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Preface

Ramsey theory is named after British mathematician Frank P. Ramsey (February 22,
1903-January 19, 1930) who published a paper “On a problem of formal logic” in
1929. Ramsey theory has become a flourishing branch of extremal combinatorics.
Just as Theodore S. Motzkin pointed out, the main spirit of Ramsey theory is that

“Complete disorder is impossible!”

Ramsey theory was subsequently developed by Paul ErdGs (March 26, 1913—
September 20, 1996), a Hungarian mathematician, who was working on many math-
ematical problems, particularly in combinatorics, graph theory and number theory.
Earlier than Frank P. Ramsey, Issai Schur (January 10, 1875-January 10, 1941) and
van der Waerden (February 2, 1903—January 2, 1996) obtained similar results in
number theory. We refer the reader to the book Ramsey Theory by Graham, Roth-
schild and Spencer (1990) for a systematically introduction and the book Erdds on
Graphs: His Legacy of Unsolved Problems by Chung and Graham (1999) for many
unsolved problems. As an important method on Ramsey theory, we would like to
refer the reader to the book The Probabilistic Method by Alon and Spencer (2016) for
a systematically introduction. For a comprehensive understanding of random graphs
which are closely related to Ramsey theory, we refer the reader to three books on this
field: The books Random Graphs by Bollobas (2001, 2nd ed.), Random Graphs by
Janson, Luczak and Rucinski (2000), and Introduction to Random Graphs by Frieze
and Karoriski (2016).

The number of research papers on Ramsey theory before 1970s was not substan-
tial. The Combinatorial Conference at Balatonfiired, Hungary 1973, in honor of Paul
Erdés for his 60th birthday, was a milestone in Ramsey theory history. There were
more than two dozen talks devoted to what is now called Ramsey theory. Many pa-
pers have been published after this conference. One striking feature is the invention
of many modern methods that involve ideas from various branches of mathematics
such as probability, algebra, geometry, and analysis.

Graph Ramsey theory is an important area that serves not only as an abundant
source but also as a testing ground of these methods and many other new methods.

vii
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Despite substantial advances in graph Ramsey theory, most outstanding problems
are far from being solved. The new insights generated by tackling these problems will
most likely lead to new tools and techniques. Due to these reasons, graph Ramsey
theory is full of vitality and hence deserves much more research efforts.

The book emphasizes making the text easier for the students to learn. To overcome
difficulties to access sporadic results in an extensive literature, we set out to describe
the material in this elementary book, which aims to provide an introduction to graph
Ramsey theory. The prerequisites for this book are minimal: we only require that
the reader be familiar with elementary level of graph theory, calculus, probability
and linear algebra. To make this book as self-contained as possible, we attempt to
introduce the theory from scratch, for instance, some results rely on the properties of
finite fields, so we laid down the background beforehand. We believe that this book,
intended for beginning graduate students, can serve as an entrance to this beautiful
theory. To facilitate better understanding of the material, this book contains some
standard exercises in which a large part of the exercises are not difficult since our
book serves as a primer on this topic.

We have used the manuscript of the book as lecture notes more than 20 years in
many universities including these in mainland of China, Hong Kong and Taiwan,
etc. We also used it many times for summer schools supported by Natural Science
Foundation of China. The selected topics are almost independent so that beginners
may skip some chapters, sections, and proofs, particularly that are marked with
asterisks. We are sorry for not being able to incorporate many deep results into this
book. As most listeners in the short terms are preferably interested in the specific
topics, they can obtain a clearer picture on the topics from the selected chapters
instead of the whole book.

There are thirteen chapters in this book, divided mainly according to both the
content of the book and methods used for the problems. In Chapter 1, we will
introduce some basic definitions and discuss the existences of Ramsey numbers by
giving upper bounds. In Chapter 2, we will consider several small Ramsey numbers
and a Ramsey number on integers, i.e., Schur number on integers. For algebraic
constructions in this chapter, we shall recall some basics of finite fields briefly. In
Chapter 3, we will focus on the basic method such as vertices are labeled or picked
randomly or semi-randomly, in which we always compute the expectations of random
variables. The frequently-used methods to estimate the probability of a variable from
expectation including Markov’s inequality and Chernoff bound will be introduced
in this chapter. In Chapter 4, we will give an overview on random graphs which now
has become a flourishing branch. Applications to classic Ramsey numbers due to
Erd6s (1947) will be given in this chapter, which is always considered as the first
conscious application of the probabilistic method, and the graph Ramsey theory is
always refereed to as the birthplace of random graphs. This chapter also contains
threshold functions for random graphs with certain properties. In Chapter 5, we will
introduce Lovasz Local Lemma that relaxes the independence of pairwise events to
partial independence. We will also give an overview of the Martingales and triangle-
free process. In Chapter 6, we shall consider some constructive lower bounds of
Ramsey numbers, which tells us that the probabilistic method is more powerful than



Preface ix

constructive method for lower bounds of most non-linear Ramsey functions. Also, we
introduce a disproof of the conjecture of Borsuk in geometry that is a surprising by-
product of graph Ramsey theory. Additionally, this chapter contains basic properties
of intersecting hypergraphs. In Chapter 7, Turdn numbers will be introduced, in which
the Turdn numbers of bipartite graphs are tightly related to the corresponding Ramsey
numbers in many colors. In Chapter 8, we will introduce communication channel, and
the connection between Ramsey theory and communication channel will be revealed.
In Chapter 9, we will introduce the method of the dependent random choice, which
can be applied to embed a small or sparse graph into a dense graph. Chapter 10
focuses on quasi-random graphs and regular graphs with small second eigenvalues,
for which some deep applications especially some graph Ramsey numbers will
be included. In Chapter 11, we will introduce an important Ramsey number on
integers, i.e. van der Waerden number on arithmetic progression. We will also
introduce Szemerédi’s regularity lemma which asserts that every large graph can be
decomposed into a finite number of parts so that the edges between almost every pair
of parts forms a “random-looking” graph. We will give some applications including
a classic application on graphs with bounded maximum degree and a Ramsey-Turdn
number by using the regularity lemma. Several extensions on the regularity lemma
will be given. In Chapter 12, we shall discuss some more examples on Ramsey
linear functions. The first section of the chapter discusses the linearity of subdivided
graphs, and the second is on a special linearity: so called Ramsey goodness, proposed
by Burr and Erd8s (1983). There are a lot of variants on graph Ramsey theory, some
of which will be introduced in Chapter 13, including size Ramsey numbers, induced
Ramsey theorem, bipartite Ramsey numbers, and Folkman numbers, etc.

We are deeply indebted to these professors who helped us to learn Ramsey theory,
and colleagues who organized seminars and summer schools, as well as students who
attended the classes. In particular, we are deeply indebted to Professor Wenan Zang
who should be a coauthor if he is not so busy since a large part of the book is chosen
from the lecture notes Introduction to Graph Ramsey Theory by Y. Li and W. Zang.
Finally, we would like to thank the National Science Function of China and the
Research Grants Council of Hong Kong for their financial support.

Yusheng Li, Tongji University
Jan. 2022 Qizhong Lin, Fuzhou University
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Chapter 1 updates
Existence

A typical result in Ramsey theory states that if a mathematical object is partitioned
into finitely many parts, then one of the parts must contain a sub-object of particular
property. The smallest size of the large object such that the sub-object exists is called
Ramsey number.

Ramsey theory can be viewed as a generalization of the following well-known
Pigeonhole Principle. Let k and n be positive integers. When N pigeons are put into
k pigeonholes, there exists at least one pigeonhole containing more than n pigeons
if N is large enough.

Here the set of pigeons of size N is the large object. The smallest N so that the
statement holds is kn + 1. For N > kn + 1, the average size of the substructures is
more than n, so there exists a class contains at least n + 1 objects. The averaging
technique used in the argument is one of the oldest “non-constructive” principles: it
states only the existence of a pigeonhole with more than n pigeons and says nothing
about how to find such a pigeonhole.

A cornerstone method in mathematics is the mathematical induction, which de-
duces a general statement for infinitely many parameters from finitely many cases. In
contrast to the induction, Ramsey theory does the job to obtain a general statement
for all large parameters by excluding finitely many exceptions.

1.1 Terminology

We assume that the readers have learned some standard textbooks in graph theory, a
few of which are listed at the end of this book. For terminology and notation that are
not defined here, we refer the reader to that such as Bollobas (1994, 2004), Bondy
and Murty (2008), Diestel (2010), and West (2001), etc.

Let Gy, ..., Gy be graphs. Without specified, all graphs are simple graphs. The
Ramsey numberof G, ...,Gy,denotedby ri(Gy,...,Gy)orsimplyr(Gy,...,Gy),
is defined to be the smallest integer N such that for any edge-coloring of the com-
plete graph K by colors 1,...,k, there exists some 1 < i < k, such that G; is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
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contained in the subgraph spanned by all edges in the color i. The spanned subgraph
by edges in the color i may contain isolated vertices which are those (if any) not
incident to any edge in the color i. Note that in the definition of Ramsey numbers,
there are no restraints on the way of coloring of edges. We call r(G1,...,Gy) the
k-coloring Ramsey number. For simplicity, we write r¢ (G, ..., G) as rg(G), write
r(Ke,...,Ky) as r(¢,...,n), which is called classical Ramsey number. We often
use ri(n) to denote rr(K,). If a graph G; is not complete, then r(G1,...,Gy) is
also called generalized Ramsey number.

The case k = 1 is trivial as r;(G) = |V(G)|. The most studied case is k = 2
in which we often refer the two colors for edges as red and blue. Let F be the
complementary graph of . The Ramsey number (G, H) can be alternatively defined
as the smallest positive integer N such that for any graph F of order N, either F
contains G as a subgraph or its complement F contains H as a subgraph. We always
call (G, G) or simply r(G) the diagonal Ramsey number of G, and write r(n, n)
or simply r(n) for the diagonal classic Ramsey number r (K}, K,,) for convenience.

It is a simple fact that (K|, G) = 1 and r (K3, G) = |[V(G)| for any graph G with
|[V(G)| = 2. To see the latter, let n = |V(G)| > 2, and color all edges of K,,_; blue,
then there is neither a red K, nor a blue G, so r(K3,G) > n — 1. On the other hand,
consider a red-blue coloring of edges of K,,. We are done if there exists a red edges.
Otherwise, all edges of K,, are colored blue, thus we definitely have a blue G, the
upper bound (K>, G) < n follows.

If G is not an empty graph, then r(K ., G) = m, where K ,, is the complementary
graph of K,,. It is easy to see that »(G, H) is monotone increasing in the sense that
if G, is a subgraph of G and H; is a subgraph of H, then »(G, H) < r(G, H).

Proposition 1.1 For any graphs G and H, r(G,H) = r(H, G).

Proof. Let N = r(G, H). From the definition of r(G, H), there exists an edge-
coloring of K _; by red and blue such that there is neither red G nor blue H. For
each edge, switch its color to the other. In the new coloring, there is neither red H nor
blue G, so r(H,G) > N = r(G, H). Similarly, (G, H) > r(H, G). The assertion
follows. O

Generally, for multi-color Ramsey number we have the following facts.

() If (Hy, H, ..., Hy) is a permutation of (G, G, . ..,Gy), then
r(G1,Ga,...,Gy) =r(Hy, Ha, ..., Hy).

(i) r(G1,Ga,...,Gr-1,K1) = 1.
(iii) r(G1,Ga,...,Gr-1,K2) =7r(G1,G2,...,Gr-1).

In order to verify that r(G,H) > N + 1 for some N, one must have an edge
coloring of K in red and blue, such that there is neither a monochromatic red G nor
a monochromatic blue H. Such coloring is always referred to as a Ramsey coloring.
Since the two monochromatic graphs, which contain all vertices, can be referred to
as F and F, respectively, verifying r(G, H) > N + 1 is the same to find a graph F of
order N such that F contains no copy of G and its complement F contains no copy
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of H. Such a graph F of order N = r(G, H) — 1 is always called a Ramsey graph for
r(G,H).

Let w(F) and a(F) be the clique number and independence number of F, re-
spectively. Then r(m, n) is the smallest N such that for any graph F of order N, we
have either w(F) > m or a(F) > n. Note that any graph F can yield a lower bound,
good or bad, for a Ramsey number. For example, if w(F) = m, and @(F) = n, then
we have r(m + 1,n+ 1) > |V(F)| + 1. However, it is very difficult to find a good
lower bound for most Ramsey numbers.

Throughout this book, we use the standard asymptotic notation. For functions
f(n) and g(n) that take positive values, we write f = O(g) if f < cg for all large
n, where ¢ > 0 is a constant, f = Q(g) if g = O(f) and f = O(g) if f = O(g) and
g =0(f).Denote f =o0(g)if f/g — 0.Finally, f ~ g denotes that f = (1+0(1))g,
i.e. f/g — 1. We use logn to denote the natural logarithm based on e.

1.2 General Upper Bounds

In 1929, Frank P. Ramsey, in a fundamental paper on mathematical logic, gave a
result whose special case can be stated in graph language as follows.

Theorem 1.1 (Ramsey’s theorem) For k > 2 and ny,ny,...,n; > 1, the Ramsey
number r(ny,ny, . ..,ng) exists. If n; > 2 forall i with 1 <i < k, then

r(ny,na,...,ng) < r(ny,...,ni—1,n; — 1,niq,...,nk) —k+2.

M~

i=1

Proof. The proof of the upper bound is by induction on n; + ny + - - - + ng. Note that
r(2,n) =r(n,2) = nand

e, oo mim1, 2,000, o ) = Tko1 (R0, oo 1, Rl - -5 G,

we may assume that N; = r(ny,...,n;—1,n; — 1,n41, ..., ng) exists for any i < k,
and n; > 3. Let

szk:Ni—k+2
i=1

and consider an edge-coloring of K by colors 1,2, ..., k. We have to show that the
subgraph G; spanned by all edges in some color i contains K,,,. For a vertex v of
Ky, let d;(v) be the degree in G;. If d;(v) < N; — 1 foreach 1 <i < k, then

N—l=id;(v)§zk:(N[—l)=N—2,
i=1 i=1

which leads to a contradiction. Thus there is some i such that d;(v) > N;. If there
is a K,,;—1 in color i, then we are done since which together with v form a K,,, in
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color i. Otherwise, by the definition of N;, the corresponding k edge-coloring of Ky,
contains a monochromatic K;,; in some color j # i. The proof is complete. O

For a graph G of order at least two, denote by G’ for a graph obtained by deleting
one vertex from G. We can generalize Theorem 1.1 as follows.

Theorem 1.2 Let k > 2 be an integer and let G, G2, . ..,Gy be graphs. Then the
Ramsey number r(G1,Go, . .., Gy) exists. If each G; has at least two vertices, then

k
"(G1,Ga,...,Gy) < Zr(Gl,...,Gi_l,G;,GiH,...,Gk) —k+2.

i=1
The popularization of Ramsey’s Theorem began with its rediscovery in a classic
paper of Erdds and Szekeres in 1935.

Theorem 1.3 Form > 2 and n > 2,
r(m,n) <r(m-1,n)+r(m,n-1).

Moreover,

r(m,n) < (m+n—2).

m—1
Proof. The first inequality is a special case of Theorem 1.1. The second can be

proved by induction on m + n. The case m = 2 or n = 2 is trivial. For the case m > 3
and n > 3, by noting the first inequality and the induction hypothesis, and the fact

that
m+n-—3 + m+n-3\ (m+n-2
m=2 m-1 )"\ m-1 )
the second inequality follows. O

Let us consider the first non-trivial Ramsey number (3, 3), which was a problem
for International Mathematical Olympiad.

Theorem 1.4 We have r(3,3) = 6.

Proof. By the upper bound in Theorem 1.3, we have r(3,3) < (g) = 6. More direct
proof is easy. Let F' be a graph of order 6 and v € V(F'). Note that v has at least three
neighbors in F or in f, say, three neighbors S = {vy, v5, v3} in F. If any two vertices
in S are adjacent, then these two vertices and v form a triangle. Otherwise, S induces
a triangle in F hence r(3,3) < 6. Note the fact that 65 = Cs, which contains no K3,
the lower bound (3, 3) > 5 follows. m]

The upper bound by Erdés and Szekeres (1935) stood for a long time, until Yackel
(1972), Rodl (unpublished, 1980’s), Graham and Rodl (1987) and Thomason (1988)
proved that (in different forms)

m+n-—2
m—1

r(m,n) <o
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asm fixedand n — ccorm =n — oo.
A breakthrough of Conlon (2009) further improves the upper bound as

r(n, n) < : 1 (Zn - 2) < 21 4n’
nerlogn/loglogn \ p — | exp(ca log” n/loglog n)

where ¢; and ¢ henceforth are positive constants and the second inequality comes

from (%) ~ #74" as k — oo. Recently, Sah (preprint, 2020%) improves the upper
bound further as ]
r(n,n) < —24".
exp(clog” n)

However, this does not change the following limit that

lim r(n, n)!/" < 4.

n—oo

We shall prove a result emphasizing on the condition for the strict inequality in
the above theorem, which is needed for finding exact values of some small Ramsey
numbers.

Theorem 1.5 If G and H are graphs on at least two vertices, then
r(G,H) <r(G,H)+r(G,H).
If both r(G’,H) and r (G, H') are even, then
r(G,H) <r(G',H) +r(G,H") - 1.

Proof. The first inequality is a special case of Theorem 1.2, and we shall prove the
second. On contrary, suppose N :=r(G,H) = r(G’, H) + r(G, H’) which is even.
Thus there exists an edge coloring of K _; such that there is neither red G nor blue
H. For any vertex v, we have dgr(v) < r(G’,H) — 1 and dg(v) < r(G,H’) — 1.
Therefore, we have

dr(v) =r(G’,H) -1 and dg(v)=r(G,H) -1
by noting that dg(v) +dg(v) =N -2 = (r(G’,H) — 1) + (r(G, H’) — 1). Consider
the number of edges of R, which is
1 ,
e(R) = 3 (N = 1)(r(G'.H) = 1).
But the right hand side is not an integer since both N — 1 and r(G’, H) — 1 are odd,

yielding a contradiction. O

The following is a two-step recursive upper bound, due to Li, Rousseau and Zang
(2004), in which the main argument in the proof is to count the number of triangles.
Let G” be any graph obtained by deleting two vertices from G.
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Theorem 1.6 Let G and H be graphs of order at least three, and let A = r(G"', H)
and B =r(G,H"). Then

r(G,H) < A+B+2+2v(A2+ AB + B)/3.
In particular, r(G,G) < 4r(G,G”) +2.

Proof. Let N =r(G,H)—1,a = A—1and b = B— 1. Then there is an edge-coloring
of K by red and blue in which there is neither red G nor blue H. Denote by V the
vertex set of the colored K, and let Fg = (V, Eg) and Fg = (V, Eg) denote the red
and blue subgraphs, respectively, where (Eg, Ep) is the corresponding partition of
the edge set of K. Then the number M of monochromatic triangles is

M= > INR@) AN+ Y INg() N NB()]

uveER uveEp

[l

where Ng(u) and Npg(u) are neighborhoods of u in Fg and Fp, respectively. Since
anedge uv € Eg and ared copy of G” in Ng(u) N Ng(v) yield ared K> + G’ hence a
red G, we have |[Ngr(u) NNr(v)| < r(G”,H)—1 = a. Similarly, [Ng(u) NNg(v)| <
r(G,H"”) — 1 = b for an edge uv € Eg. Thus we have

alEg|+b|Ep| 1
M < T gé(adR(v) +de(v)).

where dr(v) = |Nr(v)| and dp(v) = |[Np(v)|. As observed by Goodman (1959),
the number of non-monochromatic triangles is % Yvey dr(v)dp(v), it follows that

(1;’ ) S ;/dR(v)dB(v) <d > (adr(v) + bds(v).

Or equivalently,

abN

<0.
9

NN DWNZD) 5

: (dR(v)+ %) (dB(v) + %’) +

veV

Notice that xy < (x + y)?/4, implying that

(dR(v) + g) (dB(v) + g) <

and thus

~1)(N -2 2
N(N 3)(N )_%(N_l+a+b)+abN_

Equivalently, we get
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(A-B) _

(N-1)?-2(A+B)(N-1) - 3 <0,

which gives N — 1 < A + B+2+/(A2 + AB + B2)/3 as required. m|

The following result due to Walker (1968) is often used in estimating small
Ramsey numbers.

Corollary 1.1 Forn > 3, r(n,n) < 4r(n—2,n) + 2.

Denote by G + H the graph obtained from vertex-disjoint G and H by adding
edges connecting G and H completely, which is called the join of G and H. Then
B, = K, + K, contains n triangles all sharing a common edges. We always call
B,, an n-book or simply book graph. We have the following result by Rousseau and
Sheehan (1978).

Theorem 1.7 Let m,n > 1 be integers with 2(m +n) + 1 > (n —m)?/3. Then
r(Bm, By) <2(m+n+1).
In particular, v(B,, B,) < 4n + 2.

Proof. From the facts that K, can be obtained from B,, by deleting two vertices and
r(Ku,, By) = m, it follows from Theorem 1.6 that

F(Bm, Bn) < m+n+2+2+(m?+mn+n?)/3.

To get the upper bound as desired, note that the Ramsey number is an integer, we
need only to verify that 24/(m2 + mn +n2)/3 < m + n + 1, which is equivalent to
2(m+n)+ 1> (n—m)?/3, as given. O

In the next chapter, we will show the above upper bound for r(B,, B,;) can be
achieved for infinitely many 7. Rousseau and Sheehan (1978) also conjectured that
there exists a positive constant ¢ > 0 such that for all m,n > 1,

r(Bm,By) <2(m+n)+c.

Recently, Chen, Lin and You (2021+) show that this conjecture holds asymptotically.

1.3 Upper Bounds for r; (3)

Let us write ry instead of r(3) in the proof for convenience. We have known that
ro = 6. The only known exact value for a multicolored Ramsey number is r3 = 17
by Greenwood and Gleason (1955), and we will discuss it in the next chapter. For
k = 4, we only known that 51 < r4 < 62, where the lower bound is due to Chung
(1973) while the upper bound is due to Fettes, Kramer and Radziszowski (2004)
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which improves that by Sanchez-Flores (1995) and an earlier upper bound due to
Folkman (1974). In this section, we focus on the upper bound of r; when k is large
and we will consider further the lower bound of 7 in the next chapter.

Lemma 1.1 For k > 2,
rk(3) <2+ k(rk_1(3) — 1)

Proof. The assertion follows from Theorem 1.1. More directive proof is as follows.
Let N = r; — 1. There is an edge-coloring of Ky by colors 1,2, ..., k such that there
is no monochromatic triangle. Denote by N;(v) for the neighborhood of v in color
i. Note that N;(v) contains no edge in color i since otherwise there is a triangle in
color i, so we have d;(v) = |N;(v)| < rr-1 — 1. Therefore,
k
rk—2=N-1= di(v) < k(rg-1-1).
i=1

The desired upper bound follows. O

Corollary 1.2 Let m be a positive integer, and let

c=c(m)=M+Zl.

m! t!
t>m

Fork > m,
ri(3) <c-k!'+1.

In particular, ri,(3) < e-k!+ 1 fork > 1.

Proof. Lemma 1.1 gives that ry — 1 < 1+ k(rg—; — 1). Using this repeatedly, we

have
re—1<1+k(rg-1 - 1)
<1+4+k[14(k=1)(rra—1)]
<l+k+kk-1D+--+k(k=1)---(m+1)(r,, — 1)
1 1 rm— 1
=k!|—+ +- 4+ + ,
k! (k—-1)! (m+1)! m!

and the desired upper bound follows. In particular, ¢(1) = e. O

An improvement can be obtained by noting the following fact.

Lemma 1.2 Let k and p be even integers. If ri_1(3) < p, then
ri(3) <k(p-1)+1.
In particular, if both k and ri_1(3) are even, then

re(3) < k(re-1(3) - 1)+ 1.
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Proof. If r,_; < p — 1, then the assertion follows from Lemma 1.1. So we assume
that rx_; = p, which is even. Set N = r; — 1, then N < 1 + k(rp—; — 1) by

Lemma 1.1, and we want to show that N < k(rx—; — 1). On contrary, suppose that
N = 1+k(rg-1 —1). Clearly, N is odd and there is an edge coloring of K by colors
1, ..., k such that there is no monochromatic K3 in any color. For a fixed color j, let

E; be the set of edges in color j. Since ), d;(x) = 2|E;| is even, where the sum is
over N vertices and N is odd, we have that there exists a vertex x with d; (x) is even.
Since d(x) < rr—1 — 1 and ri_y is even, we get d;(x) < rx_; — 2. Therefore,

N-1= ) dj(x) < (re-1=2)+(k=1)(re-1 = 1) =k(rg-1 = 1) = 1,

k
j=1
yielding a contradiction. O

Theorem 1.8 Let m be even and p odd. If r,,,(3) < p, then for any k > m,

p—1 1
re(3) < k| Tt Z S+

m<t<k,
todd

Proof. The idea of the proof is a combination of that in Wan (1997), and Chung and
Graham (1999). For fixed even m > 2 and k > m, set

p-1 1
AkZAk(m)Z P + Z F
: m<t<k, :
t odd

Note that for 2n — 1 > m,

Ay = Ay 1 and Apuy = Aoy + sl

We shall prove that r; < k!Ay + 1 by induction on k > m. The assertion holds for
k =masm!A, + 1 = p. By the fact that

(m+ DAy =m+1)(p-1)+1,

the assertion for k = m+ 1 follows from Lemma 1.1. We now suppose that k > m+2.
Let k =2n > m + 2 be an even integer. Then k — 1 > m + 1, and k — 1 is odd. It is
easy to verify that

(Pl 1 ! NS
k=DM = k= D+ G Dt Y G T o

is an odd integer. From the induction assumption ry_; < (k — 1)!A;_ + 1, where
the right-hand side is even, and Lemma 1.2, we have
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re—1 <k(reo1—1)=k!Ar_q
=klAy,_1 = klAy, = k!Ag.

Sorx < k!Ag + 1. For rp,,41, from Lemma 1.1 and what just proved,

IA

1+Q2n+1)(ry—1)
1+ 2n+1)((2n)!Az,)
1+ 2n+1)1A2, = 2n+ 1) Azp41,

rone1 — 1

IA

completing the proof. |

Using a very old result of Folkman (1974) that r4(3) < 65 and Theorem 1.8, we
have ¢ (3) < ck!+1for ¢ = (e — e~! +3)/2. However, we are more concerned what
is the limit of . (3) /k! as k — oo. No matter what r,,,(3) we know, we cannot obtain
the limit from Theorem 1.8 since it is the limit of A, (m) as m — oo.

Proposition 1.2 As k — oo, the limit of ri.(3)/ k! exists.

Proof. It is clear that the limit of r (3)/k! exists if and only if that of (r(3) —1)/k!
does, and the limits are the same if they exist. Denote by ¢ for lim (ry — 1)/k!. For

k—o0

any € > 0, there are infinitely many m such that (r,,, — 1)/m! < £ + €/2. Take such
large m that (ry—1)/k! > £ —e for k > m and that },.,,, 1/t! < €/2. From Corollary

1.2, we have
re — 1 rm— 1 1
{—€< a < o +ZE<5+E.
t>m
Thus klim (re = 1)/k! =¢. O

Problem 1.1 Prove or disprove that the limit of r¢(3)/k! is zero.

1.4 Some Early Ramsey Numbers

This section contains several early generalized Ramsey numbers. The first general-
ized Ramsey number was due to Gerencsér and Gyérfas in 1967, who computed the
Ramsey number of paths. In this section Py, is a path of length n instead of a Paley
graph defined in the next chapter.

Theorem 1.9 Forn > m > 1,
r(P1+n» P1+m) =n+ fm/z]

Proof. We only consider the diagonal case since the proof for general case is similar.
In the following, we shall show

r(Pl+n9 P1+n) =n+ |—I’l/2-|
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The assertion is trivial for n = 1 or n = 2, so we assume n > 3 and the assertion
holds for n — 1. The facts that the graph G = K,, U K¢, where € = [n/2] — 1 and its
complement contain no Py, give r(Pin, P1+n) = N, where N = n+ [n/2].

In the following, we consider a red-blue edge coloring of K and we shall show
that there is a monochromatic path of length n. If not, by assumption, we have a
monochromatic, say red, path P of length n — 1. Consider two disjoint blue paths Q|
and Q, consisting of edges between V(P) and V(Ky) \ V(P), such that their end-
vertices are in V(K ) \ V(P), and they do not contain end-vertices of P. Furthermore,
the sum of their lengthes are maximum. We shall prove that the following claim by
induction on n. Denote by ug, v, uy, vy, us, vo for the end-vertices of P,Q1, 0>,
respectively.

Claim V(P)UV(Q;) UV(Q2) = V(Kn).
Proof. It is easy to see that [(V(Q1) UV(Q2)) \ V(P)| = 2 since otherwise there
is at most one vertex outside V(P) hence |V(P)| > N — 1 > n+ 1. Thus

[V(PYUV(Q1) UV(Q2)| = n+2.

Suppose the claim is false, i.e., there exists a vertex x € V(Ky) withx ¢ V(P) U
V(Q1) UV(Q>). From the structures of Q; and Q»,

[V(P)NV(Qi)| = %(|V(Qi)| -1 =|V(Q)\V(P)| - 1.
Thus we have

V(P)\ (V(Q1) UV(Q2))| 2 n+2—[(V(Q1) UV(Q2)) \ V(P)]
>n+2-|V(Ky)\V(P)|
=n+2-[n/2]
= |n/2] +2.

Thus at least [n/2] + 3 vertices of P, implying at least | n/2] + 1 internal vertices of
P are not covered by Q| U Q. Therefore, there exists an internal edge uv of P such
that u,v ¢ V(Q; U Q»).

One of edges xu and xv, say xu, must be blue as otherwise the length of P can be
increased by replacing uv by ux and xv. Therefore, the edges uju and u,u are red.
Thus the edge uv and vu, must be blue by the same argument as above. Now

Q) =01 +uv+vur + 0,

and Q) = {x} are two paths with the sum of lengths greater than that of Q0 and Q>
satisfying the same conditions, yielding a contradiction and proving the claim. O

Consider the four edges ugu, uouz, vovi, vova. All of these edges are blue by the
maximality of P. Therefore, the cycle

C= Q1 +ujug + uouy + Q2 +Vvovo +VvoVvy
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is monochromatically blue. Since the vertices of C are in V(P) and out of V(P)
alternatively, the length of C is

2(N —n) =2[n/2].

If n is odd, then the length of C is n + 1, which gives a path of length n by removing
an edge of C. So we assume that n is even and the length of C is n. If there is a blue
edge between C and V(Ky) \ V(C), then we can find such blue path again. Thus we
assume that all edges between C and V(K ) \ V(C) are red. Therefore, we can find
a red path with length 2[n/2] > n easily. This contradicts to the maximality of P,
completing the proof. m}

It takes about 40 years after Gyarfas, Ruszinké, Sarkozy and Szemerédi (2007)

showed that
2n—1 if nisodd,

r(P"’P”’P”):{Zn—2 if niseven,

in which the authors used Szemerédi regularity lemma (1976) and the idea of
connected matchings which was suggested by Luczak (1999). We will discuss further
on related topics in latter chapters.

The following is due to Chvdtal and Harary (1972), and Burr and Roberts (1973),
in which K , is a star of n edges.

Theorem 1.10 For positive integers m and n,

m+n — 1 if m and n are both even,

r(Kim, K = .
(Kim: Ki.n) {m+n otherwise.

Proof. From the recursive upper bounds in Theorem 1.5, we have
r(Kl,ma Kl,n) < r(?m, Kl,n) + r(Kl,m, ?n) =m+n,

and if m and n are both even, the inequality is strict. The desired upper bound follows.
For the lower bound, the proof is clear if m = 1 or n = 1. So we assume that
m > 2 and n > 2, and separate the remaining proof into two cases.

Case 1 m or n, say m, is odd.

For this case, set
Zmin-1=10,1,2,...,m+n-2}

and A = {+1,+2,--- ,+(m—1)/2}. Define a graph on Z,,,,_1, in which two vertices
x and y are adjacent if and only if x — y € A. This graph is (m — 1)-regular and its
complement is (n — 1)-regular, which yields that r (K m, K1) = m + n.

Case 2 Both m and n are even.

From case 1, we have

V(Kl,m,Kl,n) > r(Kl,m—l,Kl,n) >m+n-—1,
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the desired lower bound follows. O

Let T,, denote a tree of order n. we have the following lower bound.

Lemma 1.3 Forn > 2, A
r(T,) > ?” 1.

Proof. For a tree T}, it is unique to separate the vertices of 7}, into two color classes.
Assume that the sizes of color classes of T,, are m and n — m withm < n—m. If
G =Kpn1UKu_1,0r G = Ky_m_1 U Ky_m_1, then neither G nor G contains 7},,
which implies r(7;,) > max{m +n —1,2(n — m) — 1}. Minimizing the right side on
13m£n—1,wehaver(Tn)247"—l. O

The lower bound in the above lemma is sharp. A broom By s isatreeonn = k +{
vertices obtained by identifying an end-vertex of a path P, with the central vertex
of a star K x. Erdés et al. (1982) proved that r(Bg,¢) = k + f%'l —1for ¢ > 2k
and k > 1. Yu and Li (2016) determined all other Ramsey numbers of brooms. In
particular, for any integer k, £ with k > 2 andn = k + ¢,

_n+ 511 ife>2k-1,
r(B"")‘{zn—ngJqif4sfs2k—2.

Problem 1.2 Find a good expression for r(T+,, T1+n)-

The following result of Chvatal (1977) stimulated generalized Ramsey theory
greatly.

Theorem 1.11 For k,n > 1,
r(T,,Kp)=(k-1)(n—1) +1.

Proof. The complete (k — 1)-partite graph K;_;(n — 1) yields the lower bound
r(Kg,T,) = (k—1)(n — 1) + 1. To get the reverse inequality, we use induction
on n. Let G be a graph on N = (k — 1)(n — 1) + 1 vertices. Suppose that G
contains no Kp, that is to say, @(G) < k — 1. We shall see that G contains T},. Let
S ¢ V(G) be an maximum independent set of size £ < k — 1. Outside S, there are
N—-{ > (k—1)(n-2)+1 vertices, which must contain 7,,_| by induction, where T},
is a tree obtained from 7,, by deleting a vertex v of degree one. Let u be the vertex
of T,,_1 adjacent to v in 7,,. Since S is maximum, « has at least one neighborhood in
S, yielding 7, as claimed. O

Let C,, be acycle on n vertices. In the early 1970’s, the Ramsey number r (Cy,;, Cy,)
was studied by several authors, we refer the reader to Bondy and ErdSs (1973),
Faudree and Schelp (1974), and Rosta (1973). We conclude this section with the
Ramsey number r(C3, C,,) by Chartrand and Schuster (1971), in which the authors
also determined the exact value of (C,,, C;) for m =4, 5.

Lemma 1.4 We have r(C5,Cy) =17.
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Proof. Consider a red-blue edge coloring of K7, and denote R and B by graphs
induced by the red and blue edges, respectively. It is clear that A(R) < 3 and
A(B) < 3. This implies that both R and B are 3-regular, which is impossible since
the number of vertices is odd. On the other hand, if we color edges of K¢ by red and
blue such that the red graph is K3 3, then there is neither red K3 nor blue C4 hence
the lower bound r(C3, C4) > 6 follows as desired. O

Theorem 1.12 Ifn > 4, then r(C3,C,) =2n — 1.

Proof. We prove the equality by induction on n > 4, which is just obtained for
n = 4. Now we assume that r(C3, C,,) = 2n — 1 for n > 4 and consider the number
r(Cs, Cpy1). Denote by Ky, , the complete bipartite graph of order m + n whose
vertex set may be partitioned as V; U V,, where |Vi| = m and |V,| = n. Since K,
contains no C3 and its complement contains no Cp41, the lower bound follows.

Let G be a graph of order 2n+1, and assume G has no Cs. Since r(C3, C,) = 2n—1,
G contains a cycle Cy, := ujuy - - - uyuy. Denote the remaining vertices of G (and
hence G) by vy, vy, ..., vue1. If any v; is adjacent in G to two consecutive vertices
of Cp,, then G contains a C,,1, completing the proof. Suppose, then, that no such v;
exists. We consider two cases.

Case 1 There exist two alternate vertices of C,, say u; and u >, which are
respectively joined in G to two distinct v; and v;/.

Case 2 No two alternate vertices of C, are respectively joined in G to distinct
vertices v; and v;.

For Case 1, it is easy to check that either G contains C3 or G contains a Cy41 by
noting u;,1v; and u ;4 vy are edges in G. For Case 2, note that there is an edge v;v;s
in G since otherwise G contains a Cp+1 as desired and we may assume u;V; is an
edge in G. It can be shown that either G contains C3 or G contains a Cpt1. We leave
the details to the reader. The proof is complete. m}

1.5 Hypergraph Ramsey Number

We shall conclude this chapter with the existence of the hypergraph Ramsey number.

A hypergraph G on vertex set V is a pair (V, &), where the edge set & is a family
of subsets of V. Let V(") be the family of all r-subsets of V, which is also denoted
by (‘r/) If & € V), then G is called r-uniform. Thus a 2-uniform hypergraph is
just a graph. When & = V"), we say that G is complete, denoted by K,(,r), where
n = |V|. If all elements in V") are colored in k colors, a subset X C V is said to
be monochromatic when any element in X (") not element of X itself, has the same
color. That is to say, the subset X induces a monochromatic complete sub-hypergraph
of G.

Define r](cr)(nl, ny,...,ng) to be the minimum integer N such that every col-
oring of V) with [V] = N by colors 1,2,...,k, then for some i, there exists



1.5 Hypergraph Ramsey Number 15

X C V with |X| = n; that induces a monochromatic K,(ll” in the color i. Write

rl((r)(n) for rl((r)(n,n, ...,n), ¥ (m,n) for rér)(m,n) and ri(ni,na, ..., ny) for
r]iz)(n1,n2, ..., ng). Note that r(l)(m,n) =m+n-—1andforr > 2,
(r) _ | max{m, n} if r = min{m, n},
r (m,m) = {min{m,n} if r > min{m, n}.

Theorem 1.13 For r,m,n > 2, r") (m, n) exists and
r(r)(m,n) <r(r=b (r(r)(m - 1,n), r(r)(m,n - 1)) +1.

Proof. From the fact that 7' (m, n) = m+n— 1 and the upper bound that r? (s, 1) <
r@(s—1,1)+r@ (s, - 1) in Section 1.2, we see that the assertion holds for r = 2.
For r > 2, we assume that "~ (s, 1) exists.
Let V be a set with N = r=D (r0) (m — 1,n), r) (m,n — 1)) + 1 vertices. For
a given coloring ¢ : V") — {red, blue}, a vertex v € V and X = V \ {v}, define a
coloring
¢: XD 5 {red,blue}, &(S) = c(SU{v})

for S € X"~V as S U {v} € X"). From the definition of "~ (s, ) and
|X| =D (r(’)(m ~1,n), 7" (m,n - 1)) ,

we see that either X contains a subset ¥ with |[Y| = #(") (m — 1, n) such that Y'=1)
is completely red in ¢, or X contains a subset Z with |Z| = ") (n, m — 1) such that
Z(" =1 is completely blue in ¢. Without loss of generality, we assume that the former
is the case. We shall show that Y contains either a subset A with |A| = m such that
A is completely red in ¢ or subset B with |B| = n such that B") is completely
blue in c.

We now have Y € X =V \ {v} with |Y| = r") (m — 1, n). Consider the restriction
of the coloring ¢ of V") on ¥ "), From the definition, we know that either ¥ contains
a subset B with |B| = n such that B") is completely blue in ¢, or ¥ contains a
subset Ag with |Ag| = m — 1 such that A(()r) is completely red in c. In the former
case, we are done. In the latter case, set A = Ay U {v}, then |A| = m since v ¢ A.
Forany T € A" ifv ¢ T, then T € A(()r) and hence ¢(7T) is red. Otherwise,
S=T\{v} e A(()r_l) c Y= 50 &(S) is red since Y"1 is completely red in é.
The definition of & implies that c(T) is red since ¢(T) = &(S), thus A is completely
red in c. O

The following is the multicolor case for the existence of hypergraph Ramsey
number. Denote r; = r,((r)(nl, R TERT TR S PR T T B

Theorem 1.14 Forr, k,ny, ..., ng > 2, r,(cr)(nl, ..., ny) exists and

r,((r)(nl, ceang) < r,((r_l) (ri,ra, ..., rk) + 1.
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The above results do not give rational upper bounds for the hypergraph Ramsey
numbers other than the cases r = 2 and small n;. Erdés, Hajnal, and Rado (1965)
showed that there are positive constants ¢ and ¢’ such that

2 < r® (n,n) < 226%.

They also conjectured that r(3)(n, n) > 22" for some constant ¢ > 0, and Erdés
offered a $500 reward for a proof. Similarly, for » > 4, there is a difference of one
exponential between the known upper and lower bounds for ") (n, n), i.e.,

tr—1(en®) < r(n,n) < t.(¢'n),

where the tower function 7, (x) is defined by #1(x) = x and #;.1(x) = 2%™) The
study of 3-uniform hypergraphs is particularly important for our understanding of
hypergraph Ramsey numbers. This is because of an ingenious construction called
the stepping-up lemma due to ErdSs and Hajnal (see, e.g., Chapter 4.7 in the book
by Graham, Rothschild and Spencer (1990)). Their method allows one to construct
lower bound colorings for uniformity »+ 1 from colorings for uniformity r, effectively
gaining an extra exponential each time it is applied. Unfortunately, the smallest r for
which it works is 7 = 3. Therefore, proving that 73 (n, n) has doubly exponential
growth will allow one to close the gap between the upper and lower bounds for
r")(n,n) for all uniformities r. There is some evidence that the growth rate of
r")(n, n) is closer to the upper bound, namely, that with four colors instead of two
this is known to be true. ErdGs and Hajnal (see, e.g., Graham, Rothschild and Spencer
(1990)) constructed a 4-coloring of the triples of a set of size 22" which does not
contain a monochromatic subset of size n. This is sharp up to the constant c. It
also shows that the number of colors matters a lot in this problem and leads to the
question of what happens in the intermediate case when we use three colors. The
3-color Ramsey number r3(n, n,n) is the minimum N such that every 3-coloring
of the triples of an N-element set contains a monochromatic set of size n. In this
case, Erdds and Hajnal (1989) have made some improvement on the lower bound
pen? (see also in Chung and Graham(1998)), showing that r3(n,n,n) > pen*loghn,
Conlon, Fox and Sudakov (2010) substantially improved this bound, extending the
above-mentioned stepping-up lemma of these two authors to show that there exists
a constant ¢ > 0 such that

clogn

r(3)(n,n, n) > 2" .

For off-diagonal Ramsey numbers, a classical argument of Erdés and Rado (1952)
demonstrates that o)
r(s,n) < 20 ),
Conlon, Fox and Sudakov (2010) obtained that for fixed s > 4 and sufficiently large
n,
penlogn o .(3) (s,n) < 2c’n5’2 logn
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where the upper bound improves the exponent of that due to Erdds and Rado (1952)
by a factor of n*~2 /poly log n, while the lower bound confirms a conjecture of Erdds
and Hajnal (1972). Mubayi and Suk (three papers in 2017-2018) considered further
for 4-uniform case, in particular, the authors obtained that

clogn enlls
r® (5,0 > 27" and r®(6,n) > 22",

where ¢ > 0 is a constant.

1.6 Exercises

1. Suppose that S C {1,2,...,2n} with |A| = n+ 1. Show that there exists a pair
of numbers in S such that one divides the other. (Hint: Write each s € § in the form
s = 2%m, where m is odd.)

2. An application of the pigeonhole principle is to prove a famous result of Erds-
Szekeres (1935): Let A = (ay,...,a,) be a sequence of n different real numbers.
Prove that if n > st + 1, then either A has an increasing subsequence of s + 1 terms
or a decreasing one of ¢ + 1 terms. (Hint: Associate each a; to a pair (x;, y;), where
Xx; (y;) is the number of terms in the longest increasing (decreasing) subsequence
ending (starting) at a;. Place a; in the pigeonhole of a grid of n> pigeonholes with
coordinates (x;, y;).)

3. Give an easier proof for the existence of n in the last exercise, say n <
r(s+1,t+1).

4. Prove Theorem 1.2.
5. Prove that (K + Ky, Kp +Kg) < ("7 )n+ (’"+§_l)q. (A. Thomason, 1982)

6. Let G be a graph on N vertices. Prove that the number of triangles contained

in G and G is o .
(3)_5 Z dW)(N = 1-d(v)).
veV(G)

(R. Goodman, 1959.)

7.Let £ = r(Ky, K,,—2). Show r(K,, K,) < r(B¢, B¢) and hence Walker’s bound
r(Kn’ Kn) < 4r(Kn’ Kn—Z) +2.

8. Let k > 2. Prove that

ny+ -+ ng)!
r(n1+1,...,nk+1)§u.
npl---ng!

9. Prove that
r(n,n) <4r(n-1,n—-1) = 2.
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(Hint: In a Ramsey coloring, each of |[Ng(x) N Np(y)| and |[Np(x) N Ng(y)| is at
mostr(n—1,n—1)—1. The sum over x # y counts each non-monochromatic triangle
twice.)

10. Color all non-empty subsets (not the points) of [ N] by k colors. Prove that, if
N is large enough, then there are two disjoint non-empty subsets A, B such that A, B
and A U B have the same color. (Hint: Let N = r(3), and y a k-coloring of subsets
of [N]. Color any edge ij with i < j of Ky on [N] by color y([i,j —1]).)

11. Show that
V(T,Kn],"‘ ’Knk) = (m_ 1)(r(Kn1’~-"Knk) - 1)+ 15

where T is a tree of order m.

12. Assume that m — 1 divides n — 1. Show that for every tree T on m vertices,
r(T,Kyp)=m+n-1.

13. Complete the proof of Theorem 1.12.

14.* Let By ¢ be a tree on n = k + ¢ vertices obtained by identifying an end-vertex
of a path P, with the central vertex of a star K ;. Prove that r(By ¢) = k + [%'l -1
for £ > 2k and k > 1. (Erdés et al., 1982)

15. Burr and Erdds (See Chung and Graham, 1998) asked to prove that r (n+1, n) >
(1 + ¢)r(n,n) for some fixed ¢ > 0. From known results, find the pairs (m, n) with
2 <m < nsuchthatr(m—1,n+1) < r(m,n).
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Chapter 2 e
Small Ramsey Numbers

What are exact values of r(m,n)? This is more challenging than to show their
existence. Let us call the classical Ramsey number r(m, n) to be the small Ramsey
number if m and n are small. In this chapter, we shall obtain some exact values of
small Ramsey numbers in the first section. To get more, it is necessary to have a
short introduction on finite fields in the second section. The exact value of r3(3) is
an early application of finite field in the graph Ramsey theory. Relating to r£(3), a
Ramsey function on integers is the Schur function, which will be discussed in the
third section. One of the most important graphs constructed by finite field are Paley
graphs, which are highly symmetric and yield almost all currently best known lower
bounds of small Ramsey numbers, and exact values of infinitely many book graphs
B,,. Also, Paley graphs form a family of quasi-random graphs, see Chapter 10. We
have some context on graph spectra in the sixth section, particularly that related to
the independence numbers of graphs, which gives exact independence numbers of
infinitely many Paley graphs, showing such Paley graphs are not good for the lower
bounds of classical Ramsey numbers.

2.1 Ramsey Folklore

As mentioned in Chapter 1, if N = r(G, H), then there exists a graph F of order
N — 1 such that F contains no G and its complement F contains no H, for which F
is called a Ramsey graph for r(G, H). To illustrate the idea, we shall find the first
four nontrivial classical Ramsey numbers.

Theorem 2.1 We have four exact values of Ramsey numbers as follows.
r(3,3) =6, r(3,4) =9, r(3,5) =14, r(4,4) = 18.

Proof. We have (3, 3) = 6 in the last chapter. Since both r(3,3) = 6 and r(2,4) = 4
are even, by Theorem 1.5, we have r(3,4) < 9. Moreover,
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¥(3,5) < r(2,5) +r(3,4) < 14. 2.1)

To obtain a lower bound of r(3, 5), let us consider the graph G on vertex set Z;3 =
{0,1,...,12} (the integers modulo 13). Denote by A = {1,5,8,12} = {+1, +5},
which consists of all non-zero cubic (mod 13) of Z;3. Connect vertices i and j by
an edge if and only if i — j € A. It is easy to check that G is triangle-free and
a(G) =4. Thus r(3,5) > 14 hence r(3,5) = 14. Furthermore the equalities in (2.1)
hold, which implies that r(3,4) = 9.

From r(3,4) =9, we have r(4,4) < 2r(3,4) = 18. To get a lower bound, let us
consider the graph with vertex set Z;7 = {0, 1, ..., 16}, in which i and j are adjacent
ifand only if i — j € {%1, 2, 4, +8}, the set of non-zero quadratics (mod 17). This
graph shows that (4,4) > 18. We will see that this graph is indeed a Paley graph
later. m]

Greenwood and Gleason (1955) computed four exact values as in the above
theorem. They also found that the exact value of r(3, 3, 3) is 17, see the next section,
which is the only known exact value among all nontrivial classical Ramsey number
in three or more colors. Graver and Yackel (1968) determined that r(3,6) = 18 and
r(3,7) = 23. No other classical Ramsey number is found without aid of computers.
Using the computers, Grinstead and Roberts (1982) found that r(3, 8) is between 28
and 29, and they obtained r(3,9) = 36; Mckay and Zhang (1992) finally determined
r(3,8) = 28. MaKay and Radziszowki (1995) computed r(4,5) = 25. All known
non-trivial classical Ramsey numbers r(m, n) and some bounds at present are listed
in Table 2.1. The Ramsey graphs for (3, 5) and r(4,4) are illustrated in Fig. 2.1.

m\n|[3|4| 5 6 7 8 9 10

3 1/6/9] 14 | 18 23 28 36 40/43
4 18| 25 |35/41|49/61 | 56/84 | 69/115 | 92/149
5 43/49|58/87|80/143|101/216{121/316(141/442

Table 2.1 Some values and bounds of r (m, n).

Radziszowski’s dynamic survey (1994) offers up-to-date information on small
Ramsey numbers. The paucity of known exact values r(m, n) indicates the difficulty
in this area. Also this paucity stimulates our curiosity to find more classical Ramsey
numbers. The following story came from Spencer (1994).

Erdds asks us to imagine an alien force, vastly more powerful than us, landing
the earth and demanding the value of r(5,5) or they will destroy our planet. In this
case, he claims, “we should marshall all our computers and all our mathematicians
and attempt to find the value. But suppose, instead, that they ask for r (6, 6). In that
case, we should attempt to destroy the aliens.”

Perhaps as the improvement of computers and algorithms, the value of (5, 5) and
even r (6, 6) can be obtained in the near future. But for a bit larger n, the exact value
of r(n, n) is still far away from being tractable. However, more “exact” results are
known on generalized Ramsey numbers, some of which will be discussed in latter
chapters.



2.2 Finite Field and r3(3) 21

8

Fig. 2.1 Ramsey graphs for r(3,5) and r (4, 4)

2.2 Finite Field and r3(3)

Greenwood and Gleason (1955) proved that r3(3) = 17 by partitioning a finite field,
which is an example for applications of finite fields in graph Ramsey theory. On
finite fields, one of elementary facts is that there exists a field F(g) of g elements if
and only if ¢ is a prime power. A finite field F(g) is often called Galois field thus
denoted by GF(q). For simplicity, we use the notation F'(g) or F,. On F(q) there
are two operations, addition and multiplication. When g = p is a prime, the set of
elements of F(p) can be viewed as
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Z,={0,1,...,p—1},

where the addition and multiplication are more pleasing since they are arithmetic
modulo p. The tables for two operations + and - for elements in Zs are as follows.

+(0|1{2|3|4 -10{1|2(3]4
0|0{12{3]4 0/0(0{0|0|0
1(1]2{3|4|0 110{1(2|3|4
2|2|3(4|0|1 2|0(2|4|1|3
3|3(4]|0(1|2 310(3|1{4(2
4(4/011(2]3 410]4(3|2|1

Table 2.2 Operations on Zs

Recall an easy fact from group theory as follows.

Lemma 2.1 Let G be a multiplicative group and let S be a finite subset of G. If S is
closed for multiplication, then S is a subgroup of G.

Since plab implies pla or p|b, so Z}, = Zj, \ {0} is closed for multiplication
modulo p hence it is a multiplicative group of order p — 1, and thus the index of
any element x of Z, is a factor of p — 1; namely it satisfies that the equation x” -1=
1 (mod p), hence any element of F(p) satisfies the equation x” = x (mod p). Also,
for any a € Z%, ax = 1 (mod p) has unique solution in Z*, so the inverse a~' of
a exists. Thus Z,, is a finite field of p elements. Formally, when Z,, is viewed as
a field, the congruence a = b (mod p) should be written as a = b, which is an
equality in the field. We sometimes do not distinguish the two notations to signify
the operations in Z,.

The field F(p) is the unique field of order p up to isomorphism. To discuss some
structure of finite field F(p™), let us begin with some basics. Of course, we shall
constrain ourselves with what are needed here.

Let F be a (finite or infinite) field such as the field Z,,, Q of rational numbers, or
R of real numbers. A polynomial

fx) =apx™ +a x4+ +a,
is called a polynomial on F if any coefficient a; € F. Denote by F[x] for the set of all
polynomials on F. Then F[x] is aring on the ordinary addition and the multiplication
of polynomials.
Fix a polynomial f(x) € F[x] of degree m. We define an equivalence relation =
on F[x] for with g1(x) = g»(x) if and only if f(x)|(g1(x) — g2(x)), that is to say,
the reminders of g (x) and g, (x) are the same when f(x) divides them. Let

gi(x) = f(x)hi(x) +ri(x),

where the degree of r;(x) is less m. Denote by (g (x)) for the equivalence class that
contains g(x), then (g; (x)) = (r;(x)),and g (x) = go(x) ifand only if | (x) = ry(x).
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Let F[x]/(f(x)) be the set of all equivalence classes. Then it is a ring on addition
and multiplication in an obvious way.

Theorem 2.2 Let f(x) € F[x]. Then F[x]/(f(x)) is a field if and only if f(x) is
irreducible over F.

This field is called a residue field or quotient field. To simplify the notation,
we use the unique polynomial of minimum degree, namely, the remainder, in an
equivalence class to represent the class. Then each element in the field F[x]/(f(x))
can be expressed uniquely as

r(x) =box™ '+ bix™ 2+t by, bijeF,0<i<m-—1,

where m is the degree of f(x). So the field Z,[x]/(f(x)) contains p™ elements,
which is thus denoted by F(p™). As an example, the field F(32) can be expressed
as Z3[x]/(f(x)), where f(x) € Z3[x] is irreducible of degree 2, so

F(3)={0, 1,2, x, x+1, x+2, 2x, 2x+1, 2x+2}.

The sum of two elements is the sum of two polynomials, but the product of two
elements depends on the form of f(x). For Z3[x]/(f(x)), if f(x) = x> + 1, then
x(x+1) =x24+x = —1+x = x+2.If f(x) = x>+x+2, thenx(x+1) = x?>+x = -2 = 1.

For an element r(x) € F(q) = Z,[x]/(f(x)) and s € Z,,, where ¢ = p"*, each
coefficient of sr(x) is the product of s and the corresponding coefficient. So we see
an interesting fact that pr(x) = 0, which is trivial if we write it as Or(x) = 0.

Since F* = F(p™)\ {0} is closed on multiplication so it is a multiplicative group.
It is interesting to see that F™* is a cyclic group, its generators are called primitive
elements of F(p™). For example, in Z3[x]/(x? + 1), the element x + 1 is a primitive
element.

[ 1 |2 3 |4 5 |6] 7 |8
(x+ 1) x+1{2x2x + 1]2[2x + 2|x|x + 2|1

Table 2.3 A primitive element (x + 1) of Z3[x] /(x> + 1)

Let us define the period of an irreducible polynomial f(x) € Z,[x], denoted by
p(f), as the smallest ¢ such that f(x)|(x¢ — 1) in Z,[x]. Clearly p(f) < p™ -1,
where m is the degree of f(x). As f(x)|(x‘ = 1) in Z,,[x] is equivalent to x’ = 1 in
Z,[x]/(f(x)), so if we choose f(x) such that p(f) = p™ — 1, then x is a primitive
element of the field Z,[x]/(f(x)). For example, f(x) = x2 +x +2 of Zz[x] is
irreducible with p(f) = 8, so x is a primitive element of F(3%) = Z3[x] /(x> +x+2).

il 2 3 |4/5] 6 7 18
xHx|2x + 112x + 2121 2x|x + 2{x + 1|1

Table 2.4 A primitive element x of Z3[x] /(x> + x +2)

In conclusion, Z,[x]/(f(x)) is a field of order p™, where f(x) € Z,[x] is
irreducible with degree m. This field is unique up to isomorphism. If p(f) = p™ -1,
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then we can simply express the elements of GF (p™) as

This expression is convenient for the multiplication but not for the addition.
Theorem 2.3 r3(3) = 17.

