ≥ 𝑁/2}, 𝑌𝐵 = {𝑣 ∈ 𝑌 : 𝑑𝐵 (𝑣) ≥ 𝑁/2}.

Then one of them, say 𝑌𝑅, satisfies |𝑌𝑅 | ≥ 𝑁/2.
Now consider the red bipartite graph induced by 𝑋 and 𝑌𝑅, which has density

𝑝 ≥ 1/2. An application of Lemma 13.10 for 𝑡 = 𝑛 − 2 log2 𝑛 and 𝑠 = 𝑛2 log2 𝑛 tells
us that we can find a red 𝐾 (𝑡 ,𝑠) as |𝑋 |/𝑡2 → ∞ and

|𝑌𝑅 | ≥ (1 + 3𝜖)2𝑛 log2 𝑛 ≥ (1 + 𝜖)2𝑡𝑛2 log2 𝑛 ≥ (1 + 𝜖) 𝑠
𝑝𝑡
.

Let 𝑋0 be the set of 𝑡 vertices in 𝑋 which are counted in our red 𝐾 (𝑡 ,𝑠) and let
𝑋 ′ = 𝑋 \ 𝑋0. Let 𝑌 ′ be the set of 𝑠 vertices in 𝑌𝑅 which are counted in this red
𝐾 (𝑡 ,𝑠) . Consider the induced red sub-bipartite graph on 𝑋 ′ and 𝑌 ′. Each vertex in 𝑌 ′

is red-adjacent to at least 𝑁/2− 𝑡 vertices in 𝑋 ′, so that the density 𝑝′ of the induced
subgraph satisfies that

𝑝′ ≥ 𝑁/2 − 𝑡
|𝑋 ′ | ≥ 𝑁 − 2𝑡

2(𝑁 − 𝑡) ≥ 1
2
− 𝑛

2𝑛
>

1
3
= 𝑎.

Applying Lemma 13.10 to this bipartite graph, since

|𝑋 ′ | = 𝑁 − 𝑡 ≥ (1 + 2𝜖)2𝑛+1 log2 𝑛, |𝑌 ′ | = 𝑛2 log2 𝑛,

we can find a red 𝐾 (𝑠′ ,𝑡 ′ ) , where 𝑠′ = 2 log2 𝑛 and 𝑡′ = 𝑛, since |𝑌 ′ |/𝑡′2 → ∞ and

|𝑋 ′ | ≥ (1 + 2𝜖) 𝑠′

(1/2)𝑛 ≥ (1 + 𝜖) 𝑠
′ − 1
𝑝′𝑛

Adding all 𝑡 vertices of 𝑋0 to this red 𝐾 (𝑠′ ,𝑛) (in the first vertex class) will produce
a red 𝐾𝑛,𝑛, as desired. □

It is also difficult to obtain a good asymptotic formula of 𝑏𝑟 (𝐾𝑚,𝑚, 𝐾𝑛,𝑛). The
situation is similar to that for 𝑟 (𝑚, 𝑛) that we have encountered. The following result
is due to Caro and Rousseau (2001).
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13.3 Bipartite Ramsey Numbers 313

Theorem 13.10 Let integer 𝑚 ≥ 2 be fixed. Then there are positive constant 𝐴 and
𝐵 such that

𝐴

(
𝑛

log 𝑛

) (𝑚+1)/2
≤ 𝑏𝑟 (𝐾𝑚,𝑚, 𝐾𝑛,𝑛) ≤ 𝐵

(
𝑛

log 𝑛

)𝑚
.

Proof. The lower bound can be seen from Lemma 13.8 and a theorem in Section 3
of Chapter 5 as

𝑏𝑟 (𝐾𝑚,𝑚, 𝐾𝑛,𝑛) ≥
1
2
𝑟 (𝐾𝑚,𝑚, 𝐾𝑛,𝑛) ≥ 𝐴

(
𝑛

log 𝑛

) (𝑚2−1)/(2𝑚−2)
= 𝐴

(
𝑛

log 𝑛

) (𝑚+1)/2
.

The upper bound is based on well-known results for the Zarankiewicz numbers
𝑧(𝑁, 𝑀; 𝑠, 𝑡), that is defined in Chapter 7. Let 𝑧(𝑁; 𝑠) denote 𝑧(𝑁, 𝑁; 𝑠, 𝑠). Then we
have

𝑧(𝑁; 𝑠) ≤
(
𝑠 − 1
𝑁

)1/𝑠
𝑁 (𝑁 − 𝑠 + 1) + (𝑠 − 1)𝑁.

To prove 𝑏𝑟 (𝐾𝑚,𝑚, 𝐾𝑛,𝑛) ≤ 𝑁 it suffices to show that 𝑧(𝑁;𝑚) + 𝑧(𝑁; 𝑛) < 𝑁2. Take
𝜖 > 0 and 𝑁 = 𝑐(𝑛/log 𝑛)𝑚, where 𝑐 = (1 + 𝜖)/(𝑚 − 1)𝑚−1. Then

𝑧(𝑁;𝑚)
𝑁2 <

(
𝑚 − 1
𝑁

)1/𝑚 (
1 − 𝑚 − 1

𝑁

)
+ 𝑚 − 1

𝑁

=

(
𝑚 − 1
𝑐

)1/𝑚 log 𝑛
𝑛

+𝑂
((

log 𝑛
𝑛

)𝑚)
.

To bound 𝑧(𝑁; 𝑛)/𝑁2, we first have(
𝑛 − 1
𝑁

)1/𝑛
=

(
(𝑛 − 1) log𝑚 𝑛

𝑐𝑛𝑚

)1/𝑛
= 1 − (𝑚 − 1) log 𝑛

𝑛
+𝑂

(
log log 𝑛

𝑛

)
.

Hence

𝑧(𝑁; 𝑛)
𝑁2 ≤

(
𝑛 − 1
𝑁

)1/𝑛 (
1 − 𝑛 − 1

𝑁

)
+ 𝑛 − 1

𝑁

= 1 − (𝑚 − 1) log 𝑛
𝑛

+𝑂
(
log log 𝑛

𝑛

)
.

Adding the above bounds, we obtain

𝑧(𝑁;𝑚) + 𝑧(𝑁; 𝑛)
𝑁2 =1 −

(
1 − 1

(1 + 𝜖)1/𝑚

)
(𝑚 − 1) log 𝑛

𝑛

+𝑂
(
log log 𝑛

𝑛

)
,

so (𝑧(𝑁;𝑚) + 𝑧(𝑁; 𝑛))/𝑁2 < 1 for all large 𝑛 as required. □
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314 13 Various Ramsey Problems

We believe the following problems are easier than the corresponding problems
for 𝑟 (𝑛, 𝑛) and 𝑟 (𝑚, 𝑛).

Problem 13.1 Determine lim
𝑛→∞

𝑏𝑟 (𝐾𝑛,𝑛)1/𝑛 if it exists, and determine the order of
𝑏𝑟 (𝐾𝑚,𝑚, 𝐾𝑛,𝑛) for fixed 𝑚 ≥ 2.

For non-complete bipartite case, Faudree and Schelp (1975), and independently
Gyárfás and Lehel (1973) proved that 𝑏𝑟 (𝑃𝑛, 𝑃𝑛) = 𝑛−1 for even 𝑛 and 𝑏𝑟 (𝑃𝑛, 𝑃𝑛) =
𝑛 for odd 𝑛. By using the regularity lemma, Shen, Lin and Liu (2018) obtained that
𝑏𝑟 (𝐶2𝑛, 𝐶2𝑛) = (2 + 𝑜(1))𝑛. For the three color case, Bucić, Letzter, and Sudakov
(2019) obtained the asymptotic order of 𝑏𝑟 (𝐶2𝑛, 𝐶2𝑛, 𝐶2𝑛). Luo and Peng (2020)
obtained the asymptotic order of 𝑏𝑟 (𝐶2⌊𝛼1𝑛⌋ , 𝐶2⌊𝛼2𝑛⌋ , 𝐶2⌊𝛼3𝑛⌋), where 𝛼𝑖 , 1 ≤ 𝑖 ≤ 3,
are constants.

13.4 Folkman Numbers

The Ramsey number 𝑟 (𝑚, 𝑛) is the smallest 𝑁 such that 𝐾𝑁 → (𝐾𝑚, 𝐾𝑛). It is
difficult to determine the behavior of 𝑟 (𝑚, 𝑛), and even more difficult if the graphs
are restricted with smaller cliques instead of complete graphs.

Let 𝐺1 and 𝐺2 be graph. Define a family F (𝐺1, 𝐺2; 𝑝) of graphs as

F (𝐺1, 𝐺2; 𝑝) = {𝐺 : 𝐺 → (𝐺1, 𝐺2) and 𝜔(𝐺) ≤ 𝑝}.

Define the Folkman number 𝑓 (𝐺1, 𝐺2; 𝑝) as

𝑓 (𝐺1, 𝐺2; 𝑝) = min{|𝑉 (𝐺) | : 𝐺 ∈ F (𝐺1, 𝐺2; 𝑝)}.

We admit that 𝑓 (𝐺1, 𝐺2; 𝑝) = ∞ if F (𝐺1, 𝐺2; 𝑝) = ∅, and thus 𝑓 (𝐺1, 𝐺2; 𝑝) = ∞
if 𝑝 < max{𝜔(𝐺1), 𝜔(𝐺2)}. As we write 𝐺 → (𝑚, 𝑛) for 𝐺 → (𝐾𝑚, 𝐾𝑛), we write
F (𝑚, 𝑛; 𝑝) and 𝑓 (𝑚, 𝑛; 𝑝) for F (𝐾𝑚, 𝐾𝑛; 𝑝) and 𝑓 (𝐾𝑚, 𝐾𝑛; 𝑝), respectively.

We list some elementary properties of 𝑓 (𝑚, 𝑛; 𝑝) as follows, for which the similar
properties of 𝑓 (𝐺1, 𝐺2; 𝑝) can be given easily.

Lemma 13.11 If 𝑝 < 𝑟 (𝑚, 𝑛) and F (𝑚, 𝑛; 𝑝) ≠ ∅, then

{𝐺 : 𝐺 → (𝑚, 𝑛) and 𝜔(𝐺) = 𝑝} ≠ ∅,

and 𝑓 (𝑚, 𝑛; 𝑝) = min{|𝑉 (𝐺) | : 𝐺 → (𝑚, 𝑛) and 𝜔(𝐺) = 𝑝}.

Proof. Since F (𝑚, 𝑛; 𝑝) ≠ ∅, we have 𝑝 ≥ max{𝑚, 𝑛}. Let 𝐺 be a graph in
F (𝑚, 𝑛; 𝑝) of order 𝑓 (𝑚, 𝑛; 𝑝). If 𝜔(𝐺) = 𝑝, then we are done. Otherwise, 𝐺 is
not complete as there is no 𝐾𝜔 with 𝜔 < 𝑟 (𝑚, 𝑛) such that 𝐾𝜔 → (𝑚, 𝑛), and
thus we can obtain a graph 𝐺′ from 𝐺 by adding an edge. Then the order of 𝐺′ is
still 𝑓 (𝑚, 𝑛; 𝑝), and 𝜔(𝐺′) is 𝜔(𝐺) or 𝜔(𝐺) + 1 and 𝐺′ → (𝑚, 𝑛). Continuing the
process, we will obtain a graph 𝐺̂ of order 𝑓 (𝑚, 𝑛; 𝑝) such that 𝐺̂ → (𝑚, 𝑛) and
𝜔(𝐺̂) = 𝑝. □
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13.4 Folkman Numbers 315

Lemma 13.12 For any positive integer 𝑝, F (𝑚, 𝑛; 𝑝) = F (𝑛, 𝑚; 𝑝), and thus
𝑓 (𝑚, 𝑛; 𝑝) = 𝑓 (𝑛, 𝑚; 𝑝).

Proof. The first equality can be seen from the fact that 𝐺 → (𝑚, 𝑛) if and only if
𝐺 → (𝑛, 𝑚), and thus the second equality follows. □

Lemma 13.13 If 𝑝 < 𝑞, then 𝑓 (𝑚, 𝑛; 𝑝) ≥ 𝑓 (𝑚, 𝑛; 𝑞), and if 𝑝 ≥ 𝑟 (𝑚, 𝑛), then
𝑓 (𝑚, 𝑛; 𝑝) = 𝑟 (𝑚, 𝑛).

Proof. The inequality is from the fact F (𝑚, 𝑛; 𝑝) ⊆ F (𝑚, 𝑛; 𝑞). If 𝑝 ≥ 𝑟 (𝑚, 𝑛),
then 𝐾𝑁 ∈ F (𝑚, 𝑛; 𝑝), where 𝑁 = 𝑟 (𝑚, 𝑛), and there is no graph 𝐺 of order smaller
than 𝑁 such that 𝐺 ∈ F (𝑚, 𝑛; 𝑝) from the definition of Ramsey number, and thus
𝑓 (𝑚, 𝑛; 𝑝) = 𝑁 = 𝑟 (𝑚, 𝑛). □

Folkman (1970) proved that F (𝑚, 𝑛; 𝑝) ≠ ∅ if 𝑝 ≥ max{𝑚, 𝑛}, and thus
𝑓 (𝑚, 𝑛; 𝑝) < ∞, from which the name after. This investigation was motivated by a
question of Erdős and Hajnal (1967) who asked what was the minimum 𝑝 such that
F (3, 3; 𝑝) ≠ ∅. Folkman’s result was generalized by Nešetřil and Rödl (1976) as
follows.

Theorem 13.11 If 𝑝 ≥ max{𝜔(𝐺1), 𝜔(𝐺2)}, then

F (𝐺1, 𝐺2; 𝑝) ≠ ∅.

Nešetřil and Rödl proved their result even in multi-color cases. Here, we shall
only prove Folkman’s result.

As usual, we signify the isomorphism of graphs 𝐺1 and 𝐺2 as 𝐺1 � 𝐺2. For a
subset 𝑆 of 𝑉 (𝐺), denote by 𝐺 [𝑆] the subgraph of 𝐺 induced by 𝑆.

Recall that a graph 𝐻 is Ramsey for 𝐺 if any edge-coloring of 𝐻 by two colors
contains an induced monochromatic 𝐺. Correspondingly, we call 𝐻 to be 𝑛-vertex-
Ramsey for 𝐺 if the vertex set of 𝐻 is partitioned into 𝑉1, 𝑉2, · · · , 𝑉𝑛, then 𝐺 is an
induced subgraph of 𝐻 [𝑉𝑖] for some 𝑖 = 1, 2, . . . , 𝑛.