Proof. The right upper bound follows from Theorem 1.1. Indeed, if the edges of K7
are colored by colors 1,2, 3, a vertex v has at least six neighbors connected by the
edges in the same color, say color 1. Two of such neighbors x and y of v and v itself
form a monochromatic triangle if the edge xy is colored by 1, or six neighbors induce
a K¢ whose edges are colored by colors 2 and 3, which contains a monochromatic
triangle as r(3, 3) = 6. This proves that r3(3) < 17.

Greenwood and Gleason (1955) proved that 73(3) > 17 by considering F(2%),
which is isomorphic to Z,[x]/(x* +x + 1) since x* + x + 1 is a irreducible in Z,[x]
with period 15. Then the elements of F(2*) can be identified as

{O,x,xz, cxB = 1},

where
0=0 B =1+x%
X=X X =x+x
X% =x? x0=1+x+x2
B =x Al =x+x2+x°
*=1+x 2 =1+x+x7+x°
X =x+x2 B =1+x%+x°
=x2+x P =1+53
X =1+x+x°xP =1

Table 2.5 The elements in a field F(16)
Note that —f(x) = f(x) in Zy[x]. Let Ag be the set of all cubic residues of
F* = F \ {0}, then
Ao = {3, 28, 2%, X2, x15)

= {x3, R, x4+, T+x+x2+x°, 1}.

Then Ay is a subgroup of multiplicative group F*. Set
Al =xApg={1+x, 1+x 30, T+x+x2, 1+x2 +x3, x}

and
A2=x2A0={x+x2, 1+x%, x+x2+x°, l+x3,x2}.

The sets Ay, A1, Ay are cosets of Ag in multiplicative group F*. Let us call a subset
S of F(q) sum-free if the equation x + y = z has no solutions in S. Observe that Ag
is sum-free from the above table hence A; and A, are also sum-free.
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Define an edge coloring of K¢ on vertex set F(24) as follows. Color an edge uv
with color i if u + v € A;. Then all edges are colored by colors 0, 1 and 2. We claim
that there is no monochromatic triangle. Suppose that vertices u, v and w induce a
monochromatic triangle in color i. Thenu +v € A;, v+w € A;andu +w € A;,
contradicting to the fact that A; is sum-free as u + w = (u +v) + (v + w). Thus
r3(3) > 17. O

Let us remark that in most applications, we are not concerned with the precise
structure of a finite field. If this is the case, then we can write x € F(g) to signify
that x is an arbitrary element of F(g), not necessarily a polynomial of the single
variable x.

2.3 Schur Numbers

It is hard to determine the exact classical Ramsey numbers as stated. The only known
multi-color classical Ramsey number is r3(3) = 17 proved in the last section. For
k = 4,5, we have 51 < ry(3) < 62, where the upper bound was established by
Fettes, Kramer and Radziszowski (2004) while the lower bound was obtained by
Chung (1973), and 162 < rs5(3) < 307, where the lower bound is due to Exoo
(1994) and the upper bound is implied by that of r4(3) from the upper bound
ri(3) < k(rg-1(3) — 1) + 2 proved in the last chapter.

We are more interested in the asymptotic behavior of r¢(3) as k — oco. Let f(n)
be a function taking non-negative values. Call the function f(n) super-multiplicative
if f(m+n) > f(m)f(n). The following result is elementary.

Lemma 2.2 Suppose the function f(n) > 0is super-multiplicative. Then lim f(n)'/"
n—oo

exists and it is equal to sup f(n)'/™. If m is fixed, then

nx1

f(n) = cf(m)™,

where ¢ = c(m) > 0 is a constant.

Proof. Set £ = sup f(n)'/". Then 0 < £ < oo and lim f(n)'/" < £. We shall show

n>1

that lim f(n)'/" > ¢.

n—oo

Casel ¢ < oo.

For any € > 0, there is some m such that f(m)'/™ > £ — €. For any n > m, let
n=gm+r with 0 < r < m. Thus

f(n) = flgm)f(r) = f(m)T f(r).

1/n

Since g/n — 1/m and f(r)'/" — 1, we have
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lim f(n)"/" > f(m)"/™ > - €.

n—oo

Thus lim f(n)'/" > € since € > 0 is arbitrary.

n—oo

Case2 (= 0.

For any M > 0, there is m > 1 such that F(m)Y™ > M, we can similarly show
that lim f(n)'/" > M. It follows that lim f(n)'/" = co since M > 0 is arbitrary.

n—oo n—oo

This prove the first assertion.
For fixed m, let n = gm + r with 0 < r < m. Then

1) 2 1011 = L e

Let ¢ = min{f(r)/f(m)"/™ : 0 < r < m}. Then ¢ = c(m) is a positive constant and
f(n) = cf(m)"™ as desired. O

Proposition 2.1 The function ri(3) — 1 is super-multiplicative. Hence the following
limits exist and

Jim ri(3)Vk = Jim (7 (3) - DYk = sup(rr(3) = 1)V,
—00 —00 k

Proof. Let us write r,,(3) as r, in the proof. Set N =r, — 1 and M = r,,, — 1. Color
the edges of K by n colors and color edges of Kjs by other m colors so that there
is no monochromatic triangles in any color. Then, “blow-up” one with another by
replacing each vertex v of Ky with a colored K, denoted by H,, for this Kj;. For
any distinct vertices u and v of Ky, if u’ € V(H,), and v/ € V(H,), color edge
between u’ and v’ with the color as the edge uv in K. We thus have a complete
graph on NM vertices whose edges are colored with n + m colors and there is no
monochromatic triangles. Therefore

rm+n_12 (rm—l)(r”—l),

as claimed. O

It seems to be very difficult to determine the exact value of the limit of ry(3) 1k,
From r3(3) = 17, we have klim re(3)V* > (r3(3) = 1)'/3 = 2.5 ... Nevertheless,
we shall do it better.

Schur defined an extremal number in 1916 as follows. A set S of integers is said
to be sum-free if a, b € S (a and b not necessarily distinct) implies

a+b¢s.

Let [N] ={1,2,...,N}. A result of Schur (1916) states that if the integers [| k!e]]
are partitioned in any manner into k classes, then at least one of the classes is not
sum-free. Accordingly, the Schur number s is defined to be the largest positive



2.3 Schur Numbers 27

integer N such that [ N] can be partitioned in some manner into k sum-free classes.
No many exact values of Schur numbers have been known. It is not hard to verify
that s; = 1, sp = 4 and s3 = 13. With the aid of a computer, Baumert showed that
s4 = 44, reported in Abbott and Hanson (1972). It was showed that s5 > 160 by
Exo0 (1994) and s¢ > 536 by Fredricksen and Sweet (2000). A relation between
ri(3) and s is as follows.

Theorem 2.4 For any positive integer k,
re(3) = sk +2.

Proof. Set N = s¢. Then [ N] can be partitioned into k sum-free sets Ay, Ay, ..., Ak.
We now color the edges of Kx 1 on vertex set {0} U [ N] in the following way: color
the edge uv with color i if |[u — v| € A;. Since 1 < |u —v| < N for any distinct
u and v, all edges are colored. We then claim that there are no monochromatic
triangles. Suppose not, some distinct vertices u, v and w induce a monochromatic
triangle in color i, where 0 < u < v <w < N.Thus lu —v| =v —-u € A; and
[v—w|=w-v € A;. It follows that ju —w| =w—-u=(w-v)+ (v—u) €A,
contradicting to the fact that A; is sum-free. Therefore, the k-colored Kp . do not
contain monochromatic triangle, implying that rx(3) > N +2 = 53 + 2. O

Corollary 2.1 r5(3) > 162, and r¢(3) > 538.

The original paper of Schur was motivated by Fermat’s Last Theorem. He actually
proved the following result.

Theorem 2.5 For any fixed integer m > 1, if p is a prime with p > s, + 2, then the
equation
m m

x"+y"=z7" (mod p)
has a nonzero solution.

Proof. We shall prove the equation x™ + y” = 1 (mod p) has a nonzero solution for
p = su+2.1f [ p—1] is partitioned into m subsets, then one of subsets is not sum-free
as p — 1 > s, + 1, and thus there exist a, b, ¢ in this subset such that a + b = c. Set
H ={x":x € Z,}, which is a multiplicative subgroup of Z},. Then the index of H,
i.e., the number of cosets of Z}, on H, is k = gcd(m, p — 1) < m. The cosets of Z,
on H define a partition of Z;, such that s and 7 are in the same coset if and only if
st~! € H. Suppose that a, b, ¢ € [p — 1] from the same coset satisfy that a + b = c.
Then
ac™' +bc™ ' =1 (mod p).

Since ac™!, be™!, 1 € H, we obtain that ac™! = x™, be™! = y" for some nonzero x
and y in Z,,, proving the assertion. O

A partition {A}, Ay, ..., Ax} of [N] is called symmetric if any x € A; implies
that N + 1 — x € A;. It is clear that any sum-free partition {A|, Ay, ..., Ax} of [sk]
is symmetric since x +y = sy + 1 must have a solution forany x € A; and 1 <i < k.
We will see the partition in the proof of the following lemma is symmetric.
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Lemma 2.3 For any positive integer k,
Skal = 35k + 1.

Proof. Let {A|, Ay, ..., Ax} be a sum-free partition of [s]. Then x+y = s; + 1 has
a solution in any A;. Set Bryy = {sr + 1,5, +2,...,2s, + 1} and extend A; to B; as
follows. For any x € A;, add 3sx +2 —x in A;. Since 1 < x < s, we have

28k +2 <35 +2—-x<3sp+1,

and thus By, By, - , B, Br+1 form a partition of [3s; + 1]. It is easy to see that
Bj41 is sum-free. For 1 <i < k and x,y € B;, we claim that x + y ¢ B;.

Indeed, if both x and y are in A;, then the assertion follows from x + y ¢ A; and
x+y < 2s;. If both x and y are in B; \ A;, then the assertion follows from the fact
that x +y > 2(2sy +2) > 35 + 1. Now we assume that exactly one of them is in A;,
say,x € A;,and y € B; \ A;. Clearly, y = 3s; +2 — y’ for some y’ € A;. Moreover,
we obtain that

X+y>2x+2sp+2 > 25, +3.

Therefore, if x + y € B;, then x + y € B; \ A;. It follows that
X+y=3sp+2-2
for some z € A;, which implies that
X+z=3sp+2—-y=y,

contradicting to the fact that A; is sum-free.
Therefore, By, By, - , Br+1 form a sum-free partition of [3si + 1], and hence
Sk+1 = 35k + 1. O

The following is a result of Abbott and Hanson (1972), which is a generalization
of the above lemma.

Theorem 2.6 Let m and n be positive integers and a, = 25, + 1. Then
Span = (28 + 1) s, + 5y,
In particular, ey > ap - an, namely a,, is super-multiplicative.
Proof. For b =0,1,...,s,, set
Ap ={b2sp+ 1) +clc=1,2,...,5m},
andforc=1,2,...,s,, set
A ={b2su+1)+c|b=0,1,...,5,}.

Let
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— 1 5n — 1 Sm c
A=U Ay = UM AC.

Partition Ay = [s,,] into m sum-free classes Ci, Cs, . . ., C,y,, and partition A into m
classes D1, Dy, ..., Dy, by placing A€ in D; if ¢ € C;. We claim that each of these
classes is sum-free. Suppose to the contrary, D; is not sum-free, i.e., there are some
elements by M + ¢y, bpM + ¢, b3M + c3 of D;, where M = 2s,,, + 1, such that

(blM + C1) + (sz + Cz) = b3M +c3,
where c1, ¢3, c3 are all in C;. We thus have
ci+cy=c3 (mod M).
However, 2 < ¢1 +c¢3 <25, < M,and 1 < ¢35 < s,y < M,s0ci +c¢y = c3,
contradicting to the fact that C; is sum-free.

Forb=1,2,...,s,,set

By ={bQ2s;+1)=clc=0,1,...,5n,}.

Let
— 1 15n
B = szle .
Partition [s,] into n sum-free classes Cy41, Cini2, * - » Cran, and partition B into n

classes D1, Dit2, -+ » Dian by placing By, in Dyy,y; if b € Cpyq;. We claim that
each D,,;; is sum-free. In fact, for any elements b1 M — c1, boM — ¢, baM — c¢3 of
D,1i, where M = 2s,,, + 1, and by, by, b3 are of C,,,4;, satisfying b + b, # b3 since
Cin+i 1s sum-free. If by + by > b3 + 1, then by noting M — ¢; — ¢ > 1 we obtain that

(biM = c1) + (oM —¢3) =2 bsM + 1 > bsM — c3.

If by + b, < b3 — 1, then (biM — c1) + (boM — ¢3) £ (b3 — )M < bsM — c3.
Therefore (b1 M —c1)+(byM —c3) # b3M —c3, which implies that D ,,; is sum-free.

It is easy to verify that Ao, By, A, Ba, Az, -+ -, By,,, A, 18 a partition of the set
AUB = [(2s;, + 1)s, + s,,] in the natural order. Thus A U B has been partitioned
into sum-free classes D1, D>, ..., Dy4,. The proof is complete. O

Corollary 2.2 For any fixed positive integer m,
s > (25 + DFM

for any integer k > m, where ¢ = ¢(m) > 0 is a constant.

Proof. The assertion follows from the super-multiplicity of the function 2s,, + 1 and
Lemma 2.2. O

Since (256 + 1)/ > 10736 by 56 > 536, we thus have s; > ¢ 1073%/% and

ri(3) = ¢1073%/%, where 1073'/6 = 3.199 - - - . The following is a very old conjecture
of Erdds.

Conjecture 2.1 (Erdés) The limit of ri (3)'/¥ is infinity as k — oo.
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Erd&s and Graham (1973), Bondy and Erdés (1973), and Graham, Rothschild and
Spencer (1990, Ramsey Theory) considered multicolor Ramsey numbers ry (Capnt1),
where C»,,41 is a cycle of length 2m + 1. Generally, we have

m2% + 1 < ri(Comar) < 2m - (k +2)1.

For m = 2, Li (2009) showed that 7, (Cs) < c¢V18kk! for all k > 3, where 0 < ¢ <
1/10is a constant. In general, Lin and Chen (2019) showed that 7 (Cp;,41) < Vit
for all k > 3, where c is a positive constant depending only on m. For the lower
bound, Day and Johnson proved (2017) that

k(Come1) > 2m(2+€)*!

for large k, where € = e(m) > 0 and € — 0 as m — oo. In particular, r(Cs) >
c17%/*. We will give a simpler proof here.

Let Copmt1 = {C3,Cs, ..., Comy1 } be the family of odd cycles of length at most
2m + 1. The class Ramsey number ri(Cyp,41) is defined as the smallest integer N
such that any k-edge-coloring of K contains at least a monochromatic cycle in
Coms1- It is clear that

rk(Coams1) < ri(Comer)-

For a graph G, denote by g(G) the girth of G that is the smallest length of
a cycle in G. Let go(G) and g;(G) be even girth and odd girth of G, which are
the smallest length of an even cycle and an odd cycle in G, respectively. Clearly
8(G) = min{go(G),g1(G)}.

For a k-edge-coloring X of K with colors {1,2, ..., k}, let G; be the monochro-
matic graph induced by all edges in color i. We write

g1(X) = min g(G;),
1<i<k

which is called the odd girth of X.
We write an edge {u, v} as uv simply and the color of edge uv in X as X (uv).

Lemma 2.4 For any integer m > 1, ri(Copmy1) — 1 is super-multiplicative, i.e.,

Tkan(Come1) = 1 2 (1 (Come1) = D (rn(Copar) — 1).

Proof. Let M = r;.(Cye1) — 1 and N = r;,(Cyp41) — 1. Let U and V be the vertex
sets of Ky and K, respectively. There exists an edge-coloring X of K, with colors
1,2,...,k and an edge-coloring YV of Ky with colors k + 1,k +2,...,k + n such
that

g1(X)>2m+1, g1(Y)>2m+1.

Denote by G and H the edge-colored Kjs and K, respectively. Replace each vertex
v of H with a copy of G, which is denoted by GV. The obtained graph, denoted by
G X H, is called the “blow up” of Ky by Kjs. Formally, we define G X H to be an
edge-colored complete graph of order M N on vertex set U XV, and an edge-coloring
Z that assigns an edge (u,v)(u’,v") of G X H to be
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Xwu')y if v=v/,
Y (') otherwise.

Z((u,v) (' V) = {

LetU = {uj,ua,...,uptand V.= {vy,va,...,vn}. The vertices of G X H can be
labelled as follows.
u; \ vy Vi V2 e VN
w | (u,vr) | (u1,v2) |-+ | (U1, vN)
wy | (uz,vy) | (u2,v2) |-+ | (u2, vn)
upy | (upg, vi) |[(uag, v2) |-+ [(upr, viv)

Table 2.6 The vertices of G X H

Call an edge to be vertical if it has form (u;, v)(u;,v) with u; # uj and v € V,
and horizontal if it has form (u, v;)(u,v;) withu € U and v; # v, and skew if it has
form (u,v)(u’,v") with u # u’ and v # v’. The edge-coloring Z assigns a vertical
edge (u;,v)(uj,v) with color X(u;u;) as same as the color of the corresponding
edge u;u; in G, and Z assigns a non-vertical edge (u, v)(u’,v") with color Y (vv’)
as same as the color of the corresponding edge vv’ in H.

Claim g(Z) >2m+ 1.

Proof. Suppose to the contrary, there is a monochromatic odd cycle of length at

most 2m + 1. Let (u;,v;,), (tir,Vj,), - -+ s (Uirs,1»Vjre,,) be @ monochromatic odd
cycle Copy with 1 < € < m.
If the color of this Cypyp is one of 1,2,...,k in X, say color 1, since there

are no edge between distinct GV in the color 1, then u;,, u;,, . . ., u;,,,, must form
a monochromatic odd cycle of length 2 + 1 in same GV, which contradicts to
g1(X) >2m+1.

Therefore, the color of the Cpp ) mustbeoneof k + 1,k +2,...,k+nin Y, say
k+1,and vj # v;, forl <s <20+1 as the edge (u;,,vj,)(Vi,,,V}.,) is not
vertical.

Consider the monochromatic closed walk v, v, ..., V., V). I v, =v; for
some s < 2€+1, then we consider a cycle in this walk formed by v, vj,,..., v, =
v, wherev;,vj,,...,v; are pairwise distinct that form a monochromatic cycle of
length s in H. Since g;(Y) > 2m + 1, we obtain that s must be an even integer. Then
we consider the monochromatic closed walk v,V oy« 5 Vo s Vi, - REpeat the
process, we will obtain a monochromatic odd cycle of length at most 2m + 1 in H,
which leads to a contradiction. O

Now, we have the following result by Lemmas 2.2 and 2.4.

Theorem 2.7 Let m and s be fixed positive integers. Then there exists a constant
¢ =c(m,s) > 0 such that

7k (Cama1) = c[rs(Camer) — 11574

for all large k.
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Note that 7,(Cs) = r,({C3,Cs}) > 4 and the red-blue edge-coloring of Ks
contains monochromatic Cs if there is no monochromatic C3. Thus we have r, (Cs) =
5. Now we shall show the following result.

Theorem 2.8 We have r4(Cs) > 17.

Proof. Let K7 be defined on Z;7, here we use Z;7 = {0, +1,+2,...,+8} for con-
venience. For 1 < ¢ < 8, define Hy be the subgraph consists of all edges ij if and
only if i — j| = ¢ (mod 17). Then, each Hy is a Hamilton cycle and they form an
edge partition of Ky7. Denote G| = H; U H3, G, = H, U Hg, G3 = H4 U Hs and
G4 =Hg U H7.

Claim 1 G, G,, G3 and G4 are isomorphic to each other.

Proof. For i € Zj7, ¢(i) = 2i (mod 17) is an isomorphism from G; to Gj.
Indeed, i is an edge of H, if and only if i — j| =1 (mod 17), which is equivalent
to [2i —2j| =2 (mod 17), i.e., (i)¢(j) is an edge of H,. Similarly, ij is an edge
of Hj if and only if ¢(i)¢(j) is an edge of Hg. Moreover, by noticing that -5 = 12
(mod 17) and 7 = 24 (mod 17), we have fori € Z7, ¢(i) = 2°~'i (mod 17) is an
isomorphism from G to G for s = 3, 4. ]

Claim 2 G| contains neither C5 nor Cs.

Proof. Suppose there exists an triangle in G| = H| U H3, say iizi3i. Since H|
and Hj are triangle-free, we have H, contains at least one edge of this triangle, and
so dose H3. Without loss of generality, assume that i;i; € H; and i i3 € H3. Thus

lip—i|=1 (mod17) and |[iz3—i;]=3 (mod 17),

which implies that |i3 — i3] =2 (mod 17) or |iz — i| =4 (mod 17), contradicting
to the fact that ii3 is an edge of H; U H3. By a similar argument as above, we obtain
that G contains no cycle of length 5. This completes the proof. O

From Claims 1 and 2, we have r4(Cs) > 17 as desired. O

Recall that
7k (Caes1) 2 71 (Comyr)

for any 1 < £ < m, so Theorem 2.8 implies that there exists a constant ¢ > 0 such
that . (Cs) > ¢ - 17%/* for all k > 3.

We will see in latter chapters that r (Ca,,) = O (k™ ("=1) for fixed m > 2, while
ri(Cy) is linear in n for fixed k.

2.4 Paley Graphs

We have seen some recursive upper bounds for r(m,n) in last chapter. However
they are not effective on estimating larger classical Ramsey numbers. For the lower
bounds, the situation is even worse.
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Property 2.1 Let m; and n; be positive integers. Then
r(mmy+ Lnny+1) > (r(my+ L,np+ 1) = D)(r(my+ 1L,np+1) = 1).

Proof. Let G be a graph of order N| = r(m; + 1,n; + 1) — 1 with w(G) < m; and
a(G) < ny. Let H be a graph of order Ny = r(my + 1,n + 1) — 1 with w(H) < myp
and a(H) < ny. One can “blow up” the graph G by H as follows. For any vertex v of
G, replace v by a copy of H, denoted it by H,,. For any pair of vertices x and y from
distinct copies H, and H,,, x and y are adjacent if and only if # and v are adjacent.
Inside the same copy H,,, the adjacency of H is preserved. Clearly, the clique number
of the new graph is at most mm, and its independent number is at most n1n,. So
the claimed inequality follows. O

Fig. 2.2  Using G to blow up Cs

On the other hand, we have successfully obtained the right lower bound of r3(3)
by using finite field. Let us return to finite fields for help.

Letus have some discuss on the density of primes. We know that there are infinitely
many primes. Let (n) be the number of primes p with p < n, the famous prime
number theorem states that 7(n) ~ n/logn, where logx is the natural logarithmic
function. For any integers m and r withm > 2,0 < r < mand (r, m) = 1, Dirichlet’s
theorem tells us that there are infinitely many primes p of the form p = r (mod m).
Let ,, (r, n) be the number of these primes with p < n. So Dirichlet’s theorem tells
us that 7, (r,n) — co as n — co. Noticing that 2 is the only even prime, we have
that forn > m > 2,

n(n) — 1 otherwise.

Z ﬂm(r,n):{ n(n) if mis odd,

r:0<r<m
(r,m)=1

The following result is usually called Siegel-Walfisz Theorem, which says that all
summands 7, (r, n) in above sum are almost the same for large n. Let ¢(m) be the
number of integers r € [m] with (r,m) = 1, which is called the Euler’s function.

Theorem 2.9 If r and m are fixed and (r,m) = 1, then, as n — oo,
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n

é(m)logn’

Equivalently, the nth prime p of the form p = r (mod m) is asymptotically equal to
¢(m)nlogn. Consequently, if p and p’ are two consecutive primes of this form, then
p~pasp— .

Tm(r, ) ~

Theorem 2.10 (Prime number theorem) As n — oo, n(n) ~ n/logn, and p, ~
nlogn, where p,, is the nth prime. Consequently, p, ~ Pn+1.

Another way to describe the density of the primes is to estimate the difference
Pn+1 — Pn- It has been shown that p,+1 — p, = O(p%), where a is a constant with
0 < a < 1. The currently known best value of a is % = 0.525, see Baker, Harman
and Pintz (2001).

Our first application of Theorem 2.9 is the case m = 4. Since ¢(4) = 2, so
asymptotically, there are half primes p < n of the form of p = 1 (mod 4) and half
of the form of p = 3 (mod 4).

Let g be a prime power, and F, the finite field of g elements. Denote by F, =

F, \ {0}. An element a € F is called quadratic if a = b? for some b € F,. A
quadratic element of F), is usually called a quadratic residue (mod p) when p is a
prime number.

Let us define a function y (x) on F, as

x(x)=x@ D2,

This function is usually called the quadratic residue character of F.

Lemma 2.5 If q is an odd prime power, then
1 x is quadratic, x # 0,
xx)=13 0 x=0, (2.2)

—1 x is non-quadratic.

Furthermore, exactly half of elements of F; are quadratic.

Proof. Let x be an element of F;. Clearly y(x) = 1 as
() = D) + D = (@) - 1=x4"" ~1=0.
Let v be a primitive element of F, i.e.,
Fq* ={y, V2 ... vi72 i = 1Y,
Note that v is not quadratic as it is primitive, hence y (v) = —1. Denote
So = {vz,v4, v = 1}, and S; ={v, v, .. .,vq_z}.

Using the facts that y(v) = —1 and y(v¥) = x*(v), we have y(x) = 1 if and only if
x € 8y, as claimed. O
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Now, the Paley graph P, is defined as follows. Let ¢ = 1 (mod 4) be a prime
power. The Paley graph P, is defined on Fy, and two distinct vertices x and y of Fy,
are adjacent in P if and only if

x(x—y)=(x-y) 2=,

i.e., x — y is a non-zero quadratic element. Note that y(x — y) = y(y — x) since
x(=1) =1 by noticing that (¢ — 1)/2 is even as ¢ = 1 (mod4). As an example, it is
easy to verify that the Paley graph Ps is Cs.

Let A be an additive group S an inverse-closed subset of A* = A \ {0}. A graph,
called the Cayley graph with respect to S, is defined as follows. Its vertex set is A,
and distinct vertices u and v are adjacent if and only if u — v € §. Clearly, a Paley
graph is a special Cayley graph with respect to the subset of non-zero quadratic
elements since the inverse of a non-zero quadratic element is also quadratic.

The strongly regular graphs were introduced by Bose (1963). A graph G is said
to be a strongly regular graph with parameters n, d, A, u, denoted by srg(n, d, A, ),
if it has n vertices, d-regular, and any pair of vertices have 4 common neighbors
if they are adjacent, and ¢ common neighbors otherwise. For example, Cs is an
srg(5,2,0,1). The following proposition tells that the complement of a strongly
regular graph is also strongly regular.

Proposition 2.2 If G is a strongly regular graph srg(n, d, A, ), then its complement
is also an srg(n, dy, 11, uy), where

d1=n—d—l,
M=n-2d+u-2,
uy=n-2d+A.

Proof. The value of d; can be determined by d + d; = n — 1. Let u and v be distinct
vertices of G. If they are non-adjacent, then |N(u) U N(v)| = 2d — u. The remaining
n—2d+p—2 vertices are the common neighbors of u and v in G, giving A; as claimed.
If u and v are adjacent, then {u,v} C N(u) UN(v) and [N(u) UN(v)| =2d — 4.
The remaining n — 2d + A vertices are common neighbors of # and v in G, yielding
u as claimed. |

For vertex disjoint graphs G and H, let G U H be the graph on vertex set V(G) U
V(H) and edge set E(G) U E(H), which is called the union of G and H. Let mG be
the union of m copies of G. The union mKy, is an srg(mk,k — 1,k —2,0). On the
other hand, if G is an srg(n, k, 4,0), then G is a union of complete graphs of the
same order. We sometimes exclude complete and empty graphs as an srg to avoid to
define ¢ and A, respectively. A relation among the parameters is as follows.

Proposition 2.3 If G is an srg(n, d, A, i), then

dd-A2-1)=un-d-1).
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Proof. Let v be a vertex and let M (v) be the set of non-neighbors of v. Consider the
partition V(G) = {v} U N(v) U M(v). By the definition, N(v) contains d vertices,
and M (v) contains n — d — 1 vertices. Each vertex of N(v) is adjacent to 1 vertices
in N(v), and hence d — A — 1 vertices in M (v). Each vertex in M (v) is adjacent to
u vertices in N(v). Counting the edges between N(v) and M (v) in two ways, the
required equality follows. O

A graph G is called vertex-transitive if for any two vertices a and b of G, there
is an automorphism mapping a to b, and it is called edge-transitive if for any two
edges ab and uv of G, there is an automorphism mapping ab to uv.

Theorem 2.11 If g = 1 (mod 4) is a prime power, then the Paley graph P is an

g-1 qg-5 g-1
2 7 4 4

Srg (Qa

Furthermore, it is self-complementary, vertex-transitive and edge-transitive.

Proof. Lemma 2.5 implies that P, is (¢ — 1) /2-regular. Since }}, x(x) = 0, we have
that the number of common neighbors of two vertices a and b is

l+xy(x—a) 1+xy(x->b)
2 2 ’

xeFg\{a,b}
which equals

-2 - 1
9-2 xla-b) 1

; z X(x - a)x(x-b).

xeF,\{a,b}
Since y(x —a)x(x — b) = x(5=5) for x # b, we can write the last term as

DS D S wed

xeFy\{a,b} x€F4\{0,1}

Thus the number of common neighbors of a and b is qT_S - )@, which is qT_S if

a and b are adjacent and qT_l otherwise.
Fix a € Fy with y(a) = -1, and define a map ¢ as

do: V(Py) = V(Pgy), ¢o(x) = ax.

Note that the map ¢y is an automorphism between P, and P_q since x and y are
adjacent in P, if and only if y (x — y) = 1 which is equivalent to y (ax — ay) = -1,
i.e., ¢o(x) and ¢o(y) are non-adjacent in P,. Hence P, is self-complementary.
Moreover, it is easy to verify that the map ¢ (x) = a + b — x is an automorphism
mapping a to b, and the map ¢, (x) = 7= (x — b) + v is an automorphism mapping
an edge ab to an edge uv. Therefore, the Paley graph P, is vertex-transitive and
edge-transitive as desired. O
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‘We now can have an equality for 7 (B,,, B,,) for infinity many n, where B,, = K»+K,,
is an n-book. Note that the Paley graph P, with ¢ = 4n + 1 contains no B, and P,
is self-complementary. This fact yields that r(B,,,B,) > 4n+2ifg=4n+1lisa
prime power, which together with the upper bound in Theorem 1.7 implies that

r(By, By) =4n+2

when 4n + 1 is a prime power.

2.5 Combination of Paley Graphs

It is interesting to see the fact that the Paley graphs Ps and P;; are Ramsey graphs
for r(3) and r(4) by Greenwood and Gleason (1955). Unfortunately, no other Paley
graphs are found to be the “exact” Ramsey graphs. A result of Shearer (1986) and
independently Mathon (1987) was that if the Paley graph P,, contains no Ky, then

r(k+1) >2p +3. 2.3)

This gives the best lower bounds of r(k) for small k (see Table 2.7) until now, except
for k = 4,5,6,8, see Greenwood and Gleason (1955), Exoo (1989), Kalbfleisch
(1965), and Burling and Reyner (1972), respectively. For k = 5, we know that
43 < r(5) < 48, where the lower bound is due to Exoo (1989) and the upper bound
is due to Angeltveit and McKay (2018) respectively.

In the following table, the entries in the first column are values of k = w(Pp) =
a(Pp); the second p; and the third p, are the smallest and largest prime p such that
w(Pp) = k, respectively; the fourth n is the number of such primes p; and the last
two columns are the lower bounds obtained, in which the better one is listed only.

a(Pp)|| p1 | p2 |njr(@+1)2po+1jr(a+2) >2py+3
2 5 5 |1 r(3) =6
3 13117 |2 r(4) > 18
4 29 | 37 |2 r(5) > 38
5 41 | 101 |6 r(6) > 102 r(7) = 205
6 97 1109 |2
7 113|281 (10| r(8) > 282 r(9) > 565
8 173|373 |7
9 229|797 15| r(10) > 798 r(11) > 1597
10 || 557|709 |3 r(12) > 1421
11 || 433 (1277|32 r(13) > 2557
12 || 613 [1493|13 r(14) > 2989
13 || 853 |2741|53 r(15) > 5485
14 |[1373|2801(17 r(16) > 5605
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Table 2.7 Independence numbers of small P,

For vertex disjoint graphs G and H, let H + G be a graph obtained from H and
G by adding new edges to connect H and G completely. Since Ky, = K| + Kg,
the following result implies the lower bound (2.3), in which §(G) is the minimum
degree of G. This is slightly better than that by Lin, Li and Shen (2014).

Theorem 2.12 Let g = 1 (mod 4) be a prime power. If G is a graph with 6(G) > 1
and the Paley graph P, contains no G, then

r(Ki+G)>2(g+1)+1.

We have the following result by considering the largest B, in P, when g = 4n+1.

Corollary 2.3 If4n + 1 is a prime power, then r(K| + B,) > 8n + 5.

In order to give a proof of Theorem 2.12, we need the following construction
due to Shearer (1986) and independently Mathon (1987). We will write (u, v) for an
edge that connects vertices u and v. Let P4 and P/, be two disjoint copies of Paley
graphs. Let V, V' and E, E’ be their corresponding vertex and edge sets, respectively,
and let 4, 4" be two additional vertices. We define a new graph H, with vertex set
{1,4’} UV UV’ and containing the edges

(/Lx)’ (/l,’xl) xeV;
(x,y), (X, y") (x,y) € E;
(x,y), (x",y) (x,y) €E.

Fig. 2.3 The graph H,,

Let us have the following property of the graph H,, at first.

Lemma 2.6 Let H, be defined as above. For any vertex u of Hy, the neighborhood
of u induces a subgraph that is isomorphic to the Paley graph P.

Proof. The assertion holds clearly if the vertex u is either A or A’. Recall the definition
of the Paley graph P,V = F;, where g = 4n+1is a prime power. Let 8 be a primitive
element of F,. Since for any a, b € V, the map ¢ (x) = a + b —x is an automorphism
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mapping a to b, we have that the Paley graph is vertex transitive. Therefore, it
suffices to verify the neighborhood of the vertex 0 € V in H, by symmetry. From
the definition of H,, the neighborhood of 0 is

U= {/1, LA B2 Y ,ﬁ“”‘“} .

Denote H[U] by the subgraph induced by the vertices of U in H,. Define an bijection
¢ from V to U such that

¢(0) =21, ¢(B*)= 7 and (B> =(

1 ’
ﬁzm), i=0,1,....2n— 1.

Pq (0,,82i) (ﬂzi’ﬁZJ) (ﬂ21+1,”82j+l), (ﬁZi,ﬂZjH),
HIUT[(, 50| (G 57)| (i) () )| G (ar))

Table 2.8  Four types of edges

Clearly, ¢ is an isomorphism from the Paley graph P, to H[U] from the definition

2% _ p2j+l . e 1 1 pE-pr . )
of H,. e.g., B B is quadratic if and only if = is non

quadratic by noting —1 = 82" is quadratic as ¢ = 4n + 1. This completes the proof of
Lemma 2.6. o

Proof of Theorem 2.12. Let H,, be constructed as above with vertex set {1, 1"} UV U
V’. We aim to show that both H, and H_q contain no copy of K| + G as a subgraph.
Lemma 2.6 implies that the neighborhood of any vertex of H, induces a subgraph
that is isomorphic to the Paley graph P,. Hence, H, contains no copy of K; + G as
a subgraph from the assumption that the Paley graph P, contains no copy of G. It
remains to verify that H_q contains no copy of K| + G.

Suppose to the contrary that H_q contains a copy of K; + G. Let u be the K; of
the K| + G, i.e., the center of K| + G. We claim u # A. Otherwise, G is contained in
V’ U {2’} completely. Note that A’ has no neighbor in V', G must be contained in V’
completely as 6(G) > 1. However, this will lead to a contradiction since V’ induces
the Paley graph P, containing no copy of G in H_q. Similarly, u # A’.

Thus, we assume u € V, say u = 0 without loss of generality. From the definition
of H, the neighborhood of 0 in H_q is WU {0}, where

W= {/3,/33,...,/34"-1;1', 1,8, ..,/34"—2’}.

and denote H[W] by the subgraph induced by the vertices of W in H_q. Define an
bijection ¢ from V to W such that

0(0) =, o(BY) = (%) and (%) =

1
e i=01,....2n - 1.
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Similarly, ¢ is an isomorphism from the Paley graph P_q (= Py) to H[W] from the
1 | puT g

definition of H,.e.g., B —B**! is non-quadratic if and only if e = g
is quadratic. i.e., (8%, 8%/*!) is an edge in P, if and only if (#, lﬁ) is an edge in
H,, equivalently, (([%)’, [ﬁ) is an edge in H[W].

Now, note that, in H_q, the neighborhood of the vertex 0’ is

{/1, 0. l,ﬂz, o ,/34"_2§,’3/,ﬁ3” o ’ﬁ4n—1’} ’

which is disjoint from W. It follows that G must be contained in W completely as
6(G) > 1. However, this is a contradiction since H[W] is isomorphic to the Paley
graph P, which contains no copy of G. The proof of Theorem 2.12 is complete. O

It is time to propose a problem concerning the asymptotic behavior of diagonal
Ramsey numbers r(k, k).

Problem 2.1 Prove or disprove that for any € > 0 fixed, if k is large, then
rtk+1,k+1) > 2-e)r(k,k).

Does the Paley graph give an exponential lower bound for r(k, k), or equivalently,
does w(Pp,) < Clog p hold? Let us define n(p) for the minimum positive integer
with y(n(p)) = —1. Then the set {1,2,--- ,n(p)} induces a clique in P,, so we
obtain n(p) < w(Pp). Assuming the Riemann hypothesis for all L-functions of real
characters, Ankeny (1952) gave

n(p) < Clog? p.

So it is reasonable to believe that the order w(P,) is at most 0(log2 p) or even
smaller. Montgomery (1971) showed that if the above Riemann hypothesis is true,
then for some constant ¢ > 0, there are infinitely many primes p such that

n(p) = clog ploglog p.

Thus it is unlikely that w(P,) can be bounded from above by Clog p for general
p, and the situation of using P, is even worse, where g = p"™ with m > 2, see the
next section. However, there is a gap between p; and p, in Table 2.6, and what we
need are bounds for p;. It seems likely that for sporadic values of p the graphs P,
give good lower bound for r(k, k). Thus it is very interesting to know whether or
not w(Pp) < Clog p infinitely often.

2.6 Spectrum and Independence Number

To obtain more information on Paley graphs, we shall find some spectral bound for
independence numbers of regular graphs. This bound will be used also in Chapter
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10 to get the right order of the independence numbers of the graphs constructed by
algebraic method.

Let us begin with some basics on eigenvalues of adjacency matrix of graph G,
which are often called the eigenvalues of G. The list of distinct eigenvalues with
their multiplicities is called the spectrum of the graph. Clearly, the only eigenvalue
of an empty graph is zero. In this section, we admit that the order of each discussed
graph is at least two. So if G is a d-regular and connected graph, then d > 1. The
following result is called Perron-Frobenius theorem.

Theorem 2.13 Let G be a d-regular and connected graph. Then d is an eigenvalue
of G of multiplicity one, and || < d for any eigenvalue A of G.

Proof. Let V(G) = {vi,v2,...,v,} and let A = (a;;)nxn be the adjacency matrix
of G. Clearly d is an eigenvalue of A associated with the all-1 eigenvector.

Let A be an eigenvalue of A associated with eigenvector X = (xy,..., xn)T, and
let |x;| = max; |x;|. Then [x;| > 0 and

|[Ax;| = |laix1 + apxs + - -+ QinXp| = Z xj| <d|xi|.
VjEN(Vi)

Hence || < d, and the equality holds only if x; = x; for all v; € N(v;). We can
iterate the argument to reach all coordinates of X as G is connected. Now, let Y be an
eigenvector associated with d. Then Y is a constant vector, and thus the dimension
of the space of eigenvectors associated with d is one. However, the matrix A is real
symmetric, so it has n real eigenvalues (not necessarily distinct) and n orthonormal
eigenvectors. Thus the multiplicity of eigenvalue d is one. O

Letd; > A, > --- > A, be all eigenvalues of G. Then
Z A4 =Tr(A) =0
i=1

and 4, < 0 for a non-empty graph. An often used spectral bound for independence
number can be found in Lovasz (1979) as follows.

Theorem 2.14 Let G be a regular and connected graph of order n and eigenvalues
A=A 2> A, Then
A

/11_/111

a(G) < n.
Proof. Let A be the adjacency matrix of G, which is real and symmetric. Let
X1, Xo, . .., X, be the ortho-normal basis eigenvectors corresponding to A1, Ay, . . ., 4,
respectively, where X = ‘/iﬁ(l, 1,...,1)T. Let S be an independent set of G and ys
its characteristic function, that is the 0-1 vector in which 1 indicates that the corre-
sponding vertex is contained in S. Suppose ys = >.;, ¢;X;. Since S is independent,
we have
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T _ _
XsAxs = inaijxj =0,
asif x; = x; = 1, then a;; = 0. From the ortho-normality of X, X, ..., X,;, we have

n n

X§Axs =) i, Dlch=xbxs =19
i=1 i=1

and ¢ = ¢ X1 = |S|/+/n. It thus follows that

n

n
0 =,\/§A){S = Zc%/li = /116‘% +Zc%/li

i=1 i=2
SJ? S SJ? S|?
> 2,50 + A, )t 50, (|S| - u)

n ) n n

which implies that
-4
|S| < _n,
Al _/ln

as claimed. m]

The above equality |S| = —4,n/(1; — 4,) holds if and only if yg is a linear
combination of the eigenvectors X; and X,, or 4, = --- = 4,,.

The spectrum of a strongly regular graph is determined completely by its four
parameters as follows. As A is used often to signify an eigenvalue, we change the
notation srg(n, d, A, u) to srg(n, d, uy, uz) to avoid interference.

Theorem 2.15 Let G be a connected strongly regular graph srg(n,d, uy, uz) with
n > 3. If G is neither complete nor empty, then 11 = d is an eigenvalue with
multiplicity my = 1, and any other eigenvalue A (# A1) satisfies

2+ (uo = p)A+ (u2 — d) = 0.

The equation has two distinct solutions Ay and Az with 13 > 0 > A3, and A3 is an
eigenvalue. If d + (n — 1)A3 # 0, then A, is also an eigenvalue. Their multiplicities
my and m3 can be determined by

my+mz=n—1, and d+ mydy +m3A; =0.

Proof. Let A be the adjacency matrix of G. Let I and J be the nxn identity matrix and
all-one matrix, respectively. By the definition of A and the fact that A is symmetric
with zeros on the main diagonal, the (i,i)-entry of A? is d(v;) = d, which can be
represented by dI. For i # j, the (i, j)-entry of A% counts common neighbors of
vertices v; and v, soitis y; or up, which can be represented by 1 A or o (J —1—A),
respectively. Also the regularity of G can be represented by AJ = dJ. So G is an
srg(n,d, uy, ) is equivalent to

AJ =dJ, and A% = (d — ) + (u1 — 2)A + uaJ.
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From Perron-Frobenius Theorem, we have that A; = d is an eigenvalue of G with
multiplicity 1 with eigenvector 1 = (1,1,..., DT. Let A # d be another eigenvalue
of G and x € R" a corresponding eigenvector. Thus Jx = 0 by noting 17x = 0
since eigenvectors corresponding to distinct eigenvalues of real symmetric matrix
are orthogonal. As Ax = Ax and A%x = 2%x, we obtain that

Ax = (d — po)x + (1 — p2)Ax,
which implies that A must satisfy that
A+ (p2 = p) A+ (p2 = d) = 0. (2.4)

The equation has two distinct solutions A, and A3 (12 > A3) can be seen from the
fact

(M2 — m1)* +4(d — 1) > 0
as y1 = up = d is impossible. Note that

A= % ((,Ul — H2) +\/(,U1 - 12)* +4(d - o) | > 0.

Since the smallest eigenvalue of G is negative, it follows that A3 is an eigenvalue.
Thus, if d + (n — 1)A3 # 0, then the multiplicity of A3 cannot be n — 1, and G has
another eigenvalue, which must be A;,. Also, their multiplicities m, and m3 satisfy

l+my+m3=n, and Tr(A) =d+mydy + m3d; =0,

which determine m; and m3 completely. O

Lemma 2.7 If ¢ = 1 (mod 4) is a prime power, then the spectrum of the Paley graph
P is as follows.

eigenvalue ||(q — 1)/2|(\Jg — 1)/2|-(\g + 1)/2
multiplicity 1 (g-=1D/2| (g—1)/2

Proof. Perron-Frobenius Theorem yields 1, = d = (¢ — 1)/2 with multiplicity 1.
Usingd = (g —1)/2, u1 = (¢ —5)/4 and up = (¢ — 1)/4, the equation (2.4) in the
last theorem turns out to be

~1
2ea-L— =0,

whose solutions are (4/g — 1)/2 and —(+/g + 1)/2. The multiplicities m, and m3 of
the two eigenvalues are determined by

-1 -1 +1
my+mz=q-—1, 4 +m2\/a —m3\/6 =

2 2 2 0.

giving my = m3 = (¢ — 1)/2 as claimed. O
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The following result explains why we only use Paley graphs whose order are
primes instead of prime powers for classic Ramsey numbers.

Theorem 2.16 Let g = p*" = 1 (mod 4) and let P, be the Paley graph. Then
a(Pg) =+/q =p™.

Proof. Since g = p>" = 1 (mod 4), p is an odd prime. Note that if m|n, then there
is exactly one subfield of F(p") with p™ elements, so F(p™) can be viewed as
a subfield of F(p>™). For any distinct x and y of this F(p™), from the facts that
(p™+ 1)/2is an integer and (x — y)?"' "' = 1 asx — y € F*(p™), we have
_ m_1)\(PT+)/2
(x =@V = (- )P =1

Hence F(p™) is a clique of the graph P, implying that a(P;) = w(Py) = +/q.
Also, Theorem 2.14 gives the right upper bound for a(P,) as 1 = (¢ — 1)/2 and
h=—Kg+1)/2. O

2.7 Exercises

1. Prove that r(C4, C4) = 6.

2. Give a Ramsey graph for r(3, 4) from the proof of Theorem 2.1.

3. Prove that the Schur number s3 = 13.

4. The proof for s4 > 44 can be a partition of [44] = {1,2,...,44} as

Set 1{1351517 1926284042 44
Set2|27 818212427 33373843
Set 3|4 6 13 20 22 23 25 30 32 39 41
Set4(9 10 11 12 14 16 29 31 34 35 36

Can we prove the inverse avoiding exhausting method?

5. Show that the line graph of K,, withn > 4, denoted by 7'(n), is an srg((5),2(n—
2),n —2,4). Using T(6) and T(7), show that (B, Bs) = 16 and r(By, Bs) = 22.
(Rousseau-Sheehan, 1978)

6. For any distinct vertices x and y of the Paley graph P, show that there are
exactly (p — 1)/4 vertices z ¢ {x, y} adjacent with x and not to y.

7. Let P, be the Paley graph of order p and k = w(P)). Prove that r(k, k) >
(p+3)/dandr(k+1,k-1)> (p-1)/4.

8. Prove a general version of Schur’s theorem as follows. For every k > 1 and
m > 2, there exists a positive integer N such that for every partition of [N] into k
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classes, one of the classes contains m (not necessarily distinct) numbers xi, . .., X,
such that x; + - - - + x,;_1 = X, (Hint: N = ri(m)).

9.* Show that s < ek! by the original proof of Schur as follows.

(1) Let ng = sx and let y be a k-coloring of [ng] such that there do not exist
x,y € [no] such that y(x) = x(y) = x(x +y).

(i1) For some n; with ng < kny, there are xo < x; < --- < x,,-1, which have the
same color, say cg.

(iii) Set Ag = {x; —x0 : 1 <i < n1}. Then Ag N x~'(co) = 0. For some n, with
ny —1 < (k = 1)ny, there are yo < y; < -+ < ypn,—1, which have the same color.

(iv) Continue this procedure until n; = 1. Prove ng < Zf-‘;ol k!/i! < ek!.

10. Let B = {b1, ..., b,} be a set of nonzero integers. Then there is a sum-free
subset A of B with |A| > n/3. (Hints: Let p = 3k+2 be a prime with p > 2 max; |b;|,
andlet C = [k+1,2k+1]. Then C is sum-free in cyclic group Z,,. Randomly choose
x € [1,p — 1] and define d; = xb; (mod p). As x ranges over [1, p — 1], d; does
over Z;, hence Pr(d; € C) = |C|/(p — 1) > 1/3. The expected number of b; such
that d; € C is more than n/3. There is an x, and a subset A of B with |A| > n/3,
such that xa (mod p) € C for all a € A. Show A is sum-free. (ErdGs, 1965) )

11. (i) Let H be a finite additive group. Prove that if H* can be partitioned into k
sum-free subsets, then ri(3) > |H| + 1.

(ii) Prove r3(3) > 17 by partitioning (Z;‘)* into three sum-free subsets. (Hint:
view the elements of F(2*) in the proof of Greenwood and Gleason as binary
vectors).

12. Let G be the set of distinct characters on a finite abelian group G. Note that
if G is cyclic, then G is isomorphic to G.

(i) Let G = G| X G,. Prove that Gis isomorphic to a X C/?Z

(ii) Prove that if G is a finite abelian group, then G is isomorphic to G.

(iii) Let G be the Klein group of four elements. Describe G.

13. Let G be a d-regular connected graph of order n with eigenvalues d = 4; >
Ay = -+ 2 A, If 2 = maxocicy |4i], then a(G) < An/(2; + ), hence simply
a(G) < nd/d. (This is slightly weaker than Theorem 2.14.)

14. Prove that r(n,n) < r(Bn-2.n, Bun-2.n).

15.* Erdgs and Graham (See Chung and Graham, 1998) asked to show that for
fixed m > 2,

ik (Come1)

lim =0.

k—o0 }”k(3)
We know that r;(3) < ¢ - k! for some constant ¢ > 0. Although we do not know
whether the above answer to the problem is positive or not, one can prove that
ri(Cs) < V18kk! for all k > 3. (Hint: Li, 2009)



®
Chapter 3 pdes
Basic Probabilistic Method

The probabilistic method is a powerful tool for tackling problems in many areas
of mathematics, such as number theory, algebra, analysis, geometry, combinatorics,
and computer science, etc. Poineered by Erdds, the probabilistic method has been
widely used in combinatorics for more than eight decades. It is an art to design a
probability space for a non-random problem. The method works by showing that if
one chooses objects randomly from a specified class, the prescribed object has a pos-
itive probability to appear. The basic probabilistic method means that by calculating
the expected value of a random variable. This chapter focus on the basic proba-
bilistic method such as vertices are labeled or picked randomly or semi-randomly.
In semi-random method, we shall use average that is the expectation in a uniform
probability space. Basic methods are effective in many cases as most random vari-
ables are concentrated around expectation. The frequently-used methods estimating
such concentration include Markov’s inequality and Chernoff bound, which will be
introduced in this chapter. We refer the reader to the book The Probabilistic Method
by Alon and Spencer (2016) for a systematical introduction.

3.1 Some Basic Inequalities

In this subsection, we state some basic inequalities that will be used in the calcula-
tions. The reader who is familiar with these inequalities could skip this subsection
directly. Throughout this book, we use “log” to denote the natural logarithm based
on e.

The following precise formula is the well-known Stirling formula.

Lemma 3.1 Forn > 1,

n
n! = 27rn(ﬁ) exp(
e

In particular,

12n+9)’ where 0 <0=6, <1.
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2nn (E) <n! < V2rn (E) el/12n
e e

and

nl=(1 +o(1))\/%(g)n > (g)"

Lemma 3.2 For N > n > 1,

Ifn = o(VN), then
N N"
n n!’
Proof. The first two inequalities are immediate from Stirling’s formula. If n = o (VN),
then
N [N® NWN-1)---(N-n+1) _[& i
(n)/F_ N =exp glog I_N

e Z- (n—l)*)l’

which will tend to 1 as n — oo, and so the desired asymptotical formula follows. O

Lemma 3.3 (i) Forany0 <x < landn >0, (1 —x)" < e "
(ii) If x = x, = 0 and x>n — 0 as n — oo, then (1 —x)" ~ e™"*.

Proof. The first inequality is clear and for the second inequality, it suffices to note

that
2

log(l —x) = —x+ % +o0(x?),
completing the proof. O

Lemma 3.4 Forany 1 > 0,
el +e 1 < 22

Proof. Note that for any x, we have e* = 1 +x + ’5—? + - - -, it follows that
_ ~ o) (%] ~ 12/2
_22])'<Z ( )_e ,
where the inequality holds since (2;)! > 2/ ! for all j > 2. O

A real-valued function f(x) is convex if forany 0 < A < 1,
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fxp+ (1= D)x2) < Af(x1) + (1 =) f(x2).

From a geometrical point of view, the convexity of f(x) means that if we draw a line
through points (x1, f(x1)) and (x3, f(x2)), then the graph of the curve f(x) must lie
below that of this line for x € [x1, x3].

The following is known as Jensen’s Inequality.

Lemma3.5If0 < A; <1, ¥ A; = 1 and f(x) is convex, then

f(zn: /L'Xi) < zn:/lif(xi)-
im1 o1

Proof. We use induction on n. For n = 2, it follows from the definition. So we assume
that the inequality holds for n, and prove it for n + 1. It suffices to replace the sum of
the first two terms in Z;’:ll A;x; by the term

(A1 + 22) A + A2
X x2],
! 2 A+ A ! A1+ Ao 2
and then apply the induction hypothesis. O

Jensen’s Inequality can be seen as a generalization of the following Cauchy-
Schwarz inequality.

Lemma 3.6 If x1,x,, ..., X, are non-negative real numbers, then
n 1 n 2
inz Ery (Z xi) .
i=1 n\i=
Proof. Apply Lemma 3.5 with f(x) =x?>and A; = 1/nfor 1 <i < n. O

The following inequality on the arithmetic and geometric means can also be
deduced from Jensen’s Inequality.

Lemma 3.7 If x|, x2, . . ., x, are non-negative real numbers, then
1
1 n n n
. (Z) - (ﬂ) -
= i=1

Proof. We apply Lemma 3.5 with f(t) =2", 4; = 1/nand t; = log, x; for 1 <i <n
to obtain that

rlz (i)ﬁ) = i_i/lif(ti) > f (12 /liti) =2 Xt = (ﬁxi) ,

=

i= i=1

completing the proof. m
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3.2 A Lower Bound of r(n,n)

The paper of ErdGs (1947) is always considered as the first conscious application
of the probabilistic method with many remarkable results, although Szele (1943)
had applied the probabilistic method to a graph problem. Graph Ramsey theory is
always referred to as the birthplace of random graphs. In the original proof of the
exponent lower bound for r(n, n) in 1947, Erdés did not use the formal probabilistic
language. So his paper has been considered as an informal starting point of random
graphs. But in two papers published in 1959 and 1961, Erdds gave a lower bound
c(n/logn)? for r(3,n) and even wrote probabilities in the titles.

The results in this section are not currently best, but the proofs contain elementary
training for asymptotical computing. In some cases, we intentionally give the details
by showing how to obtain an optimal constant.

Theorem 3.1 Forn > 3,
r(n,n) > 2 _oni2,
e
Proof. Let us color each edge of Ky by red and blue randomly and independently,
where N is a positive integer to be chosen. Let S be a set of n vertices and Ag be the
event that S is monochromatic. It follows that

(%)
Pr[As] =2 (%) =210,

as all ('2’) edges of S must be colored the same. Consider the union of events UAg
over all n-sets on [ N]. We thus have

Pr U As| < Z Pr[AS]z(IZ)zl—('i).

If this probability is less than one, then the complement event NgAg has positive
probability. Equivalently, there is a point in the probability space for which each
event Ag does not appear, i.e., there exists a red/blue edge coloring of K such that
there is no monochromatic K,,. Hence r(n,n) > N.