Lemma 13.14 Let 𝑛 ≥ 2 be an integer and 𝐺 a graph of order 𝑟. Then there is a
graph 𝐻 = 𝐻 (𝑛, 𝐺) that is 𝑛-vertex-Ramsey for 𝐺 and 𝜔(𝐻) = 𝜔(𝐺).

Proof. We first construct a graph 𝐻 = 𝐻 (2, 𝐺) by induction on 𝑟 such that 𝐻 is
2-vertex Ramsey and 𝜔(𝐻) = 𝜔(𝐺).

If 𝑟 = 1, we simply take 𝐻 = 𝐺 = 𝐾1. We then assume that 𝑟 ≥ 2.
Let 𝑉 be the vertex set of 𝐺 with 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑟 }. Let 𝑢 ∈ 𝑉 be a fixed

vertex, and 𝑉 ′ = 𝑉 \ {𝑢} and 𝑉 ′′ = 𝑁 (𝑢). Let 𝐺′ = 𝐺 [𝑉 ′] and 𝐺′′ = 𝐺 [𝑉 ′′]. Then
from the inductive assumption, a graph 𝐻′ = 𝐻 (2, 𝐺′) can be defined as asserted.

Note the facts that 𝐻′ is 2-vertex-Ramsey for 𝐺′ and 𝐺′ contains a subset 𝑆 such
that 𝐻′ [𝑆] � 𝐺′′. We shall find an additional vertex to play the role of 𝑢. Let 𝑊 be
the vertex set of 𝐻′. Define a family X of subsets of𝑊 as

X =

{
𝑆 ⊆ 𝑊 : 𝐻′ [𝑆] � 𝐺′′

}
.
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316 13 Various Ramsey Problems

Since 𝑉 ′′ = 𝑁 (𝑢) is a subset of 𝑉 ′ and thus X ≠ ∅. Let 𝐼 = {1, 2, . . . , 2 |𝑊 |𝑟}, a set
of integers, and 𝐼 (𝑟 ) the family of all 𝑟-element subsets of 𝐼. For any 𝑇 ∈ 𝐼 (𝑟 ) , when
we write 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑟 }, we always admit the natural order 𝑡1 < 𝑡2 < · · · < 𝑡𝑟 .

We define a graph 𝐻 as follows. For any (𝑆, 𝑇) ∈ (X, 𝐼 (𝑟 ) ), we have a copy 𝐺𝑆,𝑇
of 𝐺, and for any 𝑖 ∈ 𝐼, we have a copy 𝐻′

𝑖
of 𝐻′. Let 𝐻 be the union of those copies

of 𝐺 and 𝐻′ by adding edges between the certain copies of 𝐺 and that of 𝐻′. The
copy of 𝑣 𝑗 in 𝐺𝑆,𝑇 , where 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑟 }, is adjacent to each vertex in the copy
of 𝑆 in 𝐻′

𝑡 𝑗
, 𝑗 = 1, 2, . . . , 𝑟 . Fig. 12. 1 illustrates the edges between a copy 𝐺𝑆,𝑇 of

𝐺 and that of 𝐻′.
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❚
❚
❚
❚
❚
❚

❭
❭
❭
❭
❭
❭

𝑣1 𝑣2 𝑣𝑟

𝐺𝑆,𝑇

𝐻′
𝑡1

𝐻′
𝑡2

𝐻′
𝑡𝑟

𝑆 𝑆 𝑆

Fig. 12. 1 𝐺𝑆,𝑇 and 𝐻′
𝑡1
, 𝐻′

𝑡2
, . . . , 𝐻′

𝑡𝑟
for 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑟 }

We now show that 𝐻 is 2-vertex-Ramsey for 𝐺. Let 𝑊𝑖 be the vertex set of 𝐻′
𝑖

for 𝑖 = 1, 2, . . . , |𝐼 |, which is a copy of 𝑊 . When we partition the vertex set of 𝐻
into two parts, we have a restricted partition for each 𝑊𝑖 = (𝐴𝑖 , 𝐵𝑖). Since 𝑊 has
2 |𝑊 | partitions, among those |𝐼 | = 2 |𝑊 |𝑟 copies of 𝐻′, at least 𝑟 of them have the
identical partition, and thus there are a set 𝑇 ∈ 𝐼 (𝑟 ) , and a partition (𝐴, 𝐵) of𝑊 such
that (𝐴𝑡 , 𝐵𝑡 ) = (𝐴, 𝐵) for each 𝑡 ∈ 𝑇 .

Let us write𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑟 }. As𝐻′ is 2-vertex-Ramsey for𝐺′, when the vertex
set of 𝐻′ is partitioned into (𝐴, 𝐵), one of subgraph induced by 𝐴, say, contains 𝐺′

as an induced subgraph. Thus we can find the copies of a fixed 𝑆 of 𝑊 in each 𝐻′
𝑡𝑖

that induces a subgraph isomorphic to 𝐺′′. Furthermore, we consider 𝐺𝑆,𝑇 . If any
vertex is in the same part as that of 𝐵, we have an induced 𝐺. Otherwise, one of
vertex of 𝐺𝑆,𝑇 , say 𝑣𝑖 , is in the same part as that of 𝐴, then the induced 𝐺′ in 𝐻′

𝑡𝑖

and 𝑣𝑖 give us a induced graph 𝐺.
We then show that 𝜔(𝐻) = 𝜔(𝐺). It suffices to show that 𝜔(𝐻) ≤ 𝜔(𝐺) as

the inverse inequality is clear. Let 𝐶 be an independent set of 𝐻. Since any pair
of 𝐺𝑆,𝑇 are disconnected, we have that at most one 𝐺𝑆,𝑇 , and one of 𝐻′

𝑖
has a

non-empty intersection with 𝐶. If such 𝐺𝑆,𝑇 is none, then 𝐶 is contained in one 𝐻′
𝑖
.

As 𝜔(𝐻′) = 𝜔(𝐺′), we have |𝐶 | ≤ 𝜔(𝐺′) ≤ 𝜔(𝐺). Otherwise, there is a 𝐺𝑆,𝑇 that
contains 𝑘 vertices, say 𝑣1, . . . , 𝑣𝑘 , of 𝐶. If 𝑘 = 1, clearly |𝐶 | ≤ 𝜔(𝐺). If 𝑘 ≥ 2, as
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13.4 Folkman Numbers 317

𝑣1 and 𝑣2 has no common neighbors in 𝐻′
𝑡𝑖
, then 𝐶 is contained in a 𝐺𝑆,𝑇 and thus

|𝐶 | ≤ 𝜔(𝐺).
For 𝑛 > 2, we assume that there is a graph 𝐻𝑛−1 = 𝐻 (𝑛 − 1, 𝐺) that is (𝑛 − 1)-

vertex Ramsey and 𝜔(𝐻𝑛−1) = 𝜔(𝐺). Let 𝐻𝑛 = 𝐻 (𝑛, 𝐺) = 𝐻 (2, 𝐻𝑛−1). Then it is
easy to see that 𝐻𝑛 is 𝑛-vertex Ramsey for 𝐺 and 𝜔(𝐻𝑛) = 𝜔(𝐺). □

The proof of Theorem 13.12 needs the Cartesian product of two graphs defined as
follows. Let 𝐹 and 𝐻 be vertex disjoint graphs on vertex sets𝑈 and 𝑉 , respectively,
where𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑚} and𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. The Cartesian product 𝐹 ×𝐻
of 𝐹 and 𝐻 is define as a graph on vertex set𝑈×𝑉 , in which a pair of distinct vertices
(𝑢, 𝑣) and (𝑢′, 𝑣′) are adjacent if and only if 𝑢𝑢′ ∈ 𝐸 (𝐹) and 𝑣 = 𝑣′ or 𝑢 = 𝑢′ and
𝑣𝑣′ ∈ 𝐸 (𝐻). If we write the vertices of 𝐹 × 𝐻 as a matrix

(𝑢1, 𝑣1) (𝑢1, 𝑣2) · · · (𝑢1, 𝑣𝑛)
(𝑢2, 𝑣1) (𝑢2, 𝑣2) · · · (𝑢2, 𝑣𝑛)

...
...