It remains to find the maximum integer N such that Pr{UsAs] < 1. From Stirling
formula, n! > V27n (g)" it follows that

(V)0 < - < 2 (_e‘/iN)"
n - n! '

27n \ n2n/?

Set N = LfﬁZ”/ 2|. We have that the fraction in the parenthesis and hence the
probability of UgAg is less than one. This implies that r(n,n) > N + 1 as desired. O

The original proof of Erdés (1947) used the counting argument: Let N = [2/2].
Clearly, the number of graphs of N vertices is 2(5), (Here the vertices are distin-
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guishable.) Note that the number of different graphs containing a given complete
graph of order 7 is clearly 2(%) / 2(%) as there are 2(%) subgraphs induced by these
fixed n vertices. Thus the number of graphs of N vertices containing a complete
graph of order n is less than

—_— < R — < _
20 nl () 2
which means that there exists a graph G that contains no complete graph of or-

der n and also no independence set of order n, i.e., there is a coloring without
monochromatic K,,. Therefore, we have that r(n, n) > [2"/2].

N2GB)  an 205)  2(5)
(2

3.3 Pick Vertices Semi-Randomly

Let us see an interesting example. In 1941, Turdn proved a theorem giving a tight
bound on the maximum number of edges that a K,.-free graph can have, which has
become the cornerstone theorem of extremal graph theory. Consequently, we have a
lower bound of the independence number of a graph G that a(G) > %, where d is
the average degree of G, for which a deterministic proof can be found in Exercises.

Theorem 3.2 Let G = (V, E) be a graph of order N with degree sequence {d(v) :
v € V} and average degree is d. Then

1 N
> _ > —
(G) 2 Z 1+d(v) ~1+d
veVv

Proof. Label all vertices in V randomly by {1,2, ..., N}. Define a set
I={veV:{v)<l(w)foranyw € N(v)},

where £(v) is the label of v. Note that [ is a random set determined by €. Let X,, be
the indicator random variable for v € [ and let X = }, .y X, . Clearly, X = |I| and
its expectation

E(X)= Y E(X,)= » Prlvel]= ) %d(v),

vev vev vev

where the last equality holds since v € I if and only if v is the least element among
v and its neighbors N (v). So there must be a labeling such that |/| > E(X). Note
that 7 is an independent set, it follows that @(G) > |I| and hence the first inequality
holds. For the second inequality, it follows from the fact that the function f(x) = ﬁ
is convex. O

In the following, we shall discuss more on the independence number for sparse
graphs. In 1980, Ajtai, Koml6s and Szemerédi obtained a lower bound for the
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independence number of triangle-free graphs. The method used by them is now
called “semi-random method” or “nibble method” initialized by Rodl (1985), in
which they selected objects in many small “nibbles” rather than a big “bite”, and
then analyzed how the nibbles change the structure of the remainder.

Let us call a graph G to be H-free if G does not contain H as a subgraph. Recall
the Ramsey number r(H, K},) is the minimum integer N such that any H-free graph
G of order N satisfies that «(G) > n. So it is important to estimate the independence
numbers of graphs, in particular, that for H-free graphs.

A greedy algorithm to obtain an independent set is to put a vertex v into the
independent set and then delete all neighbors of v, and repeat the process.

In order to produce a larger independent set by this algorithm, we hope to delete
less vertices and more edges in each step so that the remaining graph is large and
sparse. What a vertex v should be chosen? To obtain some criterion, we define Q (v)
to be the number of edges that incident with a neighbor of v, and define

Qo(v) = ), d(u).

ueN (v)
Note that if we delete a vertex v and its neighbors, we delete exactly Q(v) edges.
Lemma 3.8 For any vertex v in a graph G,
Q(v) < Qo(v),
and the equality holds if and only if N(v) contains no edge.
Let us have a property of Qg (v).

Lemma 3.9 Let G be a graph with vertex set V. If d is the average degree of G, then
the average value of Qo(v) over v € V is at least d*.

Proof. Let N denote the order of G. Then

Sy 0m=5 Y Y dw = S dw Y
veV

veVueN (v) ueV veN (u)
1 1 ?
_ L 2 x _ 2
_NZd (1) > (NZd(u)) =d,
uev ueVv
where we have used the convexity of the function f(x) = x?. O

Ajtai, Komlés and Szemerédi (1980) defined a vertex v to be a groupie if the
average degree of its neighbors is at least the average degree of G. By Lemma
3.9, we know that every graph has a groupie since there is a vertex v € V so that
Qo(v) —d - d(v) = 0 as the equality holds on average. By deleting a groupie and its
neighbors recursively, they proved that for any triangle-free graph G of order N and
average degree d,
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a(G) = cN%, 3.1)

where ¢ = 1/100.

Now, let N = r(3, n) — 1. Thus there is a triangle-free graph G on N vertices with
independence number at most n— 1. Since each neighborhood of a triangle-free graph
is an independent set, we have a(G) > A(G) > d, and hence n — 1 > chOg,E+l_l).
Therefore,

nZ

r(3,n)=N+l§(%+0(l)) .

logn

This bound is much better than the bound r (3, n) < (";1) ~ %nz, see Theorem 1.3.

We now look how Shearer (1983) found the vertex for triangle-free graphs, which
will give a better lower bound of the independence number for triangle-free graph
compared to (3.1).

Theorem 3.3 For any triangle-free graph G with average degree d > 1,
a(G) = Nf(d),

where f(x) = %.

Proof. In order to find a larger independent set, the key step is to determine a vertex
v, which together with N(v), will be deleted. We aim to find a function f(x) such
that

a(G) 2 Nf(d)

for a triangle-free graph G. Naturally, we assume that f(x) is positive, decreasing,
and more importantly, we hope that f(x) > clo% for some constant ¢ > 1/100
when x is sufficiently large.

Let P(v) = d(v) + 1 and recall Q(v) is the number of edges incident with a
neighbor of v. Let H be the graph obtained from G by deleting v and its neighbors.
Note that we delete exactly P(v) vertices and Q(v) = Qo(v) edges since G is
triangle-free. Thus H has N — P(v) vertices and Nd/2 — Q(v) edges. So its average
degree is

Nd -20(v)
dy = ————.

N —-P(v)

By induction,
a(G)z1l+a(H) =21+ (N-PW)f(dg)-

We do not know which of d and dpy is bigger. However we can swap f(dg)
with f(d), if we further assume that f(x) is convex so that we can use the fact
f(x) = f(d) + f'(d)(x — d). Thus we have
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a(G) 21+ (N -P(v))f(du)
> 14 = PO) i)+ 1) (= <)

2 1+Nf(d) - P(v)f(d)+ [ (d)[(Nd-2Q(v)) —d(N - P(v))]
=Nf(d)+1-Pv)f(d) - (20(v) —dP(v))f'(d).

Denote
R(v)=1=P()f(d) - (2Q0(v) —dP(v))f'(d).

In order to find some vertex v such that R(v) > 0, let us consider the average of R(v)
as follows. Sine % >, Qo(v) = d? by Lemma 3.9 and f’(x) < 0, it follows that

% DIRM) 2 1= (d+1)f(d) - (2d* = d(d +1)) £ (d)
v
=1-(d+1)f(d)-d(d-1)f(d).
Thus, the function f(x) should satisfy the following differential equation
xx=Df/ )+ x+1D)f(x)=1.
Solving this differential equation, we obtain that

xlogx —x+1
(x = 1)?

Luckily enough, f(x) is positive, decreasing and convex as desired. O

fx) =

Note that
xlogx —x+1 logx

(x —1)2 x
as x — oo. If d = 0, then we can take f(d) = 1; and if 0 < d < 1, then we can take
f(d) = 1/2 from Turan bound, see Theorem 3.2.

fx) =

3.4 Independence Number of Sparse Graphs
In 1996, Li and Rousseau generalized Shearer’s result from triangle-free graphs to
locally sparse graphs.

Lemma 3.10 For m > 1 and x > 0, the function

1 _ /m
Fnl) = /0 _(a-nt

m+ (x — m)t

satisfies the differential equation
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x(x—m)f,(x)+(x+1)fn(x) =1 (3.2)
Moreover, f,,(x) satisfies the following properties:
(1) fin(x) is positive, decreasing, and convex.
(2) forall k > 0, (-D)¥£F (x) > 0.

Proof. By differentiating under the integral and then integrating by parts, we have

1 _A\l/m
x(x—m)f,;(x)=—x(x—m)/0 ((1 ki

m+ (x —m)t)?

! d 1
_ _plmy 2 -
—x‘/O (-0 dt (m+(x—m)t)dt
~ 1 ¢ (1_t)]/m
——x‘/o (l_m(l—t))m+(x—m)tdt

~ Pa-pl/m (1 m
——xfm(x)+‘/0 m (1—t_m+(x—m)t)dt
= =X fm(x) + 1 = fin(x).

Hence (3.2) follows. The complete monotonicity of f,,,(x) can be seen by differen-
tiating under the integral. m

Corollary 3.1 For 0 < x < m, fi(x) < 1/(1 +x); and forx > m > 1,

Fulx) 2 log(x/m) — 1'

Proof. The first statement follows from the differential equation (3.2) in Lemma 3.10
immediately since f,,(x) < 0. For the case x > m > 1, we have that

£ '/01 (1-1)dt  xlog(x/m) - (x —m) . log(x/m) — 1

m+(x —m)t (x —m)? X

bl

where the last inequality holds since for x > m,
(2mx — m?) log(x/m) —m(x —m) > 0.

This completes the proof. O

It is easy to see that the function log(x/m) =1 ¢ decreasing on m > 1 for any x > 0,

and it is also decreasing on x > e?m for any m > 1.

Theorem 3.4 Let G be a graph with N vertices and average degree d. Let a > 0 be
an integer. If any subgraph induced by a neighborhood has maximum degree at most
a, then

@(G) = N fur(d).
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Proof. We prove it by inductionon N. If N < a+2,thend < a+1. By Corollary 3.1,
we have 1/(d+ 1) > fu41(d). It follows from Turdn’s theorem that a(G) > % >
N fu+1(d). So we suppose N > a + 2 hereafter. By the preceding argument, we may
also assume d > a + 1 since f,(x) is decreasing on x.

Write G, for the subgraph induced by the neighborhood of v in G. In case some
vertex v of G has degree N — 1, again by Turdn’s theorem, we have a(G,) > %
as the maximum degree of G, is at most a. It follows that

N-1 N

>
a+1 a+?2

a(G) 2 a(Gy) 2 =Nfari(a+1) > Nfai(d),

where the equality can be seen from (3.2). So we suppose that the maximum degree
of G is at most N — 2.

Let V be the vertex set of G. Foreach v € V, let P(v) = d(v) + 1 and recall Q(v)
is the number of edges incident with a neighbor of v. Note that G, contains at most
5d(v) edges since the maximum degree of G, is at most a. So we have

a a
0() 2 ) d(w)~7d(v) =Qo(v) = 5d(v).
ueN (v)
Consequently, by Lemma 3.9, the average value of Q(v) satisfies

1 ad
NZQ(V) ZdZ—T.

veV

Set
R(v) =1-PW) far1(d) — (2Q(v) = dP(v)) f},,(d).
Note that the coefficient of Q(v) is positive since f7,(d) < 0. Thus,

4

% SR 2 1= (d+ 1) fun(d) + ((d +1)d - 24> + ad) £1.,(d)
vev

1= (d+1)fan(d) —d(d—a—1)fz,(d),

which equals 0 by noting (3.2).
Hence there exists a vertex vo € V such that R(vg) > 0.Let R(vy) = R, P(vg) = P
and Q(vg) = Q. Thus

R=1-Pfun(d) +(Pd-20) [}, (d) > 0.

Delete v and its neighbors from G, in view of that the maximum degree of G is at
most N —2, we obtain a nontrivial graph H with N — P vertices and Nd/2 — O edges.
Note that any subgraph induced by a neighborhood of H has maximum degree at
most a, so by induction hypothesis,

Nd—2Q)

alh) > (V= Pfn |5
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Moreover, fu+1(x) > fas1(d) + f],,(d)(x —d) for all x > 0 since fu+1(x) is convex.
Consequently, a similar argument as in Theorem 3.3 yields that

@(G) 2 1+a(H) 2 1+ (N - P)fun (N]i;?) 2 N fas1(d).

This completes the proof. O

3.5 Upper Bounds for r(m,n)

Now, we are able to improve the constant factor for the upper bounds of r(m, n) due
to Ajtai, Komlds and Szemerédi (1980).

Theorem 3.5 For each fixed m > 2,
m—1

r(m,n) < (1 +0(1))W~

Proof. We will prove the assertion by induction on m. For m = 2, it is trivial since
r(2,n) =n.

For m = 3, let G be the graph of order N = r(3,n) — 1 which contains no
triangles and a(G) < n — 1. Since G is triangle-free, each subgraph induced by the
neighborhood of any vertex is empty, and thus its average degree is zero. Let d be
the average degree of G. Since each neighborhood of any vertex of G induces an
independence set, we have n — 1 > a(G) > d. We apply Theorem 3.4 with a =0 to
obtain that
log(n—1) -1

n—1>Nfi(d)=Nfi(n-1) >N P

Thus r(3,n) — 1 < l(orfg_nl_)i , and it follows by r(3,n) < log?ﬁ for large n.
Suppose the statement holds for 2,3, ..., m. We proceed to the induction step.
Let G be a graph of order N = r(m + 1,n) — 1 such that G contains no K,,.; and

a(G) < n— 1. Note that for each vertex v of G, we have

e the degree of v is at most r(m, n) — 1, and
e the maximum degree of G,, is at most »(m — 1, n) — 1, where G, is the subgraph
induced by the neighborhood of v in G.

Denote by d = r(m,n)—1and a = r(m—1,n)— 1. From the induction hypothesis,
we have that for any sufficiently small € > 0, there exists an integer ng such that for
all n > ny,

m—1 m-2

—_ d -1,n) < (1 —_—
(ogmm—2 and r(m n) < ( +E)(10gn)m‘3

Note that d > a + 1, it follows from Theorem 3.4 and Corollary 3.1 that

r(m,n) < (1+e¢)
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log(d/(a+1)) - 1
y .

n>a(G) 2 Nfa(d) 2 N

Since the function f,(x) is decreasing on x, we obtain that

log(r(m,n)/a) —1 > N log(n/logn) — 1

>N r(m,n) T (1 +e)nm 1 /(logn)m-2’

which implies that for large n,

m

rm+1L,n)=N+1<(14+2)—,
(logn)™~!

completing the proof. O

In the following, we will give another application. Let us list two simple facts at
first.

Lemma 3.11 For any graph G with average degree d, there is a subgraph H of G
such that 6(H) > d /2.

Proof. Let G be a graph of order N with average degree d = d(G). As the case
d = 0 is trivial, we may assume d > 0. If §(G) > d/2, then we have nothing to
do. Otherwise, deleting a vertex with degree less than d/2 from G, then the average
degree of the resulting graph, denoted by H, satisfies

d-d

d(H) > A]’V_l = d(G).

Repeat the process, we can obtain a subgraph with minimum degree at least d/2 as
desired. O

Lemma 3.12 If a graph G of order N has edge number e(G) > (m — 1)N, then G
contains every tree with m edges.

Proof. Since the average degree of G is greater than 2(m — 1), it follows that G
contains a subgraph A with minimum degree 6 (H) > m — 1. Let T, be a tree of
m edges. We can embed T,,,4; into H inductively. Suppose that we have embedded
T which is the subtree of 7},,,1 into H for k < m + 1. Note that each vertex of T} has
at least one neighbor outside T, thus we can easily find a larger subtree of 7,4 as
desired. O

Conjecture 3.1 (Erdds-Sos) If G is a graph on N vertices with edge number e¢(G) >
’"T*'N , then G contains every tree with m edges.

Ajtai, Koml6és, Simonovits and Szemerédi announced (unpublished) that the con-
jecture is true for sufficiently large m. This conjecture is true for stars and paths, and
also many special cases are verified to be true, we refer the reader to Bollobas and
Eldridge (1978), Sauer and Spencer (1978), WoZniak (1996), Fan (2013) and other
related references.
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Now we generalize Theorem 3.4 as follows. Note the condition that N(v) has a
maximum degree at most m controls the number of edges in N (v) which are counted
twice in summation )’ ¢y (,) d(x). Now, the condition that N(v) contains no T+
can do the same thing.

Theorem 3.6 Let G be a graph with N vertices and average degree d. If each
neighborhood of G contains no Ty,+1, then

a@(G) 2 N fom-1(d).
If T,41 is a star or a path, then fo,—1 can be replaced by f,,.

We conclude this section and hence this chapter with a conjecture of Ajtai, Erdds,
Komlés and Szemerédi (1981), which says that the independence numbers of K-
free graphs have the lower bound similar to that of triangle-free graphs.

Conjecture 3.2 For each fixed integer m > 3, there exists a constant ¢ = ¢(m) > 0
such that if G is a K,,,-free graph with order N and average degree d > 0, then

logd

a(G) = cN

For m = 3, it has been verified to be true by Ajtai, Komlds and Szemerédi (1980).
For general m > 4, Shearer (1995) proved that & (G) > ¢N dkl)(;g] - for the graphs
described in the above conjecture. To confirm the conjecture, a féctor loglogd in

the denominator needs to be taken away.

3.6 Odd Cycle versus Large K,

We have proved the Turdn bound @ (G) > 3, m in Section 3.3, where we labeled
vertices randomly. Let us have another result proven in the similar way. Given a graph
G with vertex set V, we set

N(v)={weV:.:dw,v) =i},

which consists of all vertices of distance i from vertex v in G, and denote d;(v) =
[N;(v)|. Thus do(v) = 1 and d;(v) = d(v). We do not distinguish the subset N;(v)
and the subgraph of G induced by N;(v) when there is no danger of confusion. The
graph G is called (m, k)-colorable if N;(v) is k-colorable for any vertex v and any
i < m, that is, there is an assignment of k colors on vertices of N;(v) so that no
two adjacent vertices receive the same color. The following result was first obtained
by Shearer (1995) for graphs that has a small odd girth, where the odd girth is the
minimum length of an odd cycle in a graph.

Theorem 3.7 Let m > 2 and k > 1 be integers. If G is an (m, k)-colorable graph
with vertex set 'V, then
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vev

(m=1)/m
a(G) = ¢ (Z d(v)l/(m_l)) ,

where ¢ = is a constant.

1
K2tm-7m

Lemma 3.13 If G is an (1, k)-colorable graph with vertex set V, then

1 di(v)
@2 D a0

Proof. Randomly label the vertices of G with a permutation of integers 1,2,..., N,
where N = |V|. Let X be the set consists of all vertices v such that the minimum
label of the vertices in {v} U Nj(v) U Np(v) is on some vertex in Ni(v). Hence
the probability that X contains a vertex v is #(ﬂb(")’ which implies that the

expected size of X is ), cy %. It follows that for certain fixed permutation

of integers from 1 to N, we have

_d)
1X] = Z 1+di(v)+dr(v)’

We aim to find an independent set in this X of size at least | X|/k.

To this end, we define arelation R on X as follows. Letu, v € X. Call u and v satisfy
the relation R if the minimum label on {u} U Ny (u) U N, (u) is precisely the same
as that on the vertices in {v} U Nj(v) U N»(v). Clearly R is an equivalence relation,
and thus X can be partitioned into certain equivalence classes Xi, X5, ..., X, for
some positive integer p. For each 1 < i < p, by the definition of relation R, all
vertices in X; share a neighbor v; in common, such that for any w; € X;, the label of
vi € Ni(wy;) is the minimum label on vertices in {w;} U Ni(w;) U Na2(w;). Hence
X; CNi(vi)andv; #v; fori # j.

We claim that there is no edge between X; and X; whenever 1 < i # j < p.
To justify it, assume to the contrary: some w; € X; is adjacent to some w; € X;.
Therefore, v;w;w;v; forms a path of length three. By the definition of X;, we see
that the label on v; is minimum among {w;} U N1 (w;) U N> (w;) and hence it is less
than that on v; since v; € No(w;). Similarly, by considering w;, we have that the
label on v; is less than that on v;, yielding a contradiction.

Since X; € Ni(v;) for each 1 < i < p is k-colorable, there is an independent
set ¥; in X; with |Y;| > |X;|/k. It follows from the above claim that UleY,- is an
independent set of size at least Y,/ |X;|/k = |X|/k, as desired. ]

Lemma 3.14 If G is an (m, k)-colorable graph with vertex set V, then for any

1<l<m+1, ) )
1 1+di(v)+---+de_1(v

G) > — .

o )_Zkv;/ T+di (V) +--+d(v)

Proof. The proof goes along the same line as that of the preceding lemma, so we
only give a sketch here.
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Randomly label the vertices of G with a permutation of the integers 1,2,..., N,
where N = |V|. Let X be the set consists of all vertices v such that the minimum label
on the vertices in U§.=0N j(v) lies in U?;& N (v). Thus for certain fixed permutation
of the integers from 1 to N, we have

1+d1(V)+--'+dg_1(V)
2EDY T+ d )+ +dp(v)

We aim to prove that there is an independent set in this X of size at least | X|/(2k).
To this end, define an equivalence relation R on X such that u ~ v in R if the
minimum label on the vertices in Uf oNj(u) is precisely the same as that on the

vertices in U oV (v). Hence X can be partitioned into certain equivalence classes
X1, Xo, .. X for some integer p > 1. Foreach 1 < i < p, suppose that v; possesses
the minlmum label on the vertices in UF Nj(u) for any u € X;. It is clear that the
distance between each vertex in X; and v; is at most € — 1 from the definition of X.

Based on these v;, we can deduce that there is no edge between X; and X;
whenever 1 < i # j < p. Now partition each X; into subsets X; ;, 1 < j < -1,
such that the distance between every vertex in X; ; and v; is j. Since each X; ;
contains an independent set Y; ; of size at least |X; ;|/k, where 1 < i < p and
0 < j < -1, it follows that one of

J Uryam U U
1<i<podd j 1<i<pevenj

: : : LiyP -1 1X]
is an independent set of size at least 57| U;_, U2 X; ;| = —k. ]

Now, we are ready to give a proof for Theorem 3.7.

Proof of Theorem 3.7. Applying Lemma 3.13 and Lemma 3.14 repeatedly,

“O) 2 1T k( T+di() +d() 2T+ di () + da(v) + d5(v))
1+di(v)+--+dpn_1(v) )

2(1+di(v) +---+dpn(v))

Z ( di(v) 1+d(v) +da(v)
-1

Since the arithmetic mean (x| + x5 + - - - + Xx;;) /n is no less than the geometric mean
{/x1x3 - - - x, by Lemma 3.7, we obtain that

1 di(v) Hm=1)
G) >
a@(G) 2 k2 (m=2)/(m=1) ;(1+d1(v)+-~~+dm(v))

By the condition that N;(v) is k-colorable, there is an independent set in N;(v) of

size a;(v) > d;(v)/k. Moreover, since there is no edge between N;(v) and N, (v)
whenever i — j =0 (mod 2), we can deduce that

20(G) 2 1+ a1 (V) + -+ ap(v) = %(1 +di(v)+---+dn(v)).
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Therefore

a(G) >

)

1 ( dl(V) )1/(’”—])
k20m=2)/(m=1) L4\ 2ka(G)

the desired statement follows. O

Erdés etal. (1978) proved that r (Cope1, K) < en'* Y™ forfixedm > 1, where ¢ =
c¢(m) > 0is a constant. Li and Zang (2001, 2003), and Sudkov (2002) independently
obtained that r(Cape1, Kn) < c(n™*! /logn)'/™. We shall discuss the upper bound
of Ramsey number r(C»,,, K,,) in Chapter 7.

Lemma 3.15 Let m > 1 be an integer. If a graph G contains no Cop,41, then G is

(m,2m — 1)-colorable.

Proof. Let G be defined on vertex set V. We assume that G is connected without
loss of generality. For a fixed vertex v and any i < m, we need to verify that N;(v)
is (2m — 1)-colorable, where N;(v) is the vertex subset consists of all vertices of
distance i from vertex v in G. It is easy to see that there is a spanning tree T of G
rooted at v such that dr(v, x) = dg (v, x) for any vertex x of G, namely, T preserves
the distance from v to any x. Embed T on a plane such that there is no edges of T
crossing and label all vertices in a dictionary order.

For a fixed i, 1 < i < m, suppose that N;(v) = {y1,y2,...} as labeled and
d;(v) = |[N;(v)| = 2m — 1. Consider the subgraph H; of G induced by N;(v), and
assign each edge of H; a direction from the end vertex of smaller index to the larger
one.

Claim For 1 <i < m, H; contains no directed path of length 2m — 1.

Proof. Suppose that for some 1 < i < m, H; contains a directed path of length
2m — 1 on vertices in order as yx, Vi, - - - Yk, With k1 < kp < -+ < ko,,. Let us
write v; = yy; and let

d' = 15}2%—1 dr(vj,vj+1) = dr (v, Vi),
From the construction of 7 and the labeling of Ny(v), ..., N;(v), we know that for

any pairr and ¢t with 1 <r <sands+1 <1t <2m,
d* :dT(Vr;Vt)‘

Moreover, whatever the value of d*, we would find a cycle Cy,,4+1 of G, which
would yield a contradiction as desired. For example, if d* = 2, then by noting that
dr(v1,vom) = 2 and there is a unique path in 7', say v uvy,,, connecting v and vy, of
length d* = 2, we obtain that uvv; . . . vo,,u form a Cy,,,41 in G, which is impossible.
Generally, suppose that d* = 2h for 1 < h < m. Then dr (v, vom-n+1) = 2h, and
hence the unique path of length 24 in T connecting vj and vo,,_p4+1 and the path
Vi ... Vam—n+1 Would form a Cy;4q in G, which is impossible. O

We may suppose that H is connected. Fix a vertex yg € N;(v), and we assign
color ¢ to a vertex y € N;(v) if the maximum length of the directed path between y
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and yg in N;(v) is €. Clearly, any two adjacent vertices receive distinct colors. Note
that the maximum length of directed path in N;(v) is at most 2m — 2, so we just use
colors of {0, 1,...,2m — 2}, and thus N;(v) is (2m — 1)-colorable. m]

Now we give the upper bound for r(Cs,41, Kp,) for m > 2.

Theorem 3.8 Let m > 2 be a fixed integer. For all sufficiently large n,
n1+1/m

r(Coms1, Kp) < CW,

where ¢ = ¢(m) > 0 is a constant.

Proof. Let N = r(Cyns1,Ky) — 1. Let G be a Cy,q1-free graph on N vertices

with @(G) < n — 1. Suppose that N > cﬁ];’;m

¢ > 0, we aim to find a contradiction. Let V be the vertex set of G, and let
d = NV (Jog N)™/(m+1) Denote

for some suitable constant

Vo={veV|d) <d},
and V| = V' \ V. In the following, ¢; = ¢;(m) are all positive constants.

Casel |Vy| > N/2.

Let G be the subgraph of G induced by Vj. Then the average degree of G is at
most d. For any vertex v € Vp, the neighborhood Ng, (v) in G does not contain a
path of order 2m, so Theorem 3.6 implies that for large n,

> ) (N log N)V/ D) 5 .

c1Nlogd
G)> ———
@(G) 2 —

Case2 |Vi| = N/2.

By Theorem 3.7, we obtain that for large n,

(m-1)/m (m-1)/m
a(G) > c3 (Z d(v)1/<m-1>) > c3 (Z d(v)1/<’"—1>)

veV vev
1/(m+1)
ZC4N(’"*1)/mdl/’”ZC5(N’”10gN) > n,
completing the proof. m}

The following proof is due to Sudakov (2002) that in fact contains a deterministic
algorithm.

The Second Proof of Theorem 3.8. Let

\‘ an1+l/m

—— |, and d=bn"""(logn)mD/m,
(logn)‘/’”J
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where @ = a(m) and b = b(m) are constants to be chosen. Let G be a graph of
order N that contains no Cy,,4+1. We aim to verify that «(G) > n, which implies that
r(Com+1, Ky) < N. Starting with G’ = G and I = 0. If G’ has a vertex of degree
greater than d we do the following iterative procedure, otherwise, we stop.

Pick a vertex v with d(v) = d;(v) > d. Since

dZ(V) . dm+l(v) <
di(v)  dn(v) T

there exists some i, 1 < i < m, such that

di+1(V)<(E)]/m<( an )l/m.

dmr1(v) = d1(v)

d;(v) d blogn

Take the smallest i with this property. Note that d; (v) > (N/d)'/™ and thus we have
di(v)/di—1(v) > (N/d)"/™, s0

dio(v) _(d\"
—dl-(v) < (ﬁ) <1

for large n. By Lemma 3.15, N;(v) is (2m — 1)-colorable hence it contains an
independent set I’ of size |I’| > d;(v)/(2m — 1). Enlarge I to I U I’ and remove
N;—1(v) U N;(v) U Ny (v) from G’. Note that

di—1(v) dis1(v)
a0 T L )d’“)

an 1/m
< (2+(blogn) )dl(v)
an 1/m )
<@m-1) (2+ (blogn) )|1 |

= A|l'|

di-1(v) +di(v) +dir1 (v) = (

for any large n, where A = (2m — 1)(2 + (bff)’g‘n)l/’"). Clearly all neighbors of I’
have been removed thus 7 is an independent set after each step, and the ratio between
the number of removed vertices and |/| is at most A.

Let G| = (V1, Eq) be a graph in the end of the process, and G, = (V», E) be
the graph induced by all removed vertices V, = V \ V|. We distinguish two cases

depending on |V;].
Casel |V,| > N/2.

G, has an independent set I of size at least

N/2 a b\'"
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for large n if a and b satisfy

a b 1/m
20m-1) (2) > 1 G-

Case 2 |V,| < N/2.

In this case, |V;| > N/2. Since no vertices in G| has degree greater than d, so
the average degree of G is at most d, and each subgraph induced by a neighbor of
G does not contain a path of length 2m — 1 since G| does not contain Cy,,+1. By
Theorem 3.6, we have

N log(d/(2m)) — 1 .

> > —
@(G) 2 a(G) = 5 d = 2bm

n>n

for large n if a and b satisfy
a
— > 1. 3.4
2bm 34

To obtain the desired constants a and b, let us look at the case where the equality
holds for (3.3) and (3.4). Set a/b = 2m and a = 2(2m — 1)(2m)'/™. To get what we
want, just perturb this solution a little bit, when a and b are slightly larger, such that
both (3.3) and (3.4) are satisfied. Thus for all sufficiently large n,

nm+1 )1/”’
P 9

r(Coms1, Kn) < (1+0(1))2(2m - l)(2m)”"’(
logn

completing the proof. m}

3.7 The First Two Moments

Let X be a random variable, where X takes {a;|i = 1,2,...}. The expected value
E(X) of X is defined to be

E(X) = Z a; Pr(X = a;).

L

Theorem 3.9 (Markov’s Inequality) Let X be a nonnegative random variable. If
a > 0, then
E(X)

Pr(X >a) < —=.
a

Proof. Suppose that {a;|i = 1,2, ...} is the set of all values that X takes. We have
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E(X)=) aiPr(X=a) > ) aiPr(X =a;

i a;jza

>a Z Pr(X =a;) =aPr(X = a),

a;=>a
as required. O

Corollary 3.2 If a random variable X only takes nonnegative integer values and
E(X) < 1, thenPr(X > 1) < 1. In particular, Pr(X = 0) > 0.

This is exactly what we used to obtain lower bounds of Ramsey numbers in the
last chapter, e.g. Theorem 3.1.

For a positive integer k, the kth moment of a real-valued random variable X is
defined to be E(X*), and so the first moment is simply the expected value. Denote
by u = E(X), and define the variance of X as E((X — u)?), which is denoted by 2.
A basic equality is as follows.

o?=E((X -p)?) =E(X?) - p*.

o =E(X - p)?)

as the standard deviation of X.

Also, we call

Theorem 3.10 (Chebyshev’s Inequality) Let X be a random variable. For any
a>0,

[\S)

Pr(|X —u| = a) < 0-—2
a
Proof. By Markov’s inequality,
E(X-p?)
a? '

Pr((X — p)? > d%) <

The assertion follows since o2 = E((X — p)?). O

By importance, the second moment E(X?) is second to the first moment E (X).
The use of Chebyshev’s Inequality is always called the second moment method.

Lemma 3.16 (Second Moment Method) If X is a random variable, then

2 E X2 )
H r
where u = E(X). In particular, Pr(X = 0) — 0 if E(X?)/u® — 1.

Proof. By Chebyshev’s inequality,

[\S)

Pr(X=0) <Pr(|X —pl > p) < 5
u
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as desired. ]

Intuitively, if o~ grows more slowly than p grows, than Pr(X = 0) — 0 since o
“pulls” X close to u thus far away from zero.

3.8 Chernoff Bounds

The Chebshev’s inequality is in fact the Markov’s inequality on random variable
| X — u|. However, Chebshev’s inequality states the probability of a random variable
X apart from E (X) is bounded. When this is the case, we say that X is concentrated.
A concentration bound is used to show that a random variable is very close to
its expected value with high probability, so it behaves approximately as one may
“expect” it to be.

Chernoff bounds, named after Herman Chernoff, gives exponentially decreasing
bounds on tail distributions of sums of independent random variables. They are
sharper bounds than the known first or second moment based tail bounds such as
Markov’s inequality or Chebyshev’s inequality, which only yield power-law bounds
on tail decay. But Chernoff bounds require the variables to be independent — a
condition that neither the Markov’s inequality nor the Chebyshev’s inequality require.

When §,, is the sum of n independent variables, each variable equals to 1 with
probability p and —1 with probability 1 — p, respectively, the bound can be sharper.
Most of the results in this chapter may be found in, or immediately derived from, the
seminal paper of Chernoff (1952) while our proofs are self-contained. Recall a set
of random variables X, X», ..., X;, are said to be mutually independent if each X;
is independent of any Boolean expression formed from other (X;)’s.

In any form of the Chernoff bounds, we have the following assumption.

Assumption A: Let X, X, . . ., X;, be mutually independent variables with the same
binomial distribution.
Set

n
S, = in.
i=1

All concentration bounds in the remaining part of this section are Chernoff bounds
of different forms, which estimate the probability of

Pr(S, = n(u+9)),

where y = E(X;). The symmetric bound on Pr(S, < n(u — §)) can be obtained
similarly.

Theorem 3.11 Under Assumption A, and suppose

1
PI'(X[ = 1) = PI‘(X[ = —1) = E
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fori=1,2,...,n Forany 6 > 0,
Pr(S, > né) < exp{—né>/2}.

In particular, Pr(S, > a) < exp{—a®/(2n)} for any a > 0.
Proof. Let A > 0 be arbitrary. Clearly,
E(e™i) = —e/l -'-Zei/l.

Therefore,
E(e’ls") = E(e’le)E(e’lXZ) ‘.- E(e’lX”)

a -\
_ e +e < enl2/2
) s

where the inequality follows by noticing Lemma 3.4. Thus, by Markov’s inequality,
we have that for all 4 > 0,

E(eSn)

Pr(S, > nd) = Pr(e®n > %) < s

< exp{n(1%/2 - 26)}.

Setting A = §, we obtain the desired result. O

Since X; is often an indicator variable of some random event, so X; takes 1 when
the event appears and 0 otherwise. The following form of Chernoff bound may be
used in more cases.

Theorem 3.12 Under Assumption A, and suppose
Pr(X; =1)=Pr(X; =0) = %
fori=1,2,...,n Forany ¢ >0,
Pr(S, > n(1+6)/2) < exp{-né?/2}.
Namely, Pr(S, > n(1/2+6) < exp{-2ns?}.
Proof. SetY; =2X; —land T,, = X', ¥; =25, — n. Then

1
Pr(Y;=1)=Pr(Y; =-1) = 5

and {Y;]i = 1,2,...,n} satisfies Assumption A. Note that S,, > n(1 + §)/2 if and
only if 7,, > nd. By Theorem 3.11,

Pr(S, > n(1+6)/2) = Pr(T,, > né) < exp{-né*/2}

as claimed. O
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Under Assumption A, and suppose
Pr(X;=1)=p, and Pr(X;=0)=1-p

fori = 1,2,...,n. We say that the sum S, = Z?:l X; has binomial distribution,
denoted by B(n, p). Involved in Theorem 3.12 is the special binomial distribution
B(n, 1/2). For the general case, the calculation is slightly more complicated, but the
technique is the same. As usual, denote by g for 1 — p.

Theorem 3.13 Under Assumption A, and suppose
Pr(X;=1)=p and Pr(X;=0)=¢q
fori=1,2,...,n There exists 6y = 5o(p) > 0 so that if 0 < § < b, then

Pr(S, = n(p +96)) < exp{—néz/(3pq)}.

Proof. Denote a = p + 6. By the same argument as in Theorem 3.11,

1
Pr(S, > na) = Pr(e®n > %) < A—E(e’ls")
e na

1 _ _
= g (pet+q)" = (pe" 4 geT)"

forallA > 0.Letc =1—a =g -6 > 0. Note that pe?(!1=%) + ge=1¢ is convex on A,
and so it attains the minimum value by taking 1y = log(ag/cp), i.e.,

i a a c
min(pe® + ge™4) = e~ (pet 4 ) = (2) q_ (2) (2) .
>0 ag] ¢ \a/ \c

Note that
x2 X3 4
log(1 +x) =x—?+?+0(x ).

Recall a = p + ¢, it follows that for 0 < 6 < 1 — p,

log (g)a =(p+96)log (1 - pL-HS)

62 63 3
=5 - 8,
29 3peop )

and

log(%)c = (g — 6) log (1+ qfé)

B 62 N

3
IR MR AR

Adding them by terms, the first sum vanishes, and the second is
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STRINR S I
2 \p+d q-6) 2 \p(1+6/p) q(1-5/q)

=52 (1 (¢*>-p>s
- (o - 00
rq p°q
_s2 _ 3
ZL+M+ (53)’
2pq  2p*q?
and the third is
53 1 1 s (1 1
= - =—|=-—+0(@
3 ((q—6)2 (p+5)2) 3 (cﬂ p? ())
—(g = p)63
= —(gngz) + 0(63).

Therefore, for sufficiently small § > 0,
a c —62 _ 63 —62
log [(2) (g) ] S0y < 2
al \c 2pg  6p2q? 3pq

it follows that
Pr(S, > n(p +96)) < exp{-ns>/(3pq)},

completing the proof. O

From the above proof for p > g and Theorem 3.12 for p = g = 1/2, we see that
if p > 1/2, the bound can be improved slightly as

Pr(S, > n(p +6)) < exp{-né*/(2pq)}.

We now write out a symmetric form for Theorem 3.13, and omit those for Theorem
3.11 and Theorem 3.12.

Theorem 3.14 Under Assumption A, and suppose
Pr(X;=1)=p and Pr(X;=0)=gq
fori=1,2,...,n There exists 6y = 5o(p) > 0 such that if 0 < § < &, then
Pr(S, < n(p - 6)) < exp{-n6>/(3pq)}.

Therefore, Pr(|S, — np| > né)) < 2exp{-né>/(3pq)}.

From the proof of Theorem 3.13, we have

Pr(S, = na) < ((S)a (%)C)n = exp {n (alog§+ (I -a)log 7 ia)}’

where ¢ = 1 — a. Let H(x) signify the entropy function, i.e.
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H(x):xlog§+(1—x)log1qx, 0<x<l.

Thus
Pr(S, > k) < exp{nH(k/n)},

which is valid also for k = np since H(p) = 0.
The following form of Chernoft bound was used by Beck (1983).
Theorem 3.15 Under Assumption A, and suppose
Pr(X;=1)=p and Pr(X;=0)=gq

fori=1,2,....,n. If k > np, then

pis 2 (2] (247

Consequently,
npe

Pr(S, > k) < (T)k

Proof. The right hand side of the first inequality is just exp{nH (k/n)}. For the
second inequality, simply note that

()™ < ()™ - (1+nfk)""‘

Thus the required result follows. m}

Recall that 7, (G) is the smallest integer N such that in any k—coloring of edges
of Ky, there is a monochromatic G. Chung and Graham (1975), and Erdds (1981)
proposed a problem to determine 7 (K, »). We now give a lower bound for it as &

and m are fixed and n — oo, in which +/nlog n can be replaced by v w(n), where
w(n) — oo,

Theorem 3.16 Let k and m be fixed positive integers. There exists a constant ¢ =
c(k,m) > 0 such that
rk(Km.n) = k™n — cynlogn
for all large n.
Proof. Set N = k"'n — c+/nlogn, where c is a constant to be determined. Then

( 1 cynlogn
n= —_—

T Ty )N > (k™" +8,)N =(p+06,)N,

where p = k™" and 6, = 35 loin. Let us color the edges of Ky, with k colors

randomly and independently, such that each edge is assigned in each color with
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probability 1/k. Consider a fixed color, say color A, and an arbitrary but fixed set U
of m vertices. Let vi,v,,...,vy be the N vertices outside U. For each j, define a
random variable X; such that X; = 1 if the edges between v; and U are all in color
A and 0 otherwise. Then Pr(X; = 1) = k™" = p. Set Sy = Zf\il X;. Clearly Sn
has the binomial distribution B(N, p) and the event Sy > n means that there is a
monochromatic K, , in color A (in which U is the m-vertex part). Hence

N
Pr(3 monochromatic K, ) < k( * m) Pr(Sy = n).
m

By virtue of Chernoff bound (Theorem 3.13)
Pr(Sy = n) < Pr(Sy = (p+6,)N) < exp{-N62/(3pq)}.

From the facts that
N&2 —c?logn
3pg  12k™(k™ - 1)

k(N’;:m) — 0™ =0 (emlogn)’

we have that the probability that there exists monochromatic K, , tends to zero as
N — oo if ¢ > k™V12m, which guarantees the existence of an edge-coloring of
K n4m with no monochromatic K, ,, implying that 74 (K, ») > N + m for all large
n. O

and

Let Bflm) be the book graph that consists of n copies of K, sharing a common
K,,,. The above result clearly implies that for fixed k, m > 1, there is a constant
¢ = c(k,m) > 0 such that

rk(Bf,m)) > k"™n —cynlogn

for all large n.

Most cases to apply Chernoff bounds are in random graphs, some of which will
be discussed in the next chapter.

3.9 Exercises

1. Let By, ..., B; be a partition of a sample Q. Adam’s Theorem states that for
every event A, Pr(A) = 3 ; Pr(A|B;) Pr(B;). Prove this theorem. Using it, show that
Pr(A) < max; Pr(A|B;).

2. Prove that in the random graph space G(n, p), it holds

D, PG)=p.

G:ecE(G)
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where e is an fixed edge. Explain the equality for cases p =0, 1 and 1/2.

3. Show that the complement 6,, of a random graph G is exactly G,, where
g =1 - p. When we write w(G,) = @(G,), what does it mean really?

4. Let v be a fixed vertex of G(n, p) and let d(v) be the degree of v. Compute the
probability of the event d(v) = k and its expectation and variance.

5. For distinct vertices u and v, show

Pr(d(u) < k1,d(v) < ky) < Pr(d(u) < k1) Pr(d(v) < ko).

6. Define f(G) = ¥, cv(g) m. Prove that «(G) > f(G) by an algorithm as
follows. In each step we delete a vertex of maximum degree until no edge left. Let
G| be the subgraph from G by deleting a vertex of maximum degree of G. Prove

f(G) =z f(G).

7. Prove that if the average degree d of a graph G on N vertices satisfies that
0<d<1,then a(G) > N/2.

8. Erd6s and Sés (See Chung and Graham, 1998) asked to prove or disprove
that r(3,n + 1) — r(3,n) = o(n). This problem remains unresolved even with the
knowledge of Kim’s result on (3, ). Show that (3, n) < n?/log(n/e) for large n.

9. Show that r(4,n) < (1 +o(1))r(3,n)n/logn. (Hint: Using Kim’s result that
r(3,n) > cn®/logn.)

10. Prove that there exists some constant ¢ > 0 such that if G is a regular graph G
on n vertices with girth at least 5, then its independence number is at least c/n log n.

11. Prove that if the conjecture of Erd6s-Sés is true, then

r(T1+m7 T1+n) <m+n.

12.* Let G be a graph with N vertices and average degree d. If each neighborhood
of G contains no 7,41, then @(G) > N fo,,,—1(d).

13. In Section 3.6, we have used the fact that if ay, . . ., a, are positive numbers,
then % D ai > (l'[lf’:1 a;) " Prove this by considering the convexity of the function
f(x) =e*.

14. Obtain the asymptotically optimal constants in Theorem 3.7.

15.Callaterm 1/(1+d,) ina(G) = 3, 1/(1+d,) as the ratio of independence.
Using this concept, explain Lemmas 3.13 and 3.14 intuitively. Furthermore, if Ny (v)
is k-colorable for each vertex v, then

1 de(v)
WO 2L DL G T

dyp(v)#0
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16. Give a lower bound of the independence number a(G) for triangle free graph.
(Hint: Similar to Lemma 3.13)

17. Let m > be a fixed integer and let G be a graph of order N and girth at least
2m + 2. Prove that (G) > Q((N log N)™/ (™)) (Hint: N,,(v) is an independent
set.)

18.* Use basic method to prove the following result. Let G be a graph of order
n that contains at most 7 triangles. Prove that there is an induced subgraph Gg of
G such that Gy is triangle-free and its order is at least 0.38n for large n. (Hint: Let
¢ = V3/3. Consider all subgraphs induced by cn vertices. The expected number of
triangles is at most asymptotically c3n.)
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Chapter 4 e
Random Graph

The study of random graphs should go back to Erdds and Rényi (1947, 1959, 1960,
1961), in which they discovered that the random graphs were often useful in tackling
extremal problems in graph theory. Nowadays, random graph has become an active
area of research in graph theory and network science. In this chapter, we will give
an overview on random graphs. For a comprehensive understanding of random
graphs, we refer the reader to books such as Random Graphs by Bollobds (2001, 2nd
ed.), Random Graphs by Janson, Luczak and Rucinski (2000), and Introduction to
Random Graphs by Frieze and Karoriski (2016) as well as The Probabilistic Method
by Alon and Spencer (2016), a part of which introduces essentiality of the random
graphs.

4.1 Preliminary

For a family of graphs G = {G|,Ga,...,Gy} with probabilities Pr(G;) for i =
1,2,... such that 0 < Pr(G;) < 1 and ;5 Pr(G;) = 1, we have a probability
space of random graphs with G; as basic events. Each G; is called a random graph
of G with probability Pr(G;). We shall consider the probability space that consists
of graphs on vertex set V = [N], where the vertices are distinguishable, and so the
edges are distinguishable, too. Note that the complete graph Ky has

N N N\ _(« N\ _(~
(1)+(2)2++(k)2(2)++(N)2(2)

subgraphs. The general term (IZ )2(5) corresponds to subgraphs that have exactly k

vertices, and the last term (%)Z(IZV) corresponds to all spanning subgraphs.

Let us label all edges of Ky on vertex set V = [N] as ey, en,..., e, where
m = (g’ ). Note that the number of graphs on vertex set [N] is 2™ since the edges
are distinguishable. The space G(N;p1,...,pm) is defined for 0 < p; < 1 as
follows. It consists of all 2" spanning graphs on V, in which each edge ¢; is selected

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 75
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independently with probability p;. Write ¢; = 1 — p; and G(p1,...,pm) for a
random element in G(N; p1,..., pm). For a specific graph H in the space with
E(H) ={ej: j €S}, where S C [m] is the index set of edges of H,

Pr(G(pi,....pm) = H)) = (Wjesp;) (Mjesq;) -

Note that the event G(py, ..., pn,) = H is different from that G(p1,...,pm)
is isomorphic to H since the vertices and edges are distinguishable. We have that
G(N;p1,...,pm) is truly a probability space since

ZPI‘(G(Pl, e Pm) = H)) = Z (Mjesp;) (Mjesq;) =T (pj+q;) = 1.
H ScC[m]

When p; = -+ = p,, = p, the probability space G(N; p1, ..., pm) is written
as G(N,p). In G(N, p), the probability of a specific graph H with k edges is
p*(1 = p)™=*: each of the k edges of H has to be selected and none edges of H is
allowed to be selected. We write G(N, p), or G, for short, for a random graph in
G(N.p),

Pr(G, = H) = p¢H) gm=e(H),

Now we have obtained a space of random graphs, and every graph invariant
becomes a random variable. For instant, the number of complete graphs of order k&
in G, denoted by X (G), is a random variable on our space of random graphs. The
nature of such a random variable depends heavily on p.

In the space G(N,0), the probability that the empty graph K appears is one,
and the probability that any other graph appears is zero. Similarly, in the space
G (N, 1), the only graph that appears is K. For other but these two extremal cases,
i.e. 0 < p < 1, any graph on vertex set [ N] appears with a positive probability. In
particular, G(N, 1/2) could be viewed as the space: it consists of all 2™ graphs on
V = [N], and the probability of any graph is equiprobable. This is just a classical
probability space. Thus Gy 1,2 is also obtained by picking any of the 2" graphs on
V = [N] at random with probability 27™. As p increases from 0 to 1, the random
graph G, evolves from empty to full. It is worth remarking that p = p(N) is often
a function. No matter p is fixed or not, we tend to be interested in what happens as
N — oo.

In their original paper on random graphs in 1960, Erd6s and Rényi used G(N, ¢)
to denote the random graph with vertex set V = [N] and precisely e edges. For
0 < e <m = (Y) with e fixed, the space G(N, ¢) consists of all () spanning
subgraphs with exactly e edges: which can be turned into a probability space by
taking its elements to be equiprobable. Thus, write G, for a random graph in the
space G(N, e), for a specific graph H in the space, we have that

-1
Pi[G, = H] = (m) ,

e
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where the event G, = H means that G, is precisely H, but not only isomorphic to
H in general.

It is interesting, as expected, that for ¢ ~ p(gj ) the spaces G(N, e) and G(N, p)
are close to each other as N — oo. In most proofs for existence, the calculations
are easier in G(N, p) than in G(N, e). So we will work on the probability model
G (N, p) exclusively.

Another point of view may be convenient, in which one colors all edges of the
complete graph Ky with probability p, randomly and independently. Thus random
graph G, is viewed as a random coloring of edge set of K. The coloring of edge
set of K is also said a coloring of K in short. Recall the definition of Ramsey
numbers, we can see why the relation between random method and Ramsey theory
is so natural and tight.

In many applications, we always need to consider the events that some certain
graphs were contained in random graphs. Let F be a given graph on k vertices, and
let S C [N] with |S| = k. Let Ag be the event that the subgraph induced by S contains
F as a subgraph, then the event Ug A signifies that F appears in G, as a subgraph,
its probability is hard to calculate since the events Ag have a complex interaction.
It is often to bound this probability from above by the expectation of the number of
copies of F in the random graph. To get the expectation, let us look the number of
copies of F in K first. This is closely related to the automorphism group of F.

Recall a permutation (or a bijection) ¢ of V(F) is an automorphism of graph F
if uv € E(F) if and only if ¢(u)¢(v) € E(F) for any pair of vertices u and v. It
is straightforward to verify the set of all automorphisms of F forms a group, called
the automorphism group of F, and denoted by A(F). Indeed, it is clear that the
identity permutation is an automorphism. If ¢ is an automorphism of F, then so is
its inverse ¢!, and if  is a second automorphism of F, then the product ¢y is
an automorphism. For example, A (Ky) is the symmetric group Sk of order k!, and
A(Cy) is the dihedral group Dy of order 2k, one can see Godsil and Royle (2001)
for details.

Theorem 4.1 If F is a graph of order k in which the vertices are labeled, then the
number of copies of F such that no two copies are automorphism is k! /| A(F)|.

Proof. Let {v{,vs,...,vr} be the set of labeled vertices. Certainly there are k!
labeling of F from this set with some labeled graphs that may be automorphism.
Let Fy, F>, ..., Fx be the labeled graphs obtained from F. Note that the relation
“F; is automorphism to F;” is an equivalence relation, hence each equivalence class
contains | A(F)| elements, implying that there are k!/|A(F)| equivalent classes in
total. This proves the theorem. O

For example, if we label the vertices of astar K1 3 as 1, 2, 3, 4, then any equivalence
class is uniquely determined by the label of its center. So there are 4 such classes,
and each class contains 6 copies of K 3 with the same label of the center.

In a random graph space G(N, p), we need to consider the number of copies of
F in a labeled complete graph.
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Corollary 4.1 If F is a graph of order k, then the number of copies of F in a labeled
complete graph of order k is k! /| A(F)]|.

Let F be a graph of order k. Let S C [N] with |S| = k and let Xg be the number
of copies of F on S. Then X = 3¢ X is the number of copies of F in G ,. We have

e(F)

E(Xs) = P,

|ACF)]

and

E(X)=( ) p) = ——p"),
k] IAF) |ACF)]
where (N)y = N(N = 1)--- (N — k + 1) is the falling factorial.
Similar formulas hold for the number of induced subgraphs. Let Y be the number
of induced graph F' in G ,. Then

_ Nk er) (5)-e(F)
E(Y) A .

Recall that Ag signifies the event that the subgraph induced by S in G, contains
F as a subgraph, we have

k!
Pr(Ag) < ——p¢F)
S 2 AF))

Hence

_ NY_ kY ey Nk o)
Pr(FCGp)_Pr(UAS)S(k)|ﬂ(F)|p = |?((F)|p , 4.1

where the upper bound is exactly E (X).
This can be seen also by the fact that X takes only nonnegative integral values
and

Pr(UAs) = Pr(X > 1) = Z Pr(X =)
i>1
< Y iPr(X =i) = E(X).

i>1

It seems to be necessary to point out that F is not a random element in G(N, p) and
the above discussion is about appearance of F as a subgraph.
4.2 Lower Bounds for r(m, n)

Recall that the lower bound of r(n, n) in Chapter 3 by Erdds, the proof in fact applies
the random graphs of G(N, 1/2), which is a classical probability space as mentioned.



4.2 Lower Bounds for r (m, n) 79

It is interesting to see that this space is the only one that counting argument works
since only G(N, 1/2) is the classic probability space among G (N, p).

In this section, we will give more lower bounds for classical Ramsey numbers
r(m, n). Let us first give a lower bound for r(m, n) by simple applications of random
graphs.

Theorem 4.2 Let m,n and N be positive integers. If for some 0 < p < 1,
N\ (m N n
( ),,m +( )(1 _® <,
m n

then r(m,n) > N.

Proof. Consider random graphs G, in G(N, p). Let S be a set of m vertices, and
Ag the event that S induces a complete graph. Let T be a set of n vertices, and
Bt the event that 7 induces an independent set. Similar to Theorem 3.1, we have
r(m,n) > N since Pr[(UsAgs) U (UrBr)] < 1 from the assumption. [

The above result is ineffective in lower bounding of r(3, n). We now examine the
lower bound of (4, n), and we aim to choose a suitable value of p such that N as
large as possible for large n. Let us first give an overview. Consider the condition in
Theorem 4.2, we roughly estimate (IZ) as (eN/n)", and (1 — p) (2) as e=?(3) hence
('r\l])(l - p)®) is roughly

(5] o brl)) = (]

To get a better bound, we should balance two terms in the condition such that both
terms are less than 1/2. To this end, we should require that

eN

e <

So we may take p = %‘ log % for some constant ¢;. On the other hand, we roughly

have
NY o 1 as
~—=N"p°~1,
(4)p u P
which implies that p = ¢2(1/N )2/3 for some constant c;. Combining these two
expressions, we have N > n“ for some a > 1. Thus we can take p = cllo% and
N ~ ca(n/logn)3/2.
Formally, let p = ¢ 10% and N = |c2(n/logn)3/?], where ¢ and ¢, are positive
constants to be chosen satisfying that ¢$c¢3 < 24. Then

4 ¢t 6
[ <o« TG

24 24 \n-1
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—cin/2

for large n. For the second term, we have (1 — p)(g) < e Pnn=D2 — and

hence " "
N n eN\" _.np_ [ eN
(n)(l—P)(Z) < (7) n ‘1 = W )

which tends to zero if we take ¢; > 1. On the other hand, in order to take c, as
large as possible with c?c‘z‘ < 24, we have to take c; as small as possible. So we take
Cc1 = 1.

Now, we may hope to optimize the constant ¢,. Since we need only ¢, < 24!/4,
it follows that ¢, = 241/* — € will be ok. Thus we have

0 \32
logn)

Hereafter we will choose p with some foresight. For general m > 4, by taking
p=(m-=3) k’%, a similar calculation as above yields that

r(4,n) > (2474 — 6(1)) (

)(m—l)/2

r(m,n) > c(
logn

We have seen that the property of random graph G, is sensitive with the value
of p. To ensure that G, contains no K, (with a positive probability, more precisely,
or (Z ) p(r;) is small), it is better to take smaller p. But it is better to take a bigger
p to ensure that there is no induced K,, (i.e, (]r\[ )(1 - p)(g) is small). Our task is to
balance both sides to obtain a larger N as possible.