...

(𝑢𝑚, 𝑣1) (𝑢𝑚, 𝑣2) · · · (𝑢𝑚, 𝑣𝑛),

then each edge is vertical or horizonal, and each column preserves the adjacency of
𝐹 and each row preserves the adjacency of 𝐻.

The following is an easy property of Cartesian product of graphs.

Lemma 13.15 Let 𝐹 and 𝐻 be vertex disjoint graphs. Then

𝜔(𝐹 × 𝐻) = max{𝜔(𝐹), 𝜔(𝐻)}.

Theorem 13.12 (Folkman) If 𝑝 ≥ max{𝑚, 𝑛}, then F (𝑚, 𝑛; 𝑝) ≠ ∅.

Proof. From Lemma 13.12, we may assume that 𝑛 ≥ 𝑚 ≥ 1. By Lemma 13.11,
it suffices to construct a graph 𝐺 ∈ F (𝑚, 𝑛; 𝑛) by induction on 𝑚 + 𝑛. As 𝐾𝑛 ∈
F (1, 𝑛; 𝑛) and 𝐾𝑛 ∈ F (2, 𝑛; 𝑛), we assume that 𝑛 ≥ 𝑚 ≥ 3 and the assertion is true
for smaller value of𝑚+𝑛. Let𝐺1, 𝐺2 and𝐺3 be vertex disjoint graphs such that𝐺1 ∈
F (𝑚 − 1, 𝑛; 𝑛), 𝐺2 ∈ F (𝑚, 𝑛− 1; max{𝑚, 𝑛− 1}), and 𝐺3 ∈ F (𝑚 − 1, 𝑛− 1; 𝑛− 1).
From Lemma 13.11, we may assume that 𝜔(𝐺1) = 𝑛, 𝜔(𝐺2) = max{𝑚, 𝑛 − 1}
and 𝜔(𝐺3) = 𝑛 − 1. Let 𝐻 (𝑘, 𝐺) be a graph as defined in Lemma 13.14. Write
𝑀 for the number of (𝑛 − 1)-element subsets of vertices of 𝐺1 ∪ 𝐺2, and let
𝐻2 = 𝐻 ((𝑛 − 1)2𝑀2, 𝐺3). Write 𝑁 for the number of ways partitioning edges of 𝐻2
into two classes, and let 𝐻1 = 𝐻 (𝑁,𝐺1 ∪ 𝐺2).

Denote by 𝑉1 and 𝑉2 the vertex sets of 𝐻1 and 𝐻2, respectively, and let

X = {𝑇 ⊆ 𝑉1 : |𝑇 | = 𝑛 − 1}.

We then define a graph𝐺 on the vertex set (𝑉1 ×𝑉2) ∪X, in which𝑉1 ×𝑉2 preserves
the edges of 𝐻1 × 𝐻2, and there is no edge between the members of X, and each
vertex (𝑢, 𝑣) in 𝑉1 × 𝑉2 is adjacent to each 𝑇 ∈ X if 𝑢 ∈ 𝑇 , which means that all
vertices in the 𝑢-row of 𝐻1 ×𝐻2 are adjacent to 𝑇 if 𝑢 ∈ 𝑇 . From the construction of
𝐺 and the facts that 𝜔(𝐻1) = 𝑛 and 𝜔(𝐻2) = 𝑛 − 1, we have 𝜔(𝐺) = 𝑛.
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318 13 Various Ramsey Problems

It remains to show that 𝐺 → (𝑚, 𝑛). Let (𝑅, 𝐵) be a red-blue edge-coloring of
𝐺. For each 𝑢 ∈ 𝑉1, the edges of 𝐻1 × 𝐻2 in the 𝑢-row, hence the edges of 𝐻2, are
colored into (𝑅(𝑢), 𝐵(𝑢)). As there are 𝑁 ways partitioning the edges of 𝐻2, the
rows of 𝑉1 × 𝑉2, hence the vertices of 𝐻1, are partitioned into 𝑁 classes, in which
two vertices 𝑢 and 𝑢′ of 𝐻1 are in the same class if

(𝑅(𝑢), 𝐵(𝑢)) = (𝑅(𝑢′), 𝐵(𝑢′)).

Since 𝐻1 = 𝐻 (𝑁,𝐺1 ∪𝐺2), which is 𝑁-vertex Ramsey for 𝐺1 ∪𝐺2, one of classes
in the above partition must contains a subset 𝑈 such that 𝐻1 [𝑈] � 𝐺1 ∪ 𝐺2 . From
the definition of the partition, we know that there is a fixed coloring (𝑅0, 𝐵0) of
edges of 𝐻2 such that

(𝑅(𝑢), 𝐵(𝑢)) = (𝑅0, 𝐵0) for each 𝑢 ∈ 𝑈,

which means that the edges of 𝐻2 in all rows that𝑈 occupies are colored in the same
way. The definition of 𝐻1 × 𝐻2 implies that, for any 𝑣 ∈ 𝑉2, the vertex set 𝑈 × {𝑣}
induces a subgraph of 𝐺 isomorphic to 𝐺1 ∪ 𝐺2. If this subgraph contains a red
𝐾𝑚 or a blue 𝐾𝑛, we are done. Otherwise, from the choice of 𝐺1 ∈ F (𝑚 − 1, 𝑛; 𝑛),
𝐺2 ∈ F (𝑚, 𝑛 − 1; max{𝑚, 𝑛 − 1}), for each 𝑣 ∈ 𝑉2, both following situations must
happen:

Case 1 There is a subset 𝑆𝑅 (𝑣) of𝑈 such that 𝑆𝑅 (𝑣) × {𝑣} induces a red 𝐾𝑚−1.

Case 2 There is a subset 𝑇𝐵 (𝑣) of𝑈 such that 𝑇𝐵 (𝑣) × {𝑣} induces a blue 𝐾𝑛−1,
where 𝑆𝑅 (𝑣) ∩ 𝑇𝐵 (𝑣) = ∅ as 𝐺1 and 𝐺2 are vertex disjoint.

Let 𝑇𝑅 (𝑣) be a subset of𝑈 extended from 𝑆𝑅 (𝑣) such that 𝑇𝑅 (𝑣) ∩𝑇𝐵 (𝑣) = ∅ and
|𝑇𝑅 (𝑣) | = |𝑇𝐵 (𝑣) | = 𝑛− 1. Then both 𝑇𝑅 (𝑣) and 𝑇𝐵 (𝑣) are members of X, which are
vertices of 𝐺 and adjacent to every vertex in the set 𝑇𝑅 (𝑣) × {𝑣} and 𝑇𝐵 (𝑣) × {𝑣} in
𝑉1 ×𝑉2, respectively.

If, for some 𝑣 ∈ 𝑉2, the set (𝑇𝑅 (𝑣) × {𝑣}) ∪ {𝑇𝑅 (𝑣)} contains a red 𝐾𝑚, or the set
(𝑇𝐵 (𝑣) × {𝑣}) ∪ {𝑇𝐵 (𝑣)} induces a blue 𝐾𝑛, we are done. Otherwise, for each 𝑣 ∈ 𝑉2,
there is a vertex 𝑢1 (𝑣) ∈ 𝑇𝑅 (𝑣) such that the edge {(𝑢1 (𝑣), 𝑣), 𝑇𝑅 (𝑣)} is blue, and
there is a vertex 𝑢2 (𝑣) ∈ 𝑇𝐵 (𝑣) such that the edge {(𝑢2 (𝑣), 𝑣), 𝑇𝐵 (𝑣)} is red.

As𝑈 has 𝑀 subsets 𝑇 with |𝑇 | = 𝑛 − 1, there are (𝑛 − 1)2𝑀2 ordered quadruples
in the form (𝑢1, 𝑢2, 𝑇1, 𝑇2) with 𝑢1 ∈ 𝑇1 ⊆ 𝑈, 𝑢2 ∈ 𝑇2 ⊆ 𝑈 and |𝑇1 | = |𝑇2 | = 𝑛 − 1.
Then, by considering the rows in 𝑉1 ×𝑉2 that𝑈 occupies, we can partition 𝑉2 hence
the columns of 𝑉1 ×𝑉2 into (𝑛 − 1)2𝑀2 classes by putting 𝑣 and 𝑣′ in the same class
if

(𝑢1 (𝑣), 𝑢2 (𝑣), 𝑇𝑅 (𝑣), 𝑇𝐵 (𝑣)) = (𝑢1 (𝑣′), 𝑢2 (𝑣′), 𝑇𝑅 (𝑣′), 𝑇𝐵 (𝑣′)).

As 𝐻2 = 𝐻 ((𝑛 − 1)2𝑀2, 𝐺3), we thus obtain a set 𝑉 ⊆ 𝑉2 and a fixed quadruple
(𝑢1, 𝑢2, 𝑇𝑅, 𝑇𝐵) such that 𝐻2 [𝑉] � 𝐺3 and

(𝑢1 (𝑣), 𝑢2 (𝑣), 𝑇𝑅 (𝑣), 𝑇𝐵 (𝑣)) = (𝑢1, 𝑢2, 𝑇𝑅, 𝑇𝐵) for each 𝑣 ∈ 𝑉,
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This is to say, for 𝑣 ∈ 𝑉 , all (𝑢1 (𝑣), 𝑣) are in the 𝑢1-row, and all (𝑢2 (𝑣), 𝑣) are in the
𝑢2-row, and the rows that 𝑇𝑅 (𝑣) × {𝑣} occupies are as the same as 𝑇𝑅 does, and the
rows that 𝑇𝑅 (𝑣) × {𝑣} occupies are as the same as 𝑇𝐵 does.

Let us identify 𝐺3 with the graph induced by {𝑢} × 𝑉 for 𝑢 ∈ 𝑈. Then the edges
of 𝐺3 in the 𝑢1-row and in the 𝑢2-row are colored in the same way as 𝑢1, 𝑢2 ∈ 𝑈.
Since 𝐺3 ∈ F (𝑚 − 1, 𝑛− 1, 𝑛− 1), we either have a subset𝑊𝑅 ⊆ 𝑉 which induces a
red 𝐾𝑚−1, or a subset𝑊𝐵 ⊆ 𝑉 which induces a blue 𝐾𝑛−1. If the former is the case,
then {𝑢2} ×𝑊𝑅 ∪ {𝑇𝐵} induces a red 𝐾𝑚 of 𝐺, or otherwise, {𝑢1} ×𝑊𝐵 ∪ {𝑇𝑅}
induces a blue 𝐾𝑛 of 𝐺. □

Let us have a brief analysis on the bound for the growth of Folkman number from
the proofs.

Let 𝑔(𝑟) be an upper bound for the order of the graph 𝐻 = 𝐻 (2, 𝑟) constructed in
Lemma 13.14 with 𝑔(1) = 1. As

𝑉 (𝐻) = (𝑉 × X × 𝐼 (𝑟 ) ) ∪ (𝑊 × 𝐼).

Then |𝑊 | ≤ 𝑔(𝑟 − 1) and |𝐼 | ≤ 𝑟2𝑔 (𝑟−1) , and thus 𝑔(𝑟) is a tower of height 𝑟 . For
𝑛 > 2, let 𝐻𝑛−1 = 𝐻 (𝑛 − 1, 𝐺) and 𝐻𝑛 = 𝐻 (𝑛, 𝐺) = 𝐻 (2, 𝐻𝑛−1). Then the tower
of the order of 𝐻𝑛 is around the value of the order 𝐻𝑛−1. In the proof of Theorem
13.12, as 𝑁 and 𝑀 are big, the growth of the height of the tower in the obtained
upper bound for 𝑓 (𝑛, 𝑛; 𝑛) is rapid, which is somehow like that for 𝑤(𝑛, 𝑛) in the
original proof of van der Waerden, see Chapter 11.

Reducing the upper bound for 𝑓 (𝑛, 𝑛; 𝑛) or 𝑓 (3, 𝑛; 𝑛) is not easy. For 𝑝 = 𝑟 (𝑚, 𝑛)−
1, Lin (1972) proved that in some cases 𝑓 (𝑚, 𝑛; 𝑝) = 𝑟 (𝑚, 𝑛) + 2. It is known that
𝑓 (3, 3; 5) = 8 and 𝑓 (3, 3; 4) = 15, due to Graham (1968) and Lin (1972), and
Piwakowski, Radziszowski and Urbanski (1999), respectively.

It is known that 𝑓 (3, 3; 3) ≤ 3 × 109, due to Spencer (1988), which improved an
upper bound 1012 of Frankl and Rödl (1986). Chung and Graham (1999) conjectured
𝑓 (3, 3; 3) < 1000, which was confirmed by Lu (2008) with 𝑓 (3, 3; 3) < 9697, and
by Dudek and Rödl (2008) with more computer aid. No reasonable lower bound for
𝑓 (𝑛, 𝑛; 𝑛), even for 𝑓 (3, 𝑛; 𝑛) or 𝑓 (3, 3; 3), is known.

13.5 For Parameters and Coloring Types

We have seen that it is usually difficult to estimate the value of 𝑟 (𝐺, 𝐻), particularly
that of 𝑟 (𝑚, 𝑛). Many researchers made some generalization on Ramsey numbers.
For a parameter 𝑓 (𝐹) of graph 𝐹, similarly to define 𝑟 (𝐺, 𝐻), we can define

𝑟 𝑓 (𝐺, 𝐻) = min{ 𝑓 (𝐹) : 𝐹 → (𝐺, 𝐻)}.

We write 𝑟 𝑓 (𝐺) for 𝑟 𝑓 (𝐺,𝐺). Burr, Erdős and Lovasz (1976) define chromatic
Ramsey number 𝑟𝜒 (𝐺, 𝐻) by taking the parameter 𝑓 as the chromatic number 𝜒.
They proved 𝑟𝜒 (𝐾𝑚, 𝐾𝑛) = 𝑟 (𝑚, 𝑛) and 𝑟𝜒 (𝐺) ≥ (𝑛 − 1)2 + 1 if 𝑛 = 𝜒(𝐺), and
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conjectured that for any positive integer 𝑛, there is a graph 𝐺 with 𝜒(𝐺) = 𝑛 such
that 𝑟𝜒 (𝐺) = (𝑛 − 1)2 + 1. This conjecture was proved to be true by Zhu (2011) in
an effort to solve another conjecture.