We shall improve the lower bounds for r(n,n) and r(m, n) obtained previously
by using the so called deletion method.

Theorem 4.3 We have "
r(n,n) > (1-o0(1))=2"2.
e

Proof. Consider the random graphs in G(N, 1/2). For an n-set S, let Xg be the
indicator that S is a clique or an independent set, i.e.,

Yo = 1 if S induces K, or K,,,
$710 otherwise.

Let Ag be the event that S induces K, or K_n We have

NG
E[Xs] =Pr[A5] :Z(E) .

Let X = }g.|5)=n Xs. Clearly, X is the number of cliques or independent sets of size
n. By linearity of expectation,
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N n
E[X]= ) E[Xs]z( )21—(2).
n
S:|S|=n

Since there is a point in the probability space for which X does not exceed its
expectation, it follows that there exists a graph with at most

(N)zl—('z')
n

n-sets such that every set induces a K, or a K,,. By deleting a vertex from each such
set, we have the remaining graph contains neither K,, nor K,,. Thus

r(n,n) > N — E(X).

The rest of the proof is to find N such that N — E(X) as large as possible. By taking
N = L#J, from the Stirling formula, we have

(N)21(';) < (ﬂ)nzl(g) < (e\/E/IZ’)n < pni2H

n n n2n

which is o(N). Thus r(n,n) > (1 —o(1))N. O

Theorem 4.4 For any positive integer m,n and N, and any real number 0 < p < 1,
N m N n
r(m,n)>N—( )p(2)—( )(l—p)(2 .
m n

Consequently, there exists a constant ¢ > 0 such that

n m/2
r(m,n) > C( )
logn

for all large n.

Proof. The first assertion is obvious. For the second, set N = a(lojg‘n)m/2 and

p=(m- 2)10% such that a — %a’" > 0. Then

”27 m m/2
-

m! logn

and

Ny = (N)(l —P)(g) < (ﬂ) e~Pr(n=1/2 _ (_eN ) — 0.
n n nm/2

Soifc <a-

%am, then
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n mj2
r(m,n)ZN—Nl—N2>c( ) .
logn

This completes the proof. O

In the next chapter, we will see further improvements by using Lovdsz Local
Lemma.

4.3 More Applications of Chernoff Bounds

As a natural application of Chernoff bound, we are concerned with the number of
edges in a random graph as follows.

Theorem 4.5 Let G(n, p) be a random graph space. If § = §(n) > Oand p = p(n) €
(0, 1] such that né*/p — o as n — oo, then

lim Pr |Gy € G(n,p) (p—(S)(;) <e(Gp) < (p+(5)(;)] = 1.

Proof. For any edge ¢ in K,,, we define a random variable X, as X, = 1 if e is an
edge of G, and X, = 0 otherwise. Note that e(G ) = 3. X and E(e(G))) = p(g)
as E(X.) = p, and the Chernoff bounds imply the claimed statement. O

An often used measure for sparseness of graphs is K,-freeness. However, there
are K3-free graphs whose chromatic number can be arbitrarily large, see Mycielski’s
construction (1955), in which the main idea is as follows. Let G; = K| and G, = K>,
and generally let G be the graph defined on {vy,...,v,}. Now we construct G|
from G by adding n + 1 new vertices {uy,...,u,, v} and then for 1 <i < n, join u;
to v and all neighbors of v;. It is not difficult to verify that w(Gy) = 2 for all k > 2,
and the chromatic number y(Gy4+1) = x(Gg) + 1 forall k > 1.

A more general measure for sparseness is to forbid subdivision. A suspended
path in graph G is a path (xg, xy, ..., xx) in which the inner vertices xp, ..., xXx_]
have degree two in G. A graph H is a subdivision of G if H is obtained from G by
replacing edges of G by suspended paths, that is to say, H is obtained by adding
vertices on the edges of G.

Hajés conjectured that every graph G with y(G) > r contains a subdivision
of K, as a subgraph. This conjecture is trivial for r = 2,3, and it is confirmed by
Dirac (1952) for r = 4, while it remains open for » = 5, 6. Catlin (1979) disproved
the conjecture for » > 7 by a constructive proof, but the following disproof for
general cases by Erdés and Fajtlowicz (1981) is more powerful. Let y(G) denote the
largest r such that G contains a subdivision of K, as a subgraph. Hajos conjecture is
equivalent to that y(G) > x(G).

Theorem 4.6 Almost all graphs G € G(n, 1/2) satisfy

x(G) > , and v(G) < Ven.

n
2log, n
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Proof. Set k = |2log, n]. Since the probability that there exists an independent set
of size at least k satisfies

k
ﬁ) = o)

n _(k
Pr(a(G) > k) < (k)Z () < (k2k/2

and the fact o(G) y(G) > n for any graph G, the first statement follows immediately.
In the following, we focus on the second inequality. Set » = [V6n]. Clearly
n < r*/6. Note that there are

n ( en ) r ( er ) r
<|\—) S \=
(r) r 6
potential K, subdivisions, one for each r-element subset of V(G). Fix such a subset

X, we have that each subdivided edge of X must use a vertex of V(G) \ X and no

two subdivided edge use the same vertex. Since there are (2) suspended paths in a

subdivision, and at most n — r of them are of length two or more, which are “really”
subdivided edges, it follows that the number of edges induced by X is at least

r r 2 2(r
(2)—(n—r)2(2)+r—€2§(2).

Note that the number of edges induced by X, denoted by e¢(X), has binomial distri-
bution B(N, 1/2), where N = (7). From Theorem 3.12,

Pr(e(X) > N(1+6)/2) < exp{-Né&?/2}.

By taking 6 = 1/3 hence (}) = (})(1 +6)/2, we obtain

Pr (e(X) > %(;)) < exp {—N62/2} = exp {—%(;)} .

Thus, the probability that the random graph G contains a subdivision of K, can be
upper bounded as follows.

Pr(y(G) >r) < ZX:PY (e(X) 2 %(;)) < (’:) exp {_%(;)}

< (r2 exp{—(r — 1)/36})”

6

which tends to zero as n tends to infinity. O

From the above result, Hajés conjecture failed badly since asymptotical almost
surely (a.a.s.) the graph G in G(n, 1/2) satisfies

n
- V6n — oo

x(G)-v(G) =

2log, n
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as n — oo. Furthermore, the gap between the truth and the conjecture is large.

In the following, we give a lower bound for r(3, n) due to Erdgs (1961), which
is anther application of Chernoff bounds (Theorem 3.15). The following proof by
Conlon (Lectures on graph Ramsey theory) was written in a much different way
from the original one.

Theorem 4.7 There exists a constant ¢ > 0 such that for all large n,

2
r(3,n) Zc( ) .
logn

Proof. Let N = c(lo’;n)z. Let p = akr’lg", where a will be chosen later. We color
the edges of K red with probability p and blue with probability 1 — p. This graph
may have many red triangles. However, let E be a minimal set of red edges which,
if recolored blue, would give a triangle-free red graph. It suffices to show that with
high probability this recolored graph contains no blue K,,. Let Rg be the subgraph
formed by the recolored red edges.

Applying Theorem 3.13 with p = akr’lﬁ and & = p, we obtain the probability

that there exists a vertex of degree greater than 2pN is at most Ne ™V 8%/(3p4) | which
tends to zero as n goes to infinity. In the remaining of the proof, all probabilities
should be calculated conditional upon this event. However, for convenience, we will
ignore this complication by assuming that there are no vertices of degree greater
than 2pN.

Let V denote the vertex set of K. For any given n-subset W C V, let Ay be the
event that the red subgraph induced by W has an edge xy which is not contained
in any red triangle xyz with z € V \ W. The critical thing to notice is that if a
graph satisfies Ay, then any maximal triangle-free subgraph H of the red graph Rg
(formed by recoloring edges) has blue complement which is not monochromatic on
W. To see this, suppose that xy is a recolored blue edge in W. Since H is maximal,
the graph H + xy must contain a red triangle xyz. But then, by property Aw, z must
be in W. So the assertion follows by noting that xz and yz are red. Therefore, we are
done if the event Ny Aw occurs with positive probability, where the intersection is
taken over all W of size n.

We will try and estimate the probability Pr(Ay), where W is a subset of V of
size n. If we can show that Pr(ZW) < n™", we will be done, since there are only
(]Z) < (L= (lsg% " sets W of size n. We will prove the required inequality in
two steps. First, we will show that with high probability, most pairs in W have no
common neighbors outside W. Then we shall prove that any given large set of pairs
of vertices from W must contain an edge.

Letd; = e* pn/i and N; = n/e* . Let P; be the probability that at least N; vertices
in V \ W have at least d; neighbors in W.

Claim For all 1 < i < logn, the probability P; < n=2""!.

Proof. Let dw (z) be the degree of the vertex z € V\Win W.Foreachz € V\ W,
the variable dyw (z) satisfies binomial distribution B(n, p). So Theorem 3.15 implies
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2 . 2i P
e“pnfi 2i—1\—e"pn/i )
npe ) : (e ) < oipn

eXipnfi IR

Pr (dw(z) > eZipn/i) < (

Thus

P; < (]‘]\]V)e—(eZialogn)Ni < nSne'Zi—an < n—2n—1
i

as claimed. ]

Therefore, adding over all 1 < i < logn, we see that with probability at least
1 — n=2", there are at most N; vertices in V \ W which have d; neighbors in W.
Moreover, note that, for iy = (logn — loglogn)/2, d;, > 2pN provided ¢ > 0 is
small. Our assumption that all vertices have degree at most 2p N therefore implies
that there are no vertices with degree d;, in W. Note that the number of vertices in
V \ W have at most d; neighbors in W is at most |V \ W|. Hence, the number of pairs

of vertices in W which share a neighbor in V' \ W is at most
io—1
AR d; n
N N;_ <
( 2 ) " 1:22 N2)=¢ logn

<50a’cn* +20a’nlog’ n (1

2 ip—1 o2
5042 log? n + 10a*n log? n —
J 5010 1%

) 4(log n)_2

n

ogn

2
<50a%cn® + pla n

logn

which may be made as small as any 612, for ¢ sufficiently small depending on a and
6. Therefore, for ¢ small, at least (1 — &) (2‘) of the edges in W do not have common
neighbors in V \ W.

Note that the event Ay appears means that all edges of W share a common
neighbor z € V' \ W. In order to force Ay, those edges in W having no common
neighbor in V \ W should not appear. But, for = 1/2 and a = 12, there are at least
n? /6 such edges, and so the probability that all of these edges don’t appear is at most

2 ) _ -
(1_p)n /6S€ pn /626 2nlogn:n 2n.

Note that, since the edges within W and the edges between V \ W and W are
independent, this latter probability is independent of each of the P;. Therefore,

Pr(Aw) <n " +n 2 <n",

completing the proof. O
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4.4 Properties of Random Graphs

A random graph is obtained by starting with a set of n vertices and adding edges
between them at random. Different random graph models produce different prob-
ability distributions on graphs, for which the model in this text is classic. Erdds
and Rényi (1960) showed that for many monotone-increasing properties of random
graphs, graphs of size slightly less than a certain threshold are very unlikely to have
the property, whereas graphs with a few more edges are almost certainly to have it.
This is known as a phase transition. The second section is devoted to this topic, and
the last section covers some deeper discussion. The reader who is just concerned
with Ramsey theory could skip this chapter.

4.4.1 Some Behaviors of Almost All Graphs

Given a graph property A, it is often associated with a family Q of graphs as
0=0(A) ={G : G has A}.

Slightly abusing notation, we do not distinguish the property A and the family Q if
there is no danger of confusion. We say that the graphs in G(n, p) asymptotically
almost surely (a.a.s.) have property Q if

lim Pr[G, € Q] = 1.

n—oo
In this case we also say that a.a.s. G, € G(n, p) has property Q. We begin with a
classical result of ErdSs (1962) which states that almost all graphs seem to behave

strangely even though they are sparse. In the following, for a graph G on vertex set
Vand S C V, we denote G[S] by the subgraph of G induced by S.

Theorem 4.8 For any k > 1, there exist positive constants ¢ = c¢(k) and € = €(k)
such that the graphs in G(n, p) with p = c/n a.a.s. satisfy that x(G) > k, and yet
x(G[S]) < 3 for any vertex subset S with |S| < en.

Proof. Let
H(x):—log(xx(l—x)l_"), O<x<l,

and let ¢ and € be positive constants satisfying
¢>2k*H(1/k) and c*e’e < 3°. (4.2)

Set p = c¢/n and Consider the random graph G = G, in G(n, p). We will show that
a.a.s. the graphs in this space satisfy the conditions. If «(G) > n/k, then y(G) < k.
Note that the probability that there exists an independent set of size at least n/k can
be upper bounded by
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n n/k
1 - ( 2 )
[ore)a=»

From Stirling formula, we estimate that

n n!
(n/k) = =gy < SXPH /)

and

(1 _p)("ﬁk) < exp {—% (% - 1)} =exp {—;—:2(1 - 0(1))} :

Therefore,

B R

which tends to zero from (4.2).

Now, suppose that there exists some set S with at most en vertices satisfying
that y (G[S]) = 4. Set ¢ = |S|, we claim that G[S] would have at least 37/2 edges.
Suppose that S is a minimal such set. For any v € S, there would be a (proper)
3-coloring of S\ {v}. If v has two or fewer neighbors in G[S] then it would be
extended to a 3-coloring of S. Hence the minimum degree of G [S] is at least 3 and
the claim follows. The probability that some ¢ < en vertices have at least 37/2 edges

is less than - N
> () 6

4<t<en

(’Z) < (%)t and (3(;/)2) < (%t)?azﬂ,

so we obtain that each term of the sum is at most
en\t [et\3t/2 ;c\3t/2 31265124112\ 1
(7) (?) (;) - ( 33/2,,1/2 ) :

()

31/2 3/2,5/2,,1/4\4
n (E) ! <pa|e—c " = o(1).
t)\3t/2) \n 33/2,1/2

Note that

Hence

4<t<nl/4
Moreover,

n (t) c\3t/2 3126512 » nl/4 .
(t)(3t2/2) (;) <en (—33/2 el ) =o(1)

by noting (4.2). Thus we have that a.a.s. no such set S exists, which completes the
proof. O

nl/4<t<en
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From the above theorem, we know that in random graphs, the neighbors of
average number vertices distribute evenly in every part of the vertex set. So their
clique numbers and independence numbers are relatively small, while their chromatic
numbers are large. For a graph G, the girth g(G) is the smallest length of a cycle
in G. A historic result of ErdGs (1959) states that both of y(G) and g(G) can be
arbitrarily large.

Theorem 4.9 For any fixed € and k, there exists a graph G such that g(G) > € and
x(G) > k.

Proof. Fix 0 < 6 < 1/¢, and let p = n?~!. Consider the random graph G in G(n, p).
Let X = X(G) be the number of cycles of length at most £ in G. Note that the
automorphism group A(C,,) = 2m (see e.g. Godsil and Royle (2001)). Therefore,

as 6¢ < 1, where (n); is the falling factorial n(n — 1) --- (n — i + 1). On the other
hand,
n
E(X) = Zi:iPr(X =i) 2 3 Pr(X 2 n/2),
which implies that Pr(X > n/2) = o(1) since E(X) = o(n).
Setm = 3n'~%logn. It is easy to see that

Pr(a(G) > m) < (n)(l _p)('?) < (ne—p(M—l)/Z) = o(1).
m
Thus, there exists a graph G of large order n such that X(G) < n/2 and a(G) < m.

By deleting a vertex from each cycle of length at most ¢, we obtain a graph G* of
order at least n/2, which satisfies g(G*) > ¢ and a(G*) < m, which implies that

completing the proof. O

4.4.2 Parameters of Random Graphs*

We are ready to discuss some parameters of random graph G, for fixed p. It is easy
to see some parameters are concentrated around their expectations. The following
result was due to Shamir and Spencer (1987).

Theorem 4.10 If G, € G(n, p), then

Pr (IX<Gp) - E(x(Gp))| > A«/ﬁ) <202,
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Proof. Consider the vertex exposure martingale Xi,...,X, on G(n, p) with the
parameter x(G). A single vertex can always be given a new color so Azuma’s
Inequality can apply. O

Similarly, we have
Pr (|w(G,,) — E(w(Gp))| > AVn - 1) <2402,

and ,
Pr(le(G,) — E(e(Gp))| > Am) < 27112,

where m = (’21) However, the proofs give no clue that what are these expectations.

Lemmad.1 Let 0 < p < 1,a = 1/p and € > 0 be fixed, and f(x) = (;)p(g) for
0 < x < n. Define a positive integer k such that

flk=1)> 13> f(k).
Thenasn — oo, [w, — €| < k < |w, +€] + 1 where
wp =2log, n—2log,log,n+2log,(e/2)+1,

and f(k —4) > c(log': n)3 =n?=°W where ¢ > 0 is a constant.

Proof. It is easy to see that k — oo and k = o(+/n), thus by Stirling formula, we have
k
n\ (& n 1 en k
) = & " k(12 L (_ (k—l)/2) _
f(k) (k)p al AV
So if 6 > 0 is fixed, then for all large n,

LN

as f(k) < 1. This is equivalent to that
k > 2log,n—2log, k+2log,e+1-2log,(1+9).

Let us set k ~ 2log,, n first. Note that the difference between the right hand side in
the above inequality and w,, is

2log, n
k

2log, - 2log,(1+46) = —2log,(1+96),

sok—wy, = —2log,(1+8)+0(1) > —eif we take ¢ small enough. Hence k > w, —e€.
Similarly, from

1 en k-1
1) ~ (k=2)/2
flk=1) (FZ5p )

\2r(k=1) ‘k—1
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we have %p(k_z)/z > 1, which gives
k <2log,n—2log,(k—1)+2log,e+?2.

Furthermore, by taking k ~ 2log,, n first, we obtain k < w, +1+0(1) < w, +e+1,
the desired upper bound for k follows.
Finally, note that

flk-2) k=1 4+, 2k . cn
k-2 = ~ p2Z i
Fh=2 > = = i kv 2 P % 7 ogn
the assertion for f(k — 4) follows immediately. O

Lemma 4.2 For fixed0 < p < 1,a=1/p and € > 0, a.a.s. G, € G(n, p) satisfies
that
w(Gp) < |lwn +€] <2log,n,

where w, = 2log,n — 2log,log,n + 2log,(e/2) + 1 is the same defined as in
Lemma 4.1.

Proof. Let X, be the number of r-cliques. Then

E(X,) = f(r) = (”)p(é) <Mre-np L (ﬂpu—l)/z)r‘
r r! Dar \ T
We shall find some r = r(n) — oo such that E(X,) — 0. This is certainly true
if enp"=D/2/r < 1 (hence r — o0). The same argument in the proof of Lemma
4.1 applies that if r = [w, + €], then E(X,) — 0, thus Pr[w(G,) > r] — 0 and
Prlw(Gp) < |w,+€]] — 1. |

Note that the above result can be stated as

Pr(w(Gp) < [wp+€]—1) > 1 asn — co.

For a property Q, we say that graphs in G(n, p) asymptotically almost surely
(a.a.s.) have property Q if

lim Pr[G, € Q] = 1.
Matula (1970, 1972, 1976) was the first to notice that for fixed values of p a.a.s.
G, € G(n, p) have clique numbers concentrated on (at most) two values,

lwn — €] <w(Gp) < |wn+€].

Results asserting this phenomenon were proved by Grimmett and McDiarmid (1975);
and these were further strengthened by Bollobés and Erdds (1976).

In order to reduce the difficulty of the proof and preserve the typical flavor, we
slightly weaken the above lower bound | w, — €] by having its asymptotical form a
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little bit later. Let us discuss the chromatic numbers first. A technical lemma is as
follows.

Lemma 4.3 Let k be the integer defined in Lemma 4.1 and let € = k —4. Let Y be the
maximum size of a family of edge-disjoint cliques of size € in G € G(n, p). We have
2
c
E(Y) > 5—4,
where ¢ > 0 is a constant.

Proof. Let £ denote the family of ¢-cliques of G. By Lemma 4.1, we have

w=E(L) = £(0) = ( ) O e (1)

Let W denote the number of unordered pairs {A, B} of ¢-cliques of G with A ~ B,
where A ~ B signifies that 2 < |[A N B| < £. Let

A= Z Pr(AB),
A~B

where the sum is taken over all ordered pairs {A, B}. Thus E(W) = A/2 and
n\ ‘& n—¢
S R 1

Setting a = 1/p, we have

Riy1 (€—-i)? a
Ri  (+D)(n-20+i+1)

i

If i is small, say bounded, then this ratio is O((log, n)?/n), and if i is large, say
¢ —i=0(1), then the ratio is at least y/n. It is increasing on i, so

A=p Z R; < 2u(Ra + Re-1),

where
— 2P _ 1)2 4
R2= \(n (f)l f(f 1) < 4 mn
2/\¢ - 2 2p(n—€+2)(n—€+l) 2pn?
and e
1= f(n—é’)p(Z)_( 2) < ntp‘!.
Thus

4

I €4
ASZp(Z
pn

2
2/,t+n£’pf 1) <C#
n?
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Let C be a random subfamily of £ defined by setting for each A € L,
Pr[A € C] = p1,

where 0 < p; < 1 will be determined. Then E(|C|) = up;. Let W’ be the number
of unordered pairs {A, B} of {-cliques in C with A ~ B. Then
A 2
EW) = EW)p} = 1.
Delete from C one set from each such pair {A, B}. This yields a set C* of edge-
disjoint £-cliques of G and

. : Ap
E(Y) 2 E(IC"]) 2 E(IC) = E(W') = up1 = —+
By choosing p; = & < 1, we have
2 2
U cn
EY)> —>——
() = 2A T 4
as asserted. m}

Theorem 4.11 (Bollobas) Let 0 < p < 1, a = 1/p be fixed, and let m = fn/logi n].
Then a.a.s. G, € G(n, p) satisfies that each induced subgraph of order m of G, has
a clique of size at least r = 21og, n — Tlog, log,, n.

Proof. Let S be an m-set of vertices. We shall bound the probability that S induces

no r-clique by e for all large n (hence all large m), where § > 0 is a constant.
So the probability that there exists an m-set with no r-clique is at most

n\ _, 1+s en\m _ 145 en
( )e "< (—) e™™  =exp (mloge——m”‘s),
m

m m

which goes to zero, and the assertion follows.

Let X be the maximum number of pairwise edge-disjoint r-cliques sets in this
graph (induced by S), where edge-disjoint means they share at most one vertex.
We shall show that a.a.s. X > 1 holds. To do this, we invoke Azuma’s Inequality.
Consider the edge exposure martingale for X that results from revealing G one-edge
slot at a time. We have Xy = E(X) and X(r;) = X. Clearly the Lipschitz condition

| Xi+1 — X;| < 1is satisfied, so Azuma’s Lemma gives

Pr(X = 0) < Pr[X - E(X) < —E(X)]
m\ 172
weom =t

) 2
<ot o[-0

=Pr
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where A = E(X) /(") "2 Hence it suffices to find § > 0 such that E2(X) > m3*® for
all large n.

To this end, let ¢y be the integer such that f(fg — 1) > 1 > f(¢9), where f(x) =
(’f)p(g), and let ¢ = tg — 4. Then by Lemma 4.1, we have

t > 2log, m—2log,log, m —3 > 2log,n—7log,log,n,

so t > r. Let T be the maximum number of edge-disjoint cliques of size ¢, Then
E(X) > E(T) and E(T) > cm?/t* by Lemma 4.3, hence

m2 Cl’l2

c
EX)z2 —/—~ ——m—,
X 4 16(log,, n)®

implying that E2(X) > n*°() > »3*9 for any 1 > § > 0 if n is large, which
completes the proof. m}

Theorem 4.12 (Bollobas) Let 0 < p < 1 and € > 0 be fixed. Denote b = 1/q =
1/(1 = p). Then a.a.s. G, € G(n, p) satisfies that

n
2log, n

<x(G,p) < (1+e)

2log, n

Proof. The lower bound holds because a.a.s. G,, € G(n, p) satisfies that (G ) <
2log, n and x(G)a(G) > n. The upper bound follows from the above theorem,
which is applied for independent sets instead of cliques, because we can almost
always select independent set of size 2log, n — 7log, log, n until we have only
n/log%7 n < (e/2)n/(2log, n) vertices left. We first use at most

n € n
< (1 + —)
2log;, n —7log, log;, n 2/ 2log, n

colors, and then we can complete the coloring by using distinct new colors on each
of the remaining vertices. O

Let us remark that Achlioptas and Naor (2005) obtained a result on sparser
random graphs as follows. Given d > 0, let k4 be the smallest integer k such that
d < 2klogk. Then y(G) for almost all G, € G(n,d/n) is either kg or kg + 1.
This result improves an earlier result of Luczak (1991) by specifying the form of k4.

Theorem 4.13 Let O < p < 1 and € > 0 be fixed. Then a.a.s. G, € G(n, p) satisfies
that
(1-€)2log,n < a(Gp) < 2logy, n.

Proof. The upper bound follows from Lemma 4.2, and the lower bound follows from
Theorem 4.12 and the fact that a(G) > n/x(G). O

Theorem 4.14 Let O < p < 1 and € > 0 be fixed. Then a.a.s. G, € G(n, p) satisfies
that
(1-€)2log,n < w(Gp) < 2log, n.
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Proof. This is the complement of Theorem 4.13. O

For some graph parameter f(G), we have seen that there is a function g(n) such
that a.a.s. G, € G(n, p) satisfies that

(1-e)gn) < f(Gp) < (1+€)g(n),

hence f(G) concentrate in a small range. We shall call the function g(n) a threshold
for the parameter f. We will discuss the threshold for probability p = p(n) instead
of fixed p, and will consider some other graph parameters in the next chapter.

4.4.3 Threshold Functions

For fixed 0 < p < 1, most graphs in G(n, p) are dense. Bollobds (1988) proved that
the chromatic numbers y (G ) for G, € G(n, p) are concentrated at n/(2log, ,, n),
where g = 1 — p. In this section, we investigate the concentration of edge probability
function p = p(n) associated with a property. We will see that random graphs in
G(n, p) behave sensitively on p = p(n). A monumental discovery of ErdGs and
Rényi (1960) was that many natural graph theoretic properties become true in a very
narrow range of p = p(n).

A property Q is said to be monotone increasing if G has property Q implies that
any graph from G by adding some new edges also has Q. The monotone decreasing
property can be defined similarly. Thus the property of being connected is monotone
increasing and that of being triangle-free is monotone decreasing. Recall that a
property Q is associated with a family of graphs. We say that this family of graphs is
monotone increasing if so is the property Q. Also we do not distinguish the property
and its associated family.

Lemma 4.4 Let Q be a monotone increasing property. For G, € G(n,p), the
Sfunction Pr(G, € Q) is increasing on p.

Proof. Let 0 < p;(n) < pa(n) < 1. We shall verify
Pr(G,, € Q) < Pr(Gp, € Q).

Set p = (p2 — p1)/(1 = p1), then py = p + p1 — pp1. Choose G € G(n, p) and
G| € G(n,p1), independently, and set G, = G U G|. Namely G, is a graph on
vertex set V = [n] with edge set E(G) U E(G), in which each edge e appears with
probability

Pr(e) =Pr(e € E(G)UE(G1))=p+p1—pp1=D2

since the events that e appears in £(G) and in E(G) are independent. Thus G is
exactly a random graph of G(n, p3). As Q is monotone increasing, we have that if
G1 has Q then so does G, and thus Pr(G,, € Q) < Pr(G,, € Q) asclaimed. O
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Let O be a monotone increasing property. Erdds and Rényi defined a function
f(n) with 0 < f(n) < 1 as a threshold function for Q if

0if p=f(n)/wn),
Lif p = f(n)w(n),

where 0 < w(n) < 1/f(n) is a function which tends to infinity, as slowly as desired.
For example, if f(n) = loﬁ , we may assume that 0 < w(n) < loglog n. Note that if
f(n) is a threshold function for Q, then so is ¢ f (n) for any constant ¢ > 0.

Clearly, the definition of f(n) being a threshold function for a monotone increas-

ing property Q is equivalent to

lim Pr(G, € Q) = {

. 0if p < f(n),
Jim Pr(Gp € Q) = {1 if 5 > ;(n),
where p < f(n) means p = o(f(n)).

For obvious reason, the above threshold function is in fact a threshold probability
function. One can certainly define other threshold functions such as the threshold
edge function.

The definition of the threshold function for a monotone decreasing property is
similar. The definitions mean that whether or not G, having a property Q changes
suddenly even though p = p(n) changes slightly in the moment.

Let X = X(G) be a non-negative integral parameter of G. Since

Pr(X > 1) = Z Pr(X = k) < E(X),
k>1

it follows that E(X) — 0 implies that a.a.s. graphs in G(n, p) satisfy X = 0. And in
many cases E(X) — oo implies that a.a.s. graphs in G(n, p) satisfy X > 1, which
can be shown by Chebyshev’s inequality often. For example, let X be the number of
triangles in G, € G(n, p). Then

n

E(X) = (3

| ~ g

As we will see in the next theorem that f(n) = 1/n truly is a threshold function
for triangle-containedness. Let p = y/n and let y — 0 or y — oo signify w(n) in
the denominator or in the numerator in the definition, respectively. When y reaches
and passes 1, the structure of G, changes radically. This is called the double jump
because the structure of G, changes radically fory << 1,y ~landy > 1.

Let us recall the Second Moment Method in the last chapter.
Lemma 4.5 (Second Moment Method) If X is a random variable, then

Pr(X=0) < w

)
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where y = E(X). In particular, Pr(X = 0) = 0 if E(X?)/u> — 1.

A graph G with average degree d is called balanced if no subgraph of it has
average degree greater than d. Complete graphs, cycles and trees are all balanced.

Theorem 4.15 Let F' be a balanced graph with k > 2 vertices and € > 1 edges. If
Q is a property that a graph contains F as a subgraph, then n=*/¢ is a threshold
function for Q.

Proof. To simplify the notation as before, we shall use p = # with ¥y — 0 and
v — oo to signify the function w(n) in the denominator and numerator, respectively.
Let X = X(G ) be the number of copies of F' contained in G, € G(n, p). Denote
by a for the number of graphs isomorphic to F on fixed k labeled vertices. As F has
¢ edges, we have

k

< a < k! with k and ¢ fixed, we have E(X) <
&y Thus

u=EX)= (n)ap{’).

By noting the simple facts that 1
n*p’ =y'and E(X) ~ &n*p’ =

Yt <em*pt <p=EX) <y,

where ¢ and ¢, henceforth c; are positive constants.
When y — 0 as n — oo, by Markov’s inequality,

Pr(G, € Q) =Pr(X > 1) < E(X) = o(1).

It remains to show that Pr(G, € Q) = Pr(X > 1) — 1 when y — co. We turn to
the Second Moment Method for help since the Markov’s inequality does not work
in this case.

For any k labeled vertices in [n], we have a = k!/|A|, where A is the automor-
phism group of F. Hence there are a(Z) potential copies of F on [n]. Let

F ={F,F,...}

denote the family of these copies. Denote by F; U F; for the graph with vertex set
V(F;) U V(F;) and edge set E(F;) U E(F}). The two critical observations are that
most pairs F; and F; have no vertices in common, and if they have s > 1 common
vertices and these s vertices contains ¢ edges of F;, then t/s < €/k since F is
balanced.

Let X; be the indicator function of F;. Then

E(X;)=Pr(X;=1) = PI‘(GP 2 F).

Since X = }; X; and Xl.2 = X;, we have

E(X?) =,u+ZE(Xin)=H+ZPr(Gp 2 F; U Fy),

i#j i#j
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where the sum is taken over all ordered pairs i and j with F;, F; € . Set

Ao = Z Pr(G, 2 F; UF)),
izj: E(F;)NE(F;)=0

and for s > 1,

Ay = Z [Pr(G, 2 FiUF)): |V(F) nV(F))| =s,E(F,) NE(F;) #0}.
i#j

We have E(X?) = u+ Y*_ A;. Note that if E(F;) N E(F;) = 0, then
PI'(GP 2 Fi U Fj) = PI‘(GP 2 Fl) PI'(GP 2 F])
from the independency of the events. Thus,

Ao = Z Pr(G, 2 F; UF))
V(F)NV(F;)=0

= > PG, 2F)Pr(G, 2 F))
V(F;)NV (Fj)=0

< (D2 PrG, 2 F))( D Pr(G, 2 F)
i J
= EX(X) = 4%,

For s > 1, it is expected that Ay is much less than . Fix F;, counting F; that has
s common vertices with F;, in which these s common vertices contain ¢ edges of
E(F;) N E(F;) witht < s€/k since F is balanced, we have

k\(n—-k _
Pr(G, 2 FiUF) < (s)(k_s)ng ‘

J \V(F)NV(Fj)|=s t<sl/k

Sc3nk—s Z p2t’—t
t<sl/k

since k, s, ¢ are fixed and ¢ is bounded. From the fact that there are a (Z) elements in
¥, we obtain

n
A, Sa(k)cwk_s Z P2t < cqns Z Pt

t<sl/k t<sl/k
20, —s
k 0\2 —s -t 6y n
<ca(n"p’)n Z P S
<5tk p
20 20 2
csy” sy CoH

T (nptlkys ~ ystik = stk
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where we used the fact that n¥p?, ¢ and u have the same order. So for s > 1, we

have Ay /u® < cg/y*t/%, and
E(XY)  u+Ao+ X A, 1 & e ¢
= = o sl+—+z —r S 1+o(l)+ — T
H H U yst! /

s=1

Now the Second Moment Method (see Lemma 3.16) yields that

2 E X2
Pr(X=0) <Pr(|X-ul>pn < — g (—) o(l) + — v
M2 u? /"

which tends to zero as y — oo. O

The original definition of threshold function f(n) of ErdGs and Rényi comes
from p;(n) = f(n)/w(n) and p(n) = f(n)w(n) hence v/p1(n) p2(n) is a threshold
function, where p/p, — 0. In many cases, it is just needed that p; is slightly less
than p,. A more precise definition of threshold function is as follows.

Let O be a monotone increasing property of graphs. A function p, = p¢(n) is
called a lower threshold function (Itf) if almost no graphs in G (n, p¢) have Q, and a
function p,, = p,(n) is called an upper threshold function (utf) if almost all graphs
in G(n, p,) have Q.

A realistic situation is very interesting. In a conference, a pair of mathemati-
cians unknown each other can found a common mathematician friend. The distance
between two vertices x and y in G is the length of a shortest path between them.
The diameter of a graph G, denoted diam(G), is the greatest distance between two
vertices of G. The following result called distance two theorem gives us a good
explanation for this small world phenomenon.

Theorem 4.16 For any function w(n) — oo with w(n) < logn, set

2logn — w(n) 2logn + w(n)
Pe=N— and py, = —

Then pe and p, are ltf and utf for the property of graph having diameter two,
respectively.

Proof. Enumerate of all pairs of vertices {u,v} of G(n, p) as ey, ez, ..., e, with
m= ('2') For ey = {u, v}, let d(u, v) be the distance between u and v. Define

X, = 0d(u,v) <2,
k=11 otherwise,

and X = 37" | Xi. A non-complete graph G has distance two if and only if X = 0.
Since the event d(u,v) > 3 for a pair of non-adjacent vertices is equivalent to that
none of other n — 2 vertices is adjacent to both u and v, it follows that

E(X) =Pr(Xe =1)=(1-p)(1-pH" 2
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Set u = E(X), then

H=E(X) = (’;)u -p)(1=p)" 2

(i) Let p = py = /(2logn + w(n))/n.
Note that
2 2 ,

AR N e R S
7 2(l ro) e i o(1).

Thus Pr(X > 1) < E(X) — 0, i.e., a.a.s. graphs in G(n, p) have diameter at most
two since almost no graph in G(n, p) is complete.

(i) Let p = p¢ = /(2logn — w(n))/n.

Suppose that w(n) < loglogn without loss of generality. Consider

E(X%) = Y E(XiX)) = Ag+ Ay + Ay,
iy

where Ag = Zleiﬁej\:s E(X;X;), i.e., the sum in which is taken over all pairs {i, j}
with e; and e; having s vertices in common. Clearly

2 2 w(n)
H=E(X) ~ (1= p)" ~ Ze " =

which will tend to infinity since w(n) tends to infinity, and

AO = Z E(XLXJ) < (;) (Vl ; 2)(1 _ 17)2(1 _ pZ)Z(n—Z) < qu‘

leiNej|=0
Moreover,
m
Ay = E(Xp) = pu.
k=1
We now estimate A; that should not be big since Ay counts most of pairs. For

e; = {u,v} and e; = {v,w} with |e; N e;| = 1, we consider the probability of the
event d(u,v) > 3 and d(v,w) > 3. Applying Lemma 3.14 with § = p/4, we have

that 3
Pr(|N(v)| < %) < exp {—%} <n%.

This means that |[N(v)| > 3‘%" with high probability. Furthermore, the event
d(u,v) = 3 and d(v,w) > 3 implies that both u and w are not adjacent to any

vertex of N[v]. Therefore, for fixed u, v and w,
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Pr(d(u,v) >3 and d(v,w) > 3)
<n 4 (1=p)yr? <pty e3P
— n—4 + e—3logn+3w/2 — n—4 +I’l_363w/2.
It follows that
A] = Z E(XLXJ) < 3(’;) . (I’l_4 +n_3e3‘”/2) < 1+2/.13/2.

leiNej|=1

Hence
P =EXY) - =Ag+ A1+ Ay — P < 1+ 2137 4,

which and the Second Moment Method yield

S}

Pr(X = 0) < Pr(|X — | > p) < 2 = o(1),
u

proving that a.a.s. no graph in G(n, p) has diameter two with p = py. m

The further solution for diameter of random graphs is as follows. Let d > 2 be an

integer. If
p =n""""log(n?/x))"?,

then
Pr(diam(G ) = d) — e /2,

and
Pr(diam(G,) =d+1) —» 1 - e /2

as n — oo. See Bollobds (2001) for details. The above limit distribution implies that
Do = n'/4=1(21ogn + w(n))"/?

are 1tf and utf of graphs being diameter d, respectively.

The diameter two graphs are of interest in graph Ramsey theory. Recall that a
graph F is a Ramsey graph for r(G, H) if F is of order r(G, H) — 1 such that F
contains no copy of G and its complement F contains no copy of H. Let G, be
a Ramsey graph of order n = r(3, k) — 1. Suppose that G,, is edge maximal for
triangle-freeness. Then G, must be a graph with diameter two. Since the order of
n is k*/log k, the maximum degree of G,, is upper bounded by k < c+/nlogn. It is
likely that the minimum degree of G,, has order 4/n log n hence the order of its edge

density is /log n/n as that in the above theorem.

Problem 4.1 Let G,, be a Ramsey graph of order n = r(3, k) —1 that is edge maximal.
Determine the orders of the minimum and maximum degrees of G,, as k — oo.

The following result gives threshold functions for the property of being connected.
A deeper version of the result will be given in the next section.
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Theorem 4.17 Let w(n) — oo be a function with w(n) < logn. Set

logn — w(n) logn + w(n)
= ——————— u=- .

and p
n n

Then p¢ and p,, are ltf and utf for graphs in G(n, p) with the property of being

connected, respectively.

Proof. Let Q be the family of connected graphs. Since Q is monotone increasing,
we may assume that w(n) < loglogn without loss of generality by Lemma 4.4.
Let Xx = Xx(G) be the number of components of G € G(n, p) that have exactly k
vertices.

(1) We first prove that p = pg is a Itf for Q. Set u = E(X)). Note that (1 — p)" ~
e~ since np? — 0, it follows that

u=EX) =n(1-p)" ' ~ne™ =" 5 o

as n tends to infinity. This may indicate that Pr(X; = 0) — 0, which implies that
a.a.s. graphs have isolated vertices and hence they are disconnected. To this end, we
will use the Second Moment Method. We need to estimate the variance o2 = o%(X)
hence E(X?). First, note that

E[Xi(Xi = D] =n(n-1)(1-p)*"~>,

which is the expected number of ordered pairs of isolated vertices. Indeed, there are
n(n — 1) ordered pairs of vertices, and the vertices of each pair are isolated if and
only if they are neither adjacent each other nor adjacent to any other n — 2 vertices,
which count 2n — 3 edges. Hence

E(X)) = E[Xi(Xi = D]+ E(X) = p+n(n = 1)(1 = p)>~>.
We thus have
o? = (X)) = E[(X1 - )’] = E(X}) -4
=p+n(n=1)(1=-p*7 —n*(1-p)*2
< u+pn*(1 - p)*3.
Since p = (logn—w(n))/n withloglogn > w(n) — coand 1 — p < e™P, we obtain
pn*(1-p)*" = < (1+0(1))(logn)ne™>"?
= (1+ 0(1))(log n)ne2'0en+2wn)

I
= (1+0(1) 22" 200 _,
n

Thus
o2 =02(X) <pu+1.
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This and the Second Moment Method give
o2
Pr(Gp € Q) <Pr(X; =0) <Pr(|X; —p| 2 p) < — —0,
u
proving that p, is a Itf for property of being connected.

(ii)) Now let p = p, = (logn + w(n))/n. Note that if G is not connected, then it
must contains a component of order at most |n/2]. So

[n/2] Ln/2] Ln/2]
Pr(G, ¢ Q) =Pr Z X >1|<E Z X | = Z E(X).
k=1 k=1 k=1

Note that if a set with k vertices induces a component, then any vertex in it is not
adjacent to any vertex out of it. Thus

E(Xi) < (Z)(l - p)kh,

where we ignore the condition that the set is connected. Therefore,

Ln/2]
Pr(Gp ¢0) < D (Z)(l - p)kn=h),

k=1

Let us split the sum into two parts S| and S». Note that ek? < 1 + € uniformly for
k <n3/*, and ne P = e~ @M/n we have

Si= ) (Z)(l—p)k("_k)s > (%e_"pekp)k

1<k<n3/4 1<k<n3/4

IA

el—w(n) )k

3 < Z (1+6)el_“’("))k

1<k<n3/4

((1 +€)

1<k<n3/4

(1+0(1)(1+e)e! @M 0.

IA

Note that for n3/* < k < n/2, we have (Z) < (en/k)* < (en'!*)* and

1
_ k(n-k) _ kn/2 —knp/2
(1-p) <(l1-p) <e <_nk/2’

hence
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S

n34<k<|n/2]
k n4
e e
n3l4<k<n/2
Thus S; + S, — 0, proving that a.a.s. graphs in G(n, p) are connected. O

4.4.4 Poisson Limit

In probability theory, we say that a random variable X has Poisson distribution if it
k
takes non-negative integral values and Pr(X = k) = ’;{—!e_“ for some constant u > 0,
which is the expectation of X (and the variance of X). An elementary fact states that
k
ifX=3",X;~B(np)andnp — pasn — oo, then Pr(X = k) — %e‘”. This
is because for fixed k,

Pr(X = k) = (Z)pk(l -p) T~ (Z)pk(l -p)

k
~ %pke_"lj - %e‘”.

In the last section, in order to show that a.a.s. graphs in G(n, p) are disconnected
for p = (logn — w(n))/n, we in fact have proved that a.a.s. graphs in G(n, p) have
isolated vertices. Let X be the number of isolated vertices in G, of G(n, p), where
p = (logn +x)/n. Then X = 3", X;, where X; is the indicator of the ith vertex
being isolated. Define p’ = Pr(X; = 1). Then

—-X

p'=(1-p)" ~exp(-np) = ==&,
n n

where u = e, and so np’ — u. The distribution of X is close to B(n, p’) in the
sense that Xy, Xp, ..., X, are “almost” mutually independent, so we are expecting
that X has limit Poisson distribution.

The approach to the Poisson paradigm introduced in this section is called Brun’s
sieve for its user T. Brun in number theory. Let us begin with a basic identity called
inclusion-exclusion formula.

In a probability space Q, let X|, X», ..., Xy be 0-1 random variables and set

X=X1+X2+”-+Xg.

As usual, denote by [£] for {1,2,...,¢}. Define So = 1 and
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Sy = Z Pr(X; X, - X, = 1),

where ([f]) denotes the set that consists of all r-subsets of [£]. Note that the elements
of Qsatisfy X; X;, --- X;, = lifandonlyifX;, =1,X;, =1,...,X; =1,andS, =0

for r > . For general r,
X(w
S, = Z ( (r ))Pr(w)

we

as an element w of the sample space for which X (w) = t contributes (; ) terms of the
defined S, above. Here and in what follows, we write the formulas appropriate for
finite sample space. Following the standard notation, we define the falling factorials
by (X)o =1 and

X)r=XX-1)---(X-r+1).

Then

S, = Z (X)r Pr(w) = L)f))

r! r
weQ

The quantity E((X),) is called the rth factorial moment of X.

Theorem 4.18 (Inclusion-Exclusion Formula) For each integer k > 0,

Pr(X = k) = Z(—nf

r>0

(k+r

r

)Sk+r~

Moreover, for each integer m > 0,
2m—1 2m
k + k+
> <—1)f( ’)SW <Pr(X =k) < ZH)’( ’")s,m.
r r
r=0 r=0
Proof. It is easy to see
Pr(X =0)=Pr(X; =0,...,X,=0)
=1-Pr(3i,X;=1)=8So—-S1+ 8 — -+ (=1)’S,.

For general k, using

Skar = Z (X((U)) Pr(w),

= k+r
and interchanging orders of the summation, we obtain
k+r k+r\(X(w)
-1 — _1\"
S (s Z{Z( v )(k+r)}‘°f<‘“)-
r>0 weQ \r=0

For a fixed w hence fixed X = X(w), note that
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k+r X X X -k
_1\" — 1\
(TN Ze ()
r>0 r>0

If X < k, then all terms vanish. If X = k, then one term (r = 0) contributes and the
sum is 1. Finally, if X > k, the sum vanishes since

Z(—l)r(x . k) = (1-1)X*=o.

r=0
Thus
N k+r\( X\ _[1ifX=k,
r k+r] |0 otherwise,
r>0
and .
+r
Z(_l)"( )Sk+r = Z Ok X(w) Pr(w) =Pr(X = k),
r>0 r weQ

where 6;; is the Kronecker delta. To verify the second result, note for all s > 0 and

n>1,
S (f)=co"])
r N

r=0
which can be proved easily by induction on s, hence

N k+r\( X X\ © (X -k
()= G Zer ()
0 if X <k,

1 if X =k,
D) N if x > k.

N

We thus have

S (s
r=0 r

> (S (2] e

we \r=0
- Z Pr(w) + Z (—1)S()]§)(X_f_l)Pr(w)
X(w)=k X(w)>k

=Pr(X = k) +(-1)* Z (X)(X_k_l)Pr(w).
X(w)>k k §

In the last line, elements w with X (w) > k make a positive or negative contribution
depending on whether s is even or odd. )

Suppose that we have defined a sequence of probability spaces and that in the
space Q = Q, we have the preceding situation with £ = £(n). If E((X),) — u"
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as n — oo, then we can make a precise statement about the limiting distribution of
_ ¢

X = Ziz 1 Xl

Theorem 4.19 (Poisson Limit) Suppose that there is a positive number u such that

r

lim §, = —

n—oo r!

equivalently lim, ., E((X),) = u”, for each fixed integer r > 0. Then

,Uk
lim Pr(X =k) = e TH,

n—oo

Namely, the limiting distribution of X is Poisson with mean .

Proof. Refer to the inequalities in the last theorem we have

2m-1

Z( 1)rE((X)k+r) <Pr(X=k) < — Z( l),,E((X)k+r)

Note that for fixed m, we can make the limit (as n — co) term by term to get

2m—1 ,U ,u
o Z (-1) ZO<— )
Since m is arbitrary, the result follows. O

Theorem 4.20 For any fixed real number x, let

_logn+x

n
and let X be the number of isolated vertices in a graph of G(n, p). We have
i
lim Pr[X = k] = —e™#,

n—oo k!

where pu = e~*. In particular, the limiting probability that graph in G(n, p) has no
isolated vertices is exp(—e ™).

Proof. Define X; as the indicator that the vertex i is an isolated vertex, and define
X =3, X;. Then X counts the number of isolated vertices in G, € G(n, p) and

=EX)=n(1-p)" ! 5>

as n — oo. More generally,

r!’

n —r)+(5 n” rn "
Sr = ( )(1 —py ) L S pyr - B
r r.
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where u = e™*. The limiting distribution of X follows from Poisson limit theorem

as desired. O
Corollary 4.2 If logn > w(n) — o as n — oo, then py = M and
Pu = M are ltf and utf for graphs in G(n, p) having no isolated vertices,
respectively.

In the following, we shall show that for the same p = (logn + x)/n,

lim Pr(G has noisolates) = lim Pr(G,, is connected) = exp(—e™™).
n—oo n—00

Thus, in almost every graph, when the last isolated vertex disappears, the graph G,

becomes connected in the evolution of random graph as x increases. Sightly before

it becomes connected, a giant component with only a bounded number of vertices

outside has formed. In fact, the giant component consists of larger components and

the smaller components have great chances to survive.

Theorem 4.21 For any fixed real number x, let

_logn+x

n

and let A denote the event that outside of at most one non-trivial component, all
vertices are isolated. We have
lim Pr(A) =1
n—oo
and
lim Pr[G, is connected] = exp(—e™™).
n—o00

Proof. We begin by identifying the following events in G(n, p).

A: Outside of at most one non-trivial component, G, has only isolated vertices.
B: G, has no isolated vertices.
C: G, is connected.

Then C = AN B and
Pr(B) = Pr(C) + Pr(A N B).

To prove that Pr(C) — exp(—e ™) as n — oo, it suffices to show that Pr(A) — 0
since Pr(B) — exp(—e ™) from Theorem 4.20.

Let X C [n] be the vertex set of the largest component of G and let Y =V \ X.
We do not distinguish a vertex set and the subgraph induced by this set if there is no
danger of confusion. If A holds, then for some X C [n] with |X| > 2,

E: X is connected;
E,: Y contains at least one edge;
E5: There is no edge between X and Y.
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Note that these events are independent. Denote Px, Py and Pxy by the proba-
bilities of the events E, E, and Ej3, respectively. Let |X| = k and |[Y| =m =n — k.
By distinguishing that k < |n/2] or m < |n/2], we have

_ ln/2] n [n/2] n
Pr(A) < PxPxy + PyPxy. 4.3
r()_;(k)xxy mzzz(m)yxy 4.3)

To bound Pr(A), we use the following facts:

1. Px < kk=2pk-1;
2. Py=1-(1-p)(%);
3. ny = (1 —p)mk.

The first fact follows since X must contain one of the k*~2 possible spanning trees.

Consider then the first term on the right hand side of (4.3), we have

ln2) ln2)
Z PxPxy < Z kk—zpk—l(l \ p)k(n—k).
k k
k=2 k=2
The term corresponding to any fixed k£ > 2 can be bounded from above as
Clnkpk—l(l _ p)kn < Clnkpk—le—knp — Cle—kxpk—l -0,
where c| and henceforth ¢; are positive constants. For any £ < n/2,

e—x/Z

i

(1 _p)n—k < e—(n—k)p < e—np/2 —

Thus

n\ . > 1_ N em\k o (e X2 k
( )kk 2pk l(l_p)k(n k) < (_) Kk 2pk 1( )

k k \n
1 e x/2\F n cylogn k
= ——|enp < .
k%p \n logn+x\ +/n

It follows that

SaE n cylogn k
PxPxy <o(1 0
Z(k)XXY_O()+Zlogn+x( N ) -

k>4

asn — oo,
Now set
K=|Vn], and M =[2Vnexp(l-x/2)],

we shall separate the second term on the right hand side of (4.3) into three parts by
K and M. Using the facts that
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e—x/2 m
Vn )

Pxy = (1 _p)m(n—m) < e—m(n—m)p < e—mnp/2 — (

form < [n/2] and (") < (en/m)™, we have
[n/2] Ln/2] —x/2\™
n n ene
5 o= 5l 3 25
m=M m m=M m m>M m\/ﬁ
1 1
m>M

since M — oo as n — oo. On the other hand, if m < M, then we have ¢™? < 2 for
all large n since mp < Mp — 0. Thus

2e %\
Pxy = (1 = p)m=m) < (¢7PmP)™ < ( ) )
n
Consequently,
M-1 M-1 -
2 xym
Z (n)PyP)(yS (n)nyS Z #—)O
m=K m m=K m m>K n:

as n — oo since the sum in the last line is the tail of a convergent series.
Finally, for all m < K,

Py <1-(1 —p)(g),

which tends to zero uniformly on m < K, and it follows that

5 (e =[S 1)) <[5 25)

m=2 m=2 m>2

which tends to zero. Combining these results, we obtain that Pr(A) — 0, completing
the proof. O

Corollary 4.3 If logn > w(n) — o asn — oo, then p; = w and p,, =

log n+w(n)
n

are ltf and utf for graphs in G(n, p) of being connected, respectively.

4.5 Exercises

I.Let p = (1 - e)lo%. How large can m be such that almost every graph in
G (n, p) has at least m isolated vertices?

2.Forn > 2 and p € [0, 1], show that if a graph H with n vertices and e(H) =
Lp(3)]ore(H) = [p(5)1, then H has the maximum probability to appear in G (n, p).



110 4 Random Graph

3. Show that y(Gr+1) = x(Gg) + 1 and w(Gy) = 2 for k > 2, where Gy is
defined from Mycielski’s construction.

4. Forevents Ay,..., Ay, leta = 31 Pr(A;) and b = 2i<jPr(A; N Aj). Prove
that Pr(A; - - - A,) < (a+2b)/a® - 1. (Hint: Let X be the number of A;’s that occur.
Show Pr(X = 0) < a 2E[(X —a)?], and expand the right hand expression. (Lovisz,
1979))

5.Let X1, ..., X, be mutually independent O-1 random variables such that Pr(X; =
1) =p;,andlet X = ¥ | X; (mod 2). Prove that Pr(X = 1) = 1[1 = TI;(1 - 2p;)].
(Hint: SetY; = 1-2X;andY =Y;---Y,, and observe that E(Y) = 1 -2 Pr(Y = -1).

6. (i) Show that the probability that a fixed subset S of G(n, 1/2) is contained in
the neighborhood of a vertex is (n — |S[)2~151.

(ii) Show that almost every graph G in G(n, 1/2) has A(G) > n/2 + +/n and
6(G) < n/2 —+n.

7.(1)In G(3,1/2), let X;(H) (0 < i < 3) be defined as in Section 5.3, in which
we reveal G, € G(3,1/2) one edge at a time. Prove that Xo(H), X{(H), X2(H),
X3(H) is a martingale.

(i) In G(3,1/2),let Y;(H) (0 < i < 3) be defined as in Section 5.3, in which we
reveal G, € G(3,1/2) one vertex at a time. Prove that Y1 (H), Y>(H), Y3(H) is a
martingale.

8. Explain that the neighbors of a vertex of a random graph are likely to be
“spreading” by Theorem 4.8.

9. Let k > 0 be an integer, and let p > (6k logn)/n. Prove that almost all graphs
in G(n, p) have independence number less than n/(2k).

10. Prove that if np — 0 as n — oo, then almost all graphs in G(n, p) are forests.
(Hint: Count the expected number of cycles and apply Markov’s inequality.)

11. Let f(k) be the minimum number of vertices in a triangle-free graph G with
x(G) = k. Compare the upper bounds from different assertions as follows.

(1) From the Mycielski construction mentioned in the excises of the last chapter;

(ii) By refining the proof of Theorem 4.9;

12. Prove that p = n~'/PH) s a threshold function for the appearance of H as a
subgraph of G ,, where p(H) = max{e(F)/|V(F)| : F € H}.

13.* Prove that for d > 2, if p = n'/4~'(log(n?/x))"/4, then Pr(diam(Gp) =
d) — e~*/2. (Hint: Bollobds, 2001).



Chapter 5 Sdates
Lovasz Local Lemma

When applying the probabilistic method, some typical ways are computing expec-
tation, estimating tails of probability and applying Lovasz Local Lemma (Lovész,
born on 1948, recipient of the 1999 Wolf prize and the 2021 Abel prize), etc. In
particular, the Local Lemma allows one to relax the independence condition slightly
in applications, and so we can see improvements by Spencer (1977) on the lower
bounds of the classic Ramsey numbers given by Erdds (1947). We will also give an
overview of the Martingales and triangle-free process.