Benedict, Chartand, and Lick (1977) defined 𝜇(𝑔;𝑚, 𝐻) to be the least integer 𝑁
such that any graph 𝐺 of 𝑁 , either 𝑔(𝐺) ≥ 𝑚 or 𝐺 contains 𝐻 as a subgraph, where
𝑔(𝐺) is a parameter of 𝐺.

Let 𝑔1 and 𝑔2 be graph parameters and let𝑚 and 𝑛 be integers. Define the Ramsey
number 𝑟 (𝑔1 ≥ 𝑚, 𝑔2 ≥ 𝑛) as the least integer 𝑁 such that for any graph 𝐺 of order
𝑁 either 𝑔1 (𝐺) ≥ 𝑚 or 𝑔2 (𝐺) ≥ 𝑛. We call 𝑟 (𝑔1 ≥ 𝑚, 𝑔2 ≥ 𝑛) as the Ramsey
number on 𝑔1 and 𝑔2, or the mixed Ramsey number on 𝑔1 and 𝑔2 if 𝑔1 and 𝑔2 are
different. In this new notation, we have

𝑟 (𝑚, 𝑛) = 𝑟 (𝜔 ≥ 𝑚, 𝜔 ≥ 𝑛) = 𝑟 (𝛼 ≥ 𝑚, 𝛼 ≥ 𝑛).

Let 𝑔𝐻 (𝐺) be the indicator that 𝐻 is a subgraph of 𝐺. Then 𝑟 (𝑔𝐻 = 1, 𝑔𝐹 = 1) is
𝑟 (𝐻, 𝐹).

The most natural question is that for which pair 𝑔1 and 𝑔2, the defined Ramsey
number 𝑟 (𝑔1 ≥ 𝑚, 𝑔2 ≥ 𝑛) exists. The answer is not always positive. For example,
𝑟 (𝜒 ≥ 2, 𝛼 ≥ 2) does not exist since the empty graph 𝑁𝑛 of order 𝑛 satisfies that
𝜒(𝑁𝑛) = 1 and 𝛼(𝑁𝑛) = 1. However, for many pairs of parameters, the existence of
the Ramsey number on these parameters can be easily verified.

Theorem 13.13 Let 𝑔1 and 𝑔2 be graph parameters. Then for any positive integers
𝑚 and 𝑛, 𝑟 (𝑔1 ≥ 𝑚; 𝑔2 ≥ 𝑛) exists if and only if

lim
𝑘→∞

(
min

|𝑉 (𝐺) |=𝑘
(𝑔1 (𝐺) + 𝑔2 (𝐺))

)
= ∞. (13.1)

Proof. Suppose that for any positive integers 𝑚 and 𝑛, 𝑟 (𝑔1 ≥ 𝑚; 𝑔2 ≥ 𝑛) exists.
Then for any integer 𝑀 > 0, 𝐾 (𝑀) = 𝑟 ( 𝑓1 ≥ 𝑀; 𝑓2 ≥ 𝑀) exists. So for any graph
𝐺 of order 𝑘 ≥ 𝐾 (𝑀), either 𝑔1 (𝐺) ≥ 𝑀 or 𝑔2 (𝐺) ≥ 𝑀 . Therefore,

min
|𝑉 (𝐺) |=𝑘

(𝑔1 (𝐺) + 𝑔2 (𝐺)) ≥ 𝑀 + 1

for 𝑘 ≥ 𝐾 (𝑀), so (13.1) holds.
Conversely, suppose (13.1) holds. Then for any positive integers 𝑚 and 𝑛, there

exists 𝐾 = 𝐾 (𝑚, 𝑛) such that if 𝑘 ≥ 𝐾 ,

min
|𝑉 (𝐺) |=𝑘

(𝑔1 (𝐺) + 𝑔2 (𝐺)) ≥ 𝑚 + 𝑛.

So for any graph 𝐺 of order 𝑘 ≥ 𝐾 , 𝑔1 (𝐺) + 𝑔2 (𝐺) ≥ 𝑚 + 𝑛, hence 𝑔1 (𝐺) ≥ 𝑚 or
𝑔2 (𝐺) ≥ 𝑛. Minimizing such 𝐾 shows the existence of 𝑟 (𝑔≥𝑚; 𝑔2 ≥ 𝑛). □

The following easy result has a similar form as 𝑟 (𝐾𝑚, 𝑇𝑛) = (𝑚 − 1) (𝑛 − 1) + 1
of Chvátal in Chapter 1.

Theorem 13.14 Let 𝑚 and 𝑛 be positive integers. Then
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𝑟 (𝜒 ≥ 𝑚, 𝜒 ≥ 𝑛) = (𝑚 − 1) (𝑛 − 1) + 1,

where 𝜒 signifies the chromatic number of a graph.

Proof. The assertion is obviously true if one of𝑚 and 𝑛 is one. Assume that𝑚, 𝑛 ≥ 2.
Let 𝐺 = (𝑛 − 1)𝐾𝑚−1. Then 𝜒(𝐺) = 𝑚 − 1 and 𝜒(𝐺) = 𝑛 − 1, yielding that

𝑟 (𝜒 ≥ 𝑚, 𝜒 ≥ 𝑛) ≥ (𝑚 − 1) (𝑛 − 1) + 1.

On the other hand, if𝐺 is a graph of order 𝑁 = (𝑚−1) (𝑛−1) +1 and 𝜒(𝐺) ≤ 𝑚−1,
then by the fact that 𝜒(𝐺)𝛼(𝐺) ≥ 𝑁 we have

𝛼(𝐺) ≥
⌈
𝑁

𝜒(𝐺)

⌉
=

⌈
(𝑚 − 1) (𝑛 − 1) + 1

𝑚 − 1

⌉
= 𝑛.

Therefore 𝜒(𝐺) ≥ 𝜔(𝐺) = 𝛼(𝐺) ≥ 𝑛, proving

𝑟 (𝜒 ≥ 𝑚, 𝜒 ≥ 𝑛) ≤ (𝑚 − 1) (𝑛 − 1) + 1,

and the equality follows. □

Let 𝐺′ be a graph obtained by deleting a vertex from 𝐺. Similarly as that for
proving

𝑟 (𝐹, 𝐻) ≤ 𝑟 (𝐹′, 𝐻) + 𝑟 (𝐹, 𝐻′), (13.2)

we have the following bound.

Theorem 13.15 For a fixed graph 𝐹, define 𝑔𝐹 (𝐺) be the number of subgraphs
isomorphic to 𝐹 with different vertex sets in graph 𝐺. Then for any graphs 𝐹 and 𝐻
of orders at least two and any positive integers 𝑚 and 𝑛,

𝑟 (𝑔𝐹 ≥ 𝑚, 𝑔𝐻 ≥ 𝑛) ≤ 𝑟 (𝑔𝐹′ ≥ 𝑚, 𝑔𝐻 ≥ 𝑛) + 𝑟 (𝑔𝐹 ≥ 𝑚, 𝑔𝐻′ ≥ 𝑛).