5.1 Lovasz Local Lemma

In probability theory, if a large number of events are all independent of one another
and each has probability less than 1, then there is a positive (possibly small) prob-
ability that none of the events will occur. Lovdsz Local Lemma allows one to relax
the independence condition slightly, which is often used to give existence proofs.
Differing from the “a.a.s.” argument, we are concerned with the existence of an event
of small positive probability.

Let Aj, Ay, ..., A, be the events in a probability space. In many combinatorial
applications such as a coloring of edges of Ky, any A; is a “bad” event. We wish
that no “bad” event happens, namely

Pr >0 (5.1)

n
A;
-1

4

such that there is a point (a coloring) which is good. e.g., in the proof for the lower
bound of r(n, n), As is the event that S is monochromatic for an n-set S. The event
As is “bad” for us. Therefore, nZS is the event that none of n-sets is monochromatic,
and Pr(NAg) > 0 means that there must be a coloring in which no n-set induces a
monochromatic Kj,.

It is a trivial fact that if
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n
D Pr(4) <1,
i=1
then

Pr(ézi) =1-Pr QAi) > 1—2Pr(A,~) > 0.

Also, if Ay, ..., A, are mutually independent, i.e., any A; is independent of any
Boolean function of all other A;, and Pr(A;) =x; < 1for 1 <i < n, then

n

Pr(ﬁzi) = ]_[(1 —xi) > 0.
i=1

i=1

The Local Lemma may be understood in terms of taking advantage of partial
independence of the events A, Aj, ..., A, so that (5.1) can be ensured with far
weaker condition on the probabilities Pr(A;) than 3!, Pr(4;) < 1.

The argument to follow uses conditional probability. Recall that for events A and B
with Pr(B) > 0, the conditional probability Pr(A|B) is given by Pr(A|B) = Prp(r‘?gf) .

Events A and B are called independent if Pr(A|B) = Pr(A). So two events A and
B are independent if and only if Pr(A N B) = Pr(A) Pr(B), here we admit that an
event of zero probability is independent of any other event. Let us introduce a graph
to describe the dependency of events as follows.

Definition 5.1 (Dependency graph) Let A, Ay, ..., A, be events in a probability
space. A graph D defined on vertex set [n] is called dependency graph for events
A1, Ay, ..., A, if every event A; is independent of any Boolean function of these
eventsin {A; : j ¢ N[i]}, where N[i] is the closed neighborhood of i in D.

This graph must contain edges between the pairs of dependent events, and it contains
such edges only in most applications so the term dependency graph is after. The
original Local Lemma is as follows, see Erdds and Lovasz (1975).

Theorem 5.1 Suppose that d > 1 and each of the events Ay, Aa, ..., A, has prob-
ability p or less, and each vertex in the dependency graph has degree at most d.

If
4dp < 1,

then Pr(N A;) > 0.

The following form of the Lovész Local Lemma is the general form, see Spencer
1977).

Theorem 5.2 Let Ay, Ao, ..., A, be events in a probability space. If there exist real
numbers x1,X2, ..., X, such thatQ < x; < land fori =1,2,...,n,

Pr(A;) < xiI1}.ijepp) (1 = x;),

then Pr(ﬂ:':lz,-) > I, (1 -x;) > 0.
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If i is an isolated vertex in the dependency graph D, i.e., the neighborhood of 7 in
D is empty, then we admit I1jcq(1 —x;) = 1.

Proof of Theorem 5.2. For S C [n], set

Cs = )4;.

jes
The desired result follows directly from the following claim.
Claim If i ¢ S, then Pr(A;|Cs) < x;.

Proof. The proof is by induction on |S|. For |S| = 0, we admit Cs = Q, and so the
assertion is immediate from the hypothesis that

Pr(A;|Cs) = Pr(A;|Q2) = Pr(A;) < x;11}. ijepp) (1 — x5) < x;.
Now assume that |S| > 1 and form a partition S = (S, S»), where
Si={jeS:ijeE(D)} and S;=S\S].
Let us write Pr(A;|Cs) as

Pr(A; N Cs) B Pr(A; N Cs, N Cs,) 3 Pr(A; N Cs,|Cs,)
Pr(Cs) Pr(Cs, N Cs,) Pr(Cs, |Cs,)

Since A; and Cgs, are independent, the numerator
Pr(A; N Cs,|Cs,) < Pr(A;|Cs,) = Pr(4;) < xilljes, (1 —x;). (5.2)
In the following, we bound the denominator. If |S;| = 0, then
Pr(Cs, |Cs,) = Pr(Q|Cs,) =1

and the claim follows. Otherwise, suppose S| = {J1, j2,...,Jr}, where r > 1. Let
Do, Dy, - .., D, be the events defined recursively by

Dy =Cs,, and Dy =Dy_1NAj, for k=1,2,...,r.

They start with Dg = Cs, andend with D,. = Cs. Note thatforeachk =0, 1,...,r-1,
the event Dy, has a form of Cr for some set 7 C S\ {j,}. Thus |T| < |S]. Using the
induction hypothesis on Cr repeatedly, we have
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Pr(Cs) _Pr(D,) _ Px(D,)  Pr(D)

Pr(Cs,) Pr(Do) Pr(D,-1)  Pr(Do)
=Pr(A;,|D,-1) - Pr(A},| Do)

= (1 =Pr(A;,[Dr-1)) --- (1 = Pr(A},|Do))
>(1=x;)---(1-xj)

=ITjes, (1 —x;j). (5.3)

Pr(CSI |CS2) =

Combining (5.2) and (5.3), we have established the claim. O
Note that ﬁ:’:k +1Zi has a form of Cs with k ¢ S. In view of the claim just
established,
Pr(N, A;) = Pr(A;| N, A;) Pr(Nf,A))
= Pr(Ay| (L, A7) Pr(Ay| Ny A7) - Pr(A,]Q)
= (1=Pr(A| N,y Ap)) -+ (1 = Pr(A,|Q))
> I, (1 - x;).

This completes the proof. O

The following is the symmetric form of the Local Lemma.

Corollary 5.1 Suppose that each of the events of A1, Az, . . ., Ay has probability p or
less, and each vertex in the dependence graph has degree atmost d. If e(d+1)p < 1,
then Pr(N_, A;) > 0.

Proof. By taking x; = 1/(d + 1) for 1 = 1,2, ..., n, we shall show
Pr(A;) < xiIl}. ijee) (1 = xj).

Since (1 — ﬁ)d > 1/e for d > 1, it follows that for any i the right side is at least

Lo ! ¢ L B
d+1\ " d+1 ed+) =P
completing the proof. O

Note that the original condition 4dp < 1 can be implied by Corollary 5.1 as
4dp > e(d+1)p ford > 3,andif d = 1,2, then 2~ (1 - 25)4 > p.
We also need the following form of the Local Lemma due to Spencer (1977) who

used it to obtain the lower bound of 7 (m, n). This form is slightly more convenient
for some applications.

Corollary 5.2 Let Ay, Ay, ..., A, be events in a probability space. If there exist
numbers yi,y2, ..., yn such that for each i, 0 < y; Pr(A;) < 1, and

logyi 2 - Z log(1 -y, Pr(A;)),
JiijeE(D)
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then Pr(N_, A;) > 0.

Proof. We may suppose that for each i the probability Pr(A;) is positive. Let x; be as
in the general form of the Local Lemma and set y; = x;/Pr(4;) fori = 1,2,...,n.
Thus the hypothesis of Lemma 5.2 that

Pr(A;) < xill;.ijepp) (1 —x;)

will take the form

1
ST S
Yi 2 U ijeE(D) 1= y; Pr(AA,-)

The assertion follows by taking logarithms on both sides of the above inequality. O

Let us have an example to explain that for the Local Lemma, the dependency
graph D may contain more edges other than these connecting pairs of dependent
events.

Let {1,2,3} be the vertex set of a K3, and let the probability space Q consists
of all 2-coloring of the vertices, in which each vertex is colored in red or blue with
probability 1/2 randomly and independently. Clearly || = 8. For i < j, let A;;
be the event that the edge {7, j} is monochromatic. Note that Pr(A|;) = Pr(A3) =
Pr(Ay3) =1/2, and

1
Pr(A12A13) = Pr(ApAz) = Pr(A13Ax3) = vk

Thus, events A1, A1z and Ay3 are pairwise independent. However, A1, is notindepen-
dentof A13A3 since Pr(A,A13A23) = % * % If we mistakenly use the Local Lemma
by letting E(D) = 0, then we would set x;; = 1/2 with Pr(A;;) < x;;ITp(1 — xx¢).
Thus we had a wrong conclusion that y (K3) were at most two from that Pr(ﬁz,- i) > 0.

Erdds and Spencer (1991) pointed out that the dependency graph D can be
replaced by a graph F on [n] if F satisfies that for each i and each S C [n] \ Ng[i],

Pr(A;| Njes Aj) < xiM1jjepr) (1 = X;).

This condition contains conditional probabilities. To avoid to compute these proba-
bilities in applications and to have a slightly stronger form, we shall specify their idea
further. Let us have the following definitions first from Erdds and Spencer (1991).

A graph F defined on [n] is called lopsidependency graph (which is called as
negative dependency graph in Lu and Székely (2007)) for events A, Ay, ..., A, if
for eachi € [n] and any set S C [n] \ Ng[i],

Pr(A;| Njes Aj) < Pr(A;). (5.4)

It is convenient to say that the event ﬂjeszj for S C [n] \ Np[i] is negative to A;.

Note that a dependency graph is a lopsidependency graph, but the latter may
contain less edges, and the dependency graph in the Local Lemma can be replaced
by any lopsidependency graph.
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Lemma 5.1 (Erdés-Spencer (1991)) Let Ay, Ay, . .., A, be events with lopsidepen-
dency graph F. If there exist x1,x2, . . . , X, such that for each i, 0 < x; < 1 and

Pl"(Ai) < XiHj; ijeE(F)(l —Xj), (5.5)

then Pr(N A;) > 0.
The following form is slightly more convenient for some applications.

Corollary 5.3 Let A1, Ao, ..., A, be events with lopsidependency graph F. If there
exist numbers yi, V2, ..., Yy such that for each i, 0 < y; Pr(A;) < 1, and

logy; > - Y log(1-y;Pr(A))),
JiijeE(F)

then Pr(N A;) > 0.

Similar to that of Theorem 5.1, we have that the condition (5.5) can be replaced
by e(d + 1)p < 1, where d is the maximum degree of the lopsidependency graph,
and the original condition is 4dp < 1.

Since lopsidependency graphs are bipartite for most applications, the local lemma
with lopsidependency graph will be easier to apply.

Let us remark that the dependency of events can be described by a directed graph
instead of a graph. A directed graph D on vertices [n] is called directed dependency
graph for events Ay, Ay, ..., A, if each event A; is mutually independent of the
events in {A; : j ¢ N*[i]}, where N*[i] is the closed out-neighborhood of i. The
condition to guarantee Pr(ﬁz,-) > 0 is that there exist 0 < x1,x2,...,x, < 1 such
that

Pr(A;) < xiIlj. i jyeem) (1 —x;),

where (i, j) is the arc from i to j in directed dependency graph D for the events.

Similarly, the lopsidependency graph in the Local Lemma can be replaced by a
directed lopsidependency graph. However, no matter using lopsidependency graph
or directed dependency graph in the Local Lemma, the idea is to reduce the edges
in the dependency graph.

5.2 Improved Lower Bounds for r(m, n)

The Local Lemma has a lot of applications in many fields. The following theorem
of Spencer (1975) improves the bound of the classic Ramsey number r(n, n) from
deletion method by a factor V2.

Theorem 5.3 We have r(n,n) > (1 - 0(1))?112"/2.

Proof. Consider the random graph space G(N, 1/2). For any S C V(Ky) of size n,
let Ag signify the event that “S is monochromatic”. Define a graph D with vertex set
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consisting of all such S and connect vertices S and T in D if and only if |[SNT| > 2.
Note that the event Ag is independent of any Boolean function of events Ar’s with
T not adjacent to S, and so D is a dependency graph. Thus for any S, its degree d in
D satisfies that

n N
d=N{T:|ISNT| =2} < (2)(71—2)'

Applying Corollary 5.1 with p = Pr(Ag) = 2'-(3) ifep(d+1) < 1, then Pr(NAg) >
0. Thus r(n,n) > N. So it remains to find a positive integer N as large as possible

such that
n N 1_(71)
Y <

As we did before, the left hand side is less than

en® [ eN \"2 2 _enz( n )"—2 eN n-2
2 \n-2 (=12 7 2 \p-2 \2n2n/2 '

Indeed, for any € > 0, if we take N = [(1 —€) V?inZ"/ 2}, then the above will tend to
zero as n tends to infinity. O

The above improvement seems negligible in the light of the gap between the
upper and lower bounds, but this is the best lower bound we can do until now.
Indeed, this is not surprising since the dependencies between events in Theorem 5.3
are not rare compared to the number of events themselves. In the following, we will
see the first application of the general form of the Local Lemma by Spencer (1977),
which improves that obtained in Chapter 3 greatly. One can see that the dependencies
between events in the following result are rare when m is fixed.

Theorem 5.4 Let m > 3 be a fixed integer. Then

b}

(m+1)/2
r(m,n) > ¢ ( )
logn
where ¢ = c(m) > 0 is a constant.

Proof. We give the proof for m = 3 and remain the general case as an exercise. Color
the edges of K in red and blue randomly and independently such that each edge is
colored red with probability p and blue with probability ¢ = 1 — p, where N and
p will be chosen later. For each set of three vertices T, let A7 be the event that T
induced a red triangle. Similarly, for each set of n vertices S, let Bg be the event that
S induced a blue K. It is clear that Pr(A7) = p> and Pr(Bs) = q('zl). Two events
are dependent if and only if the corresponding subgraphs have a pair of vertices in
common. Hence, each event A7 is independent of any Boolean function but at most
3(N —2) < 3N other A7+ events and at most (N),, < N" Bg events; each event Bg
is independent of any Boolean function but at most ('21) (N =2) < n*N/2 Ar events
and at most N other By, events.
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We aim to prove that there exist positive numbers a and b satisfying Corollary
5.3, namely, ap® < 1 and bq(g) < 1 hold with y; = a for each A7 eventand y; = b
for each Bg event. Specifically,

loga > —3Nlog(1 — ap?) — N"log(1 — bg(?)), (5.6)
2
N n

logb > —nTlog(l —ap?) = N"log(1 — bg(®). (5.7)

If such a and b are available, then there exists a red/blue edge-coloring of K in
which there is neither red triangle nor blue K,,, implying r(3,n) > N. To this end,
set

8logn 2

n logn) ’
where ¢ € (0, 1) is a constant to be chosen. Using the basic inequality g = 1-p < e™P
for p > 0, we have

a=2, b=exp(nlogn), p= , and N:c(

N”bq(g) < N"beP(3) < exp {-nlogn} = o(1).

So bq(g) =0(1) and log(1 — x) ~ —x for x = bq(g), and the common second term
in the right-hand side of (5.6) and (5.7)

—N"log(1 - bq(g)) ~ N"bq(g) =o(1).
Clearly ap® = o(1) and so
—-3Nlog(1 —ap?®) ~3aNp® = o(1).

Thus (5.6) holds for all large n.
Finally, note that the first term of the right hand side of (5.7) is asymptotically

N
n_.ap3=

83cnlogn.
> cnlogn

So (5.7) holds for large n if we choose ¢ such that
1> 8. (5.8)

The proof is complete. O

Erdés, Faudree, Rousseau and Schelp (1987), and Krivelevich (1995) generalized
Spencer’s lower bound from K, to a fixed graph H. Li and Zang (2003) generalized
it further to (H, G, ), where the order of G,, is n and e(G,) = n*>~°(1)_ Set

_e(H)-1
p(H) = m,
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where v(H) and e(H) are the order and the size of H, respectively. Sudakov (2008)
proved that for fixed graph H, there exists a constant ¢ > 0 depending only on H
such that every graph G with m edges,

)p(H)/(Hp(H))

(H.G) > c( (5.9)

logm

We also give a generalization as follows, see Dong, Li and Lin (2009).

Theorem 5.5 Let H be a fixed graph with v(H) > 3, and let G, be a graph of order
n with average degree d,,. For all large n,

[l

)P(H)

H,G,) 2 -
r(H,Gp) C(logdn

where ¢ = ¢(H) > 0 is a constant.
The following gives lower bounds for r(K; s, K,,) and r(C;, Kj,).

Corollary 5.4 For fixed t,s > 2, there exists a positive constant ¢ = c(t,s) (or
¢ = c¢(t)) such that

)

)(st—l)/(s+t—2)

r(K:s,Ky) = ¢ (
logn

(t-1)/(1-2)
r(Cy,K,) > ¢ .
( logn )

We can apply Corollary 5.3 to simplify the calculations of (5.6) and (5.7). Indeed,
we can define a lopsidependency graph F by connecting the events of different types,
i.e., those A type events and B type events, that have common edges. Any pair of
events of the same type are positive each other and a pair of events of different types
that do not have common edges are independent. So we only need

loga > —=N"log(1 — bg*'“")),
logh > —e(G,)N"*log(1 - ap*)

instead of (5.6) and (5.7).

Note that the lower bounds of (5.9) and that in Theorem 5.5 cannot replace each
other. To see this, let us assume that G,, is a graph of order n, and m = e¢(G,) =
®(n'**) for some constant ¢ with 0 < a < 1. Then the lower bounds for r(F, G,)
given by two theorems are

(l1+a)p
T+p

n ap n
_ and _ s
“ (aog n)l/a) e ((log n) 1/ (va)

respectively, where p = p(F). So which bound is stronger depends on whether
ap > 1.
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Now, let us see another application. A hypergraph H on vertex set V # 0 is a
pair (V, &), where the edge set & is a family of subsets of V. We say a coloring
of the vertices of a hypergraph H is proper if no edge is monochromatic, and H
is said to be k-colorable if there exists a proper k-coloring for its vertices. Using
the original condition 4dp < 1, Erd&s and Lovéasz (1975) proved that an r-uniform
hypergraph H is 2-colorable if each edge of H intersects at most 2”3 other edges.
As the first application of the Local Lemma, this result becomes a specific problem
in derandomization of the Local Lemma, see e.g. Beck (1991).

Theorem 5.6 Let r > k > 2 be integers. If each edge of a hypergraph H has at least
r vertices and every edge intersects at most k"' J4(k — 1)" other edges, then the
vertices of H can be k-colored such that each color meets each edge.

Proof. Let H be the hypergraph with vertex set V and edge set &, where V = [n] and
& = {e1,e2,...,en}. Let the probability space consist of all k-colorings of V, in
which each vertex is colored by one of these k colors with probability 1/k randomly
and independently. Let A; be the event that e; does not receive all colors. Clearly
Pr(A;) < k(1 —1/k)". By assumption, the degree of the dependence graph of any
event satisfies that d < k"~!/4(k — 1)", and thus the original condition of the Local
Lemma can be applied as 4dp < 1. So the assertion follows. O

Before the above-mentioned result of Erdés and Lovasz, a similar result had
appeared shown by basic probabilistic method as follows.

Theorem 5.7 (Erdds-Selfridge) Ler H = (V, &) be an r-uniform hypergraph. If
|E] < 277, then H is 2-colorable.

Proof. The basic probabilistic method gives

€]
zr—l

Pr(UA,) < Z Pr(A,) = <1,
where A, is the event that the edge e is monochromatic defined as that in the proof
of the last theorem. O

We can improve this result slightly as follows by using lopsidependency Local
Lemma. we leave it as an exercise.

Theorem 5.8 Let r > k > 2 be integers. If every edge of a hypergraph H has at
least r vertices and every edge intersects at most k" |4(k — 1)"*! — 1 other edges,
then the vertices of H can be k-colored such that each color meets each edge.

For k = 2, the bound k" /4(k — 1)"*! — 1 becomes 2”2 — 1 that is asymptotically
twice as the bound 2”73, The bound k" ~!/4(k — 1)" in Theorem 5.6 comes from the
proof by the original condition 4dp < 1, which can be improved as k" /e(k—1)" — 1
by using condition e(d + 1)p < 1. Hence the bound k" /4(k — 1)"*! — 1 can be
improved as k" Je(k — 1) — k/(k - 1).

We have seen that the probabilistic method has a lot of applications with much
better results than that by elementary combinatorial method. However, we shall see
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some other methods have much success for some topics. Let us conclude this section
with two jokes given by Spencer (1994) to say that for many topics, unlike that
for Turdn’s bound for independence number shown in previously, the probabilistic
method cannot provide “exact” results often. The problem that Spencer joked is seri-
ous. In order to have verisimilitude, we write the joked results as usual in “academic
language” but without indices.

The following results are due to Joker, who used the basic probabilistic method.

Theorem (Joker) Let S and T be nonempty sets. If |T| > (lgl), then there exists an
injection f : S = T.

Proof. Consider the probability space consisting of all maps from S to 7, in which
each map appears randomly and independently with the same probability. For any
unordered pair of points x and y of S, let Ay, signify the event f(x) = f(y). Since
for any fixed pair x and y,

{f:S—=T: f(x)=f)}=TI""",

we have Pr(A,y) = 1/|T| and

T |S|)
Pr (Ugx.y1csAxy) < —=—( <1,
( {x,y}c )’) {x’yz}gs |T| |T| 2

which implies that Pr(N y1c Sny) > 0 and hence the desired injection exists. O

Later Joker amused himself by improving the above result by using the Local
Lemma. The new result is tight up to a multiplicative constant.

Theorem (Joker) Let S and T be nonempty sets. If |T| > 2e|S|, then there exists an
injection f : S — T.

Proof. The same as that for Joke 1 but apply the Local Lemma. In the dependence
graph, the vertex Ay, is adjacent to A, withy’ € S\{y} and A, withx" € S\ {x}.
Let d = 2(]S| — 2), then the independence graph is d regular, in which the event
Ay, is mutually independent to all non-neighbors. As p = 1/|T|, the condition
ensures e(d + 1)p < 1, and so the symmetric form of the Local Lemma gives that
Pr(Nix.y}c SZW) > 0, implying the existence of the desired injection. O

5.3 Martingales and Triangle-Free Process*

Most parameters of a random graph are concentrated around their expectations. To
describe such phenomena, martingale is a powerful tool, which may liberate us from
drudgery computations.

Let X and Y be random variables on a probability space Q. Given Y = y with
Pr(Y = y) > 0, we define a conditional expectation E(X|Y = y) as
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E(X|Y =y) = ) xPr(X =x|Y =),

X

which depends on y. As Y is random, we have a new random variable

E(X|Y).
For an element w € Q, if Y (w) = y, then E(X]Y) takes value E(X|Y = y) at w.
Lemma 5.2 E[E(X|Y)] = E[X].

Proof. From the definition, we have

E[E(XIV)] = ) E[XIY = y] Pr(¥ =)

y

= Z (ZxPr[X =x|Y = y]) Pr(Y =y)
y x

= Zx (Z Pr[X =x|Y =y]|Pr(Y = y))
x y

= ZxPr(X =x) = E(X)

as asserted. O
A martingale is a sequence X, X1, ..., X, of random variables such that for
0<i<m,
E(Xin|Xi) = Xi.

Namely, E(X;11]|X; = x) = x for any given X; = x.

Imagine one walks on a line randomly, at each step he moves one unit to the left
or right with probability p, or stands still with probability 1 — 2p. Let X; be the
position of i step. This is a martingale as the expected position after i + 1 steps equals
the actual position after i steps.

Let us look at some martingales used in graph theory. The first is called the edge
exposure martingale on chromatic numbers, in which we reveal G, one edge-slot
at a time. Let the random graph space G (n, p) be the underlying probability space.
Set m = (), and label the potential edges on vertex set [n] by e, €2, ..., ey, in any
manner. We define Xo(H), X,(H), ..., X,,(H) for a given graph H on vertex set
[n], which are random variables if H is a random graph in G(n, p). Let Xo(H) =
E(x(Gp)). For general i,

Xi(H)=E[x(Gp)lej € G, ifandonlyif e; € H,1 < j <i].

In other words, X;(H) is the expected value of E[x(G )] under the condition that
the set of the first i edges of G, equals that of H while the remaining edges are
not seen and considered to be random. Note that Xy is a constant E(y(G)) and

Xn =X(H)
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In Fig. 4.1, the probability space is G(3,0.5), so Xo = E(x(Gp)) = 2, and
X (H) =2.25ife; € E(H),and X|(H) = 1.75 otherwise. Thus E (X{|Xp) = 2 = X.
The random variables X, and X3 take 4 values and 8 values, respectively, and
E(X;41|X;) = X; fori =1,2.e.g.

1 1
E(X3|X; =2.25) = 1(3 +3x%x2), and E(X3|Xp =2.5) = 5(3 +2).

Hence this is a martingale on the random space G(3,0.5).

€2 €3

€1

>R

/

Xo X1 X X3 H

Fig. 4.1 An edge exposure martingale

The second is called the vertex exposure martingale on chromatic numbers, in
which we reveal G, one vertex-slot at a time. Let the random graph space G(n, p)
be the underlying probability space. We define Y1 = E(x(Gp)) and

Yi(H) = E[x(Gp)|Ei(G)p) = Ei(H)],

where E;(H) is the edge set induced by the vertex set {1,...,i}. In other words,
Y;(H) is the expected value of £ x (G )] under the condition that the set of the edges
of G, induced by the first i vertices equals that of H while the remaining edges are
not seen and considered to be random. Note that Y; is a constant E(x(G,)) and
Y, = x(H). Note that the vertex exposure martingale is a subsequence of the edge
exposure martingale.

In Fig. 4.2, the probability space is also G(3,0.5), and Y1 = E(x(Gp)) = 2, and
Y>(H) =2.25if e; € E(H), and Y,(H) = 1.75 otherwise. Thus E(Y»|Y}) =2 = X;.
The random variable Y3 take 8 values, and similarly E(Y3|Y;) = Y». e.g. E(Y3|Y, =
2.25) = (3+2+2+2)/4 =2.25. Hence this is a martingale on the random space
G(3,0.5).
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Fig. 4.2 A vertex exposure martingale

Lemma 5.3 If X is a random variable with E(X) = 0 and |X| < 1, then
E(eIX) < e12/2
forallt > 0.

Proof. For fixed ¢t > 0, set

el+e! el -e

+ 9’
2 2 7

h(x) = -1<x<1.

Note that the function f(x) = e'* is convex, and h(x) is a line through the point
(=1, f(=1)) and (1, f(1)) as f(—1) = h(-1) and f(1) = h(1), hence e’* < h(x),
and

E(e) < E(h(x) = <5
by noting that E£(X) = 0, and thus the assertion follows by Lemma 3.4. O
Theorem 5.9 (Azuma’s Inequality) Ler Xy, X1, ..., X, be a martingale with
| Xiv1 — Xi] <1

forall 0 < i < m. We have for any A > 0,
Pr[X,, — Xo = AWm] < e_’l2/2,

and similarly, Pt[Xp, — Xo < —Am] < e~ /2.
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Proof. We may assume that Xy = O by translation. SetY; = X; - X;_1,i = 1,2,...,m.

Clearly, |Y;| < 1 and E(Y;|X;-1,...,Xp) = 0 since Xy, X, ..., X;; is a martingale
from the assumption. Thus Lemma 5.3 yields that

E(einlX,-_l, .. Xp) < etz/z
for any ¢ > 0. Therefore,
E(elxm) — E (e[Xm_letYm)
= E (™ B X0, Xo)
< e’z/zE(e’X’"‘l).
This and the induction gave E (e'Xm) < ¢™*/2, Using Markov’s Inequality, we obtain

E(etXm) emtz/Z

_ tXom tAm
Pr(X,;, > AVm) =Pr(e’™ > e ) < etANm T ptdNm

Now the assertion follows by letting ¢t = A/+/m. m|

A function f of a graph parameter is said to satisfy the edge Lipschitz condition
if whenever H and H’ differ in only one edge then |f(H) — f(H’)| < 1. It satisfies
the vertex Lipschitz condition if whenever H and H’ differ in only one vertex then
|f(H) — f(H")] < 1. e.g., the chromatic number y(G) satisfies both Lipschitz
conditions.

Theorem 5.10 If f satisfies the edge Lipschitz condition, then the corresponding
edge exposure martingale satisfies | X;+1 — X;| < 1. If f satisfies the vertex Lipschitz
condition, then the vertex exposure martingale satisfies | X;+1 — X;| < 1.

Now we conclude this section with a simple application on the chromatic number
by Shamir and Spencer (1987) by using Azuma’s Inequality.

Theorem 5.11 For the random graph G = G (n, p),
Pr|x(G) — | > AVn — 1] < 2e /2,

where u = E(x(G)).

Proof. Consider the vertex exposure martingale X1, ..., X, on G(n, p) with f(G) =
x(G). A single vertex can always be given a new color so the vertex Lipschitz
condition applies. Now the assertion follows from the Azuma’s Inequality of Theorem
5.9 immediately. O

When A4 — oo arbitrarily slowly, then this result shows that the distribution of
x(G) is “tightly concentrated” around its expectation.

It is often difficult to show the existence of small events. The Local Lemma is a
tool for such proof that improved most lower bounds from basic probabilistic method.
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The key for the proof of the Local Lemma (see next chapter) itself is the conditional
probability. A revolutionary idea for finding the small events is also “conditional”. If
we know a certain condition in which the event is likely to appear, then the probability
for event is large under the condition. In other word, we try to switch a small event
to be a large one conditionally. However, we may encounter difficulties to finger the
conditional probability out.

Obtaining the right order of magnitude of r(m, n) even r(3,n) was certainly a
challenge in decades. A celebrated result of Kim (1995) showed that the order of
r(3, n) is n? /log n, which was obtained again by Bohman (2009). They used different
analysis on the same random graph process, called the triangle-free process. For
general constrained graph process, see, e.g., Rucifiski and Wormald (1992), Erdés,
Suen and Winkler (1995), Bollobds and Riordan (2000), and Osthus and Taraz
(2001).

The triangle-free process can be described as follows. We begin with the empty
graph, denoted by G, on N vertices. At step i we form the graph G; by adding a new
edge to G;_; chosen uniformly at random from the collection of pairs of vertices
that neither appear as edges in G;_; nor form triangles when added as edges to G;_;.
The process terminates at a maximal triangle-free graph Gy, for which the random
variable M is the number of edges of G . Note that a maximal triangle-free graph
is connected and the number of edges in a triangle-free graph of order N is at most
N?/4 (see Chapter 7), we have

N2
N-1<M< —.
4

However, Bohman (2009) proved that a.a.s.

c1N3/2\/10gN <M< C2N3/2\/10gN.

From a result in Chapter 3, we have that the independence numbers of such graphs
are at least Q(4/N log N). Remarkably, Kim and Bohman showed that a.a.s. the
independence numbers of such graphs are at most O (4/N log N), which implies that
r(3,n) > Q(n*/logn).

Theorem 5.12 For some constant ¢ > 0,

an

r(3,n) =

logn’

Let us talk a bit more on the process employed by Bohman. For a set V, let V() be
the set of all pairs u, v of V, which is the edge set of complete graph on V. The vertex
set of our complete graph of order N is on [N] = {1,2,..., N}. In the evolution of
the triangle-free process, we shall track some random sets. Recall that G; is the graph
given by the first i edges selected by the process. The graph G; partitions [N]? into
three parts: E;, O; and C;. The set E; is simply the edge set of G;. A pair of [N]?
is open, and in the set O;, if it can still be added as an edge without violating the
triangle-free condition. A pair of [N] () is closed, and in the set C;, if it is neither an
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edge in the graph nor open; that is, a pair ¢ = {u, v} isin C; if e ¢ E; U O; and there
exists a vertex w such that {u, w}, {v,w} € E;. Note that e¢;; is chosen uniformly
at random from O;. That is to say, each edge of O; has the same probability 1/|0;|
to be chosen as e;,;. We do not express this as Pr(e;+; € O;) = 1/]0;]| since only
these edges in random set O; are available. We refer the reader to Kim (1995) and
Bohman (2008) for details.

Some improvements on the constant have been obtained. Bohman and Keevash
(2021), and independently Fiz Pontiveros, Griffiths and Morris (2020) improved the

lower bound to

n2

1
r(3,n) > (4_1 —0(1)) Togn’

With more complicated analysis on K4-free process, Bohman (2009) also improved
the known lower bound of r(4,n), and generally, Bohman and Keevash (2010)
obtained that

(logn)/(m=2), (5.10)

)(m+l)/2

r(m,n) > c (
logn

which improves the lower bound of r(m, n) obtained from the Local Lemma by a
factor (logn)!/(m=2),

5.4 Exercises

1. Use the example in the end of Section 5.1 to explain

(i) Pairwise independent events Ay, . . ., A, are not necessarily mutually indepen-
dent.

(ii) Pairwise independent events Ay, ..., A, with Pr(4;) < 1 may not imply that
Pr(NA;) > 0.

2. Using Lovdsz Local Lemma, give lower bounds for r(K,) and ri(Ku,»),
compare them with that by basic probabilistic method.

3. Prove the lower bound in Theorem 5.4 by taking
p - C]N_z/(m+l), n= CQNZ/(m+1) log N,
a=c3, b=exp {C4N2/(”’+1) log? N} ,
where c¢;,i = 1,...,4, are constants such that the Local Lemma applies.

4. Let H = (V, &) be a simple hypergraph. Prove that ) oy d(v) = Y c¢ lel,

and
Z d2(v) = ZZd(v) = Z Z len f].

vev ecE vee ecE fe&
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5.* Let r > 2 be integers. Prove that if every edge of a hypergraph H has at least
r vertices and every edge intersects at most 2”2 — 1 other edges, then the vertices
of H can be two colored such that each color meets each edge. (Hint: Using Lemma
5.1)
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Chapter 6 Sdates
Constructive Lower Bounds

To compare the lower bounds obtained from probabilistic method previously, we will
take a look at the lower bounds of the classic Ramsey numbers from the constructive
method. In this chapter, we shall introduce a disproof of a conjecture of Borsuk
in geometry and related properties of intersecting hypergraphs. The result on the
conjecture of Borsuk reveals a general idea in Ramsey theory that exceptions appear
only in cases of small sizes. Recently, Conlon and Ferber (2021) made improvements
on the lower bounds of multicolor classic Ramsey numbers r¢ (¢) for k > 3, which
will be introduced in the last section.

6.1 Constructive Lower Bounds for r (s, t)

In this section, let us pay attention to non-diagonal constructive lower bounds for
r(s, t). The first constructive lower bound

r(3,1) > Q%) 6.1)

was found by Alon (1994). Some years later, Codenotti, Pudldk and Resta (2000) gave
the same constructive lower bound by using an algebraic argument. Subsequently,
Alon and Pudldk (2001) generalized the construction of Codenotti, Pudldk and
Resta (2000) to give polynomial lower bounds for r(s, ) with the exponent of the
polynomials increasing with s. i.e.,

r(s,t) > exp {eVlog s/loglog s - logt} .

For s = 4,5, 6, the constructive lower bounds were improved by Kostochka, Pudlak
and R&dl (2010). We will give a combinatorial proof of the lower bound of (6.1) by
Kostochka, Pudldk and Rodl (2010).

Let G be a graph. The superline graph, denoted by Hg, of G is constructed as
follows. The vertices of Hg are the edges of G, and ef is an edge in Hg if e and
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f are disjoint edges of G and there exists an edge g of G that connects an end of e
with an end of f (i.e., if the edges e, g and f form a path in G).

Lemma 6.1 For every triangle-free graph G and its superline graph Hg, a(Hg) <
a(G).

Proof. Let A be an independent set in Hg, which is a matching in G. Let B be the
set of vertices in G of the edges in A. Then the subgraph G[B] of G induced by B
has no triangles and does not contain paths of length 3. So, the components of G[B]
are stars, hence G [ B] has an independent set of size |A|. O

A projective plane of order ¢, denoted by PG (2, g), consists of a set X of g*+g+1
elements called points, and a family £ of subsets of X called lines, satisfying the
following properties:

(P1) Every line has g + 1 points.
(P2) Any pair of distinct points lie on a unique line.

Lemma 6.2 A projective plane of order q has the properties as follows.

(P3) Any point lies on q + 1 lines.
(P4) There are g* + q + 1 lines.
(P5) Any two lines meet at a unique point.

Proof. To prove (P3), we fix a pointx € X. There are g(g + 1) points different from x,
each line through x contains ¢ further points, and there are no other overlaps between
these lines (apart from x). So g(q + 1) points of X \ {x} are partitioned equally into
parts by these lines. Therefore there must be g + 1 lines through x with no remaining
point.

To show (P4), let us count the number of the pairs (x, L) with x € L in two ways.
Since each line contains g + 1 points and each point lies on g + 1 lines from (P3), we
obtain | L|(g+1) = (¢g>+qg+1)(g+1).S0 | L] =¢*+q+ 1.

Finally, we show (P5). From the property (P2), any two lines meet at most one
point. Suppose that there are two lines L and L; that have no point in common, and
we fix a point x € L. From the property (P3), there are ¢ lines different from L,
that contain x. Therefore, by the pigeonhole principle, one of these g lines contains
at least two points of L, as each line has g + 1 points. This leads to a contradiction
to (P2). ]

We now have the following modification of the superline graph construction.
Let G be a bipartite graph with bipartition of vertices (U, V) and let < be a linear
ordering of the edges of G. We denote by H the graph whose vertices are the edges
of G and a pair {uv,u’v'}, withu # u’ € U and v # v/ € V is an edge in Hé if
either uv < u’v’ and uv’ is an edge in G or u’v’ < uv and u’v is an edge in G. (In
particular, H is a subgraph of Hg.)

Lemma 6.3 For every bipartite graph G on n vertices, every bipartition of G and
every ordering < of its edges, a(Hg) < n.
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Proof. Let A be a set of n edges of G. Then A contains a cycle. Let

(MO,V(),ul,Vl, s Uk—1,Vi—1, U0)

be a cycle formed by some edges in A. Then for some 0 < i < k, u;v; < Uj41Vit
(where we count i + 1 modulo k). Hence {u;v;, u;4+1vi+1} is an edge in Hg, which
proves that A is not an independent set. O

Proof of (6.1). Let G, be the incidence graph of the classical projective plane
PG(2,q) with ¢> + g + 1 points and ¢ + g + 1 lines (by Lemma 6.2 (P4)), where
q is a prime power. Thus G is a regular bipartite graph of degree g + 1. Let < be
an arbitrary ordering of the edges of G,. We use the graphs H, Eq. The following

properties can be easily verified:

1. H; has (q+1)(q*+q+ 1) vertices.
q
< i }
2.H G, 18 triangle-free.

Indeed, if pil; < paly < p3lz would form a triangle, then (py, I3, p2, [2) would
bea Csin Gy.

3. The largest independent set in H7, has size at most g*+q+1,by Lemma 6.3.
q

Therefore, the lower bound (6.1) follows. O

6.2 Constructive Lower Bounds for r ()

Attempts have been made over the years to construct Ramsey graphs with small
cliques and independent sets. Abbott (1972) gave Ramsey graph of order n by
a recursive construction with cliques and independence sets of size cn'°82/1023,
Nagy (1972) gave a construction reducing the size to cn'/3. The breakthrough by
Frankl (1977) gave the Ramsey graph of order n with cliques and independent
sets of size smaller than n€ for any € > 0. This result was further improved to
ec(logn)** (loglogm)!/* 4y Chung (1981) by using different construction. The current
best construction by Frankl and Wilson (1981) implies that there exist Ramsey graphs
of order n with cliques and independent sets of size at most € (1087 loglog ")1/2, hence
yielding a super-multiplicative lower bound. It would be a challenge to give a lower
bound for r;(¢) of the form (1 + ¢€)” for some € > 0, which is a problem proposed by
Erdés.

Recall a hypergraph H on vertex set V # 0 is a pair (V, &), where the edge set
& is a family of subsets of V. All hypergraphs are simple, that is to say, there is no
loop and any pair of edges are distinct as subsets of V (no multiedges). We assume
that e # 0 for all e € &. Let V(") be the set of all r-subsets of V. If & ¢ V),
then the hypergraph is called r-uniform. So a graph is a 2-uniform hypergraph. The
hypergraph (V, V(")) is called complete, denoted by K,(lr) , where n = |V|. We shall

write K,(lz) for K, as usual.
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Proposition 6.1 Ifvectors x1,x2, . .., Xy are linearly independent in a linear space,
then m is at most the dimension of the space.

In the following result, the vertex set consists of all residents in a town, named
Oddtown, and edge set consists of all clubs in the town. The citizens form these
clubs by some rules, from which the name of the town came. These rules are a bit
odd, see Berlekamp (1969).

Theorem 6.1 (Odd-town-theorem) If a hypergraph H = (V, E) has the following
properties:

(i) |e| is odd for all e € &,

(ii) le N f|is even forall e, f € E with e # f,
then |E| < |V|.

Proof. Assume |V| =nand & = {e}, ea, ..., e, }. Define a 0-1 vector
ei = (ei1, €2, ..., €in),

where e;; = 1 if the vertex v; € ¢; and 0 otherwise. Then all these row vectors form
an m X n matrix M, which is the incidence matrix of /. Since all ¢; are elements
of the linear space of n-dimensional vectors over the field F, = {0, 1}, the inner
product of x = (x1,x2,...,x,) and y = (¥1,y2,...,¥n) is

X-y=X1y1tx2y2+ -+ XpYn.

Then the two conditions can be nicely expressed by

[t =,
“CT0if i

We claim that ey, e», . . ., e, are linear independent. Indeed, assume
/1161 +/1262 + .- +/lmem = 0,

where A; € F, for 1 <i < m. Itis clear that A; = 0 by multiplying both sides of the
above equation by e;. Therefore, the conclusion m < n follows from Proposition 6.1
immediately. O

We will use the following result by Fisher (1940).

Theorem 6.2 (Fisher Inequality) Let H = (V, &) be a hypergraph. If there is an
integer A > 0 such that any pair of distinct edges e and [ of H satisfy e N f| = 4,
then

&l < |V].

Proof. Let |V| = n and & = {e|,e2,...,e,}. If 1 = 0, then it is trivial to see
m < n. If 2 > 1 and there is an edge, say e, with |e;;| = A4, then e, C ¢; and

eiNej=epforanyi # j. Sete; = ¢; \ ey, and denote & = {e’l,eé,...,e;”_l},



6.2 Constructive Lower Bounds for r () 133

we obtain a hypergraph H’ = (V '\ e,,, &) which satisfies the condition in case 1.
Thus m — 1 < n — A. It follows that m < n.

In the following, we assume that 4 > 1 and any edge contains at least 4 + 1
vertices. In the proof of Oddtown-theorem, e; is viewed as a row vector of the
incidence matrix of . But now we consider e; as an element of the linear space of
n-dimensional vectors over R (real numbers). In this space, the inner product will be

_ A+ wifi=,
éirei= :/l ifi # j,
where u; = |e;| — A > 1is an integer.
Claim ej,es,..., e, are linearly independent.

Proof. Assume
aje;+arer + - +ame, =0,
where each @; for 1 < i < m is a real number. Taking the inner product of both sides

by e;, we have
Alar+aa+ -+ ay) +aip; =0.

Setting 5 = Z;”:l aj, we obtain A8 + a;u; = 0, which yields
A
a; = ——ﬂ.
Hi
Summing both sides of the above equation over 1 <i < m, we get

a1

B==-2 — |5

=1 1

implying that 8 = 0 since otherwise the signs of both sides would be different.
Therefore @) = @ = - - - = @, = 0 and the proof of the claim is complete. ]

Now the desired inequality m < n follows from the above claim and Proposition
6.1 immediately. m

It is easy to give a lower bound of form cn? for r(n,n), but it is not trivial to
give a lower bound of the form cn?. The following is a constructive lower bound for
r(n,n) due to Nagy (1972), which is much weaker than cn2"/? that given by using
the probabilistic method. However, the construction itself is interesting.

Corollary 6.1 For any integer n > 4, r(n,n) > (";1)

Proof. Associate each vertex of complete graph K "7 with an edge of Kr(l3—)1' Color
3

an edge xy of K &) by red if the corresponding edges e, and ey, of K,(i)l intersect
in one element, otherwise (e, and ey, intersect in zero or two elements) color xy by
blue. The Fisher inequality implies that there are at most n — 1 such edges ¢ in K,(f_)l
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that satisfy the above property, which corresponds to a red clique of order at most
n — 1, so there is no red K,,. Similarly, the Oddtown-theorem implies that there is no
blue K,,. Thus the claimed lower bound follows. ]

Now we shall try to obtain a super-polynomial lower bound for r(n,n). In the
above proofs of Theorem 6.1 and Theorem 6.2, the linear spaces are spaces of
vectors. For some cases the linear spaces are spaces of functions. For example, the
set of functions f : Q — F, where Q is an arbitrary set and F is a field, forms
such a space. The dimension of the space is |Q| as follows. Another example is
that consisting of all homogeneous polynomials of degree k in n variables over a
field. The dimension of this space is ("*} "), which can be seen as the k-repeatable
combinations of n-element sets. Specifically, if n = k = 3,

3.3

3 .2 2 2
X0 YL, T, XY, Xy, X

2, x2%, ¥z, yZ2, xyz

form a basis, which consists of 10 polynomials of degree 3.
To check the linear independence in spaces of functions, we may need the follow-
ing propositions.

Proposition 6.2 (Diagonal Criterion) For 1 <i < m, let f; : Q — F be functions.
If a; € Q are elements satisfy that

£0if i=j
s {2y 2]

then fi, f>, ..., fm are linearly independent.

Proposition 6.3 (Triangular Criterion) For 1 < i < m, let f; : Q — F be
Sunctions. If a; € Q are elements satisfy that

£0if i=]
san{Zof (2]

then fi, fa, ..., fm are linearly independent.

In order to generalize Odd-town Theorem, we shall introduce a definition as
follows. For a set L of integers and integers p, s, we shall write

s€L (mod p)

if s = ¢ (mod p) for some ¢ € L. The negation of this statement will be written as
s ¢ L (mod p).

The following result is due to Deza, Frankl and Singhi (1983), which is a gener-
alization of the corresponding result (Corollary 6.2) of Ray-Chaudhuri and Wilson
(1975).

Theorem 6.3 Let p be a prime and let L be a set of integers. If H = (V,E) is a
hypergraph with |V| = nand & = {e1, e, . . ., ey} satisfying
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le;|] ¢ L (mod p) for 1<i<m,
le;Nejl € L (mod p) for 1<i#j<m,

IL|
n n n n
< + +et = .
w2 o)+ () )= 2400
Proof. The proofis due to Alon, Babai, Suzuki (1991). Define a polynomial F(x, y) :
FI’,’ X F;‘ — Fp as

then

F(x,y) =Iger(x-y—10)

in 2n variables: x,y € F I’;, which are n-dimentional vectors with coordinates from
the p-element field F),, where x - y is the inner product, and the integers in L are
viewed as elements of F),. Let y; € F); be the incidence vector of e; (1 <i<m).
Define f; : F); — Fp such that

Ji(x) = F(x, ).
The condition of the theorem ensures

#0if i=,
fi(yf){:Oif i# .
This shows that the restricted fi, f>,..., fi, are linearly independent from the di-
agonal criterion. These equations remain true if the domain of f; is restricted to
Q={0,1}" € F), where {0, 1} is a subset of F, hence Q is a subset of F,.

A polynomial in n variables is called multilinear if its degree in each variable is
at most one. In {0, 1}, xl.2 = x; for each variable (that takes values O or 1 only) and
thus every polynomial f; : € — F), is multilinear. Note that the degree of such a
polynomial is at most |L|, so the dimension of the space consisting of all multilinear

polynomials is
IL]
n n n n
o)+ 5)++(i) = 2 0)

which is an upper bound of m. O

Let us remark that if L = {0} and p = 2, the above theorem implies that the
number of clubs in Oddtown is at most 1 +n, slightly weaker than that obtained from
Oddtown-theorem.

Unlike that in Theorem 6.3, the hypergraph in the following corollary of Ray-
Chaudhuri and Wilson (1975) should be uniform, and the intersecting size is not
considered in modular form.

Corollary 6.2 Let L be a set of integers. If H = (V, &) is a uniform hypergraph with
[VI=nand & = {ey, ey, ..., e} satisfying

le;Nej|l €L forall 1<i#j<m,
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e oo )-S50

Proof. Assume that # is t-uniform. Select a prime p > ¢ and set

then

L' =L\{r}.

If t ¢ L, then we can apply Theorem 6.3 to L’ by noting |e;| = ¢ ¢ L’ for each
I<i<mandle;Nejle L=L"foralll <i#j<mIfteL,thensince p > 1,
we can also have that foreach 1 <i < m, |e;| =t ¢ L’ (mod p) and |e; Nej| € L
implying |e; Ne;| € L’ (mod p) forall 1 <i # j < m. It follows from Theorem

6.3 that
<"+ "+
=10/ L]

as desired. ]

Note that the above corollary can be viewed as a generalization of Fisher Inequality
for uniform hypergraphs by taking L = {1}.

‘We now have a constructive super-polynomial lower bound for diagonal Ramsey
number r, (7).

Construction Let p be a prime and let n > 2p2, and let V be a set of size n. Define
a complete graph K of order N = (pz"_l), whose vertex setis V(P*~1) i.e., the edge

set ofK,(,Pz_l). Color an edge {e, f} of Ky by red if |en f| # p — 1 (mod p), and

blue otherwise. O

If K,,, is a monochromatic red clique, then we set L = {0, 1, ..., p — 2}. For any
vertex e of K,,, as |e| = p> — 1 we obtain |¢| = p — 1 (mod p), and so |e| ¢ L
(mod p). Moreover, any pair of distinct vertices e and f satisfy [eN f| € L (mod p)
as the edge {e, f} is red hence |e N f| # p — 1. So Theorem 6.3 yields

’"S(g)+(’11)+"'+(pr—ll)<2(pr-11)’

where the last inequality follows from induction on p.
If K,,, is a monochromatic blue clique, then we set

L={(p-D,p+(p-1,....(p=-2)p+(p-D}
From the construction, any pair of distinct vertices ¢ and f of K}, satisfy |en f| = p—1
(mod p). Thus |e N f| € L, and Corollary 6.2 implies m < 2(p’11).

Note that for p = 2, this construction is exactly what is given by Nagy in the proof
of Corollary 6.1.

Let ¢t = 2(p'i1). Then (pzn,]) > ctP*! for all large n, where ¢ = ¢, > Ois a
constant depending only on p. So for any fixed p, we have
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ra(t) > etP*l.

Basing on the above construction, Frankl-Wilson (1981) obtained the following
super-polynomial lower bound for r; (7).

Theorem 6.4 Let w(t) = log? t/(4loglogt). For any € > 0 and large t,
ra(t) > exp{(1 — e)w(t)}.

Proof. Let n = p® and let p be the largest prime such that 2(p”_31) < t. From

Construction 1, there is no monochromatic K;. For any € > 0 and large ¢, using the
3

Prime Number Theorem and elementary estimate of (pp_l) by Stirling formula, we

obtain that
(1 —€)logt (I+e€)logt

<p< .
4loglogt 4loglogt

An easy calculation confirms that the number of vertices of the complete graph
satisfies

3
(pf_ 1) > exp{(1 - )w(r)}

as desired. ]

As a complete r-uniform hypergarph on vertex set V is K,(lr> = (V,v")), we will
write a r-uniform hypergraph H on V as H C K,(,r) in the sence that the edge set
of H is a subset of V"), Note that the number of edges of a r-uniform complete

@2p-1) .
hypergraph K apo1 18

(4p - 1) 24p-1
2p-1 \2mp

as p — oo. The following result says that forbidding a single intersecting size p — 1
in this hypergraph, the number of edges must decrease significantly.

Corollary 6.3 (Omitted Intersection Theorem) Let p be a prime. If hypergraph
HCK i;’i —11) satisfies that no pair of edges of H intersect in exactly p — 1 elements,
then the number of edges of H is less than

2(4” - 1) < 1.7548%71,
p—1

Proof. Set L = {0,1,...,p —2}. Forany ¢; € &, since |e;| = 2p — 1, we obtain that
le;| ¢ L (mod p). For e;,e; € & with e; # e, we have |e; Ne;| # p — 1, which
implies that |e; N e;| € L (mod p). Hence H satisfies the conditions of Theorem
6.3, it follows that

p-1
4p -1 4p -1 4p-1
|8|sZ( i )<2(p_1)<(1.7548) ,

i=0
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where the second inequality is an exercise. O

Using Omitted Intersection Theorem, one can construct a graph H, for a prime p
by associating its vertices with edges of K ii’i Il), in which two vertices are adjacent

if and only if the corresponding edges of Kiifi ;1) intersect in exactly p — 1 vertices.

The order of H, is (32 :i) Onmitted Intersection Theorem gives an upper bound for
the independence number of H, as

a(H,) < 2(4” _11) < (1.7548)4~
oo

since any hypergraph with more than 2(45:11) edges must contain two edges e and f

such that |[e N f| = p — 1. Therefore, we obtain that
4p-1
V(H)| (1)

4p-1
D iy (1.1397)*7 1,

X(Hp) =

We will apply this graph to disprove a conjecture in the next section.

6.3 A Conjecture of Borsuk

The essential concept in Ramsey theory is that exceptions occur in small size of the
structures. Sometimes the size can be the dimension of a linear space. This is exactly
the case we shall discuss in this section. These small size cases may have bigger
effect since they are more concrete, which is possible to lead to an error.

In 1933, Borsuk conjectured that every set in real space R can be partitioned into
d + 1 sets of smaller diameters. Borsuk’s paper is famous as it proved an important
conjecture of Ulam and contains the Borsuk’s conjecture of himself.

The conjecture has been proved for d = 1,2,3 and also for all d if the set is
special, like centrally symmetric, having smooth surface.

Let f(d) be the minimum integer such that every set in R can be partitioned
into f(d) sets of smaller diameter. Borsuk’s conjecture was f(d) < d + 1. An upper
bound as f(d) < (\/m + 0(1))? was obtained by Schramm (1988). This bound
looks quite weak compared with the Borsuk’s conjecture, but it suddently seemed
reasonable when Kahn and Kalai (1992) constructed a set giving that f(d) > 1.2V4,
It is not only dramatic but also very interesting as the set of counterexample contains
just only finite points in R¥.

Theorem 6.5 If p is a prime and d = (**}'"), then

f(d) > (1.1397)V24 > (1.2)V4,
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Proof. Let p be a prime and d = d(p) = (4”2_1). The Kahn-Kalai hypergraph K (d)
is defined as follows. Let V be the vertex set of K ii’i _11) with |[V| =4p — 1. Let each

pair of distinct vertices x,y € V associate with a vertex a, of K(d). That is to say,
the vertex set of the hypergraph K (d) is

V(K(d)) ={axy : x,y eV, x £y},

which can be viewed as the edge set of complete graph on V. We admit axy, = ayx
for x # y. The edges of K(d) are associated with the edges of Kﬁfi Il) in V@P-1) a5
follows. If ¢ € V2P=1) then an edge A, of K(d) is defined as

Ac={axy: xece, yeV\e}

That is to say, A, is defined by the pairs of V “split by ¢”. Note that V' \ e is not an edge
of Kiz‘ﬁl) for any edge e, so A, = Ay if and only if e = f for e, f € V2P~ Note
p

that K(d) has d = (4”2_1) vertices and (gz:i) edges, and it is a 2p(2p — 1)-uniform
hypergraph.

Let K (d) be the representation of K (d) in R, each of which is a column vector
for a fixed edge A, in the incidence matrix. Since K(d) is 2p(2p — 1)-uniform, the
distance of the points representing A, and A,, is

\/2(2p(2p - 1) = 14e N Aq)

Therefore the maximum distance, which is the diameter of K(d), is realized between
two points of K'(d) if and only if

|[Ae, N AL, | = min{|Ag NAg|: e e € V(Z”_l)} = .

Claim |A,, NA.,|=pifandonlyif |[e; Ney| =p—1.

Proof. In fact, |A., N A, | is the number of pairs of V split by both e; and e;. It
depends only on |e; N e3|. Assume |e] N ey| = x with 0 < x < 2p — 2. Then

u =min{x(x+ D+@2p-1 —x)z} .
X
It is easy to check that this expression has minimum as x = p — 3/4 on real numbers

hence it does as x = p — 1 on integers, which proves the claim. O

Using the claim, the partition of K'(d) into sets of smaller diameter is equivalent
to partition the edges of K(d) into classes without intersection of size p — 1, and the
number of the classes is clearly at least y (H,), where H, is the graph defined in the
last section. From the properties of H/,, we have

f(d) = x(Hp) > (1.1397)*771 > (1.1397)?4 > (1.2)V4,
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where the third inequality holds as 4p — 1 > 4/ 2(4”2_1) = V2d. This completes the
proof. O

6.4 Intersecting Hypergraphs*

This section contains more results on the size of edge set of a hypergraph with
conditions concerning the intersections of the edges. A hypergraph is called inter-
secting if any pair of edges intersect. An extremal hypergraph H = (V, &) oppositive
to intersecting condition is that the edges are pairwise disjoint, which trivially has
|&] < |V|. Changing the condition as that no pair of edges are comparable under in-
clusion, Sperner (1928) obtained a totally nontrivial result. We shall mention several
classical results in extremal set theory, for which the readers can find more details in
some standard textbooks, e.g., Bollobds (1986) or Lovasz (1979).

A hypergraph H = (V, &) is called a Sperner hypergraph if no edge of H is a
subset of another. A Sperner hypergraph is also called an antichain with respect to
the partial order of inclusion.

Theorem 6.6 (Sperner’s Theorem) If H = (V,E) is a Sperner hypergraph with
|V| = n, then
n
|E] < ( )
[n/2]
Proof. The assertion can be seen from the next result by the fact that the function
(%) is maximized at x = [n/2]. m]
A stronger result is as follows, called LYM-inequality after its authors Lubell
(1966), Yamamoto (1954), and Meshalkin (1963).

Theorem 6.7 (LYM-inequlity) If H = (V, &) is a Sperner hypergraph with |V| = n,
then

1
=<1
ee& (|€\)

Proof. The following proof is due to Lubell (1966), called Lubell’s Permutation
Method. In order to avoid the trivial case, we assume that no edge is empty. Suppose
that V = {1,2,...,n}. For any subset e of V, let us associate it with a set P(e) of
permutations o = (0°(1), 0 (2),...,0(n)) such that

e= {0’(1), s ,0'(|€|)},

where the set equality means the initial segment of o is a permutation of elements
in e. Then P(e) is the set of such permutations o-. The number of such permutations
is

|P(e)| = [e]!(n —le])!.
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Observe that the Sperner condition is equivalent to that the sets P(e) are pairwise
disjoint for e € &. Hence we have

DLIP@] =) lelin—lel)! < n!,

eed eed

follows by the inequality as desired. O

Second proof for Theorem 6.7. The second proof can be viewed as a probabilistic
version of the first. We still assume that no edge is empty. Choose a permutation o
of V.={1,2,...,n} randomly and uniformly, and associate it with a family A, of
subsets of V as

As ={{o(D} {o(1),c2)}, ... {c(1),0(2),...,0(n)}}
which contains n segments of o beginning from o (1). Define a random variable
X=|ENAs,

and X, as the indicator for e € A, . Then X =}, .5 X, and

—

E(X,) =Prle € Ay] =

(jet)

as A, contains precisely one set of size |e|, which is distributed uniformly among

all sets of size |e|. Thus
1
E(X) = E 7

ecE \le|

For each o, every pair of subsets in A, are comparable under the inclusion. The
Sperner condition ensures that X = |E& N A,| < 1, following by E(X) < 1 as
desired. =

The second classical result we shall mention concerns ¢-uniform hypergraphs
without disjoint pairs of edges. An easy way to obtain such an edge set is to fix a
vertex and take all edges containing it. However, Erd&s, Ko, and Rado (1961) proved
that we cannot do it better for ¢ < n/2.

Theorem 6.8 (EKR Theorem) If H = (V,&) is an t-uniform hypergraph with
|V| =nandt < n/2, in which any pair of edges intersect, then

n-1
&l < .
1< (1))
Proof. The proof is due to Katona (1972), called Katona’s Cyclic Permutation

Method. Set
Vv={0,1,...,n-1}.

Let o be a fixed permutation of V and for 0 <i < n -1, set A(i) = {o(i),0(i +
1),...,0(i+t— 1)}, where addition is modulo n.
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Claim & contains at most ¢ such sets A(i) where 0 <i <n-—1.

Proof. Suppose A({) € &E. There are precisely 2t — 2 of A(i) other than A(¢) that
intersect A(¢), i.e.,

Al —-t+1),...,A(0),...., AL+t -1).

Clearly, these sets can be arranged into ¢ — 1 pairs of nonintersecting sets, and & can
contain at most one member of each of these pairs, proving the claim. O

Put all vertices in a cycle. Image that every vertex being a guest is seated around a
big round table with n seats. In each particular seating arrangement there are exactly
n contiguous intervals of length 7. Let us associate each such interval with a 7-set of
V, which consists of the vertices in this interval.

It is clear by symmetry that each #-set is associated with the same number of
contiguous intervals, i.e., in the same number of seating arrangements. On the other
hand, at each seating arrangement, at most a ¢/n fraction of the intervals can be
formed to associate the edges of & by the claim. Hence the number of edges of & is
at most a #/n fraction of the total z-sets of V, and so

o1 [1)- (7))

proving the assertion. O

Second proof for Theorem 6.8. The above proof has a probabilistic version. Choose
a permutation o of V and i € V randomly, uniformly and independently. Define a
random set

A=A(o,i) ={oc(),c(+1),...,0@(+t-1)},

where addition is modulo n. The above claim can be employed to bound the condi-
tional probability as Pr(A € E|o) < t/n, hence

Pr(Ac8) = Pr(Ac&lo) < -
n

However, A is uniformly chosen from all subsets of size 7, so

8l

()

wsif)-()

as desired. ]

_prAcé) <,
n

which follows by

A hypergarph H = (V, &) is called a sunflower with m petals if |E| = m and

e1Nexy =Necge
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for any pair of distinct edges e and e, in &. The common intersection is called the
kernel. Note that a hypergraph with pairwise disjoint edges (with empty kernel) is a
sunflower.

The third result we shall mention in this section asserts that if an z-uniform
hypergraph has many edges, it must contain a sunflower with specified size, regardless
of size of V. The following result is due to ErdGs and Rado (1960).

Theorem 6.9 (Sunflower Theorem) Let H = (V, E) be a t-uniform hypergraph. If
|E| > t!(s — 1)!, then H contains a sunflower with s petals.

Proof. Induction on ¢. For # = 1, the hypergraph has more than s — 1 edges, which
are at least s vertices (1-unform edges). Thus we have a sunflower with s petals and
empty kernel.

We then assume that r > 2 and the assertion is true fort—1. Let 7 = {ey, ..., e;n}
be a maximal family of pairwise disjoint edges of H.

Casel m > s.

These m edges form a sunflower with m > s edges and empty kernel, and we are
done.

Case2 m < s.

Let A = U, e;. Then |A| = tm < t(s — 1). By the maximality of the family 7,
every edge of H intersects some member in 7, hence it intersects A. So there is a
vertex x € A, which is contained in at least

8]  tl(s=-1) -1
— > ———=(t-1DN(s—-1
Al 6o (r=Dls—-1)
edges of H. Let us delete x from these edges and consider the hypergraph with vertex

set V and edges sets
{e\{x}: e & x€ce}.

This is a (¢t — 1)-uniform hypergraph. By the induction hypothesis, this hypergraph
contains a sunflower with s petals, say {e; \ {x},...,es \ {x}}. Thus we obtain a
sunflower in H with s petals {e1, ..., es}, proving the assertion. O

The conditions in the following theorem are concerning the intersections between
two uniform hypergraphs, which have the same vertex set and same number of edges.
We call these hypergraphs to be cross intersecting.

Theorem 6.10 (Bollobas, 1965) If hypergraph (V,&) is s-uniform with & =
{e1,e2,...,em}, and (V,F) is t-uniform with ¥ = {fi, f2,..., fin}, which sat-
isfy

(i)e,Nfi=0fori=1,---,m;

(ii)e;Nfi#0forl <i#j<m,

then
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Proof. This is a corollary of the next theorem. O

The proof of the next result is due to Lovasz (1977), in which two hypergraphs
are called skew cross intersecting.
Theorem 6.11 If hypergraph (V,E) is s-uniform with & = {ey, es,...,em}, and
(V,F) is t-uniform with F = { fi, f2, . . ., fm}, which satisfy

(JeinNfi=0fori=1,...,m;

(ii)e;Nfj#0forl <i<j<m,

s+t
m < .

Proof. We need a well known fact from linear algebra as follows. Let Sy, S», ..., S
be s-dimensional linear subspaces of R**!. Then

then

t s+1
Ul.zlSl- R
Associate each vertex v € V with a vector in Y (v) € RS*! as

Y() = (), 32(0), -yt (v) € R

so that the set of obtained vectors will be in general position, namely, any s + 1 of
them will be linearly independent. This can be done as follows. The first s + 1 can
be placed easily. Suppose that we have placed n > s + 1 vertices. Then any s of
them must span a linear subspace of dimension s. Denote by Sy, S», ..., S¢ for these
subspaces, where ¢ = (;’) From the mentioned fact, we have z € R5*! \ Uf:lSi. It
is easy to see that any s vectors, which are associated to s vertices that have placed,
and z are independent. Then a new vertex in V is associated with the vector z and
any s + 1 of these n + 1 vectors are independent.
Define polynomials g1, g2, ..., &m in s + 1 variables xj, xp,...,Xs41 as

gi(X) =Ilep, (X -Y(v))
=Ilep (ry1(v) +x2y2(v) + -+ + X511 Y541 (V)),

where X = (x1,x2,...,%s41). Then g;(X) is a real homogeneous polynomial of
degree ¢, and g;(X) = 0 if and only if there is some v € f; such that Y(v) L X.

The set of vectors {Y(v) : v € e;} generates a subspace of dimension s since
le ;| = s and the vectors are in general position. Let A ; be the subspace and let a ; be
anonzero vector with a; L A;. From the fact that the vectors Y (v) are in the general
position, we know that A ; does not contain any ¥ (v) with v ¢ e, namely Y (v) € A;

if and only if v € e;. This means
#0if i=j,
gi(“f){sz i<j.

For example, g;(a;) # 0 since otherwise there is some v € f] such thata; L Y(v).
From an expression of Y(v) = da; + a for some 1 € R and a € Aj since a; L A}
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s+1

implying that a; and A; spanning R*", we get A = 0 since a; L a. It follows that
Y(v) = a € Ay, implying v € ey, which contradicts to the condition e; N f] = 0.
It is clear g;(a;) = 0 for i > 2 as qa; is orthogonal to the vectors associated to the
elements in fi N e;.

From the Triangular Criterion we know that g1, g2, . . ., g5, are linearly indepen-
dent. Therefore m is at most the dimension of the space of homogenous polynomials
of degree ¢ in s + 1 variables, so

(s+1+t—1) (s+t) (s+t)
m < = = s
t t s

completing the proof. O

It is noteworthy that ErdSs and Rado originally called sunflowers A-systems, but
the term “sunflower” was coined by Deza and Frankl (1981) and is now more widely
used. Erdés and Rado (1960) also conjectured that the bound in Theorem 6.9 can be
drastically improved.

Conjecture 6.1 Let s > 3. There exists a constant ¢ = ¢(s) such that any z-uniform
hypergraph H of size at least ¢’ contains a sunflower with s petals.

Kostochka (1997) proved that there is a constant ¢ > 0 such that any 7-uniform
hypergraph of size at least ct! - (logloglogt/loglogt)’ must contain a sunflower
with 3 petals. Fukuyama (2018+) claimed an improved bound of ¢3/4+0() for
s = 3. Recently, Alweiss, Lovett, Wu and Zhang (2021+) show that for any s > 3,
any t-uniform hypergraph of size at least (log¢)('+°(1))* must contain a sunflower
with s petals. This makes a big step towards the conjecture.

6.5 Lower Bounds of r; (¢) for k > 3

We know that Erd&s (1947) obtained the following lower bound by using probabilistic
method.
r(r) > 212

The best lower bound by Spencer (1975) is r(¢) > (1 — 0(1))@\/7, see Theorem
5.3. Similarly, we have that r3(¢) > 3¢ 2, Generally, Lefmann (1987) observed that

rk1+k2(t) -1> (rkl (t) - 1)(rkz(t) - 1) (62)

Indeed, we can blow up a k-edge-coloring of Krk] ()-1 with no monochromatic K;
so that each vertex set has order ry, () — 1 and then color each of these copies of
rk, () — 1 separately with the other k, colors so that there is again no monochromatic
K;. By using the bounds r(r) — 1 > 2//> and r3(t) — 1 > 3'/2, we can repeatedly
apply this observation to conclude that

ra(t) > 32 pypa(r) > 2830012 and ragan(r) > 2123412,
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Recently, Conlon and Ferber (2021) improves the above general lower bounds
ri(¢) for each fixed k > 3 via a construction which is partly deterministic and partly
random, in which the improvements are exponential in large . The deterministic
part shares some characteristics with a construction of Alon and Krivelevich (1997),
in which the authors consider a graph whose vertices are vectors over a finite field
where adjacency is determined by the value of their scalar product, while randomness
comes in through both random coloring and random sampling.

Theorem 6.12 For any prime q, 1,41 (1) > 2//2g3/8+0 (),

Proof. Let g be a prime. Suppose t # 0 (mod ¢) and let V C F,; be the set
consisting of all (row) vectors v € F}, for which X vl? =0 (mod g), noting that
q'~% < |V| < ¢'. Here the lower bound follows from observing that we may pick
Vi,...,V;_p arbitrarily and, since every element in F, can be written as the sum
of two squares, there must then exist at least one choice of v;_; and v, such that
2 2 _ t 2
Viog Vi == i Vi
We will first color all the pairs (‘2/) and then define a coloring of E(K,) by
restricting our attention to a random sample of n vertices in V. Formally:

Coloring all pairs in (‘2/) For every pair uv € (‘2/), we define its color y (uv)
according to the following rules:

(D) Ifu-v=i (mod q) and i # 0, then set y(uv) =i.
) If u-v = 0 (mod g), choose y(uv) € {g,q + 1} uniformly at random,
independently of all other pairs.

Mapping [n] into V. Take a random injective map f : [n] — V and define the
color of every edge ij as x (f(i) f())).

Our goal is to upper bound the orders of the cliques in each color class.

Colors 1 <i < g — 1. There are no i-monochromatic cliques of order larger than
t forany 1 <i < g — 1. Indeed, suppose that vy, ..., v, form an i-monochromatic
clique. We will try to show that they are linearly independent and, therefore, that
there are at most ¢ of them. To this end, suppose that

N
u = Zafjvj =0
Jj=1

and we wish to show that @; = 0 (mod ¢) for all ;.

Let B = (vi,...,vs)T. Observe that since v;-v; =0 (mod g) for all j (our
ground set V consists only of such vectors) and vy - v; =i (mod g) for each k # j,
by considering all the products u - v;, we obtain that iJ — il = BB, where J is the
s X s all 1 matrix and [ is the s X s identity matrix. Thus the vector @ = (a1, . . ., as)T
is a solution to

Ma=0
with M = iJ — il since fTa = 0. In particular, we obtain that the eigenvalues of M
(over Z) are i(s — 1) with multiplicity 1 and —i with multiplicity s — 1. Therefore,
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if s # 1 (mod g), the matrix is also non-singular over Z,, implying that @ = 0, as
required. On the other hand, if s = 1 (mod ¢), we can apply the same argument
with v{,...,vs_1 to conclude that s — 1 < r. But, we cannot have s — 1 = ¢, since
this would imply that # = 0 (mod ¢), contradicting our assumption. Therefore, we
may also conclude that s < ¢ in this case.

Colors g and g + 1. We call a subset X C V a potential clique if |X| = t and
u-v=0 (mod g) for all u,v € X. Given a potential clique X, we let Mx be the f X ¢t
matrix whose rows consist of all the vectors in X. Observe that My - M § =0, where
we use the fact that each vector is self-orthogonal. First we wish to count the number
of potential cliques and later we will calculate the expected number of cliques that
survive after we color randomly and restrict to a random subset of order 7.

Suppose that X is a potential clique and let  := rank(X) be the rank of the vectors
in this clique. Since rank(M§) < t —rank(Myx) by noting the vectors in M)T( satisfy
Myx - x = 0, it follows that r < 7/2. By assuming that the first r elements are linearly

independent, the number of ways to build a potential clique X of rank r is upper
bounded by

r—1
(1_[ qt—i) X q(t—r)r — qtr—(;)ﬂ‘r—r2 \ q21r—¥+%-
i=0

Indeed, suppose that we have already chosen the vectors vy,...,vs; € X for some
s < r. Then, letting M be the s X  matrix with the v; as its rows, we need to choose
vse1 Such that Mg -ve = 0. Since the rank of M is assumed to be s, there are exactly
q'™* choices for vy, in F ; and, therefore, at most that many choices for vy, € V.
If, instead, s > r, then we need to choose a vector vy, € span{vy,...,v,} and there
are at most g” such choices in V.
% + 5 appearing in the exponent of the
expression above is increasing up to r = % + %, so the maximum occurs at /2
since r < t/2. Therefore, by plugging this into our estimate and summing over all
possible ranks, we see that the number N; of potential cliques in V is upper bounded
by q5t2/8+o(t2).

The probability that a potential clique becomes monochromatic after the random
coloring is 2!~ (%) Denote by

Now observe that the function 2tr —

n= 2t/2q31/8+o(r).

Suppose now that p is such that p|V| = 2n and observe that p = ng~+*°(1)_If we
choose a random subset of V by picking each v € V independently with probability
p, the expected number of monochromatic potential cliques in this subset is
20N, < q—t2+o(t2)nz2—§+o(ﬂ)q%w(r?) _ (2—%q—%’+o(t)n)t < %
Since our random subset will also contain more than n elements with probability
at least 1/2 from Chernoff bound, there exists a choice of coloring and a choice of
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subset of order n such that there is no monochromatic potential clique in this subset.
This completes the proof. O

Theorem 6.12 implies that
r3(f) > 27t/8+0(1)  and ra(t) > 9t/233t[8+0(t)

Consequently, we can apply (6.2) to obtain that for each £ > 2,

k)

t—-o(t)
re(r) > (2%+)

where ¢ > 0 is a constant. Modifying the construction of that by Conlon and Ferber
(2021), Wigderson (2021) further improved the lower bounds ry () for each fixed
k > 3 as follows.

Theorem 6.13 For each k > 2, ri () > (2%_%)”0(’).

6.6 Exercises

1. Let H = (V, &) be a simple hypergraph of order n such that |e N f| < ¢ for any
pair of distinct edges e and f. Prove that }’, |e| < n + t('g) where m is the number
of edges.

2. Let X = X,;_;m A; be a partition of a finite set X into m subsets, and let
a = |X|/m. Prove that for every 1 < b < a, at least (1 — b/a)|X| elements of X

belong to subsets of size at least a/b. How many elements of X belong to subsets of
size at most ab? (Hint: m(a/b) < |X|/b.)

3. Prove the dual of Fisher Inequality as follows. Assume that H = (V,&) is a
simple hypergraph such that each pair of vertices is contained in exactly A edges,
then |E| > |V|.

4. Generalize Odd-town Theorem for “mod p town” or even “mod p* town”.

5. Prove that the dimension of homogeneous polynomials of degree k in n vari-

ables is ("*571).

6. Prove the inequality $75' (*/7) < 2(4’5’__11).

7.7 Letn < 2r and let Ay,...,A,, be a family of r-element subsets of [n] such
that A; U A # [n] for all i, j. Show that m < (1 —r/n)(}). (Hint: Apply EKR to
A;)
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Chapter 7 e
Turan Number and Related Ramsey Number

Paul Turdn (August 18, 1910-September 26, 1976) was a Hungarian mathematician
who worked primarily in number theory. As his long collaborator, Paul Erdés wrote
of Turdn, “In 1940-1941 he created the area of extremal problems in graph theory
which is now one of the fastest-growing subjects in combinatorics.” The field is
known more briefly today as extremal graph theory. Turdn’s best-known result in
this area is known as Turdn’s theorem, which gives an upper bound on the number
of edges in a Ki-free graph. He is also known for the Kovari-Sés-Turdn theorem
upper bounding the number of edges of bipartite graphs containing no K; s as a
subgraph. For any graph G with chromatic number y(G) > 3, the asymptotic
formula of Turdn number of G is known from the well-known Erdds-Stone theorem
(1946) which is a fundamental theorem in extremal graph theory, see also Erdds and
Siminovits (1966), and Siminovits (1968). However, the Turdn numbers for most
complete bipartite graphs and even cycles are not very well understood. For a survey,
we would like to refer the reader to Fiiredi and Simonovits (2013). In this chapter,
we will see that for a bipartite graph B, the Turdn number of B is tightly related to
the Ramsey numbers involving B.

7.1 Turan Numbers for Non-Bipartite Graphs

Given a graph H, the Turdn number ex(n, H) is the maximum number of edges of a
graph G on n vertices that does not contain H as a subgraph.

Suppose y(H) = k > 3 and let n = f;ll n; such that |n; — n;| < 1 for
1 <i < j < n. Thus n; is either | %5 ] or [7%51]. Let Ky, n,_, be the balanced
complete (k — 1)-partite graph with the ith part of size n; for 1 <i < k — 1. We call
such graph K, .., , the Turdn graph, denoted by T (n). Let #x_1 (n) be the edge
number of the Turan graph T (n).

Assume that ny = | 5] and n = ni(k — 1) +r, where 0 < r < k — 1. Hence, in
the Turdn graph Tj_;(n), there are r parts of size n; + 1 and k — 1 — r parts of size
ni. Now we can verify that
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C(n\ ) (k=2n? r(k—1-r)
tk‘l(")_(z)_.l(z)_ 2k-1)  2k-1)

i=
So we have that for n > k,

k—=2(n (k —2)n?
i) = = 5

Clearly,
ex(n,H) > tx—1(n)
since the Turdn graph does not contain H by noting y (H) = k
We begin with a slightly less precise theorem with a proof extended from Mantel’s

ingenious argument for £ = 3 in 1907.

Theorem 7.1 Let n and k be positive integers with k > 2. Then

(k 2)n?

tr-1(n) < ex(n; Ky) < 201

Furthermore both inequalities become equalities if n is a multiple of k — 1.

Proof. The first inequality follows from the fact that the Turdn graph does not contains
K, and the second is equivalent to show that if a graph G of order n contains no K,

then e(G) < (2k(k2)1n) Assign to each vertex v € V(G) a weight w(v) > 0 so that

2vevic)yw(v) = 1. Let

S(w) = Z w(u)w(v),

uveE(G)

where the sum is taken over unordered pairs of end vertices of all edges.
Suppose that w has been chosen so as to maximize S as Spax. Then for uv ¢ E(G)
we may claim that we can make choice such that either w(u) = 0 or w(v) = 0. To

see this, we suppose that
Z w(x) > Z w(y). (7.1)
XeN (u) YEN (v)

Then
Swy=w() D w) +wv) D wy)+Si,

XEN (u) YEN(v)

where S; is independent of w(u) and w(v). If (7.1) is not an equality, we could
increase w () by some amount, and decrease w(v) by the same amount, and S would
increase, this is impossible. If (7.1) is an equality, we increase w(u) to w(u) + w(v),
and decrease w(v) to zero. This claim means that the vertices x with w(x) > 0 belong
to some clique of G. Label all these positive weights as wy, w», ..., w;, where ¢ is
the order of the clique. Then
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1 t 2 t 1 t
— — 21 _ 2
S0 = Y, = | (Zwi) Y _5(1_2%)
i<j

with }}!_, w; = 1. From Cauchy-Schwarz inequality,

On the other hand, by assigning w(x) = 1/nto each vertex x of G we get S = e(G)/n?,

it follows that
e(G) < r—1 k-2

< <
n? 2t 2(k—-1)
since t < k — 1. The desired upper bound follows.
If n is a multiple of k — 1, then t4_1(n) = (k — 2)n*/(2(k — 1)) hence both
inequalities in the theorem become equalities. O

The following is the well known Turdn’s Theorem, which generalizes Mantel’s
ingenious argument for k¥ = 3 in 1907. When 7 is not a multiple of k — 1, the first
inequality in Theorem 7.1 becomes an equality, but the second is not.

Theorem 7.2 Let k and n be integers with k > 2. If n = s(k — 1) + r, where
0<r<k-1,then

(k=2)n* r(k=1-r)

ex(n,Ki) = tx—1(n) = 20— 1) 2(k—1)

Furthermore, if a graph with n vertices and ex(n, Ky) edges that contains no Ky,
then it is the Turdn graph.

Proof. We may assume that k > 3 since it is trivial for k£ = 2. We shall use induction
on s = |n/(k—1)]. The case s = 0 corresponds to n = r < k — 1, and in this case
it is obvious since ex(n, Kx) = (5). The equality holds if and only if the graph is
K,,. Now we assume that s > 1 and G is a graph with n = s(k — 1) + r vertices that
contains no K. It suffices to prove e(G) < tr_1(n).

We may assume that G has the maximum possible number of edges subject to
this condition. Thus G must contain Kx_; as a subgraph, otherwise we could add an
edge to G and the resulting graph would still contain no K. Pick such a Kx_; on
vertex set X, letY = V(G) \ X. Let G[Y] denote the subgraph of G induced by Y. It
is clear that G[Y] hasn — k + 1 = (s — 1)(k — 1) + r vertices, and so by induction,
the number of edges of G[Y] satisfies
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(k=2y(n—k+1)?> r(k=1-7)
2(k - 1) O 2(k-1)

=tioi(n) = (k=2)(n—k+1) - (k ; 1).

e(GlY]) <tg-i(n—k+1) =

Moreover, since G contains no Ki, we have that no vertex in Y is adjacent to all
vertices of X. Thus

e(G) <e(GIYD+(k-2)(n—-k+1)+ (k ; 1) < tr_1(n),

completing the induction step.

Now if G has t;_| (n) edges, then each vertex in ¥ must be adjacent to k —2 vertices
of X. Moreover, an inductive argument shows that G[Y] must have tx_;(n — k + 1)
edges which induces the Turdn graph Ty_;(n — k + 1) with parts

Y.Y2,...,Yk-1.

If some vertex y € Y; does not adjacent to the vertex x € X, then all vertices of Y;
would not adjacent to the vertex x € X. Indeed, if some vertex y; € Y; is adjacent to
x, then each vertex in Y; for j # i would not adjacent to all X \ x since otherwise
for some y; € Y, {y;,y ]} U X \ x will induce a K. It follows that each vertex in Y
for j # i must be adjacent to x, now we can easily get a K. Consequently, G is the
Turdn graph. O

For the case k = 3 of the above theorem, we have an amusing proof as follows. If
a graph G = (V, E) of order n contains no K3, then any adjacent vertices u and v do
not have neighbor in common, so

du)+d(v) < n.

From the fact that

D dw)+d(v) = Y d*(x),

uveE xeV

in which each d(x) is counted d(x) times over N(x), so we have

Z d*(x) < n|E|.

xeV

Now Cauchy-Schwarz inequality implies that

2
2

xEV xEV

Therefore, ex(n, K3) < nllalx {|E|} < n?*/4 follows as desired.
G:|G|=n
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For any graph H with y(H) = k, we have ex(n, H) > t;_1(n), and so a graph F
with n vertices and #;_; (n) edges may not contain H or K as a subgraph. However,
adding one more edge to F' will force it to contain a K. A deep result of Erd§s and
Stone (1946) states that if € > 0 is fixed, then en? more edges ensure that F contains
not only a K, but a complete k-partite graph Ky (#) with each part of size ¢ for some
large t. The Erd&s-Stone theorem is a fundamental theorem in extremal graph theory,
see also in ErdGs and Siminovits (1966) or Siminovits (1968). In particular, we have
the following the result.

Theorem 7.3 For any fixed graph H with y(H) = k > 2,

ex(n,H) = (% +0(1)) (;)

Sharpening the result of Erdds and Stone (1946), Bollobds and Erdds (1973)
proved that the speed of + — oo can be at least Q(log n).

Theorem 7.4 For integer k > 2 and € > 0, there is an integer ny = no(k, €) such
that if F is a graph of order n > ng with edge number

k-2 n
UNERL

elogn
2k (k-2)!"

Lemma 7.1 For any integer k > 2 and 0 < € < 1, there is an integer ny = no(k, €)
such that if F is a graph of order n > ng with minimum degree

then F contains a Ky (t) for some t >

6(F) = (Z_?+e)n,

elogn
K2 (k—2)1"
Proof. We use the induction on k > 2. Suppose to the contrary that the assertion is
not valid for k = 2, then there is a graph F with n vertices and §(F) > en that does
not contain a K,(¢) with ¢ = [elogn]. We say that a set S is covered by a vertex x
if x is adjacent to every vertex in S. Every vertex of F covers at least (Et" ) sets of ¢
vertices, and no set of ¢ vertices is covered by 7 vertices. Therefore,

)<t

This inequality is invalid for # = [€ log n] with large n, since then

then F contains a Ki(t) for some t >

(t-DE) | (t - '
n(<") n(en) (1 —1/(en))--- (1 - (t — 1)/ (en))
. ¢ < 2 u (l)Zslogn
ne’' (1 —t/(en))! net ~ n

— 0

s

€
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where we use the fact that (1 —¢/(en))” — 1. This contradiction proves the assertion
for k = 2. Now we assume that the assertion is valid for k, and we will show that it
also holds for k + 1.

Let F be a graph on vertex set V with |[V| = n and 6(F) > (% + €)n. Note that
the existence of such a graph F implies 0 < € < 1/k. Since

6(F) = k_1+ > k_2+ !
€ln —+ —— | n,
“\ &k k-1 k(k-1)
by the induction hypothesis, F contains a K (') on vertex set X witht’' = [c¢(k) logn]
vertices in each vertex class, where

C(k(k-1) 1
C2k2(k=2)!  2k2k

c(k)

Let (S, S») be the number of edges between the sets S and S5, and denote

YZ{VEV\XI e({v},X) = (k;1+§)|X|}.

Claim |Y| > en.

Proof. To see this, let us consider e(X, V\ X). Clearly, each vertex in X is adjacent
to at least 6(F) — | X| + 1 vertices in V' \ X, so

k-1
e(X,V\X) > |X| (( k +e)n— |X|)
Also, for a vertex v € V \ (X UY), it is adjacent to at most (% + 5)|X| vertices in
X, so we obtain that

k-1
e(X,VAX) < |XI[Y|+ (n = |X] - |¥]) (T*%) 1X]

k-1
k

< [X[IY]+ (n = [Y]) ( + g) X,

The above lower and upper bounds of e(X,V \ X) give that
(2-ke)|Y| +2k|X| > ken.
Note that |X| = kt’. Thus, for large n,

ken —2k*  ken
Y| > ——— > — >en

2—ke 2
as claimed. O

Now, set
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elogn ket’
t=|—-2"  |< )
2k=1 (k- 1)! 2

Note that

[ | R O BRI

That is to say, each vertex in Y is adjacent to at least (k — 1)#’ +¢ vertices in X, which
implies that each such vertex covers at least one Ky (¢) in existing K (¢'). Since there

nk
are (tz ) such K () in this Kx(¢'), it follows on average that there must exist a K (¢)
NS
covered by |Y|/(’)" vertices of Y.
Note that (’t,) < (et’/t)" from Stirling formula, and 7/ (et’) > €/e,

Y| r 1k €\ !k kelognlog(e/e)
(ﬂ)k > €n (;) > €n (;) > enexp m >
t

for large n, hence we can get a subgraph Ky (¢) in F, completing the induction step
and hence the proof. O

The condition on the minimum degree of a graph can be weakened to that on the
number of edges of a graph.

Lemma 7.2 Let c, € be positive real numbers and let n > 3 /€ be an integer. If F is
a graph with n vertices and at least (¢ + €) ('2’) edges, then it contains a subgraph H
withn’ > €'?n vertices and 5(H) > cn’.

Proof. The condition e(F) > (c + €)(5) implies that 0 < € < ¢+ € < 1. If the
assertion is not valid, then there is a sequence of graphs {G; : ¢ < j < n}, where
¢ = |€'%n] and the order of G is j, such that

G=G,2G,-12--2Ge1 2Gy

and the only vertex of G notin G;_ has degreelessthancjin G forn > j > £+1.
Therefore,

e(Gy) > (c+e)(g) - i cj = E(Z) +c(€; 1) —cn > 6(;) > (i),

j=l+1

by noting £ = [€'/?n),0 < € < 1 and n > 3/e. This is a contradiction. o

Proof of Theorem 7.4. If n > 3/¢, then Lemma 7.2 implies that F contains a
subgraph H of order n’ > €'/?n and §(H) > (=2 + $)n’. Now Lemma 7.1 implies
that for large n, F contains a Ky (¢) with

(€/2)logn’ S elogn
T2k2(k=-2)! T 2k (k-2)V
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as desired. ]

7.2 Turan Numbers for K; ¢

The situation of Turdn numbers for bipartite graphs is totally different. If the chro-
matic number y(H) = 2, then it only gives that ex(n, H) = o(n*) from Section
7.1. We have also encountered Turdn number in Chapter 3, in which a conjecture of
Erdds-Sos is equivalent to ex(n, Tp,) < mT_ln for any tree 7 with m edges.

The following result of Kovari, S6s and Turdn (1954) used the well-known double
counting method.

Theorem 7.5 For any positive integers t and s with t < s,
1
ex(n, Ky ) < 3 ((s D LA el gy l)n) .

Proof. Let G be a graph of order » that contains no K; ;. We say that a set is covered
by a vertex v if v is joined to every vertex of the set. Since G does not contain K; g,
every 7-set (i.e., a set with ¢ elements) is covered by at most s — 1 vertices. Therefore,
if G has degree sequence dy, ds, ..., d,, then

- di n
<(s-1 .
(7))
i=1

For fixed ¢t > 1, define a function on real variable x as

(x) ~ {—W—”';'{("‘”” ifx>1-1,

i 0 otherwise.

Let d denote the average degree of G. Since (’;) is convex, we have
d\ <~ (di n
< <(s-1 .
(=27 =[]
We may assume that n > d > ¢, and hence
nd(d-=1)---(d=t+1)<(s=Dnn-1)---(n-t+1),

which implies that

d—r1+1 f< dd-1)-(d=t+1) _s-1
(n—t+1) “nn=1)---(n=t+1) = n

It follows that d — t + 1 < (s — 1)"/*n=1/"(n — t + 1). Thus we have
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e(G) =" < 5 (1= 1)k (1= 1yn)

N =

as claimed. O

We shall improve the upper bound for ex(n, C4) in the above theorem slightly.
The following result due to Kovari, S6s and Turdn (1954) (independently Reiman
(1958)) is slightly better than that obtained above for the case s = ¢ = 2.

Theorem 7.6 For any positive integer n,
n 1 32,1 1/2
ex(n,Cy) < Z(1+V4n—3)=§n +Z—0(n ).

Proof. Let G be a graph of order n containing no C4. Hence

> (50
veV(G) 2 2

thatis Y, cy(g) d(v)(d(v)—1) < n(n—1). As the function x (x— 1) is convex, we have

nd(d—1) < n(n—1), where d is the average degree of G. Hence d < (1+V4n —3)/2,
yielding an upper bound for nd/2 as required. O

Let us turn to the problem of Zarankiewicz which is closely related to Turdn
number. Denote by G (m, n) for a bipartite graph with m vertices in the first class
and n vertices in the second. We shall signify the fact that K ; is a subgraph of
G(m, n) with s vertices in the first class and ¢ in the second by saying that K ;) is
contained in G (m, n). In other word, we consider the orders of the vertex classes of
the bipartite graphs. Note that when G (m, n) does not contain K, ), it may contain
K(:,s)- However, when t is a constant or ¢ < s, we always write the complete ¢ X s
bipartite graph as K, instead of K ;. For example, we write a star as K _;.

Define Zarankiewicz number z(m, n; s, 1) to be the maximum number of edges
in a bipartite graph G (m, n) which does not contain K, ;). We always assume that
¢t < s in this chapter and do not assume which is larger between m and n. We shall
write z(n; s) for z(n,n; s, s).

The original problem of Zarankiewicz (1951) was asking what is z(n, n; 3, 3) for
3 < n £ 6. The argument in the proof of Theorem 7.5 can be applied to obtain that
fort < s,

2(myn;s,1) < (s = DYiam'=V" 4 (1 = Dm. (7.2)

Lemma 7.3 For any positive integers n, s and t,
1
e.x(}’l, Kt,S) S 52(71, n;s, t)
Proof. Let G = (V, E) be a graph with |V| = n and |E| = ex(n, K;, ) edges that

does not contain K; . Construct a bipartite graph H as follows. Take two disjoint
copies of V, say
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Vi={,...,v,} and V7 ={], . v}
The graph H has bipartition (V’, V"), and vlfv'].’ is an edge of H if and only if v;v;
is an edge of G. Note that v} and v/’ are not connected. Clearly dg (v;) = du (V) =
dy(v}), thus e(H) = 2e(G). We know that H does not contain K; ¢ since G is
K; s-free. So z(n,n;s,t) > e(H) = 2e(G). o

For fixed s > t > 2 and large n, the asymptotic form of the upper bound of
Theorem 7.5 is

1
ex(n,K; ) < (5 +0(1)) (s - 1)l/tn2—l/t.

This result has not been improved for more than a half century. Fiiredi (1996(a)) did
it for fixed s > ¢ > 3.

Theorem 7.7 If m > s, n > t and s > t are positive integers, then

1-1/t 2-2/t
b

2(myn;s,1) < (s—t+1)Y'am +tn+tm

and hence

ex(n,K; ) < ((s —t+ DYV i+ tn2_2/’) .

| =

Proof *. The case ¢t = 1 is trivial, and 7 = 2 is known from the upper bound (7.2). So
we assume s >t > 3. Let G = G(m, n) be a bipartite graph with bipartition

V={1,2,...,m} and V' ={1",2',...,n},

which does not contain K ;). Fix t — 2 vertices 1 <ij <ip <---<i;p <minV.
Consider all 7-subsets of N(i;) N---NN(i;—3) in V’. Any such set T in V”’ is covered
by at most s — ¢ + 1 further more vertices of V as G contains no K, ;). We thus
obtain

(IN(il) N---NN(-2) mN(k)|)

. . t
k#iy, - i

g (S_M)(uvm) m--t-mN(it_m)

where the first summation is taken over k # iy, ...,i;—>. We now need the following
lemma in which the function (7) on x is defined in the proof of Theorem 7.5.

Lemma 7.4 Let p,t > 1 be integers, and let ¢, xo, X1, . .., X = 0 be real numbers. If

p
Xi Xi
o t t

then
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xi < xpc T p "V (1= 1)p.

Ms

i=1

Proof.Leto = Zf: | Xi- We suppose o > (t—1) p. From the convexity of the function
(), we have p(“/7) < 2.7 (**). Hence

p__ Xolo-1--(xo=-t+1) <( X0 )t
¢ (o/p)a/p-1-(oc/p=-t+1) “\o/p-t+1]~
the desired inequality follows immediately. O

Now, applying the above lemma with p = m —t+2,¢c =s—t+ 1, and xg =
IN(ij) N--- N N(i;—2)|, we have

D, INGD N NNG—2) NN

k#iy,..., ir_2
<(s—t+ DY (m—t+2)""VING) NN N(ip-2)
+(t-1D(m—-1t+2).

Summing up both sides over iy, ..., i;_2, the left hand side is
] ) n d .7
Y X Wan- NG NmI= -0 Y (1))
. ) ) ) . r—1
(1< <ipp k#iy, 02 J=1
For the right hand side, since
& (d(j)
_ Z |N(l1)ﬂ---ﬂN(lt—2)|:Z(t_z)s
[1<-<ip_p Jj=1

it follows that

(t- 1)2 (Ctl(_jll)) <(s—t+D)Y"(m —t+2)1*1/t2; (‘:(_1/2))
j= =

+u-nmp4+maTJ.

We will derive a lower bound for the left-hand side of the above inequlity. Let y ;
denote d(;’). For y;,y; > t — 2, one has

yi(yi=1) - (i=(@=3)—yj(y; =D (y; = (1=3))]
X[i-@=2)-(y;-@-2)] >0,

which yields
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,755) - [2)| 105 - =2 - 0= w21 20

Therefore
(t{"z)(y,» —(t-2)+ (ty_fz)m -~ (1-2))

S(; {iz)(y,» - (t-2)+ ([{’2)(” ~(1-2))

—(i-1) [(,f’i) + (r{il)] '

Adding up over pairs {y;,y;} = {d(i’),d(j’)} forall 1 < i, j < n, we have

(Z (fYZ))(Zwu» - (- 2>>) <n(=1) ), (Crl(—Jl))
= -

J=1

Combining this with what obtained, we have

L x (d(j’)) o
= (d(j’) = (1-2))

< (s—t+DYi(m—r+2)71 i (‘:(_1/2))

J=1

+(t—1)(m—t+2)(t’112).

Thus

n

Zd(]/) _n(t—Z) < (S—t+ 1)1/t(m_t+2)]_]/tn

Jj=1
”(rr—nz)
+(t=D)(m—t+2)—2
o (49))

Note that e(G) = :f:] d(j’), we have

n(,%)
a7y

e(G) < (s—t+D)Yum" V" v tn+tm
J=1 ( -2

1-2/t

If the last fraction is at most m , we are done. Otherwise, we have
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= (d(j) . m
i\ —2)  m!i=2t\r-2)
Jj=1

1-2/t

Applying Lemma 7.4 with p = n, ¢ = n/m
replacing ¢ by ¢t — 2, we obtain that

,Xo = m, and x; = d(i’), and

n n 1/(1=2)
Sy <m () = 3= - 3
£

s0 ¢(G) < nm'~V" + (1 — 3)n, the desired result follows. o

Corollary 7.1 For any fixed integers s > t > 1,
1
ex(n, Ky 5) < (5 + 0(1)) (s =1+ )tp2"lr,

Recall that the k-color Ramsey number r;(G) is the minimum integer N such
that any k-color of edges of K contains a monochromatic G. We now discuss a
relation between ex(n, G) and r¢(G), where G is a bipartite graph. Note that if
ex(n,G) < (c+ 0(1))%112‘1” for some constants ¢ > 0 and ¢ > 1, then G must be a
bipartite graph.

Theorem 7.8 If ex(n,G) < (c+o(1))%n2_1/’ where ¢ > 0andt > 1 are fixed, then
re(G) < (1+o0(1))(ck)"
as k — oo.

Proof. Setting n = r(G) — 1. Thus there exists a k-coloring of edges of K,, such
that there is no monochromatic G. By considering each subgraph induced by edges
in a single color and the definition of Turdn number, we have

(;l) <kex(n,G) < (C+0(1))§n2—1/z,

which yields n < (1 + 0(1))(ck)" as required. O
Corollary 7.2 For any fixed integers s and t with s > t > 2,
re(Kes) < (T+o(1)(s—t+ Dk'. (k— )

The idea of the proof of the following result is due to Alon, see Chung and Graham
(1999).

Theorem 7.9 If for large n, ex(n,G) > cn>~'/*, where ¢; > 0 is a constant and
t > 1 is a fixed integer, then there exists a constant ¢y > 0 such that
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£\
re(G) = ¢; (logk)

as k — oo,

Proof. Set ¢; = (c1/t)" and n = | ca(k/log k)’ |. Let H denote a graph on n vertices
with e(H) = ex(n, G) edges containing no G. Let Hy, Hy, ..., Hy be k copies of H
placed randomly and independently in the complete graph K, on n vertices. For each
edge of K,,, the probability that the edge is not covered by any graph H; is precisely

S

If (’2‘) p < 1, then there is a choice of placing these H; so that their union covers all
edges of K,,. By referring each edge in H; as one in color i, then any edge of K, is
colored in at least one color. Keep one color for each edge and delete other colors if
the edge got more than one colors, then the edges of K,, are colored by k colors, and
there is no monochromatic G. Thus r;(G) > n. Now we have

e(H) o 2e(H) S 2ein* 1 _ 2c S 2¢ylogk _2tlogk
O 7w C T ar e e

This and the fact 1 —x < e~ for x > 0 imply that

oo <22 <]

2 2t 2
npsg k 1 50
2 2 \logk k

as k — oo. This completes the proof. O

which yields

It is a widespread belief that the order n%>~!/* in the upper bound of ex(n, K;_ ;)

is sharp if s > ¢ are fixed and n — oo. If so, then the order of (K, ;) is between
(@)’ and k' from the above results. However, when we have a construction to give
a lower bound of form ex(n, K;_s) > c¢in>~'/*, we often get a lower bound of form
ri(K;, s) = c2k’, see the forthcoming sections.

7.3 Erdds-Rényi Graph

The starting point of a problem involving complete bipartite graph is usually C4 =
K> ». We begin with a construction of a graph by Erdds and Rényi (1962) (one can
see also Erdds, Rényi and S6s (1966) or Brown (1966)), which contains no Cy4. This
will lead to a tight lower bound for ex(n, Cy).
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Let F = F, be the Galois field with ¢ elements. Define an equivalence relation =
on (F3)* = F3\ {(0,0,0)} by letting (a1, az, az) = (b1, by, b3) if there is an element
A € F* = F \ {0} such that (a;, as, a3) = A(b1, by, b3). Let {a;, ay, az) denote the
equivalence class containing (a1, as,as), and let V be the set of all equivalence
classes.

Now, we define the Erd6s-Rényi graph ER, on vertex set V, in which two distinct
vertices (a1, a, as) and {xy,x2, x3) are adjacent if and only if

apxy +azxy +aszxz =0.
This definition is clearly compatible, i.e., it does not depend on the choice of repre-
sentative elements of the equivalence classes. It is trivial to see that
3

-1
|V|=q =q®+q+1.
qg-1

For a vertex A = (aj, as, a3), since a x| + a»x» + azxs = 0 has g — 1 solutions
forming g + 1 vertices,

e 200
d(A) = q if a1+.a2+a3—0,
q + 1 otherwise.

We now come to the point to see the most important fact on ER,,.
Theorem 7.10 The graph ER, contains no Cy.

Proof. Let {(a;, a,asz) and (b, by, b3) be distinct vertices. From the definition of
ER,, the vectors (a1, as,a3) and (b1, by, b3) are linearly independent. Therefore,
the equation system
aixy+azxy +aszxy =0,
{ b])C] + bzxz + b3X3 = 0,

has exactly g — 1 solutions forming only one vertex. So the assertion follows. O

Letn = g> + ¢ + 1 and let e(ER,) be the number of edges of ER,. Then, as

q — 0,

ex(n,Cy) 2 e(ERy) ~ %q(q2 +qg+1)~ (% +o(1)) 2.

This together with Theorem 7.5 established by Kovéri, S6s and Turdn (1954) yield
that

ex(n,Cy) ~ (% + 0(1)) n?,

Now let us associate the graph ER, with a more general construction, which is a
(g + 1)-uniform hypergraph (X, £) called projective plane. However, the members
in L are called lines, and the order of such a plane does not mean the cardinality of
X.
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Recall a projective plane of order g, denoted by PG (2, q), consists of a set X of
g% +q + 1 elements called points, and a family £ of subsets of X called lines, having
the following properties:

(P1) Every line has g + 1 points.
(P2) Any pair of distinct points lie on a unique line.

The only possible projective plane of order ¢ = 1 is a triangle. The unique
projective plane of order g = 2 is the famous Fano plane. It contains 7 points, 7
lines, in which each line has 3 points, see Fig 8.1.

Fig. 8.1 The Fano plane

We restate the additional properties of projective planes as follows, and one can
see the proof in Lemma 6.2.

Lemma 7.5 A projective plane of order g has the properties as follows.

(P3) Any point lies on g + 1 lines.
(P4) There are g* + g + 1 lines.
(P5) Any two lines meet at a unique point.

A nice property of projective planes is their duality. Let (X, £) be a projective
plane of order ¢, and let M = (my 1) be its incidence matrix, in which the rows
and columns correspond to points and lines. Each row and column of M has exactly
(g + 1) 1’s, and any two rows and any two columns share exactly one 1.

Return to the graph ER,, whose vertex set is V consisting of g* + g + 1 points
(equivalence classes in (FS)*). Let (ay,as,as) be a point of V which has been
defined as above. Define a line L(a1, a;, a3) to be the set of all points (x;,x2,x3) in
V (not vectors (x1,x2,x3) in (F;)* ) for which

apxy + azxy +aszxz =0.

It is easy to see that the definition for lines is compatible, and each line contains
exactly ¢ + 1 points. Note that some lines L(a, az, az) contain point {a, az, a3) and
some do not. Any pair of distinct points {x;,x2,x3) and {yi, y2, y3) lie on a unique
line L(ay, a;,as) with
{ aix) +azxxy +aszxz = 0,
ayy1 +axyz +azy; = 0.

Therefore, we obtain a projective plane (V, £), where £ consists of all lines defined
as above. This projective plane is usually denoted by PG (2, ¢). Some authors use



7.3 Erd@s-Rényi Graph 165

PG (2, g) to signify the ErdGs-Rényi graph or a bipartite graph, whose bipartition
are points and lines, in which a point is adjacent to a line if and only if the point is
contained in the line.

No projective plane of order non-prime power is known to exist, and it is conjec-
tured that there is none. It is known that there is no projective plane of order 6, 10 or
14. Tt is not known whether there is a projective plane of order 12.

The following result gives the exact expression of the edge number e(ER,;) for
q = p™, where p is a prime and m is odd. In fact, the assertion holds for any prime
power q.

Lemma 7.6 Let g = p™, where p is a prime and m is odd. There are precisely g* — 1
non-zero solutions (x1, x3,x3) of the equation

2,2, .2 _
X +x;+x3=0

in F,, and hence precisely q+1 vertices in ER, incident with loops. In particular, the
eigenvalues of ER, are q + 1, £+/q with multiplicity 1, and (4% + q) /2 respectively.

Proof. Label the vertex set of ER, as
V(ERq):{A’B’ ’X’... ,Y’... ’Z}

in some order. We write X L Y if and only if x1y; + x2y2 + x3y3 = 0, where
X = (x1,x2,x3) and Y = (y1,y2,y3). Letn = q2 + g + 1 and define an n X n real
matrix M = (m;;) by
_Jlifx 1y,
Mij = {0 otherwise,

where X and Y represent the ith vertex and the jth vertex, respectively. We admit
m;; = 1if X 1 X, that is, X lies on the conic x% + x% + x% = 0. All that remains to
show is that

tr(M)=q +1,

where tr(M) = 37" | m;; is the trace of M. We know that the trace equals the sum of
eigenvalues.

Fact 1 Any row of M contains precisely g + 1 ones hence g + 1 is an eigenvalue
of M.

Fact 2 For i # j, there is exactly one column with 1 in both the ith row and the
Jjthrow. Namely, M; - M; = 1, where M; and M; are the ith row and the jth row of
M, respectively.

Proof. Suppose that X and Y represent (the vertices) the ith row and the jth row,
respectively. Then there is a unique (vertex) row, say the kth row, corresponding to
the solution (wy, wy, w3) to the equation system

X1wi +XxXowp +Xx3w3 = 0,
yiwr + yawa +y3wz = 0.
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That is to say, m;x = mj; = 1. Note that M is symmetric, so we see that only in the
kth column, the elements in both the ith row and the jth row are 1. [

Using these two facts and the symmetry of M, we have

g+1 1 -1 1
1 g+1---1 1

M>=| =gl +J,
1 1 - 1g+1

where [ is the identity matrix and J is the all-ones-matrix. It is easy to see J has the
eigenvalues n = ¢ + ¢ + 1 with multiplicity 1 and O with multiplicity n — 1 = g% +q.
It follows that M? has the eigenvalues g +n = (g + 1)? with multiplicity 1 and g with
multiplicity n — 1 = g% + q.

LetA,,...,4, beeigenvalues of M. Therefore, 1; = g+1 as g+ 1 is an eigenvalue
of M with multiplicity 1 from Perron-Frobenius Theorem, and A; = ++/g for i =
2,...,n. Let s and ¢ be the numbers of eigenvalues of M equal to /g and —+/g,
respectively. Thus s+ =n — 1 and

tr(M)=(q+1)+ (s —1)\q.
Since the trace is an integer, we must have s = = (n— 1)/2 = (¢ + ¢) /2 and hence
tr(M) =q+ 1. O
The following result follows easily.
Theorem 7.11 For any odd prime power q, e(ER;) = %q(q +1)2.
Proof. By Lemma 7.6, we obtain that

1

e(ERy) =3 ((g+ (@ +q+ 1)~ (g+ 1)) = Sa(g +17

as required. )
Letn=¢g?>+q+1.Hence g = (V4n -3 - 1)/2 and
1
ex(n,Cyq) > Z(n - 1)1+ V4n - 3).

This is very close to the upper bound ex(n,Cys) < %n(l + V4n — 3) obtained in
Theorem 7.6. We will show the lower bound gives the quality for infinite many
n = qg* +q + 1 in the next section.

Let us have one more property of graph ER,,.
Lemma 7.7 All vertices of degree q in graph ER, are independent.

Proof. Suppose that {(a;, as,a3) and (b, by, b3) are distinct vertices of degree ¢
in ER,. Then the vectors (ai, az,a3) and (b1, by, b3) are linearly independent in
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F3. Therefore, the dimension of the subspace S of F> consisting of all solutions
(x1,x2,x3) to the equation system

aixy +azxy +aszxz = 0,
b])C] + bzxz + b3X3 =0

is one. If (aj,as,a3) and (bi, b,, b3) are adjacent, then both (a;,as,a3) and
(b1, by, b3) would be in S, a contradiction. ]

Among all graphs of the same order that contain no Cy4, the extremal graphs for
ex(n; C4) have the largest average degree. So they are expected to give good lower
bounds for (Cs, K1, ,) if they are near regular. The following results are due to
Parsons (1975).

Lemma 7.8 Let g be a prime power. Then

r(Ca Ky ) > q* +q+1,
r(C4,K1’qz+1) > q2+q+2.

Proof. The graph ER, has g% + q + 1 vertices. It contains no C4 and its minimum
degree is g, so the maximum degree of ﬁq is g%. This proves the second lower
bound in the lemma.

For the first lower bound, let v be a vertex of degree g in the graph ER,, by
Lemma 7.7, each neighbor of v has degree g + 1. Deleting the vertex v, we obtain a
graph with g%+ ¢ vertices and minimum degree ¢, so its complement has a maximum
degree g> — 1. This proves the first lower bound. O

Lemma 7.9 Let n > 2 be an integer. Then
r(Cs, K1 p) <n+vVn—-1+2.

Proof. Let N = r(C4,K;,) — 1 and let G be a graph of order N that contains
no C4 and its complement G has the maximum degree at most n — 1. Note that
r(Cs,K12) = 4 and r(C4, K1 3) = 6, so we suppose that n > 3 and N > 5. The
fact A(G) < n — 1 implies that for any vertex v of G, d(v) > N — n. Since the fact
G 2 C4 implies that for any distinct vertices u# and v of G, [N(u) N N(v)| < 1, we
thus have

(d(w)) < (N) (7.3)
2 2
weV(G)
This and d(w) > N — n give
N> -2(n+D)N+n*+n+1<0. (7.4)

The above inequality becomes an equality if and only if G is regular with degree
N — n and any pair of vertices have exactly one common neighbor. We now need
the following result known as “the Friendship Theorem” of Erdés, Rényi and Sés
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(1966). Call the graph Fy = K| + kK3 a Friendship graph or a k-fan, which consists
of k triangles with a vertex in common.

Lemma 7.10 (Friendship Theorem) Let G be a graph with N vertices such that
any pair of vertices is joined by exactly one path of length two in G. Then N = 2k +1
and G = Fy.

Return to our current proof. If the inequality (7.3) is an equality, then by Lemma
7.10, G = F,, but G is regular, contradicting to n > 3. So this is not the case and
hence the inequality (7.4) is strict, which implies that

N2 -2(n+ )N +n*+n+2<0,
yielding 7(Cs, K1 ) =N+1<n+Vn—-1+2. m]
Theorem 7.12 Let g be a prime power. Then

r(C4,K1’qz) = q2 +qg+1,
r(Ca, Ky g241) = > +q+2.

Proof. The first assertion follows from Lemma 7.8 and Lemma 7.9. However, the
second assertion needs more careful analysis, we refer the reader to Parsons (1975)
for details for this case. O

Recently, there are more exact values on Ramsey numbers of C4 versus stars that
were obtained, see two papers of Zhang, Chen and Cheng (2017).

7.4 Exact Values of ex (n,Cy4) and z(n;2)

In the last section, we have obtained that ex(n, C4) ~ n*/?/2 and hence z(n;2) ~
n3/2. It is hopeless to find all exact values of ex(n,C4) and z(n;2) because of
the difficulty of constructions for the lower bounds and estimating for exact upper
bounds. However, it is possible to be lucky to find such values for infinitely many #n.