Let us turn to some other generalizations of Ramsey number. An obvious one is
as follows. Let F𝑖 is a family of graphs for 𝑖 = 1, 2. Define the class Ramsey number
𝑟 (F1, F2) as the minimum integer 𝑁 such that any edge coloring of 𝐾𝑁 by red and
blue contains some red 𝐹1 ∈ F1 or some blue 𝐹2 ∈ F2. Let F (𝑛, 𝑠) denote the family
of connected graphs with 𝑛 vertices and 𝑠 edges for 𝑛 − 1 ≤ 𝑠 ≤

(𝑛
2
)
. We then get

a definition of 𝑟 (𝑛, 𝑠;𝑚, 𝑡) as 𝑟 (F (𝑛, 𝑠), F (𝑚, 𝑡)). General results on class Ramsey
numbers are difficult since it covers the classic Ramsey numbers 𝑟 (𝑚, 𝑛).

In traditional definitions of graph Ramsey numbers, we asked the minimum
number 𝑁 such that any edge coloring of 𝐾𝑁 contains some monochromatic graphs.
If we change the coloring types either in 𝐾𝑁 or in subgraphs that are contained, we
may have some other definitions of Ramsey numbers. We introduce some of them
without details of discussion.
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322 13 Various Ramsey Problems

Local 𝑘-coloring

Let 𝐺 be a graph and let 𝑘 ≥ 0 be an integer. A subset 𝑆 ⊆ 𝑉 (𝐺) is said to be a
𝑘-independent set if the subgraph induced by 𝑆 has a maximum degree at most 𝑘 .
Correspondingly, an edge-coloring of 𝐺 by any number of colors is called a local
𝑘-coloring if each vertex of 𝐺 is adjacent to at most 𝑘 distinct colors.

There are two ways to define Ramsey numbers with 𝑘-independence. One way
is to ask what is the minimum integer 𝑁 such that any local edge 𝑘-coloring of
𝐾𝑁 contains a monochromatic 𝐺. See, for example, Gyárfás, Lehel, Nešetřil, Rödl,
Schelp, and Tuza (1987), and Caro and Tuza (1993). Other way is to ask what is the
minimum integer 𝑁 such that any edge coloring of 𝐾𝑁 in 𝑚 colors contains a local
𝑘-colored 𝐺.

Zero-sum coloring

Most recent combinatorial research on zero-sum problems is related to a result of
Erdős, Ginzburg and Ziv (1961) as follows.

Theorem 13.16 Let 𝑚 ≥ 𝑘 ≥ 2 be integers such that 𝑘 |𝑚. Then for any sequence of
integers {𝑎1, 𝑎2, . . . , 𝑎𝑚+𝑘−1}, there exists a subset 𝐼 of indices of {1, 2, . . . , 𝑚+𝑘−1}
such that |𝐼 | = 𝑚 and

∑
𝑖∈𝐼 𝑎𝑖 = 0 (mod 𝑘).

Let 𝑍𝑘 be the additive group modulo 𝑘 . A 𝑍𝑘-coloring of edges of graph 𝐺 is a
function 𝑓 : 𝐸 (𝐺) → 𝑍𝑘 . We say that𝐺 is zero-sum, relative to 𝑓 , if

∑
𝑒∈𝐸 (𝐺) 𝑓 (𝑒) =

0 (mod 𝑘).
The zero-sum Ramsey number is to ask the minimum integer 𝑁 such that any

𝑍𝑘-coloring of edges of 𝐾𝑁 contains a zero sum 𝐺. For this topic, see a survey by
Caro (1996).

Rainbow coloring

We call an edge coloring of 𝐺 to be a rainbow or anti-Ramsey if each pair of
edges have distinct colors. Weakening this condition, an edge coloring of𝐺 is called
a (𝑝, 𝑞)-coloring if every subset of 𝑝 vertices spans at least 𝑞 colors. Erdős (1981)
asked what is the minimum number 𝑓 (𝑛, 𝑝, 𝑞) of colors such that there exists a
(𝑝, 𝑞)-coloring of 𝐾𝑛. To avoid the trivial cases, we assume that 2 ≤ 𝑞 ≤

(𝑝
2
)
.

Clearly 𝑓 (𝑛, 𝑝,
(𝑝

2
)
) =

(𝑛
2
)
. Observe that (𝑝, 2)-coloring are equivalent to coloring

without monochromatic 𝐾𝑝 . For more information, see Erdős and Gyárfás (1997).
Some researchers ask some kind types of Ramsey numbers involving rainbow

subgraphs, among which some are as follows.
(1) Given graph 𝐺 of order 𝑚 and integer 𝑛 ≥ 𝑚, what is the minimum number

𝑘 of colors such that each 𝑘-coloring of edges of 𝐾𝑛 yields a rainbow 𝐺?
(2) Given graphs 𝐺 and 𝐻, and integer 𝑘 , what is the minimum integer 𝑁 such

that each 𝑘-coloring of edges of 𝐾𝑁 contains a monochromatic 𝐺 or a rainbow 𝐻?
(3) Given graphs 𝐺 and 𝐻, what is the minimum integer 𝑁 such that each edge-

coloring of 𝐾𝑁 contains a monochromatic 𝐺 or a rainbow 𝐻? Here, no constraint is
placed on the number of colors. Note that this number exists if and only if 𝐺 is a star
or 𝐻 is a forest, see Jamison, Jiang and Ling (2003).
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Regular coloring

A graph 𝐺 is called regular by 𝑘 if Δ(𝐺) − 𝛿(𝐺) ≤ 𝑘 . Recall that many Ramsey
graphs correspond to the Ramsey numbers 𝑟 (𝐺, 𝐻) we met are regular or regular
by 1. We may ask what is the minimum integer 𝑁 such that if a graph 𝐺 of order 𝑁
is regular by 1 then it contains a copy of 𝐾𝑚 or an independent set of order 𝑛. We
believe that this 𝑁 is very close to 𝑟 (𝑚, 𝑛).

13.6 Exercises

1. Find size Ramsey numbers of 𝐶4 and path of lenght 3.

2. By computing the constant 𝐶 in the proof of Theorem 13.4.

3. Prove the lower bounds in Theorem 13.8 and in Theorem 13.10, respectively.

4. Let 𝑓 (𝑛, 𝑝, 𝑞) be defined in Section 13.5. Show that 𝑓 (16, 3, 2) = 3 and
𝑓 (17, 3, 2) = 4. (Hint: 𝑟3 (3) = 17)

5. Let 𝐵1 and 𝐵2 be bipartite graphs. Show that the Folkman number 𝑓 (𝐵1, 𝐵2; 2)
is between 𝑏𝑟 (𝐵1, 𝐵2) and 2𝑏𝑟 (𝐵1, 𝐵2).

6.∗ Prove that 𝑟 (𝑠𝐾1, 𝑚, 𝑡𝐾1, 𝑛) = (𝑠 + 𝑡 − 1) (𝑚 + 𝑛 − 1). (Hint: Burr and Erdős,
Faudree, Rousseau and Schelp (1978). They conjectured that for 𝐹1 = ∪𝑠

𝑖=1𝐾𝑛𝑖 and
𝐹2 = ∪𝑡

𝑖=1𝐾𝑚𝑖
, 𝑟 (𝐹1, 𝐹2) =

∑𝑠+𝑡
𝑘=2 ℓ𝑘 , where ℓ𝑘 = max{𝑛𝑖 + 𝑚 𝑗 − 1, 𝑖 + 𝑗 = 𝑘}.)