Let us begin with z(n; 2). The following result is due to Alon and Spencer (1992),
in which the definition of the projective plane was introduced in the last section.

Theorem 7.13 Let q be an integer. If there exists a projective plane (X, L) of order
q, then
2(m:2) = (¢ +q+1)(g +1).

Proof. Denote n = g* + g + 1, which is the number of points in X. Define a bipartite
graph G p with bipartition (X, £) by letting x € X be adjacent to L € L if and only
if the point x is on the line L. As two points cannot lie on two lines, we have G p
contains no Cy4, and so z(n;2) > e(G p). Hence the lower bound follows by noting
e(Gp)=(¢* +q+1)(g+1).
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Now, let G be a bipartite graph on partition (7, B) containing no C4, where
IT| = |B] = n = ¢> +q+ 1. We shall show that ¢(G) < (¢*>+ ¢+ 1)(g + 1). Let
by, by be a uniformly selected pair of distinct vertices of B. For ¢t € T, let N(¢) be
the neighborhood of ¢ and d(¢) = |N(t)|. For a fixed ¢t € T, let I; be the indicator
random variable for ¢ being adjacent to both b and b, and let X = >, .7 ;. Since ¢
is adjacent to both b and b, if and only if both b and b, are chosen from N(t), we

obtain that
e =g ni= 3 (%))

teT teT

Note that X is the number_of vertices ¢ € T adjacent to both b and b,, thus X < 1
as G contains no Cy4. Let d = % >iter d(2) be the average degree. Convexity of the

function (3) gives ~
()= /0

where the equality holds if and only if all vertices of T have the same degree. Now

1 >maxX > E[X] > n(g)/(g)

hence L
did-1)<n-1,
yielding
¢(G) = nd < it NIHA 2D ““24(”_1) =(g*+q+1)(g+1)
as desired. O

We then turn to find exact values of ex(n, C4) for n = ¢> + ¢ + 1, which will
be %q(q + 1)? slightly smaller than %z(n; 2) that we just obtained. Recall that the
Erd&s-Rényi graph ER, has n = g% + q + 1 vertices and ¢(g + 1)?/2 edges, which
together with the upper bound obtained in Theorem 7.6 give

1 1
Z(n —1D(1+V4n -3) < ex(n,Cyq) < Zn(l + Vdn - 3)
whenn=¢>+q+1,ie.,
1 2 1 5
5a(g+1)" <ex(n,Cy) < 5(¢"+g+1)(g+1).
ErdSs, Rényi and Sé6s (1966) proved that the second inequality is strict, and ErdGs

(1966) conjectured that the first inequality is an equality. This conjecture was con-
firmed by Fiiredi (1996(c)), who obtained a partial answer for g = 2% in 1983.

Theorem 7.14 Let g > 13 be a prime power. If n = ¢> + q + 1, then
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1
ex(n,Cy) = Eq(q +1)%

To avoid some burden with extra background for the proof, we only introduce the
proof of Fiiredi for the special case where ¢ is a power of 2.

Lemma 7.11 Let g > 2 be an even integer. If G is a C4-free graph of order q> +q + 1
and A(G) < q + 1, then any vertex of degree q + 1 is adjacent to at least one vertex
of degree of q or less. Consequently, G has at least q + 1 vertices of degree q or less.

Proof. Let v € V(G) be a vertex with d(v) = ¢ + 1. In the subgraph of G induced
by N(v), there is no vertex with degree two or more, thus

+1
[ENO) < V—J -4
2
as ¢ is even. Noticing that any pair of vertices in N (v) have the unique neighbor v in
common in G, and V(G) \ N[v] contains ¢ — 1 vertices, where N[v] = N(v) U {v},
we have

Z d(x) <d(v) +2|E(N()I+[V(G) \ N[v]|
xXeN (v)
<(@g+D+qg+(g> =1 =(qg+1)>-1.
Thus there exists at least one vertex x € N(v) with d(x) < ¢ as claimed. Set

S ={x € V(G) : d(x) < q}. Note that any vertex of degree g + 1 is adjacent to at
least one vertex of S from what just proved, we get

NI =v(o).
xeS
Thus (g + 1)|S| > g% + g + 1, impling that |S| > g + 1 as desired. o

Lemma 7.12 Let g be an integer. If G is a Cy-free graph of order ¢> + q + 1 and
A(G) > g +2, then e(G) < q(q +1)?/2.

Proof. Set
V=V(G) ={vi,v2,...,vn},

where n = g>+¢g+1,and d(v{) = A > g +2. Since G contains no C4, we obtain that
INW)\ NI 2 IN(vi)| -1 =d(vi) -1

for 2 <i < n. Then
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")

(number of pairs of V'\ N(vy))

> Z (number of pairs of N(v;) N (V \ N(vy))
2<i<n
d(V,‘) -1
(7

Suppose to the contrary that e(G) > g(q + 1)%/2. Since ¢(gq + 1)?/2 is an integer,
we must have ¢(G) > g(g+1)?/2+1,ie.,2e(G) > (n—1)(qg+1)+2. By Jensen’s
inequality, we have

(n . A) - 1)(22<i<n(d<vi> - 1)/(n - 1))

- 1)([2e(c> ~(n fzn ~Al/(n~ 1))
s e 1>([(”‘ a2~ Al/tn- 1))_
This yields
(n-1(n-A)(n-A-1)
>[(n=1Dg+2-Al[(n=-1)(g=1)+2-A]. (7.5)

Note that the fact Ag > (¢ +2)q — 1 = n+ g — 2 implies
(g+D(n=-A)<(n-1g+2-A,
and the fact A(g — 1) > (¢ +2)(¢ — 1) = n — 3 does
gn—-A-1)<(n-1)(g-1)+2-A.

Multiplying the left-hand sides and the right-hand sides of both above inequalities,
respectively, we have an inequality contradicting to (7.5). ml

Proof of Theorem 7.14 for ¢ = 2*. The Erdds-Rényi graph ER, gives that
ex(n,Cy) > g(q + 1)%/2. On the other hand, if G is a C4-free graph of order
n = g>+q+1 with g a power of 2, by Lemma 7.12, we may assume that A(G) < g+1.
Thus, by Lemma 7.11, there are at least g + 1 vertices of degree g or less. Hence

2¢(G) < (g +n—(g+1) =q(g+ 1)
the desired equality follows immediately. O

For any positive integer n = ¢> + ¢ + 1 where g is a prime power, Theorem 7.6
and Theorem 7.14 imply that
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1 32,1 1/2
ex(n,Cyq) = =n’'“+ = —-=0(n"'%).
2 4
A conjecture of Erdds states that for all large n,

1
ex(n,Cy) = §n3/2 + Z +o(n'?).
However, this conjecture does not hold in general. Indeed, Ma and Yang (2021) have
proved that there exist some real € > 0 and a positive density of integers n such that

1 1
ex(n,Cy) < §n3/2 + (Z - e) n.

Here € would be taken as any positive real less than 0.0375.

Let us return to the graphs forbidding C4 by considering the Ramsey numbers
of C4 in many colors. The following construction of Lazebnik and Woldar (2000)
yields a lower bound for r(C4), in which the equality holds for k = 2 and k = 3.
Any monochromatic graph in the construction yields a lower bound for ex(n, Cy4).

Theorem 7.15 If k is a prime power, then
ri(Cyq) > k> +2.

Proof. Let Fy be the field of k elements and let V = Fj X Fi. Any vertex v € V
can be written as a vector (v1, v,), which is distinct to the set {vq,v;}. Let u be an
additional vertex out of V. We shall color the edges of K;2,; on vertex set V U {u}
with k colors so that there is no monochromatic C4. We will do so for all edges in V
first. Let e = {(ay, a2), (b1, by)} be an edge with both end vertices in V. We assign
e with the color a, where

a = a1b1 +as +b2.

We claim that there is no monochromatic Cy4. Since otherwise, suppose that (a;, as),
(b1, b3), (c1,c2),and (dy, d,) are four consecutive (distinct) vertices of a C4 in some
color a. Thus

a=a\bi+ay+by=bici+br+c,
=C1d1+C2+d2=d1(l1+d2+(12,

yielding (a; — ¢1)(b; — dy) = 0. So either a; = ¢ or b| = d;, which imply either
(ay,az) = (c1,c¢2) or (by, by) = (dy, d>), a contradiction.

It remains to color the edges of form {u, v} with v = (v1,v,) € V. For such an
edge, we assign it with color vy, the first coordinate of v. Suppose that there is a
monochromatic Cy4 in color @, which must contain the vertex u. Let (a, a»), (b1, by)
and (a, c7) be the other three vertices in the C4. We have that

a=ab;+ary+bry=abi +by+co.
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Thus a; = ¢, which implies that the vertices (@, a;) and («a, ¢;) are identical, a
contradiction. This completes the proof. [

Combining the above Theorem and the upper bound obtained in Corollary 7.2,
we obtain the asymptotic formula of r (Cy4) as follows.

Theorem 7.16 As k — oo, ri(Cs) ~ k2.

7.5 Constructions with Forbidden K

The following construction is due to Fiiredi (1996(b)), and see also Axenovich,
Fiiredi and Mubayi (2000) with slightly different, which gives lower bounds for
ri(K2, s+1) and ex(n, K, s41).

Theorem 7.17 For any fixed integer s > 1, ri.(Ka, s41) ~ s k? as k — oo.

Proof. The desired upper bound is in the last Chapter. We need to show that
rk(Ka s1) 2 (1= o(1)s k2

as k — oo. Let g be a prime power such that k = (g — 1)/s is an integer. Set
n=(q-1)%/s = sk?. We will color all edges of K,, with slightly more than k colors
such that there is no monochromatic K7 4.
Let F' = F; be the g-element finite field, and let 2 € F be an element of order s,
and
H={lh,..  +h""}.

Denote the cosets of H by
H\,Hy,. .., Hy,

which partition F* = F \ {0}. We introduce an equivalence relation “ =" in F* X F*
as (a1, az) = (x1,x2) if (a1, az) = h* (x1, x2) for some i’ € H. The equivalence class
represented by (a, a) is denoted by (aj,az). Let V be the set of all equivalence
classes and n = |V| = (¢ — 1)?/s = sk?. Consider the complete graph K,, with
vertex set V. Color the edge joining two vertices (ai,as) and (xy, xp) with color i
if ajx; + axxy # 0 and ax| + axx, € H;. Clearly the definition for the coloring is
compatible with the equivalence class, that is to say, ajx| + axy € H;, (a1, a3) =
(b1, by) and (x1,x2) = (y1, y2) imply byy; +brys € H;. Note that the edges of form
{{ai,az), {(x1,x2)} with a;x| + ax, = 0 are still uncolored.

Let G; denote the graph induced by all edges in color i. We shall show that
G, contains no Ky s41. Let (a;,az) and (b, b2) be a pair of distinct vertices, and
consider the equation system

{a1x1 +ajxxy) = u, (7.6)

bixi + byxy =v.
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We claim the system has at most one solution (x;, x;) for every u,v € H;. Indeed,
the solution is unique if the determinant of the system is not 0. Otherwise, there
exists A € F* such that (b1, by) = A(ay, ay). If the system (7.6) has solution (x1, x7),
then Au = v hence A = v/u € H, contradicting to the fact that (a1, a;) and (b1, by)
are not equivalent. Finally, there are 52 possibilities for u, v € H; in (7.6). The set of
solutions form s equivalence classes hence s vertices. So there are at most s vertices
(x1,x2) joined simultaneously to {a;, a;) and (b, by).

Now turn to the uncolored edges {{(a, az), (b1, b2)} with a;b| + ab, = 0. Let
Gy be the graph induced by these edges. We are going to color the edges of G by
an additional O(Vk) colors. We first show that G is a union of K.k and K.

Note that the equation

aix) +azxxy = 0

has ¢ — 1 solutions forming k = (¢ — 1) /s equivalence classes hence k vertices, thus
vertex (a1, as) of G has degree k if a3 + a3 # 0 and degree k — 1 if a? + a3 = 0.
Let {{ay,az),{b1,bs)} be an edge of Gy, then a;b| + aby = 0. Set

Vi = {{x1,x2) ayx; +axxy =0} and Vo = {{y1,y2) : b1y1 + bay, =0}

Then (a1, az) € V2 and (b1, ba) € Vi, and |Vi| = V2| = k. For any {x1,x2) € Vi and
(y1,¥2) € V, we have

Yo X2 by a
Xpy1+x2y2=x1y2\ —+—|=x1y2|—-—7—— —
y2 X
= —X]yz (a1b1 +a2b2) =0.

axby

So Vi and V, are completely connected in Gg. If Vi NV, = 0, then they induce a
complete bipartite graph K} ; that is not connecting to any other vertex of G¢ since
the maximum degree of G is k. If Vi NV, # 0, {(z1,22) € V1 N V,, then we see that
Z% + z% = 0 and the degree of (z1,z2) in G is k — 1. Since it is adjacent to all other
vertices in V| and V,, we have V| = V, and it induces a complete graph K. As any
vertex in V| = V, has degree k — 1, we have that any vertex in this complete graph is
not connecting to any other vertex of Go. Therefore, G is a union of K ; and Ky
as desired.

Note that r¢(C4) ~ k> from Lazebnik and Woldar (2000), so we can color
the edges of Ka; with at most (1 + o(1))V2k < V3k colors such that there is
no monochromatic C4 hence no monochromatic K .. In view of known results
about the density of primes (Siegel-Walfisz Theorem, see Walfisz (1936) and Prachar
(1957, pp. 144)), let p; be the jth prime such that (p; — 1)/s is an integer, and let
nj = (pj—1)/s+[34/(p; — 1)/s], then by what has been proved, r; (K2, 5+1) =
(1- 0(1))sn§. For any n withn; < n < nj,, we have n ~ nj as n — oo, thus

rn(Ka,51) 2 1y (Ko s41) 2 (1= 0(1)s 5 = (1= o(1))sn?,

as desired. |
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By counting the edges in G, we obtain the asymptotic formula of ex(n, K3 s+1)
as follows.

Corollary 7.3 For any fixed integer s > 1,

1
ex(n, K>, s+1) ~ E\/EnS/z
asn — oo,

Proof. Note that any two vertices {(ay, az) and (x1,x;) (all elements are non-zero)
are adjacent in G if and only if a1x; + axxy € Hy and a;x; + axxy # 0. For each
fixed vertex (a1, as) and h' € Hy, the solutions of the equation correspond to exactly
one vertex. Thus each vertex (aj, a) of G| is adjacent to (¢ — 1) vertices, one of
these might coincide with (a1, a;) so the degree of the vertex (ay, ap) is either g — 1
or ¢ — 2. Note that G| has (g — 1)/s vertices, so the assertion follows. O

7.6 Constructions with Forbidden K

In this section, we first discuss the lower bound of Turdn number ex(n, K3 3). Brown
did not know that his construction is in fact asymptotically sharp when the paper
appeared in 1966. Combining his construction and Fiiredi’s upper bound in 1996
(Theorem 7.7), we have an asymptotic formula of ex(n, K3 3).

Theorem 7.18 As n — oo, ex(n, K3,3) ~ $n°/3.

Let us point out that Brown’s construction did not give a good lower bound for
rk(K3,3). The following construction is due to Kolldr, Rényai and Szabé (1996),
and Alon, Rényai and Szabd (1999), which yields both asymptotic formulas of
E)C(}’l, K3’ 3) and rk(K3, 3).

Let g be a prime power and let F» be the field of order g*>. Forany X € F, 42> Set

N(X) = X'*4, called the norm of X. Note that the zeros of the polynomial x4 — x
are precisely the elements of F,. Since X @' = X for any X € F_» and

[N(X)]? = (X'*9)9 = X9x9" = X9X = N(X),

we have that N(X) € F, for any X € F.. Clearly, N is multiplicative as N(AB) =
N(A)N(B). We then define a graph H as follows. The vertex set V(H) is F2 X Fy.
Two distinct vertices (A, @) and (B, b) in V(H) are connected if and only if

N(A+ B) = ab.

The order of H is ¢>(q — 1). Note that B # —A since otherwise either a = 0 or b = 0
which is impossible. If (A, a) and (B, b) are adjacent, then (A, a) and B(# —A)
determine b. Thus H is regular of degree ¢ — 1. In particular, the vertex (A, a) has
aloop if N(2A) = a>.
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Lemma 7.13 The graph H does not contain K3_3 as a subgraph.

Proof. The lemma is a direct consequence of the following statement: if (D1, d}),
(D2, d>), and (D3, d3) are distinct vertices in V(H), then the system of equations

N(X + D)) = xd,,
N(X + D3) = xd, (7.7)
N(X + D3) = xd3

has at most two solutions (X, x) € F(g?) x F*(q).
If (X, x) is a solution of the system (7.7), then

e X#-D;foranyi=1,2,3,
e D;#Djfori#+j.

The former is true since xd; # 0. For the latter, if D; = D, then we have d; = d;
and hence (D;,d;) = (D, d;).
From the system (7.7) and the property that N is multiplicative, we have

X+D, _ ﬂ
N (X+D3) ~ dy’
X+Dy\ _ &
V() =%

Note that a solution (X, x) of (7.7) is uniquely determined by X, so it suffices to
show that the last system has at most two solutions on X. This system yields

N( X+D, ) ! di

(X+D3)(D1-D3) ) = d3N(D1-Ds3)°

N( X+D; ) _ dy
(X+D3)(D2-D3) ) = d3N(D2-Ds3) "

For i = 1,2, if we denote b; = d;/(d3sN(D; — D3)), A; = 1/(D; — D3), and
Y = 1/(X + D3), then the above equations become

N(Y +Ay) = by,
N(Y+A2) = b,.

Note that (A + B)4 = A9+ B9, s0 N(Y + A;) = (Y + A;)(Y? + A!) and hence the
above system equivalents to

{(Y+A1)(Y‘1+Aq)=b1, (78)

(Y +Ay)(YY9 + Ai?) = bj.

‘We now refer unknown Y, A; and b; as elements of F pry Consider the system of
equations

{(xl —aiy)(x2 —an) = by, (7.9)

(x1 —az1)(x2 —axn) = by

with ay # az1 and ayp # ax, where a;;, b; € Fp. We claim that the system has at
most two solutions (x1,x3) € qu X qu. In fact, from the system we get
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(a1 —a2)x2 + (ap — an)x| +aziaxn —ajap = by — by.

By expressing x; in terms of x, and substituting it into one equation in system (7.9),
we obtain a quadratic equation in x, with a nonzero leading coefficient. This has at
most two solutions in x, and each determines a unique x;. The claim follows.
Setting x; = Y, xp = Y49, we see the system (7.8) has at most two solutions in
unknown Y. These solutions are corresponding with the solutions (X, x) of system
(7.7), so the proof is finished. |

It is just one more step to obtain an asymptotic formula of r¢ (K3, 3).
Theorem 7.19 As k — o, 1. (K3.3) ~ k>.

Proof. The upper bound 7 (K3 3) < (1 + o(1))k> comes from Section 7.2. For a
lower bound, let g be a prime power. For a complete graph on vertex setV = F 2 X F,
color the edge connecting (A, a) and (B, b) by color N(A + B)/ab if A+ B # 0. For
any three points (A, a1), (A2, az) and (A3, as3), if the edges connecting (A;, ;) and
(X, x) receive the same color, then

N(X+A))/aix = N(X + Az)/aszx,
N(X + Ay)/arx = N(X + Az)/aszx,

or equivalently,

X+A; _ ap
N (X+A3) - X

X+Ar\ _ az
N (X+A3) T az’

Q Q
S

It can be verified as the proof for Lemma 7.13 that there are at most two solutions of
the above system and hence there is no monochromatic K3 3.

Now we consider the uncolored edges connecting (A, a) and (B, b) with A+B = 0.
For any fixed A € F, 42> set

Vi={(A,x): xeF,} and V2 ={(-A,y): y€F,}.

If A =0, then V| (= V;) induces a complete graph of order ¢ — 1, otherwise V;
and V; are disjoint and they form a complete bipartite graph on 2(g — 1) vertices.
Using the fact that 7, (Cy) ~ k?, we can color the edges of each such graph (in fact
the complete graph the same vertex set) with at most (1 + o(1))(2¢)'/? additional
colors such that there is no monochromatic C4 hence no monochromatic K3 3. The
total number of colors is (1 + 0(1))g, implying the required lower bound. ]

The above construction can be generalized to a graph G ; as follows, which is
called projective norm graph. Let V(Gg,;) = Fyi-1 X Fy for t > 3. Two distinct
vertices (A, a) and (B, b) are adjacent if and only if N(A + B) = ab, where

-2

N(X) :X1+q+"'+q ,

called the norm of X. In this graph, each vertex has degree ¢’ ! — 1 (some vertices

may have a loop). In Kollar, Rényai and Szabé (1996), and Alon, Rényai and Szabé



178 7 Turan Number and Related Ramsey Number

(1999), the authors obtained that for any fixed r > 3 and s > (¢ —1)!+1, the order of
ex(n, K;5) is n>~/*, and the order of r (K, ) is k. In particular, for s > = 3, the
generalization and the upper bounds obtained by Fiiredi’s (Theorem 7.7) yield that

s—1

1/3
(% - 0(1)) (T) 3 < ex(n, Kz 5) < (% +0(1)) (s =2)'3nB3,

and
s—1

(1-0(1)5

Erd6s and Spencer (1974) proved that ex(n, K; ;) > Q(n?>~1/(+) for t > 5 via
an application of the probabilistic method, which was improved by Wolfovitz (2009)
to that ex(n, K; ;) = Q(n?>~1(*D (loglog n)l/(’z‘l)). By analyzing of the H-free
process, this was further improved by Bohman and Keevash (2010) as

k< ri(Ksg) < (1+0(1))(s - 2)k>.

ex(n,K; ;) 2 Q (nzfl/(Hl)(log n)l/(ttl)) .

A natural problem is as follows.

Problem 7.1 Determine the orders of ex(n, K; ;) and i (K, ;) for fixed t > 4. Is the
former n2~1/17 Is the latter k*?

7.7 Turan Numbers for Even Cycles

In this section, we focus on Turdn numbers ex(n, Ca,,). For the upper bound, Erdds
(1965) claimed an upper bound without proof, which was proved by Bondy and
Simonovits (1974). Indeed, Bondy and Simonovits (1974) proved a more general
result that if a graph G of order n with edge number ¢(G) > 100mn'*'/™, then
G contains all even cycles Cye for m < € € mn'/™ For m = 2,3,5, the bounds
are tight, see Klein (Erdds 1938), Benson (1966) and Singleton (1966) and later by
Wenger (1991), Lazebnik and Ustimenko (1995) and Mellinger and Mubayi (2005).
For general m, the best known lower bound on ex(n, Cs,,) is due to Lazebnik,
Ustimenko and Woldar (1995), but does not match the upper bound.
The following proof is due to Bondy and Simonovits (1974).

Theorem 7.20 Let m > 2 be a fixed integer. We have
ex(n, Com) < 10mn'*t/m

forn > 10m".

Now we shall prove the bipartite version of Theorem 7.20 first. To do so, we shall
have more preparative lemmas. Let # > 1 be an integer. A coloring of vertices of a
graph G, not necessarily proper, is called ¢-periodic if the pair of end vertices of any
path of length 7 have the same color. So all vertices in a connected graph have the
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same color in any 1-periodic coloring. For ¢t > 2, if G has enough edges, then the
number of colors used in a ¢-periodic coloring is small.

Proposition 7.1 If t is the smallest integer such that the cycle C,, is t-periodic, then
tlm. Moreover, if the cycle Cy, is t’-periodic, then t|t’.

Lemma 7.14 Let t > 1 be an integer, and let G be a connected graph of order n. If
e(G) = 2tn, then the number of colors in any t-periodic coloring of G is at most
two.

Proof. We separate the proof into several short steps. We first prove that G contains
two adjacent vertices joined by two internal vertex-disjoint paths, each of length at
least ¢. We shall call this subgraph as a §-graph intuitively.

Step 1. 6(G) > 2t. We can find such a 6-graph in the following way. Letxx; - - - X,
be a longest path. Then x; is adjacent only to vertices of this path, x;,, x;,, ..., X;,,
say, where
2=i1<ip<---<lip, r>2t.

The cycle x1x; - - - x;,,x1 and the edge x1x;, form the desired 6-graph.

Step 2. 5(G) < 2t. Since e¢(G) > 2tn, we have that the average degree of G is at
least 4¢. From Lemma 3.11, G contains a subgraph H with §(H) > 2¢. Thus from
step 1, H contains a 6-graph as desired.

Step 3. Any 6-graph has three cycles. Let us denote these cycles Cy, Cy, C3 of
lengths ¢1, £, and 3, respectively, where t + 1 < {; < £, < 3. Thus

€1+€2—f3=2.

The restrictions of the coloring of G to the 6-graph and to each cycle C; are also t-
periodic. Let #; > 2 be the smallest integer such that the coloring of C; is t;-periodic.
Clearly t;|t and t;|¢; by Proposition 7.1. Also any period on one cycle induces the
same period on the other two cycles and hence #| = t, = #3. Let * be the common
value of #;. Then #*|{; hence ¢*|2 so t* = 1 or t* = 2, implying that the number of
colors in the #-graph is at most two.

Step 4. Since G is connected, any vertex of G is jointed to some vertex in the
0-graph by a path of length kz, probably using some vertices in the 6-graph. Thus
both of the end vertices of the path have the same color. Hence the number of colors
in G is at most two from step 3. O

Lemma 7.15 Let G be a bipartite graph of order n > 10™. If the minimum degree
8(G) = Smn'!™, then G contains an even cycle Cay,.

Proof. Fix a vertex x of G and let
Vi={v e V(G) : d(v,x) =i},

which is the set of vertices with distance i from x. Since G is bipartite, each V; is an
independent set.
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Suppose that G contains no C,,,. We claim that
Vil > n'/™ V4| (7.10)

for 1 < i < m, which will lead to a contradiction since (7.10) implies that |V (G)| >
|Vin| = n.

In the following, we aim to prove (7.10). The proof is by induction on i. This is
trivial for i = 1 since 6(G) > Smn'/™. Suppose (7.10) holds for smaller value of i.

Let H be the subset of G induced by V;_1 U V; and let Hy, H>, ..., H, be the
components of H. Write W; = V(H;) N V;_.

A path xjxp---xg in G is called monotonic if d(x;,x) is monotonic. This
means that a monotonic path passes through each of some consecutive sets
Vi, Vist, ..., Vi exactly once.

We shall show that e(H) < 4m|V(Hy)|. This is trivial if W) contains only one
vertex which implies H; is a star. We thus assume that W; has at least two vertices.
Let p < i -1 be the smallest index such that there is a vertex a € V), and there
are two monotonic paths Py, P, joining a to W which only contain the vertex a in
common.

We then show that each vertex of W is jointed to a by a monotonic path. This is
clear if a = x. Otherwise, for y € Wy, there is a monotonic path P3 joining y to x.
By the minimality of p, P3 must intersect Py or P;, say P, at some vertex z. The
path consisting of the section of P3 between y and z and the section of P; between
z and a is a monotonic path from y to a.

Fig. 1 Fig. 2

We now assign colors red and blue to the vertices of Wy in such a way that if two
vertices have different colors, then they are joined to a by internal disjoint monotonic
paths. This can be done as follows. Each vertex of W that can be joined to a by a
monotonic path disjoint from P; is colored red; all other vertices of W, are colored
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blue. To see this is the required coloring, let x; and x;, be vertices of W; colored red
and blue, respectively. We will show that they are joined to a by internal disjoint
monotonic paths.

Let P} be a monotonic path from x; to a disjoint from P, and let P} be a
monotonic path from x; to a. Moving along P} from x, towards a, let v be the first
vertex of (P} U P) \ {a} encountered. Such a vertex v exists since x; is colored blue.
Also we see that v cannot belong to P{ for otherwise the section of P} between x;
and v together with the section of P| between v and a would constitute a monotonic
path from x; to a disjoint from P,, contradicting the assumption that x, is colored
blue. But then v € P, and we have a monotonic path x, P,vP>a disjoint from P| as
desired.

We now color the vertices of H; in V; green and show that this coloring of H; is
t-periodic with t = 2(m —i + p + 1). For, since ¢ is even, if one end vertex of a path
of length 7 in H is green, then so is the other. Also, there can be no path of length ¢
joining a red and a blue vertex, because, if a red x; were joined to a blue x; by such a
path, this path together with vertex-disjoint monotonic paths from x; to @ and x; to
a would form a Cy,,. Therefore, the coloring of H; is indeed ¢-periodic. Since three
colors are used in the coloring, Lemma 7.14 implies that

e(Hy) < 2t|V(Hy)| < 4m|V (H1)|.

Similarly we have that e(H;) < 4m|V(H;)| for j =1,2,..., q hence

e(H) < 4m|V(H)|.
Let H’ be the subgraph of G induced by V;_, U V;_;. The same argument gives

e(H) < 4m|V(H")|.
Clearly, since 6(G) > S5mnt/m,

e(H) +e(H') > 5mn'/™|V;_].

Combining these inequalities, we get

Am(|Vii| + Vil + Vi1 | + [Vical)
=4m(|V(H)| +|V(H')|) > e(H) + e(H') > Smn"/™|V;_4],

which implies that
1 1/m
Vil > = ((Smn!/™ = 8m)|Vie| = 4m|Vial).

Using the induction hypothesis,

Viei] > 0™V, ).
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Therefore,
Wil > —— (Smnl/m _ g 20’ Vi1l
| > — [5mn' /™" —8m — ———— | |Vi_
4m Smnl/m !
1
> — (5mn'™ — 9m)|V;_,|
4m
>n'"MViy|
as desired. m]

We also need the following result.

Lemma 7.16 For any graph G, there is a subgraph H of G such that H is bipartite
and e(H) = e¢(G)/2.

Proof. We may assume that ¢(G) > 0 as the case ¢(G) = 0 is trivial. For a subset
S of V(G), write S = V(G) \ S. Let e(S, S) be the number of edges between S and
S, in which e(V, 0) = 0. Maximizing (S, S) over all subsets S of V(G), we obtain
a spanning bipartite subgraph H on vertex classes S and S with e(H) = e(S, S), in
which none of § and S is empty as ¢(G) > 0. Then for any vertex v, say v € S, at
least half of neighbors of v in G are in S since otherwise removing v from § to S
would increase e(S, S), contradicting to the maximality of e(S, S). This follows by
e(H) > e(G)/2.

The Lemma has a simple proof by probabilistic method. Let S be a random set of
V(G) defined by Pr(v € S) = 1/2, independently. Then it is easy to know that the
probability of any edge is an edge between S and S is 1/2. Thus the expectation of
e(S,S) is e(G) /2, implying that there is some set S such that e(S, S) > ¢(G)/2. O

Edwards (1972, 1975) proved the essentially best possible result that for every
graph G with m edges, there exists a bipartite graph H satisfying

L
64

(H) > m_ [m
e — — =.
-2 8 8

This result is tight if G is a complete graph on an odd number of vertices, i.e.
whenever m = (3) for some odd integer n.

Proof of Theorem 7.20. Let G be a graph of order n > 10m* with e(G) =
10mn'*'/™ . Lemma 7.16 implies that there is a spanning subgraph H of G such that
H is bipartite and e(H) > 5mn'*!/™ The average degree of H is at least 10mn'/™.
By Lemma 3.11, there is a subgraph F of H satisfying that §(F) > Smn'/™. Let n

be the order of F, then
no > 6(F) > 5mn'/™ > n'/™ > 10™,

and 6(F) > 5mn(])/ ™. Thus by Lemma 7.15, the bipartite graph F contains an even
cycle Capy, so does G. This proves the theorem. O
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Theorem 7.20 yields that for each fixed m > 2,
ex(n, Com) < 10mn'*/m.
Corollary 7.4 For each fixed m > 2,
ri(Cam) < c k™ m=D),

where ¢ = c¢(m) > 0 is a constant.

For m = 2, we have established the right order for ex(n, C4). In the following, we
shall prove that its order is also right for m = 3 and m = 5.

Theorem 7.21 There exists some constant ¢ = c(m) > 0 such that

ex(n, Cap) > cn'*/m

form =12,3,5.

The constructions for the desired lower bounds are due to Wenger (1991). The
same order of lower bound for m = 3 has been obtained by Benson (1966), and for
m = 2,3,5 by Lazebnik, Ustimenko and Woldar (1995).

Let g be a prime power. Construct a bipartite graph H,,(q) as follows on vertex
classes X and Y, where both X and Y are copies of F". Thus |X| = [Y| = ¢™. For
two vertices A € X and B € Y with

aq b]
as by
A=| . and B=| . |,
am bm
they are adjacent if
bl al an
bz an as
B = = : +by,
bm-1 Am-1 am
b 0 1

For each vertex A € X, the value b,, uniquely determines a neighbor B of A, so each
vertex in X has degree g. Hence H,,(g) has 2¢™ vertices and ¢! edges.

Lemma 7.17 The bipartite graph H,,,(q) is q-regular. The last coordinates of neigh-
bors of any vertex are pairwise distinct, hence they form F.

Proof. For a vertex A € X, any neighbor B € Y of A is uniquely determined by its
last coordinate b,,, from the adjacency. Thus A have g neighbors, of which the last
coordinates form F,. Given a vertex B € Y, if A € X is a neighbor of B, then
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bl 1 bm (23]
bm—l - 1 bm Am-1 ’
am 1 am

in which A is uniquely determined by a,,. Thus B has g neighbors, of which the last
coordinates form F. O

Before giving more properties of H,,(q), recall Vandermonde matrix on F, as
follows. For m > 2 and a; € F,, set

1 1 1
ai as am
Msz(al,GZ,---,am)z .
m—-1 ,m-1 m—1
ai'"" a; amn

as an m X m matrix on Fy. Note that
det(Mm) = H1§i<j§m(aj = cl,').

So M, is singular if and only if there are some i # j such that a; = a;. However, we
need a more specific property of the Vandermonde matrix.

Lemma 7.18 If the ith column of the Vandermonde matrix M, is a linear combina-
tion of the others, then there exists j # i such that a; = a;.

Proof. Note that det(M,,) = Ili<i<j<m(a; —a;) = 0 by the assumption, so the
assertion follows immediately. O

Lemma 7.19 If H,,(q) contains a cycle of length 2m, denoted by
sz = (A],BI’A2’ 327 e 7Am, Bm),

where A; € X and B; € Y, then for each B;, there exists a Bj with j # i such
that b;y, = bjm, where b;p, and b j, are the mth (last) coordinates of B; and Bj,
respectively.

Proof. Let A, B and A’ be three consecutive vertices in the cycle Cy,,, with B € Y.
By the definition of adjacency we have

7 ’
ay - aj a — aj

which gives a; — a} = by (a1 — a},,) = (=bw)™ ' (am — a},) hence
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a) - d, (=bm)™!
ay - d (=bm)™2
= (am— a;n)
am-1—a, -b,
Am — Ay, 1

Clearly a,, # a,, since otherwise A and A’ are the same vertex. By taking A, B
and A" as A;, B; and A, respectively, and by writing x; = a;, — @(i+1)m, and
¢; = —b;,, we obtain
e
G
m-2
¢

Ai— A =xi| |

1

and x; # 0. From the trivial fact that Z:’; 1 (A; = Aj41) is a zero vector, where A,y
is Ay, we have

Crln—l 631_1 C%—l X1 0
m-=2 .m-2 m-2 X2 0

"y cm
C1 co cr Cm Xm—1 0
1 1 e 1 Xm 0

Note that the left-hand side matrix is a Vandermonde matrix, and the ith column is
a linear combination of the others since x; # 0. Thus ¢; = ¢; and hence b;,, = b,
for some j # i by Lemma 7.18. O

Corollary 7.5 The graph H,,(q) contains no Cy,, for m = 2,3, 5.

Proof. If H,(q) contains a cycle C4 = (A}, B, Ay, By) with A; € X and B; € Y. By
Lemma 7.19, bj» = by,. However, both B and B, are adjacent to A, implying the
last coordinates b1, and by, are distinct by Lemma 7.17. This leads to a contradiction.

If H3(g) contains a cycle Cg = (A}, By, Az, By, A3, B3) with A; € X and B; € Y.
By Lemma 7.19, by3 = by3 or b3 = b33. However, By and B, have a neighbor
A, in common, and B; and B3 have a neighbor A; in common, which leads to a
contradiction from Lemma 7.17.

If Hs(q) contains a cycle Ci9p = (Ay,By,...,As,Bs) with A; € X and
B; € Y. By Lemma 7.19, there exist three distinct vertices B;, B; and By such
that b;s = bjs = bys. Two of these vertices must be consecutive in the cyclic se-
quence By, By, ..., Bs, By, so they have a neighbor in common, which again leads
to a contradiction from Lemma 7.17. m]

Proof of Theorem 7.21. Note that H,,(q) has n = 2¢™ vertices and ¢g"*! =
(n/2)'*1/™ edges. The proof of Theorem 7.21 now follows immediately from the
above corollary and a result that two consecutive prime numbers p, p’ satisfying
p ~ p’ (Siegel-Walfisz Theorem, see Walfisz (1936) and Prachar (1957, pp. 144)). O
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Let us remark that we cannot expect that H,,(g) gives more exact orders. It is
shown by Shao, He and Shan (2008) that H,,(q) contains all even cycles of order
2m form =4 orm > 6.

A further result due to Fiiredi, Naor and Verstraéte (2006) is as follows:

can*3 +0(n) < ex(n,Cg) < con*? +0(n),

where ¢ = 3(V5-2)/(V5-1)*3=0.53...,and ¢c; = 0.62. .. is the real root of
16x3 —4x2+x -3 =0.

Moreover, as we have mentioned in the beginning of this section, Lazebnik,
Ustimenko and Woldar (1995) proved that for fixed m > 3,

ex(n,Coyy) = Q (n1+2/(3m_3)) .

As we have known that for m = 2,3, 5, ex(n, Cayn) = O(n'*1/"). The following
conjecture proposed by Bondy and Simonovits (1974) is still open.

Conjecture 7.1 For m = 4 or fixed m > 6, ex(n, Cayp) = O(n'*1/m).

Let us see a generalization of the Turdn number of even cycle as follows. Let 6 ,
be the graph consisting of £ internally disjoint paths of length k, each with the same
endpoints. We see that 6 » = Cax. The problem of determining ex(n, 6y ¢) was first
studied by Faudree and Simonovits (1983), who showed that ex (1, 6 ¢) = O (n'*/¥)
for all fixed k, £ > 2. The lower bounds for ex(n, Cy;) imply that this bound is tight
when k = 2,3 or 5. Additionally, a result of Mellinger and Mubayi (2005) shows
that it is tight for k = 7 and £ > 3. Conlon (2019) obtained that for any fixed integer
k > 2, there exists an integer ¢ such that

ex(n,0k.¢) = Q(n'+/5).

In the following, we will consider Ramsey numbers of bipartite graphs and large
K. Recall a result in Chapter 3 that for any graph G of order N and average degree
d, if the maximum degree of any subgraph induced by a neighborhood is less than
an integer m, then

a(G) = N fn(d), (7.11)

where f,,(x) > (log(x/m) — 1)/x for x > 0. The inequality (7.11) holds if any
subgraph of G induced by a neighborhood contains no path of m edges.

The following result is due to Li and Zang (2003).

Theorem 7.22 For any fixed integers s > t > 2,

r(Kr s Kn) < (1+0(1)(s—1+1) (@) .

Proof. Let N = r(K; s, K,) — 1, and let G be a graph on N vertices with no K,  and
a(G) < n— 1. By the upper bound of Turdn numbers in Section 7.2, we have
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d(G) < (1+o(1)(s—t+ 1)/INI-VE (7.12)

where d(G) is the average degree of G.
Let v be a vertex of G, and let G,, be the subgraph of G induced by the neighbor-
hood of v with maximum degree A(G,). Then

AGy) <s—1ift=2 (7.13)

and
A(Gy) £ r(Ki—p,Kp) — 1ift > 3. (7.14)

Indeed, for ¢ = 2, (7.13) follows immediately from the fact that G contains no K _.
For ¢+ > 3, suppose to the contrary that the degree of some vertex u in G, is at
least #(K;_2, s, K;,). Since G contains no K,,, G, N G, must contain K;_» g, which
together with  and v yield a K;_; in G, a contradiction.

Now let us apply induction on ¢ > 2. For ¢ = 2, in view of (7.12) and (7.13), from
(7.11) we have,

Nlog(+/(s = 1)N/s)
V(s=1)N

n> Nfy(d(G)) = (1-0(1))

= (1—0(1))1/%10“;1\’.

It follows that N < (s — 1 + o(1))(n/logn)? since otherwise, there exists a constant
& > Osuch that N > (s — 1+ 6)(n/logn)? for infinitely many n, which will lead to a
contradiction. Hence the assertion holds for 7 = 2.

For t = 3, our proof begins at Chvdtal’s discovery on r(7T, K,;) mentioned in
Chapter 1,

r(Kis, Kn) =s(n—1)+1.
Letm = s(n—1)+1 ~ Q(N'/3). Since any subgraph of G induced by a neighborhood
has maximum degree less than m, a similar argument as that for ¢ = 2 gives

Nlog((s —2)'3N?/3/m)

”>me(d(G)) 2(1_0(])) (S_2)1/3N2/3

N 1/310gN
s—=2 3

=(1 —0(1))(

It follows that N < (s — 2 + 0(1))(n/logn)?, and the assertion holds for ¢ = 3.
Let us proceed to the induction step for ¢ > 4. For any fixed 0 < € < 1, set

t—1
d=(1+€)(s—1+2) (@) ,

and
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t-2
m= l(1+e)(s—t+3) (L) | .
logn
The induction hypothesis assumes that for large n,
r(Kt—1,57 Kn) < d7 and r(Kt—2,s, Kn) <m.

Using (7.11) as before, we have

1/t d
> (1 -o(1 log —
nz(1-o ))(s—t+l) 8
1/t
N n
=(1-o0(1 I .
(1=of ))(s—t+1) Og(logn)
It follows that N < (s —t+ 1 + 0(1))(n/logn)" as desired. O

Combining the above theorem and the lower bounds obtained in Chapter 5 by
using the Local Lemma, we have that for fixed s > ¢ > 2,

(st—1)/(s+t-2) n t
c <r(Kis,Kp) < (l+0()(s—t+1)[—] ,

( logn ) ’ ( logn )
where ¢ = ¢(s,t) > 01is a constant. Note that the exponent (st —1)/(s+17 —2) in the
lower bound can be arbitrarily close to the exponent ¢ when s is much larger than ¢.
So it is natural to ask if the order of upper bound is sharp. Assuming yes, we shall
be able to establish a somehow unexpected result: asymptotically, all the extremal
graphs for r(K;_ s, K,) come from those for ex(N, K; ). Thus it is very interesting
to estimate the independence numbers of known extremal graphs for ex(n, K; ). No
doubt, this assumption is a bold adventure.

Proposition 7.2 For any fixed integers s > t > 2, if there exists a constant ¢ > 0
such that

t
n
r(Kt,Ss Kn) > (C - 0(1)) (1 ) (715)
ogn
as n — oo, then .
ex(N,K; ) > 5(c—o(1))1/’1\72—1/’ (7.16)

Sor all sufficiently large N of the form N = r(K;, s, K,) — 1. Furthermore, the extremal
graphs yielding (7.15) also yield (7.16).

Proof. To prove it, assume the contrary: there exists § > O such that ex(N, K, 5) <
%(c — §)/*N2=1/* for infinitely many n, where N = r(K;_ s, K,) — 1. Imitating the
previous proof, we have

Nl—l/t

g —————F—>
g V(KI—Z,S, Kn)

1/t
n>(1-o(l)) (%) 1
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which implies N < (¢ — 6 + 0(1))(10’g‘n)’, contradicting (7.15). O

The main idea for the proof of the above theorem is simple: if the average degree
of a graph is small, then its independence number must be big. The main result in the
last section ex(N, Ca,,) < c(m)N''/™ will be used to improve the result of Erdds,
Faudree, Rousseau and Schelp (1978) that r(Ca, Ky) < en™ (m=1) with a factor
logn.

Theorem 7.23 For any fixed m > 2, there exists a constant ¢ = c¢(m) > 0 such that
for all sufficiently large n,

m/(m—-1)
r(Com, Ky) < ¢
(53]

Proof. Let G be a graph of order N = r(Cyy, K,) — 1 which contains no Cyyy,
and @(G) < n. For any vertex v of G, consider the subgraph G, induced by the
neighborhood of v. The subgraph G, does not contain path P,,,_» since G does
not contain Cy,,,, where Py, is a path of 2m — 2 edges. Also since ex(N, Cay;) <
ci N*1™M for some constant ¢; = ¢y (m) > 0 thus the average degree of G is at most
2¢;N'/™_ Note that for fixed a, the function f, (x) is asymptotic equal to log x/x as
Xx — oo. By Theorem 3.6,

log2c|N'/™

e N >NV log N
Cl m

n>a(G) = (1-o0(1))N
for some constant ¢, > 0. Now if for any large ¢ > 0, there are infinitely many n
such that N > c(n/logn)™ "=V then log N > c3logn, where c3 > 0 is a constant
increasing as ¢ increasing, and

(m=-1)/m_"_

n > coc c3logn = caczcm D Imy
n

which would lead to a contradiction if ¢ is large and n — oo. O

We have discussed the Ramsey number of cycle and K,, when #n is large. For
large m, Erd@s, Faudree, Rousseau and Schelp (1978) conjectured that for every
m >n >3, exceptform =n=3,

F(Coms Kn) = (m — 1) (n— 1) + 1. (7.17)

Bondy and Erd&s (1973) verified it for n > 3 and m > n? — 2, which was slightly
improved by Schiermeyer (2003) and further by Nikiforov (2005) for m > 4n + 2.
Recently, Keevash, Long and Skokan (2021) confirmed this conjecture in a stronger
form by proving (7.17) holds for m > clogn/loglogn, where ¢ > 0 is constant. This
is best possible up to the constant factor ¢ since we can prove that for any € > 0, there
exists ng(€) such that r(Cy,, K,) > nlogn > (m—1)(n—1) + 1 forall n > ny(e)
and3 < m < (1-¢€)logn/loglogn (see Exercise 14). It is challenging to determine
the asymptotical order of r(C,,, K,,) for each fixed m > 3. In particular, ErdGs asked
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if there exists a constant € > 0 such that
r(Cs, Ky) = 0(n*7€).
We conclude this section with the following problem.

Problem 7.2 For fixed s > ¢ > 2, determine the order of r (K, 5, K,). Isit (n/logn)".
If yes, does it grow linear on s?

7.8 Exercises

1. Prove that ex(n, H) = (5) if n < |V(H)|. What can we say about ex(n, H) if
n=|V(H)[?

2. Directly prove @(G) > n/(1+ d) by the method proving the upper bound for
ex(n, Ky) in Section 7.1 as the former can be proved by the latter.

3. Let T, be a graph of m edges. Show that

(1) ex(n,Ty) < (m - )n.
(i) If n = sm +r with 0 < r < m, then ex(n,T,,) > s(%) + (5).

4. What are ex(n, P,,) and ex(n, Ky m)?
5. Prove that ex(n, Copmy1) = |1 /4] for large n.

6. An H-free graph G is called to be critical if any graph obtained from G by
adding any edge in the complement of G contains H. A critical H-free graph is
also called to be H-saturated. So the saturation number sat(n; H) is defined as the
minimum number of edges of an H-saturated graph of order .

(i) Show sat(n; K3) =n—1.

(i) Show generally sat(n; K;) = (t = 2)(n - 1) — (tgz) arising from the graph
K;_» + K_;42. (See Erd6s, Hajnal and Moon, 1964)

7. Let G and H be graphs of order n. Prove that G contains a subgraph with at

least e(G)e(H)/(5) edges that is isomorphic to a subgraph of H. (See the proof of
Theorem 7.5)

8.Let G be a graph with n vertices and m edges. By considering random bipartition
of V(G) of sizes |n/2] and [n/2], show that G contains a bipartite graph with at
least 2m|n”/4]/n(n — 1) edges.

9. Let H be a bipartite graph, and let ex;, (n; H) be the maximum number of edges
in a bipartite graph of order n. Prove that ex;, (n; H) < ex(n, H) < 2 exp(n; H).

10. Show that if G is a subgraph of K, , with average degree d that contains
neither C4 nor Cg, then d < n'/3 + 1.

11. Let g be a prime power. Prove that
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r(Cy, Ky p2) 2 ¢*+qg+1, and r(Ca, Ky g241) 2 4 +q+2.

12.* Let n > 2 be an integer. Prove that
r(Cs, K1) <n+Vn—1+2.

13.* Prove that for any € > 0, there exists ng(€) such that r(Cy,, K;;) > nlogn >
(m-=1)(n—=1)+1foralln > ny(e) and 3 < m < (1 — €) logn/loglogn. (Hint:
Keevash, Long and Skokan, 2021)

14.* Extending Theorem 7.18 to that foreacht > 4 and s > t! + 1, ex(n, K; 5) >
en®~1" for some ¢ > 0. (Hint: Alon, Rényai, and Szabé, 1999)



Chapter 8 Sdates
Communication Channels

Ramsey theory has been applied to information theory in various ways. In this
chapter, we shall see that the connection between Ramsey theory and communication
channel is natural. The first section is on Shannon capacity, and the second section
is on that of cycles, which contains a result of Lovasz for Shannon capacity of Cs.
The third section set an equalities for classical Ramsey numbers and functions from
communication channels.

8.1 Introduction

A communication channel consists of a finite input set X, and an output set Y. For
each input x € X, there is a nonempty fan-shaped output S, C Y, which is the set
of outputs that may be received for the input x by the receiver. In each use of the
channel, a sender transmits an input x € X, and receiver receives an arbitrary output
y € Sy. For distinct inputs # and v, they can be received as the same output if and
only if §,,NS,, # 0. Suppose that the sender and receiver agree in advance on an input
set I € X. In order to avoid error, the outputs of any two distinct inputs in / cannot
intersect. In a noiseless channel, there is no intersect between two outputs. Shannon
(1956) first studied the amount that an information channel can communicate without
error. He formulated the problem to a problem of graph theory.

Let X be the input set of a channel and let G be a graph with vertex set X in
which two distinct vertices are adjacent if and only if their outputs intersect. The
graph G is called the characteristic graph of the channel. The characteristic graph of
a completely noisy channel is Kj; and that of a noiseless channel is an empty graph
(a graph with edge set empty).

In most situations, a channel is in repeated uses. When the channel is used n times,
the sender transmits a sequence x = (x1,x3,...,X,), where x; € X, and receiver
receives a sequence y = (¥, y2,...,¥n), Where y; € Sy, C Y. The repeated use of
the channel can be viewed as a single use of a larger channel. The large channel has
an input set X", the Cartesian product of X. Forx = (xy, x2,...,x,) € X", its output
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set is
Sx =8¢ XSy, X+ XSy, ={(1,y2,.--.¥n) 1 ¥i €Sy, 1 <i < n}.

Let G denote the characteristic graph of the large channel. Then its vertex set is X".
Two distinct vertices x = (x1, X2, ...,%,) and x" = (x],x),...,x,) can be received
as the same output if and only if foreach 1 <i < n, Sy, N le{ # 0, when x; # x;.
Thus x and x” are adjacent in G if and only if for each 1 < i < n, x; and x| are
adjacent in G, when x; # x;. Hence the edge set of G is defined.

We now define the nth AND product of graph G = (X, E), denoted by A"G. Its
vertex set is X', two vertices x,x” € X" are adjacent in A" G if and only if for each
1 <i<n,x; and xlf are adjacent in G, when x; # xlf; namely, either x; and xl’. are
adjacent in G, or x; = x[. (It is slightly more convenient to give the definition if we
admit any vertex in G is adjacent to itself.) Clearly, if the characteristic graph of a
channel is G, and when its repeated use is viewed as a single use of a large channel,
the characteristic graph of the large channel is A"G.

When we consider to transmit the sequence x = (x,x2,...,x,) of length n,
where x; may come from different input X;, the characteristic graph of the channel is
the AND product of the graphs G; defined as follows. Let G, G, . . ., G,, be graphs,
and let V1, V,,...,V, be their vertex sets, respectively. Define their AND product
G1 AGy A--- NGy, as a graph with vertex set Vi XV, X - - - X V,,, two distinct vertices
x = (x1,x2,...,X,) and x" = (x],x),...,x,) are adjacent if and only if for each
1 <i < n, either x; and x| are adjacent in G; or x; = x|. In the following proposition,
the closed neighborhood N[v] of a vertex v is {v} U N(v).

Proposition 8.1 Let G, G, ...,G, be graphs and G = G AGy A --- A Gy,. Then
for any vertex x = (x1,x2,...,Xx,) of G, its closed neighborhood Ng|x] satisfies

Nglx] = Ng,[x1] X Ng, [x2] X --- X Ng,, [xn].

Note the above equality does not hold for neighborhoods in general. Let G =
K> U K, on vertex set V = {u,v,w} with only one edge uv. Consider G = A’G.
Take vertex x = (u,w) of G, its neighborhood Ng(x) is singleton {(v,w)}, but
Ng(u) X Ng(w) = 0 since Ng(w) = 0.

Proposition 8.2 Ler I; be an independent set of G;. Then I} X I X --- X I, is an
independent set of G1 A Gy A - - - A G,. Consequently,

a(Gi NGy A~ ANGy) 2 a(G)a(Gr) - a(Gy),

and
a(AN""G) = a(AN"G)a(A"G).

Proof. For two distinct vertices x = (x1,x2,...,%,) and x" = (x{,x}...,x;) of
Iy x Iy x -+« X I, there is some 1 < i < n, x; # x;. Since I; is independent in G;, so
x; and x; are non-adjacent in G;. So x and x” are non-adjacentin G| AGo A---AGy,
hence I} X I X - - - X I, is an independent set. m]
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Since a(A""G) is super-multiplicative, hence the limit

lim(a(A"G))'" = sup(a(A"G))'/"

exists, which is denoted by ®(G), called the Shannon capacity of G (or of the
corresponding channel). Then we have an easy lower bound for @(G) as follows.

Theorem 8.1 For any graph G, ©(G) > a(G).

The inequality can be strict. The first such graph is Cs, which we will encounter
in the next section.

We now define OR product of graphs. Let V1, V,, ..., V, be vertex sets of graphs
G1,Ga,...,Gy, respectively. The OR product of Gy, G, ..., Gy, denoted by G V
GV ---VGy,isdefined a graph on vertex set Vi XV, X - - - XV}, in which two distinct
vertices x = (x1,X2,...,%,) and x’ = (xi,xé, ..., xy) are adjacent if and only if for
some 1 <i < n, x; # x;, and they are adjacentin G;. For G| = G, =--- =G, =G,
this OR product is denoted by V" G. By the definition, we have

GiVGyV--VG,=G AGy A+ A Gy,

and hence

GiAGyA - ANG,=G VG,V -V G,

Combining these with the fact that @(G) = w(G), we obtain

@(GIAGaA--AGp) =w(G1VGaV---VGy). (8.1)

8.2 Shannon Capacities of Cycles

This section is devoted to compute the Shannon capacities of cycles.
Lemma 8.1 The independence number of A*Cs is 5.

Proof. Setting the vertex set of Cs as {0, 1, 2, 3,4}, we arrange all vertices of A2Cs
as follows.

(0,0)* (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2)* (1,3) (1,4

(2,00 (2,1 (2,2) (2,3) 2,4"

(3,0) (3,D)" (3,2) (3,3) (3,9

4,00 4,1) 4,2) (4,3)" (4,4

It is easy to check that the set {(0,0), (1,2), (2,4), (3,1), (4,3)}, each element of
which is marked by a star as above, forms an independent set in A2Cs, it follows that
@(A%Cs) > 5. Foreachi =0, 1,2, 3, 4, the consecutive two rows

(i,0) (i, 1) (i,2) (i,3) (i,4)
(G(+1,0) (i+1,1) (i+1,2) (i+1,3) (i+1,4),
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with 5 = 1 (mod 4), contain only two non-adjacent vertices. Thus we have
@ (A%Cs) < 5, proving the lemma. |

Corollary 8.1 ©(Cs) > V5.

We know that there is graph G with the chromatic number y (G) is considerably
larger than its clique number w(G), see Chapter 4. A graph G is called perfect
if any induced subgraph H of G satisfies that y(H) = w(H). Any even cycle is
a perfect graph and any odd cycle with length at least 5 is not a perfect graph.
Shannon (1956) proved that when G is a perfect graph, then ®(G) = a(G). The
equality may not hold in general as @(Cs) > V5. However, Lovisz (1979) proved
that ®(Cs) = V5. The knowledge on the Shannon capacity of imperfect graphs is
very limited. By using stochastic search methods, Mathew and Ostergérd (2017)
obtained that ®(C7) > 350'/° > 3.2271, and ®(C5) > 381'/3 > 7.2495.