7.∗ (Conlon, 2008) obtained that for all large 𝑛,

𝑏𝑟 (𝐾𝑛,𝑛) ≤ (1 + 𝑜(1))2𝑛+1 log2 𝑛.

What expression of the small term o(1) can we have?
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P. Erdős (1981), Problems and results in graph theory. In The Theory and Applications of
Graphs: Kalamazoo, MI, 1980, Wiley, pp. 331–341.
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P. Erdős and J. H. Spencer, Lopsided Lovász lemma and Latin transversals, Discrete Appl.
Math. 30 (1991), 151–154.
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A. V. Kostochka, P. Pudlák and V. Rödl, Some constructive bounds on Ramsey numbers, J.
Combin. Theory Ser. B 100 (2010), 439–445.
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Glossary

Throughout this book, we use the standard notation of graphs. The entries of the
glossary are divided into two lists. Entries such as 𝛽(𝐺) and 𝑟 (𝐺) that have fixed
letters as part of their representation occur in the first list, in alphabetic order (pho-
netically for Greek characters). Entries of the second list correspond to the meanings
of the first entries.

a.a.s.
A(𝐹)
𝐵𝑛
𝐵
(𝑚)
𝑛

𝐵(𝑛, 𝑝)
𝑏𝑟 (𝐵1, 𝐵2)
𝐶𝑛
Δ(𝐺)
𝑑𝑖𝑎𝑚(𝐺)
𝐸𝑅𝑞
𝑒𝑥(𝑛, 𝐻)
𝐹𝑛
𝐹 (𝑞) or 𝐹𝑞
𝛾(𝐺)
𝐺 + 𝐻
𝐺𝑞,𝑡
𝜒(𝐺)
𝐾𝑁
𝐾

(𝑟 )
𝑛

𝐾𝑛1 ,...,𝑛𝑘−1

𝐾1,𝑛
[𝑁]
𝜔(𝐺)
𝑃𝑞

asymptotically almost surely, 86
automorphism group of 𝐹, 77
book graph, 7
general book graph, 72
binomial distribution, 67
bipartite Ramsey number of 𝐵1 and 𝐵2, 307
a cycle on 𝑛 vertices, 13
the maximum degree of 𝐺, 3
the greatest distance between two vertices of 𝐺, 98
Erdős-Rényi graph, 163
Turán number of graph 𝐻, 149
Friendship graph or a 𝑘-fan, 168
the field of order 𝑞, 21
the largest 𝑟 such that 𝐺 contains a subdivision of 𝐾𝑟 , 83
join graph of 𝐺 and 𝐻, 7
projective norm graph, 177
chromatic number of 𝐺, 83
complete graph of order 𝑁 , 1
complete 𝑟-uniform hypergraph of order 𝑛, 14
complete (𝑘 − 1)-partite graph, 149
a star of 𝑛 edges, 12
{1, 2, . . . , 𝑁}, 26
clique number of 𝐺, 3
Paley graph of order 𝑞, 35
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344 Glossary

𝑃1+𝑛
𝑟 (𝐺1, 𝐺2)
𝑟𝑘 (𝐺1, . . . , 𝐺𝑘)
𝑟𝑘 (𝐺)
𝑟𝜒 (𝐺, 𝐻)
𝑟𝑘 (𝑛)
𝑟
(𝑟 )
𝑘

(𝑛1, . . . , 𝑛𝑘)
𝑟 (𝐺)
𝑟𝑖𝑛𝑑 (𝐻)
𝑟 (ℓ, . . . , 𝑛)
𝑟 (𝑛)
Θ(𝐺)
𝑡-AP
𝑡𝑘−1 (𝑛)
𝑇𝑛
𝑉 (𝑟 )

𝑤𝑘 (𝑡)
𝑤(𝑚, 𝑛)
𝑧(𝑚, 𝑛; 𝑠, 𝑡)

a path of order 1 + 𝑛, 10
size Ramsey number, 295
Ramsey number of 𝐺1, . . . , 𝐺𝑘 , 1
𝑘-color Ramsey number of 𝐺, 2
chromatic Ramsey number of 𝐺 and 𝐻, 317
𝑘-color Ramsey number of 𝐾𝑛, 2
𝑘-color hypergraph Ramsey number, 14
Ramsey number 𝑟 (𝐺,𝐺), 2
induced Ramsey number of 𝐻, 304
classical Ramsey number, 3
Ramsey number 𝑟 (𝐾𝑛, 𝐾𝑛), 2
Shannon capacity of 𝐺, 195
an arithmetic progression of 𝑡 terms, 248
the edge number of Turán graph 𝑇𝑘−1 (𝑛), 149
a tree of order 𝑛, 12
the family of all 𝑟-subsets of 𝑉 , 14
𝑘-color van der Waerden number, 248
off-diagonal van der Waerden number, 252
Zarankiewicz number, 157
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Index

averaging technique, 1

Azuma’s Inequality, 124

bipartite Ramsey number, 307

Cauchy-Schwarz inequality, 49

Cayley graph, 35

Chebyshev’s Inequality, 66

Chernoff bounds, 66

chromatic Ramsey number, 317

class Ramsey number, 30

communication channel, 193

deletion method, 80

𝛿-abundant, 276

dependency graph, 112

dependent random choice, 209

double counting method, 156

edge-transitive, 36

EKR Theorem, 141

𝜖 -unavoidable, 276

𝜖 -regular, 260

Fano plane, 164

Fisher Inequality, 132

Folkman number, 275

Friendship Theorem, 168

groupie, 53

Jensen’s Inequality, 49

hypergraph, 14

induced Ramsey number, 303

local 𝑘-coloring, 319

lopsidependency graph, 115

Lovász Local Lemma, 111

LYM-inequlity, 140

(𝑚, 𝑘 )-colorable, 59

monotone decreasing, 94

monotone increasing, 94

Markov’s Inequality, 65

martingale, 121

mathematical induction, 1

Mersenne prime, 250

multiplicative character, 243

(𝑛, 𝑑, 𝜆)-graph, 230
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346 Index

Odd-town-theorem, 132

Omitted Intersection Theorem, 137

Paley graph, 33

(𝑝, 𝛼)- jumbled, 221

Perron-Frobenius theorem, 41

Pigeonhole Principle, 1

Poisson distribution, 103

Prime number theorem, 34

projective norm graph, 177

projective plane, 130

quasi-random graph, 221

rainbow coloring, 320

Ramsey coloring, 2

Ramsey goodness, 285

Ramsey graph, 2

Ramsey linear, 268

Ramsey number, 1

Ramsey’s theorem, 3

Ramsey theory, 1

random graph, 75

regular coloring, 320

Regularity lemma, 247

Schur number, 25

Second Moment Method, 66

semi-random method, 52

Shannon capacity, 195

spectrum, 40

Shelah Cube Lemma, 256

Sperner hypergraph, 140

Sperner’s Theorem, 140

Stirling formula, 47

strongly regular graph, 35

subdivision, 82

Sunflower Theorem, 143

superline graph, 129

super-multiplicative, 25

threshold function, 95

Turán number, 149

Turán’s Theorem, 151

van der Waerden number, 248

vertex-transitive, 36

Weil bound, 243

Zarankiewicz number, 157

Zero-sum coloring, 320
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