We adopt a simpler way from Proofs from THE BOOK by Aigner and Ziegler
to obtain the Shannon capacities of even cycles and a general upper bound for odd
cycles. We shall introduce the Lovasz theta function briefly later.

Call a real vector X = {x, : v € V} as a probability distribution or simply a
distribution on the set V if x, > 0 and <y x, = 1. Denote by 7 for the set of all
cliques of G. For a fixed distribution X, we write

AX) = rTna$va,

€
veT

and A(G) = infx A(X). If the distribution X is viewed as weights of vertices in
V, then 3, .1 x, is the weight of T, and A(X) is the maximum weight of a clique.
Since the inf is achievable as A(X) is continuous on the compact set consisting of
all distributions, so

A(G) = min A(X) = n}gnr;lea(;;xv, (8.2)

where the min runs through all distributions X on vertex set V(G).
In order to get another expression for A(G), we need a basic result in the Game
Theory or Linear Programming, called Minimax Theorem.

Theorem 8.2 Let A = (a;j) be a real n x m matrix, and let X = (x1,...,xy) and
Y = (y1,...,yn) be probability distributions. Then

minmax YAX” = max min YAXT,
X Y Y X

where the min runs through all probability distributions X and the max does through
all such Y. Furthermore, there exist probability distributions X* and Y* such that
minY*AXT = maxYAX*T.
X Y

The proof is based on Duality Theorem, which can be found in most of textbooks
on Game Theory or Linear Programming. We thus omit it.
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Set7 ={T1,T»,..., Ty} and V(G) = {v1,va,..., vy }. For any clique 7; and any
vertex v; of G, define

lifv; e T;,
a;i = .
g 0 otherwise.
Then (a;1, - - - , a;m) is the incident vector of 7; and we thus have an n X m real matrix

A = (a;;).Lete; = (0,...,0,1,0,...,0) be the vector of R" of all zeros except for
a one in the ith position. Then e;AX”T = 2iveT; Xvs 80 the expression (8.2) is

A(G) = min max ¢;AX”.

X 1<i<n

We now consider the left-hand side in the first equality in Minimax Theorem, for
a given distribution X, suppose in the ith position that the vertex AX” has the
maximum component, then

max YAXT = eiAXT = max eiAXT,
Y 1<i<n

and thus
minmax YAX” = min max e[AXT.
X Y X l1<isn
Denote by f; for the vector of R™ of all zeros except for a one in the jth position. So
min max Z X, = min max eiAXT = max min YAij = m;lx mi‘r/l Z yr,
ve

X X 1<i< Y 1<j<
TETVET 1<i<n <j<m =

where in the last expression the sum is taken on 7 over 7, and the max runs through
all distributions Y = {yr : T € T} on 7.
We thus obtain the second expression for 1(G) as

A(G) = max min Z T (8.3)
Tsv
Let U € V(G) be an independent set of G with |U| = ¢(G) = «, and define a
distribution X (U) = {x,, : v € V} by

_|1/aifveU,
=1 0 otherwise.

Since each clique contains at most one vertex of U, we have that A(X(U)) = 1/a
and A(G) < 1/a. We then have the following lemma.

Lemma 8.2 For any graph G,

1

Lemma 8.3 For any graphs G| and G,
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A(G1 A G2) = AG1)A(G2).

Proof. We now have two expressions for 1(G) as

A(G) = minmax va = max min Z YT
veT T>v
Let X and X’ be the distributions which achieve the minima for A1(G1) and A(G>),

that is to say,
AX) = A(Gy) and A(X') = A(G>).

We define a distribution Z on vertex set of Gi A G2 as z(y,y) = Xx,x,, for a vertex
(u,v) of G1 A G2. The fact that Z = {z(y,y) : (u,v) € V(G1) X V(G2)} is truly a
probability distribution can be seen by > z(,,v) = 2 Xy 2, X5, = 1.

Claim A clique of G| A G, is maximal if and only if it has the form T} X T, with
T; is a maximal clique of G; fori = 1, 2.

Proof. Indeed, note the “clique” in the statement cannot be replaced by “indepen-
dent set”. The dual form of the claim is “ an independent set of G| V G, is maximal
if and only if it has the form S| X S, with §; is a maximal independent set of G; for
i=1,2". O

Using the above claim, we have

AGIANGy) 2A(Z) = max Z Z(u,v)

(u,v)eXxX’
= max Z Xu Z x;,
XXX’
ueX veX’

= UG 1)A(G).

On the other hand, denote still by T for clique of G| A G, and Y for distribution on
the set of cliques of G| A G, then

A(G1 A G3) = max min yr
Y (u,v)eV(G1)XV(G2) 5
(u,v)eXxX’
5 PIKPILS
ueX veX’
=G 1)A(G2),
proving the lemma. O

Theorem 8.3 For any graph G, we have

1
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Proof. From Lemma 8.3, we see A(A"G) = 2"(G). This and Lemma 8.2 give

1 1

a(AN"G) < AAG) = (G)’

hence ®(G) < ﬁ O

Lemma 8.4 Let k > 4 be an integer and let Cy be a cycle of length k. Then
A(Cy) = % hence
O(Cy) < .
(Co) < 5
Proof. Let Xy = (1/k, ..., 1/k) be the uniform distribution on the vertex set. Since
any clique T meets Cy at most two vertices, we obtain that

1 2
A(Ck) =min A(X) < A(Xp) = —=—.
(Ci) = minA(X) < A(Xo) I}lggs;k P
On the other hand, 7~ consists of all k vertices and all k edges. Defining a distribution
Yy by choosing a component as 1/k for an edge and O for a vertex, and using the
expression (8.3) for A(G), a similar argument yields that A(Cy) > 2/k, and hence
A(Cx) =2/k. m]

Theorem 8.4 Let m > 2 be an integer. Then ©(Cy,y,) = m.

The above discuss is not sufficient to obtain the Shannon capacity of any odd
cycle. The first one, ®(Cs), was obtained by Lovasz with an elegant solution. Recall
the proof of a theorem in Chapter 5, in which the representation of vertices of
hypergraps in R**! plays an important role.

In order to find the exact value of ®(Cs), the idea of Lovasz was to represent
the vertices VG) = {vy,v2,..., v} by real vectors (points in an Euclidean space)
of length one such that any pair of vectors presenting two non-adjacent vertices are
orthogonal. Let us call such a representation an orthogonal representation of G.
Note that such a representation always exists: just take unit vectors

e1=(1,0,...,0), e2=(0,1,0...,0), ..., em=(0,0,...,1)

in R™.
Let 7 = {v(D,v® . v} be an orthogonal representation of G in R* with
v corresponding to the vertex v;. Denote by

1
v=—W 4@ 4 gy,
m

When any vector v(¥) has the same angle (# 7/2) with ¥, or equivalently that any
inner product v(?) - v has the same non-zero value, denoted by o (G), we shall say
that the representation T has constant o7 (G) = v - v.

Denote by |v| = 4/v - v for the length of the vector v. For a probability distribution
X = (x1,...,X;) on vertex set V, set
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u(X) = |x1v(') +x0® 4 xy,y (™ |2
and
#(G) =inf u(X) = min p(X).
Lemma 8.5 If T = {v(D v ... v"™Y is an orthogonal representation of G with

constant o7 (G), then
O’T(G) = ,uT(G).

Proof. From the Cauchy-Schwarz inequality |a - b| < |a||b]|, we have
2 2 2
(xlv(1)+x2v( )+~--+xmv(m))-7 < uX)v)-.

However, since v() - v = or(G) and Y x; = 1, we have
v +x0v@ 4 x, ™) T = o (G).
The above can be applied for the uniform distribution Xy = (1/m, ..., 1/m), giving

[v]?> = o7 (G). We then have o-%(G) < u(X)or(G), or or(G) < u(X) for any X,
thus o7 (G) < min u(X) = ur(G). On the other hand, we have

1 2
ur(G) < u(Xo) = |- D 4 v D o) = 2 = (),
m
so ur(G) = or(G) follows. O

Lemma 8.6 If T = {v(D v® . v"™} isan orthogonal representation of G, then

o
ur(G)  or(G)’

Proof. It suffices to show the first inequality. Let U be an independent set of G with
|U| = a(G) = a. Define a distribution X (U) on V(G) by

a(G) £

= l/aifv; € U,
71 0 otherwise

Since v - v() = 0 for any pair of two non-adjacent vertices and v - v(?) = 1, we

have that
1 ..
Z —y(®
a

v;eU

2 2

m

Z X,’V(i)

i=1

1
p

ur(G) < u(X(U)) =

yielding @ < 1/ur(G) as desired. O

Let G| and G, be graphs with orthogonal representations 7 and S in R’ and R*,
respectively. We now do not distinguish the vertices and their representations. For
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u=(y,...,u;) € Tandv = (v,...,vs) € S, the tensor product of u and v is
defined as the vector

Uov=_(UVi,...,U|Vs, UDV], ..., UDVs,y .. ... JUV], e ey UgVs)

of R”*. Denote by T o S for the set {uov:u €T,v € S}.

Lemma 8.7 Let u,x € R and v,y € R® be vectors. Then

(uov)-(xoy)=(u-x)(v-y).

Proof. Directly from the definitions of tensor product and inner product. O

Lemma 8.8 If T and S are orthogonal representations of G| and G, respectively,
then T o S is an orthogonal representation of G1 A G, with

HTos(G1 A G2) = ur(G1)us(G2).

Proof. In fact, forany u € T and v € S,
luov|? = Z(uivj)z = ZM%Z v% =1.
ij i J

If (u,v) and (x, y) are two non-adjacent vertices of G| A G, then either 4 and x are
non-adjacent in G| or v and y are non-adjacent in Gy, sou -x =0Qorv -y = 0. Thus

(uov)-(xoy)=(u-x)(v-y) =0,

and the claimed follows. O
Theorem 8.5 If T = {v(1), v v Y s an orthonormal representation of G
with constant o (G), then
0(G) < .
or(G)

Proof. Repeatedly using Lemma 8.8, we know that 7" is an orthonormal represen-
tation of A"G with constant ur» (A"G) = ur(G)". Thus by Lemma 8.6,

1 1

a(NG) < TG T or (G

which yields a(A"G)'/" < 1/o7(G) as desired. O

An “umbrella” used by Lovész in the proof of the following theorem is called
“Lovasz umbrella”.

Theorem 8.6 ©(Cs) = V5.
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Proof. For the graph Cs, Lovasz obtained an orthogonal representation T in R> by
considering an “umbrella” with five ribs v, v, ..., vs of unit length. Now open the
umbrella (with tip at the origin o) to the point where the angles between alternate
ribs are /2, namely, it is an orthogonal representation of Cs. This can be done
as the umbrella opens, in which the angle of alternate ribs varies from zero to
4r/5 with 4n/5 > /2. After we have the orthogonal representation T of Cs as
T = {vM v@ ... vy} then a simple calculation shows that A2 = Ls’ where
h is distance from the origin to the plan determined by end-vertices of ribs. So
v = (0,0, h) = (0,0,5"/4) hence

; 1
or(Cs) =v? - v=n = —,
V5
which and Theorem 8.5 prove that ©(Cs) < V5. The inverse inequality has been
obtained. O

In order to improve the obtained upper bound ©(Cy) < k/2 for odd k, we are
going to find the eigenvalues of the adjacency matrix of Cy first.

Lemma 8.9 Let k = 2m + 1 > 3 be an integer. Then
2¢
ZCosTﬂ €=0,1,... . k-1)

are all eigenvalues of the adjacency matrix of Ci, in which the maximum and
minimum are 2 and =2 cos 7., respectively.

Proof. Let A = (a;;) be the adjacency matrix of Cy. Then

010---001
101---000
A=l N R
000---101
100---010

in which each row contains two ones and k — 2 zeros. Let ¢ = ¢2™/k_ Note that
1,Z,---, %1 are all kth roots of unity. Denote by 8 for £¢ with0 < £ < k — 1. We
shall show that X(©) = (1,8, 8%, ..., 85 )7 is an eigenvector of A corresponding
to eigenvalue 8+ 87! = ¢ + £7¢. In fact,

B+ B!
B+1
axO =| BP+B |=p+pHxO.

1+ pk=2
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Since X(© , X M s, X k=1 are independent (seen from the Vandermonde matrix
formed by them), it follows that

2t
§{)+§_€=200s77r (t=0,1,...,k=1)
are all eigenvalues of A, which are decreasing from ¢ = 0 to m and the increasing,
proving the lemma. 0

We need to recall some results in linear algebra:

Facts from Linear Algebra. If M = (m;;) is an m X m real symmetric matrix,
then it has m real eigenvalues. Furthermore, if all such eigenvalues are non-negative,

then there are vectors v(1, v, ... v(™) in RS with s = rank(M) such that m;; =
@) . )
v(@ ),

Let A = (a;;) be the adjacency matrix of graph G of order k with eigenvalues
Ay =2 2+ 2 Ag.

Since )} A; = X, d;; =0, we have A < 0 (unless G has no edge). Let p = |Ax| = —Ag.
Then the matrix 1
M=1+—A,
P

where [ is the identity matrix, has k eigenvalues

1+A—121+QZ---21+Q

4 p

=0.

Therefore, we obtain a set of vectors T = {v) v@® . v} in RS with s =
rank (M) such that

) . . . a;ij
MO - m;=1 and v 0 = m;j = % (i#]J).

If two vertices v; and v; are not adjacent, then a;; = 0, thus T forms an orthonormal
representation of G. Now for an odd cycle Cy, we have
o (Cr) = v T = 1y (Vm @y v(k))
k
1 ] 2\ 1+cos(n/k)
k pl kcos(n/k)

Theorem 8.7 Let k > 3 be an odd integer. Then

k cos(m/k)

O(Cy) < Ts(ﬂ/k)
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Note the equality holds for k = 3 in the above theorem with ®(C3) = 1, and it
does also for k = 5 with ®(Cs) = V5 and cos(/5) = (V5 + 1)/4. Whether or not
it holds for k > 7 is unknown. We also refer the reader to Bohman and Holzman
(2003) for a nontrivial lower bound on the Shannon capacities of the complements
of odd cycles.

Let T = {vV v® vy} with v € R be an orthonormal representation
of graph G of order m. Define

. 1
valr(G) = min lléliegn m
where the min runs over all unit vectors c in R”. The vector ¢ yielding the minimum
is called the handle of the representation. The name “handle” comes from the Lovasz
umbrella in the proof for ®(Cs) = V5. The theta function introduced by Lovasz is
defined as
*G) = mTin valr(G),

where T runs over all representations of G. Call a representation T to be optimal if
it achieves the minimum value.

Lemma 8.10 #(G1 A G2) < 9(G1)3(G).

Proof. Let 7 = {u™M,u®, ... u™}inR and § = {vD,v® ... v} in RS be
optimal orthonormal representations of G| and G, with handles ¢ and d, respectively.
Then T o § is an orthonormal representation of G| A G, and c o d is a unit vector of
R'S. Hence

1
HG1 AG) <
(G 2) < nilf}'x ((cod) - (u® oviN))2

1 1
T a2 (@)
= HG1)I(G2),
as claimed. O

In fact, the equality holds in the above lemma.
Lemma 8.11 o (G) < 9(G).

Proof. Let V(G) = {vi,va,...,v;n} be the vertex set of G, and let T =
{v(‘),v(z), .. .,v(m)} be an optimal orthonormal representation of G in R’ with
handle c¢. Suppose that {v, v, ..., vi} be an independent set of G with k = a(G).
Then the vectors in § = {v(D), v . v} are pairwise orthogonal, thus they can
be extended to a base of R’ by adding some unit vectors w**1)_ . w () Therefore,

k t k
) ) . k
=l = v+ 3 (e = e o
i=1 i=k+1 i=1
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where the last inequality holds as by definition ¢#(G) > m for each i. O
Theorem 8.8 O(G) < 3(G).
Proof. By the above two lemmas,

a(A"G) £ 9(A'G) < 9(G)",
which follows by the inequality as required immediately. O

Using linear algebra extensively, with a special case in a general upper bound,
Lovasz obtained that for odd k£ > 3,

k cos(rm/k)

19(Ck) = Ts(ﬂ/k)’

which is an upper bound for ®(Cy) as we have seen.

8.3 Connection with Ramsey Numbers

The independence number of a graph product is important for the corresponding
communication channel. As the capacity of a channel is described by the indepen-
dence number of the graph, the following definition comes naturally. For integers
ki >22,ky>2,...,k, >2,define

plki,....ky) =max{a(G; A---ANGy): a(G;) <k, i=1,...,n}.
From the equality (8.1), we have
Proposition 8.3 Let k) > 2,ky > 2,...,k, > 2 be integers. Then
plki,....ky) =max{w(G|V---VGy): w(G;) <k;i=1,...,n}
Whenk; =ky=---=k,=k >2,
plk,....k)=max{a(G{ A---ANG,): a(G;) <k,i=1,...,n},

where G1, G, ..., G, are formally independent in the definition. However, Erdés,
McEliece, and Taylor (1971), and later Alon and Otlitsky (1995) proved that
G1,Gy,...,G, can be taken to one graph G. That is to say, p(k, k, ..., k) = p,(k),
where

pn(k) = max{a(A"G) : a(G) < k}.

Theorem 8.9 Let k > 2 be an integer. Then p, (k) = p(k, ..., k), ie.,

max{a(A"G) : a(G) < k} =max{a(G1A---AG,): a(G;) <k,i=1,...,n}.
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Proof. Set
p=plk,--- k) =max{a(G A---ANG,): a(G;) <k,i=1,...,n}.

Clearly p, (k) < p. It suffices to show that there exists a graph with @(G) < k such
that (A" G) > p. By definition, there are graphs Gy, ..., G, with a(G;) < k such
that (G| A --- A G,) = p, where the vertex sets of Gy, ..., G, are distinct. Let
G = Gy +---+ G, be the graph by adding edges connecting any pair of G; and G
completely. Then a(G) < k. Clearly,

a(AN"G) 2 a(GiA---ANGy)=p

as desired. O

More importantly, ErdGs, McEliece and Taylor (1971) obtained a relation of
function p(ky, ..., k,) and Ramsey number r(ky,..., k) as follows.

Theorem 8.10 Let k| > 2,ky > 2,...,k, > 2 be integers. Then

p(k1,...,kn)=r(k1,...,kn)—1.

Proof. Set p = p(ky, ..., k,),and r = r(ky, ..., k,) — 1. We first prove that p > r.
Recall the definition that 7 is the largest integer for which there exists a coloring of
edges of K, with colors {1,2,...,n} such that any monochromatic clique in color ¢
has size less than k; for 1 <i < n. Let

V=A{1,2,---,r}

be the vertex set of this K-, and let G; be the subgraph with vertex set V whose edge
set consists of all edges in color i. Then w(G;) < k;. By considering the OR product
graph G =GV G,V ---V Gy, we have p > w(G). On the other hand, G contains
a set

S={(1,1,...,1),(2,2,...,2), -, (r,r,...,r)}

For any pair of vertices i and j of K, with 1 <i # j < r, they are adjacent in some
Gy, so the vertices (i,i,...,i) and (j,J,..., ) of S are adjacent in G. Thus S is a
clique and hence p > w(G) > r.

We then prove that r > p. From the definition, there are graphs G, G»,...,G,
with w(G;) < k; such that G; vV G, V - - - V G,, contains a clique T of size p,

T = {(x%%xé" . '7-xrll)5 (X%,x%,. . '»xi)7‘ . ',(x]p9x/2)7' . -’xfl))}'
Define a coloring for the edges of K, on vertex set
U=A{12,...,p}

with colors {1,2,...,n} in following way. For an edge ab in this K,,, consider two
vertices in T’
b b b
(xf,x5,...,x,) and  (x],x3,...,x,),
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which are adjacent in G. There is some i so that x{ # xﬁ’ and xl.“xf? is an edge of G;.
We color the edge ab of K, with the such smallest color i, then all edges of K, are
colored.
We claim that there is no monochromatic clique of size k; in any fixed color i. In
fact, if
AcU={1,2,...,p}

is a monochromatic clique in color i, consider

X={xf:aeA} CV(G)).

For any distinct x{" and xf’ of X, the edge ab of K, is colored i, thus xl?‘xf’ is an edge
of G;. Hence X forms a clique of G;. Therefore

Al = 1X] < w(Gy) < ki,
yielding the fact that r > p and completing the proof. m

It is very interesting to study the behavior of p,, (m). From the above theorem, we
have

lim p,(3)"" = lim (r,(3) — )Y/,
n—o00 n—o00

The later limit was proved to exist in Chapter 2 that is at least 321'/3, conjectured to
be infinity.

8.4 Exercises

1. Determine a(A%"Cs). What can we say about a/(A>*+1Cs)?

2.* Prove a(A*C7) > 17. (Hint: Bohman and Holzman, 2003)

3. Show that the length of handle of the Lovdsz umbrella is 571/4.
4. Prove that ©(Cy,;,) = m.

5.* Prove that ©(Cs) = V5. (Hint: Lovész, 1979)

6." For integers k1 > 2,k > 2,...,k, > 2, define
plki,....ky) =max{a(G; A---ANGy): a(G;) <kj,i=1,...,n}.

Prove that
p(kl,...,kn) =V(k1,...,kn) - 1.

(Hint: Erdés, McEliece and Taylor, 1971)
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Chapter 9 updates
Dependent Random Choice

The method of dependent random choice has many applications, particularly for
extremal problems that deal with embedding a small or sparse graph into a dense
graph, in which the most of embedded graphs are bipartite. To obtain such an
embedding, it is sometimes convenient to find a large vertex subset U in a dense
graph, in which all (or almost all) small subsets of U have many common neighbors.
Using this U, one can greedily embed vertices of a desired subgraph one by one.

9.1 The Basic Lemma

For a graph G and a vertex set 7, let d(G) be the average degree of G, and J(T') the
set of common neighbors of vertices of T as

J(T) = ﬂ N(x).

xeT

The following lemma is basic for dependent random choice, which appeared in dif-
ferent forms in Kostochka and Rédl (2001), Alon, Krivelevich and Sudakov (2003),
Sudakov (2003), and the survey by Fox and Sudakov (2011).

Lemma 9.1 Let m, r and t be positive integers. If G is a graph of order n and average
degree d = d(G), then there exists a subset U of G such that

d\' t
=3 =06
n rl\n
and every R C U of size |R| =r has |J(R)| 2 m + 1.

Proof. Pick a set T' of ¢ vertices uniformly at random with repetitions. For a vertex
v, observe that a vertex v is a common neighbor of 7', i.e., v € J(T) if and only if
T C N(v),so
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Pr(v € J(T)) = Pr(T € N(v)) = (@) .
Let X = |J(T)|. Then E(X) = Y, Pr(v € J(T)) and thus
E(X) =] (%V)) = ntl_l (%Zd:(v)) > nfl_l =n(g) :

in which we use the convexity of the function f(z) = z’.
Similarly, for a given set R, we have

Pr(R € J(T)) =Pr(T € J(R)) = (_”(HR”) .

Let Y be the number of subsets R of J(T') with |R| = r and |[J(R)| < m. Then

T S () TR

RcJ(T),
|R|=r, |[J(R)|<m

and thus

E(X-Y) Zn(g)t— (”) (ﬂ)t ©9.1)

r n

Therefore, there is a choice Ty of T for which the corresponding X — Y has the lower
bound as the right hand side of (9.1). Delete one vertex from each such R of J(Tp).
Let U be the remaining subset in J(7p). Then U satisfies the claimed property. O

The above result asserts the size of a set U such that there is a K, ;41 for any
R C U with |R| = r. The terms n(<)" and () (22)" are like some expectations, and
m, r,t will be chosen according to requirements in applications. Note that Lemma
9.1 makes sense only if

d\" (n\ myt
|U| > r, and n(—) —( )(—) > 0.
n rf\n

9.2 Applications

In this section, we will include several applications. The d-cube Qg is a graph of
order 2¢ whose vertex set consists of all binary vectors of {0, 1} and two distinct
vertices are adjacent if they differ in exactly one coordinate. Clearly, O is d-regular
and bipartite. Let us write A(S) = max{dg(v) : v € S} for a subset S of vertices of
G. The following result is a general upper bound, in which the constant is slightly
larger than that for H = K; ¢ obtained by double counting method due to Fiiredi
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(1991). This is best possible for every fixed ¢, as shown by the constructions due to
Kollér, Rényai, and Szabd (1996) and Alon, Rényai and Szab6 (1999).

Theorem 9.1 Let t > 2 be an integer. If H is a bipartite graph on parts A and B
with A(B) < t, then

ex(n,H) < cnz_l/t,
where ¢ = ¢(H) > 0 is a constant. In particular, ex(n, Qq) < cn®> /4.
Proof.Leta = |A|,b = |B|,m = a+b,r = tand ¢ = max(a'/’, “7). Let G be a graph
of order n and ¢(G) > cn®*~'/*. Hence the average degree d = d(G) > 2cn'~!/.
Using the fact that (') < (en/r)", we find that

n (g)’ - (n) (ﬂ)t > (2¢)' - (?)t > (2c) =" > .

n r n

Thus, by Lemma 9.1, there is a subset U in G with |U| > ¢’ > a such that any ¢
vertices of U have more than m = a + b common neighbors.

Now we shall embed H into G as a subgraph, in which we first embed A to
an arbitrary subset of size a in U. Without loss of generality, we may assume that
|U| = a and the embedding of A is U. For any v € B, let M,, be the image of Ny (v)
in U. Thus |M,| <t =r and [Jg(M,)| = m = a + b, and so we can embed v into
Jc(M,) \ U as it contains at least b vertices. )

Recall a result that every graph G contains an induced subgraph H with minimum
degree §(H) > d(G)/2 without knowing the order of H. Inversely, the aim of the
following result of Sudakov (2005) is to find a sparse subgraph in a graph that
contains no large book graph B, = K, + K., namely, the maximum degree of any
subgraph induced by a neighborhood is less than a.

Lemma 9.2 Let G be a graph of order n and d = d(G). For any integers t > 2 and
a > 0, if G contains no B,.1, then it contains an induced subgraph H with

n(d ! a\t
\V(H)| > 5(;) . and d(H)§2d(3) .

Proof. Let T be a subset of ¢ vertices, chosen uniformly at random with repetitions,
and let X = |J(T)|. Similar to that in Lemma 9.1, we have

o= D[ - i o) el

For an edge e¢ = uv, write J(e) = J({u, v}) for the set of common neighbors of
u and v. Clearly, |J(e)| < a as G contains no B,. Since e is an edge in J(7T) if and
only if 7 is contained in J(e), we have

n “\n

Pr(e C J(T)) = Pr(T C J(e)) = ('J(‘””) (4.
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Let Y be the number of edges in J(T'). Thus

da'
2n’_1

E(Y) < e(G) (%)’ -

We shall find a choice T such that the subgraph H induced by J(7j) satisfying
the claimed properties.
If a =0, then Y is identically 0. Therefore, there is a choice T such that

d’ d’
|J(To)| = > —
nt-1 Znt—l

and the number Y; of edges in J(7p) is 0. For the case a > 1, let

dtfl dt
at N opt-1°

Z=X-

Hence E(Z) > 0. It follows that there exists a choice To such that Zy = Z(Tp) > 0.
This implies that Xy = |J(Tp)| = %= and Xy > %-Y,. Thus the subgraph H

induced by J(7p) has X vertices and average degree 2Yy/ Xy < % as claimed. O

Li and Rousseau (1996) obtained that for sufficiently large n,

3 3

(B Kp) < —2
44(log n)? T Jog(n/e)”

Sudakov (2005) improved the above upper bound by a factor +/logn, in which
Sudakov also conjectured that the order of r(B,, K,) is n> /log® n.

Theorem 9.2 For all large n,

3n’

V(Bn,Kn) < W

Proof. Let G be a graph of order N = 3n?/(logn)3/? that contains no B,. We
shall prove that a(G) > n. We separate the proof into two cases depending on the
magnitude of the average degree d = d(G).

Case 1 d < 2.51n%/+/logn.

Note that the maximum degree of the subgraph induced by the neighborhood of
a vertex in G is at most n — 1. By Theorem 3.4, we have @(G) > N f,(d), where
fu(d) = 2L which implies that a(G) > n.

Case2 d > 2.5n%/+flogn.

In this case, applying Lemma 9.2 with # = 2, we obtain that G contains an induced
subgraph H of order

d2
h > N > nylogn and d(H) < ———— ( < 0.8+/logn.
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Thus a(G) = a(H) > > n. O

1+d(H)

Another immediate application of Lemma 9.1 is a result of Sudakov (2003) on a
Ramsey-Turdn type problem. Let G,, be a graph of order n, and define

RT(n; H, f(n)) = max{e(G,) : G, is H-free and a(G,) < f(n)}.

Note that RT(n; H, fi(n)) < RT(n;H, fo(n)) if fi(n) < fa(n). For a survey on
Ramsey-Turdn theory, see Simonovits and S6s (2001).

Trivially, RT (n; K3, 0(n)) = o(n?) since a triangle-free graph G,, has maximum
degree less than @ (G,,). A celebrated result in this area is

RT(n; Ky, 0(n)) = (1 +0(1))%2,

in which the upper bound was proved by Szemerédi (1972) while the lower bound
was given by Bollobds and Erdds (1976). To clarify, the above result states that
every Ky-free graph G, with independence number o (G,) = o(n) has at most
(1 + 0(1))n?/8 edges, and this bound is tight. It is natural to ask whether or not
RT (n; K4, n' =€) is Q(n?) for some € > 0? A negative answer to this question was
given by Sudakov (2003) For any fixed € > 0, the function f(n) in the following
result is larger than n' =€ if w tends to infinity sufficiently slowly.

Theorem 9.3 Let f(n) = e~ V2" [f \flogn > w — oo, then
RT(n; Ky, f(n)) < e 22
for large n.

Proof. Suppose that there exists a K4-free graph G of order n with edge number
e(G) = e="/2n2 and a(G) < f(n) for large n. It is clear that the average degree d
of G is at least 2¢~“/2n. Forr =2, m = f(n) and t = 24/logn/w, we have t > 2
and

d\' —w?/2 d t —tw?]2 t
n|— 2n(2e ) =2'ne =2'f(n),

n

and

n (ﬂ)t I’l(l’t—]) —tw\/logn 1) 72]ogn<l
2)\n 2 2 2’

which implies that

n(i)—(’;) (2) =25 - 5 = rm.

From Lemma 9.1, we can find a subset U with |U| > f(n) such that every pair
of vertices in U has at least m = f(n) common neighbors. The condition a(G) <
f(n) implies that U contains an adjacent vertices u and v, which have common
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neighborhood W with |[W| > f(n). Since G is K4-free, W must form an independent
set and thus a(G) > |W| = f(n). This is a contradiction. O

The following lemma is due to Fox and Sudakov (2009), which can be used to
give a better bound for Ramsey number of bipartite graphs with bounded maximum
degree than that from the regularity lemma (see Chapter 11).

Lemma 9.3 Let integers n > d > 1, and let € > 0. If G is a graph of order
N > 4dne=? and e(G) > eN?/2, then there is a subset U in G with |U| > 2n such

that the number of d-subsets D in U with |J(D)| < n is less than W (IZ\). That is

to say, the fraction of such d-subsets in U is less than (2d) ™.

Proof. Pick a set T of d vertices from V(G) uniformly at random with repetitions.
Let X = |J(T)|, and let Y be the number of d-sets D in J(T) with |J(D)| < n.
Similar to the proof of Lemma 9.1 by noting the average degree of G is at least eN,
we obtain

(eN)? N d
E(X) > N >e?N, and E(Y) < (d) (%)

If E(Y) = 0, then Y is identically zero. We are done by taking U = J(Tp) for some
choice Ty of T such that |J(Tp)| = E(X) > 4dn from the assumption. So we assume
that E(Y) > 0 in the remaining proof. As E(X9) > E4(X) from convexity, we

obtain 4
E—(X) 1 ) > 0

E x4 - Y - —E4(X)

2E(Y) 2

Therefore, there is a choice Ty of T such that the expression in the bracket is
nonnegative. Let Xy = |J(Tp)| and Yy = Y (Tp). Thus
Xd > lEd 1 d d
o 2 5E9(X) 2 5(e°N)%,

and hence |J(Tp)| = Xp > 2n > 2d. Note that

d
X(‘)I XO d! (XO) < 2d—ld!(XO)’

" XoXo-1)--(Xo—d+1)\d d
so we have
2XJE(Y) 2441 (X\(N\/n\d 1 (Xo
0= < (—) < .
E(X) (e4N)d\d |\dJ\N 2d)4
Now we can take U = J(Ty), which satisfies the asserted properties. m]

Lemma 9.4 Let H be a bipartite graph of order n with A(H) < d. If a graph G
contains a subset U with |U| > 2n such that the fraction of subsets D in U with
ID| = d and |J(D)| < n is less than (2d)~<, then G contains H as a subgraph.
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Proof. We may assume that d > 1. We say that a d-subset D of U is good if
|J(D)| = n. Generally, if S is a subset of U with s = |S| < d, then we say that S is
good if § is contained in more than

e 4]
Qd)d=s )\ d-s

good d-subsets of U. For a good set S with |S| < d and a vertex w € U \ S, we say
that w is good with respect to S if S U {w} is good.

Clearly, a subset S of U with s = |S| < d is good if the fraction of bad d-sets
containing S is less than . For example, the empty set is good since the fraction

1
(Zd)d’s
of bad d-sets in U is at most (2d)~¢ from the assumption.

For a good set S, let Bg denote the set of vertices w € U \ S that are bad with
respect to S. The following claim is crucial for the proof.
|U|-s
2d -

Proof. Indeed, suppose to the contrary that |Bg| > ‘Uzlc;s. For any w € Bg, the
set S U {w} is bad and thus the number of bad d-sets that contains S U {w} is at least

1 U -s-1
Qd)d-s-t\d-s-1)
Let us count these bad d-sets over w of Bg. Note that each such d-set is counted at
most d — s times, thus the number of these bad d-sets is at least

|Bs| (|U|—s—1)> 1 (|U|—s)
(d-s)2dyd—s\d-s-1)" @ay¥ds\d-s |

contradicting to the fact that S is good. O

Claim If S is good with s = |S| < d, then |Bg| <

Let V| and V, be the two parts of the bipartite graph H with

Vi={vi,va, ..., v}

Denote L; = {vy,vs,...,v;}, and we shall find an embedding ¢ of H into G such
that ¢(V)) is contained in U and

* ¢(N(w)NVp)is good for each w € V,,

where and henceforth N(w) = Ny (w). This ¢ is constructed such that ¢(N(w)N L;)
is good for any w € V, and any i < m by induction on i.

As mentioned, the empty set 0 is good, and hence by the claim, the number of
bad vertices respect to 0 is at most |U|/(2d). Any good vertex in U with respect to ()
forms a good singleton set. Let us pick such a good vertex to be ¢(v). Note that for
any w € V,, ¢(N(w) N L) is an empty set or a singleton {¢(v1)}, so ¢(N(w) N Ly)
is good as desired.

Suppose that we have embedded L; into U such that ¢(N(w) N L;) is good for
any w € V,. We then shall find a vertex in U to be ¢(v;41). Note that if w and v;
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are non-adjacent, then N(w) N L;y; = N(w) N L; hence ¢(N(w) N L;) is good.
Since A(H) < d, there are at most d subsets S of the form S = N(w) N L;;; among
neighbors w of v;;;. By the induction hypothesis, for each such subset S, the set
d(S\ {viz1}) = ¢(N(w) N L;) is good and therefore there are at most |U|/(2d) bad
vertices in U with respect to it. In total this gives at most |U|/2 bad vertices. The
remaining at least |U|/2 —i > O vertices in U \ ¢(L;) are good with respect to all
the above sets ¢(S \ {vi+1}) and we can pick any of them to be ¢(v;41). Thus the set
¢(N(w) N L) is good for every w € V5.

Once we have found ¢ satisfying the mentioned property, we then embed vertices
of V, one by one. Suppose that the current vertex to embed is w € V,. Then
d(N(w)) = ¢(N(w) N L,,) is good and hence ¢(N(w)) has at least n common
neighbors. Since less than n of them were so far occupied, we still have an available
vertex to embed w. We thus complete the embedding of H into G. [

Theorem 9.4 Let H be a bipartite graph of order n with A = A(H) > 1. For any
€ > 0, if G is a graph of order N > 8Ae n and e(G) > 6(1;,) then G contains H
as a subgraph.

Proof. Let ¢ = (1 — 1/N)e. Thus, we have N > 8An/e® > 4An/e’® and e(G) >
€ N?/2. Therefore, Lemma 9.3 implies that G contains a subset U with |U| > 2n
such that the fraction of sets D in U with |D| = A and |J(D)| < n is less than
1/(2A)A. Now, Lemma 9.4 guarantees that G contains every bipartite graph H of
order n with A(H) < A as desired. O

The following result follows from Theorem 9.4 immediately.

Theorem 9.5 Let H be a bipartite graph of order n. If the maximum degree of H is
at most A > 1, then
r(H) < 8A2%n.

In particular, r(K, ,) < 18n%2" and r(Q4) < 8d4<.

Proof. Taking € = 1/2 together with the majority color in a 2-coloring of edges of
Ky, where N = 8A2%n, we have the asserted upper bound from Theorem 9.4. O

Note that the upper bound for (K, ,) in the above theorem has been improved
to O(2" logn) by Conlon (2008). Conlon, Fox and Sudakov (2014) gave an upper
bound as r(H) < A2*>n through a different and short proof. Furthermore, Conlon,
Fox and Sudakov (2016) obtained an upper bound as r(H) < 2*%n.

For the lower bound, Graham, Rodl and Rucifiski (2001) proved that there is a
constant a > 1 such that for each A > 2 and n > A+ 1, there is a bipartite graph H of
order n and A(H) = A satisfying that r(H) > a®n. For the cube Q, Burr and Erdés
conjectured that {Qy : d > 1} is a Ramsey linear family, i.e., 7(Qy) is at most ¢2¢
for some constant ¢. This conjecture has been confirmed by Conlon, Fox, Lee and
Sudakov (2013).

A graph G is called d-degenerate if every subgraph of G has a minimum degree
at most d. Let us turn to the degenerate bipartite graphs. ErdGs conjectured that
ex(n,H) = O(n*~'/") if H is r-degenerate and bipartite, and for any graph H, if
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H has no isolated vertices, then r(H) < 20Vm where m = e(H). A progress has
been made for the first conjecture due to Alon, Krivelevich and Sudakov (2003),
and the second conjecture was verified for bipartite graphs by Alon, Krivelevich and
Sudakov (2003) and completely solved by Sudakov (2011).

Lemma 9.5 Let G = G(Uy, U,) be a bipartite graph. If any r vertices in each of
U, and U, have at least n common neighbors, then G contains every r-degenerate
bipartite graph of order n.

Proof. Let V(H) = {v1,va,...,v,}, Where every vertex v; has at most » neighbors
v; with j < i. Let Ay and A, be two parts of H. We shall find an embedding ¢
of H into G such that ¢(Ay) C Uy for k = 1,2. Suppose that we have embedded
v1,V2,...,Vv;—1 and the current vertex to embed is v;, where v; € A1, say. Consider
the set {¢(v;) : j < i, vjv; € E(H)}. This set is contained in U>, and it has
cardinality at most » and hence at least n common neighbors in U;. All these
neighbors can be used to embed v; and at least one of them is not occupied yet,
which can be picked to be ¢(v;). O

Lemma 9.6 Let r,s > 2 be integers. If G is a graph of order N with e(G) >
NZ’I/(‘YSF), then G contains disjoint subsets Uy and Uy such that |U;| > NS and
in each of which every r vertices have at least N'='8/5 common neighbors in the

other.

Proof. Let ¢ = 1.75rs, d = 2¢(G)/N > 2N'"V/G') = N1=18/5 and ¢ = s2r.
Thus

N i t_ N (ﬂ)t>2fN1—f/(S3f)_M
N/ — q!

> 2Z’Nl—l/S _ i > Nl—l/S

Applying Lemma 9.1, we obtain a set U; with |U;| > N'~!/5 such that every ¢
vertices in U has at least m = N'~!-8/5 common neighbors in G.

Let T be a subset of U consisting of g — r vertices chosen from U; randomly and
uniformly with repetitions. If R is a fixed subset with |R| = r and |J(R) N Uy| < m,

then B B
IJ(R)OUll)q . (ﬁ)q '
|U1l — Ui '

Note that the event R C J(T) is exactly that T C J(R). Thus the probability that
J(T) contains a subset R with |[R| = r and |[J(R) N U;| < m is at most

q-r r
NY(m )" N y-os@-rss &g
r | \|Ui| Tor! ’

Pr(T C J(R)) = (

where we used that ¢ — 7 > 1.25rs and |U;| > N'~1/.
Therefore, there is a choice Ty of T such that every r vertices of J(7p) have at
least m common neighbors in U;. Let U, = J(Tp). Consider now an arbitrary subset
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S of Uy with |S| = r. Since S U T is a subset of U of size at most g, this set has at
least m common neighbors in G. Observe that J(S U Ty) € J(Tp) = U,. Hence S has
at least m common neighbors in U, and the statement follows as asserted. m]

From the above two lemmas, we get the following corollary immediately.

Corollary 9.1 Let r,s > 2 be integers. If G is a graph of order N and ¢(G) >

N2~V then G contains every r-degenerate bipartite graph of order at most
Nl*l.S/S.

Theorem 9.6 Let H be an r-degenerate bipartite graph of order h. For all n > h'°,

ex(n,H) < n?~V/®r)

Proof. Let G be a graph of order n and e(G) > 2n?>'/®7) Substituting s = 2
in Corollary 9.1, we have that G contains H since it is r-degenerate with order
ho< pl-18/s — ;0.1 0

The following result is due to Alon, Krivelevich and Sudakov (2003).

Theorem 9.7 For any bipartite graph H with m edges and no isolated vertices,
r(H) < 2"V,

Proof. We shall first prove that H is y/m-degenerate. If not, H has a subgraph H’
with §(H’) > ym. Let (U, W) be the bipartition of H’. Thus, |U| > ym and

e(H) = Z dy (v) > |UIS(H') > m,
veU

which is a contradiction.

Let N = 2'0V"+! and consider a red/blue coloring of the edges of K. We claim
that at least N2~!/(8Vm) edges have been colored in red, say. To see this, it suffices
to show 3 (§) = N2=1/3V™ "which is (N = 1)N'/®V") > 4N and follows from the
fact that lou 2 log2

1/8ym _ y2+1/8vim _ ogs o
N 2 4exp{8\/ﬁ}>4(1+8\/ﬁ)
immediately. These edges induce a red graph, denoted by G, which satisfies Corollary
9.1 with r = y/m and s = 2. Thus G contains every ym-degenerate bipartite graph
of order at most N'~!8/5_ Note that N1=1:8/s = NO-1 5 p1.6Vm 2m, and the order
of H is at most 2m, so H is a subgraph of G. O

9.3 Exercises

1. Prove that any graph with maximum degree A is A-degenerate. When will we
say that it is (A — 1)-degenerate?



9.3 Exercises 219

2. Prove that P, is 1-degenerate. How about K ,,, Cp,, T, and K, ,,?
3. Prove that every graph with m edges is y/m-degenerate.

4. Let G be a graph of order n and d = d(G). For any integers t > 2 and a > 0,
prove that if G contains no B+, then it contains an induced subgraph H with

n{d\ a\!
\V(H)| > E(Z) , and d(H)de(E) .

5. Improve the constant 3 in Theorem 9.2 to 2 + o(1). How do it further?

6. Sudakov (2005) conjectured that the order of (B, K,,) is n®/ log2 n. For each
k > 2, estimate r(B,(ik),K,,).

7.Let G = G(Uy, U,) be a bipartite graph. Prove that if any r vertices in each of
U, and U, have at least n common neighbors, then G contains every r-degenerate
bipartite graph of order n.

8." Prove that RT (n; K4,0(n)) < (1 + o(l))%z. (Hint: Szemerédi, 1972)

9.* Prove that for any bipartite graph H with m edges and no isolated vertices,
r(H) < 2¢Vm for some constant ¢ > 0. (Hint: Alon, Krivelevich and Sudakov, 2003)
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Chapter 10 e
Quasi-Random Graphs

Random graphs have been proven to be one of the most important tools in modern
graph theory. Their tremendous triumph raises the following general question: what
are the essential properties and how can we tell when a given graph behaves like
a random graph G, in G(n, p)? Here a typical property of random graphs is what
a.a.s. G, satisfies. This leads us to a concept of quasi-random graphs (also called
pseudo-random graphs). It was Thomason (1987) who introduced the notation of
jumbled graphs in order to measure the similarity between the edge distribution of
quasi-random graphs and random graphs. An important result of Chung, Graham
and Wilson (1989) showed that many properties of different nature are equivalent.
The quasi-random graph is in fact a family of graphs, which satisfy any of those
equivalent properties. For a survey on this topic, see Krivelevich and Sudakov (2006).

10.1 Properties of Dense Graphs

Roughly speaking, a quasi-random graph G of order n is a graph that behaves like
a random graph G, with p = ¢(G)/(5). For 0 < p < 1 < a, a graph G is called
(p, @)-jumbled if each induced subgraph H on h vertices of G satisfies that

et -3

For given graphs G and H, let N{,(H) be the number of labeled occurrences
of H as an induced subgraph of G, which is the number of adjacency-preserving
injections from V (H) to V(G) whose image is the set of vertices of an induced copy of
H of G. Namely, these injections are both adjacency-preserving and non-adjacency-
preserving. Let Ng(H) be the number of labeled copies of H as a subgraph (not
necessarily induced) of G. Thus

< ah.
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No(H)= Y NG(H),
H':H'2H
V(H")=V(H)

that is to say, H’ ranges over all graphs on V(H) obtained from H by adding a set of
edges out of H.

For example, if G = H = C;, then N;(H) = Ng(H) = 2¢, and if G = K,, and
n >t >4, then N;,(C;) = 0and NG (C;) = N (K;) = (n);. If G = K2,/ and n
is even, then N, (C4) = Ng(Cs) =25 (4 - l)]z.

Let G be a (p, @)-jumbled graph of order n, where a = a,, = 0(n) asn — oco. As
shown by Thomason, for fixed p and graph H of order A,

NG (H) ~ p¢ ) (1= p)G)=e i,

For distinct vertices x and y of G, denote by s(x, y) the number of vertices of G
that adjacent to x and y the same way: either to both or none. Let 11, A5, ..., 4, be
eigenvalues of G with |;| > |A2] = -+ = |4,]. Denote A = A(G) = |A2|. For two
subsets B and C, denote ¢ (B, C) by the number of edges between B and C, in which
each edge in BN C is counted twice. If BNC = 0, then e(B, C) is simply the number
of edges between B and C.

The quasi-random graph defined by Chung, Graham and Wilson is in fact a
family of simple graphs, which satisfy any (hence all) of those equivalent properties
in the following theorem. It is remarkable that these properties ignore “small” local
structures. The expressions of the properties are related to the edge density p, in
particular the case p = 1/2 is as follows.

Theorem 10.1 Let {G }, | be a sequence of graphs, where G = G, is a graph of
order n. The following properties are equivalent:

P1(h): For all graphs H of order h > 4, Nj,(H) ~ (l)(g)nh.
P>(1): e(G) ~ —2 and Ng(C;) < (5 )" +o0(n') for any t > 4.
P3: e(G) > "T +o(n?), Ay ~ 5 and A3 = o(n).

P4: ForeachU C V(G), e(U) = (lUl) +o0(n?).

Ps: For any two subsets U,V C V(G), e(U,V) = %|U||V| +o(n?).

Pg: IN() NN = §| = o(n?).

Zeyl

IS DI |s(x, y) — %l =o(nd).

2

Proof. In order to simplify the proof and catch the main idea, we assume that G is
d-regular with d = (1/2 + o(1))n. The steps of the proof are as follows,

Pl(h) = Pg(h) = P2(4) = P3 = P4 = P5 = P6 = P7 = Pl(h).

Fact1 Pi(h) = P»(h) (h>4).
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Proof. We will show that

No(Ch) = 3. NG <(+o)(3) -
H':H'2Cy
V(H")=V(Cp)
As H’ ranges over all graphs on V(C},) obtained from Cj, by adding to it a set of
edges out of Cj,, we obtain that the number of such H’ is 2(5)-h, P (h) states that
N (H) ~ (%)(g)nh for any graph H of order h. Therefore, NG (Cp,) = (1+0(1)) (%)h
and so P, (h) follows.

Fact 2 P2(4) = Pj.

Proof. Since we suppose G is regular, which together with the condition that e(G) ~
"Tz yield A1 = 5 + o(n). Now, consider the trace of A*. Clearly,

n 4
(At =222t 2 (1+0(1))%. (10.1)
i=1

On the other hand, as this trace is precisely the number of labeled and closed walks of
length 4 in G, i.e., the number of sequences vg, vi, v2, V3, V4 = Vg such that v;v;,; is
an edge for i =0, 1,2, 3. This number is NG (C4) plus the number of such sequences
in which v, = vy, and plus the number of such sequences in which v, # vo and
v3 = v1. Thus by the condition of P,(4),

A

Zn:zj‘zNG(c4)+o(n4) < (1+0(l))%. (10.2)

i=1
It follows from (10.1) and (10.2) that A; ~
Ay = o(n) follows as desired.

Fact3 P; = Py.

and Y1, A% = o(n*), and hence

(ST

Proof. It follows from Corollary 10.2 in the next section by noting that G is regular.
Fact4 P, = Ps.

Proof. If U and V are disjoint, then
e(U,V)=e(UUV)—e(U) —e(V)
_1 o, Lo 1o 2
= UL+ VD = ZIUP = ZIVP +0(r?)
1
= z|U||V| +o(n?).

We now suppose that U and V are not disjoint, and we write |U| = a, |V| = b and
|U NV| = c. From P4 and what we have just proved,
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e(U,V)=e(U\V,V\U)+e(UNV,U\V)+e(UNV,V\U)+2e(UNYV)
1 1 1 1
= E(a —c)(b-c)+ Ec(a —-c)+ Ec(b -c)+2- Zcz +o(n?)
1
= Eab+0(n2),

which is Ps as desired.
Fact5 P5 = Pg.

Proof. Let x be a fixed vertex of G, and let V| be the set of all neighbors of x in
G. We have |Vi| = (1/2 + o(1))n under the assumption that G is d-regular with
d = (1/2+ o(1))n. Define

Ur={y eV(Gy#x: INWNNG)I = 5.

and n
Uy = {y eV(G),y#x: IN&)NNO)| < Z} .

Observe that

> Iv@aNmI-Z] = X IN@ AN - v

yeu yeU,
=e(U, V1) - lUl'Z
= S0V + 0(n?) - [Uln/4
= o(),

in which the third equality follows from Ps. A similar argument implies that
n

> Iv@ AN -5 = o),

yeUs
Therefore, for every vertex x of G,

n 2
> IN@aN)I-5]= o,
yeV(G),y#x
Summing over all vertices x we conclude that G satisfies property Pg as desired.
Fact6 Pg = P.
Proof. Since G is d-regular with d = (1/2 + o(1))n, it follows that
s(x,y) = [N(x) " N(y)| + (n = [N(x) UN(y)])

=IN@) NNy +n—(2d - |N(x)NN(y))
=2IN(x) N N(y)| +o(n),
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which together with property Pg yield that

ny: ’s(x,y) - g‘ = o(n’).

Fact 7* P = Pl(h).
Proof. Suppose that P7 holds:

n

Z ’s(x,y) - E‘ = o(n’). (10.3)
X,y

For any fixed graph H on h vertices, denote by Nj, = N (H) and we shall show that

Np=(1+o(1)n"2=().

Let {vy,v2,...,v,} denote the vertex set of H. For each 1 < r < h, put V, =
{vi,v2,...,v;}, and let H(r) be the induced subgraph of H on V,. Denote N, =
N (H(r)). It suffices to prove that for 1 < r < h,

N, = (1+o0(1)ny2” 0,

where n¢.y =n(n—1)---(n—r+1). The proof is by induction on r.

This is trivial for » = 1. Assuming it holds for », where 1 < r < h, we prove it for
r + 1. For any two distinct vertices u and v of G, let a(u,v) be 1 if uv € E(G) and 0
otherwise. For a vector @ = (a7, ..., ;) of labeled distinct vertices of G, and for a
vector € = (€, ..., € ) of (0, 1)-entries, define

frla,e)=l{veV:iv#a,...,a,anda(v,a;) =€, forall 1 <j <r}|.

Note that if @, ..., @, induce a copy of H(r), then f,.(«a, €) is just the number
of vertices such that each of such a vertex together with «/, . . ., @, induce a copy of
H(r+1). Thus N, is the sum of the N, quantities f; (@, €) in which €; = a(v,41,v;)
and a ranges over all N, induced copies of H(r) in G.

Observe that altogether there are precisely n(,)2" quantities f; (a, €) since there
are (n), ways to choose @ and 2" possibilities of €. It is convenient to view f (a, €) as
arandom variable defined on a sample space of n(,)2" points, each having an equal
probability. To complete the proof we compute the expectation and the variance
of this random variable. We show that the variance is so small that most of the
quantities f, (a, €) are very close to the expectation, and thus obtain a sufficiently
accurate estimate for N,4; which is the sum of N, such quantities.

We start with the simple computation of the expectation E| f;-] of f,(a, €). Note
that every vertex v # a1, .. ., @, defines € uniquely, that is to say, for each such fixed
vertex v, there is exactly one € such that f,(«, €) contributes 1. Therefore,
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Elf)= oo )2, Zfr 2, ZZfr(a €)
n(r)2r ;(n—r) -

Next, we estimate the quantity S, defined by

Sy = ) fr(@ ) (frl@e) = ).

Claim S, = 3., s(x,y) ().

Proof. We count s, on two ways. Observe that S, can be interpreted as the number
of ordered triples (a, €, (x, y)), where @ = (a1, . . ., @,) is an ordered set of r distinct
vertices of G, € = (€, . .., € ) is a binary vector of length r, and (x, y) is an ordered
pair of additional vertices of G so that

a(x,ar) =a(y,ar) =€, forall1 <k <r.

Now we count s, on another way. Given x and y, the required additional r vertices
ay, . ..,a, mustcome exactly from {u € V(G) : a(x,u) = a(y, u)}. Therefore, there
are s(x, y)(-) ways to choose them, which completes the proof of the claim. O

We next assert that (10.3) implies

S, = Z 506 Y) o = (1 +o(1)n’ 227", (10.4)
X#y

To this end, we first define
€xy = 5(x,y) —n/2.

By (10.3), ¥4y l€xy| = 0(n?). Clearly, |exy| < n. Thus for any fixed a,
Dlesl® <197 ey | = 0(n?).
X#y X#y

This implies that for some appropriate constants ¢ and ¢, depending on r,

Zs(x’y)(r) =Z(g+€xy)(r) =(—) (2)+ZZCk( ) ek

X#y x#y k=0 x#y
Note that

< O leklnFlen 75 < en* 3 ey 7k

XFEY XEY

< an A 0(nr—k+2) — O(nr+2)’

Den(s) et

XFy
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which implies (10.4).
By the above claim and (10.4), S, = (1 + o(1))n"*>27". Therefore,

Dl =ELLD =) frlae = Y Elf]
= (@€ = fi(@,€) + ). frl@,€) =ng2 (n—r)?27

=Sy +n(n 2" ELf;] = n27 (n=r)?
=S, +n(re1) — (L+o0(1)n"+ 227"

=0(nr+2)‘

Recall that N, is the summation of N, quantities of f,(«, €). Thus

2

> (fla @) - EL£])

N, terms

2
Nr+1 - NrE[fr]

By Cauchy-Schwarz inequality, the last expression is at most

Ny Yo (frl@©) = ELLD? <Ny Y (fr( €)= EL£])?

N, terms
:Nr . 0(nr+2)

:0(n2r+2)'

It follows that
INps1 — NrE[fr]| = 0(””1)9

and hence, by the induction hypothesis,
Npy1 = NrE[fr] + 0(nr+l)
=(1+o())n2 O n=-r27" + o™
= (1+o(D)ngn2 (7).

227

This completes the proof of the induction step of Fact 7 and hence establishes

Theorem 10.1.

]

A property is called a quasi-random property for p = 1/2 if it is equivalent to
any property in Theorem 10.1. It is surprised that P,(4), which seems to be weaker,

is a quasi-random property.
Theorem 10.2 The property
n n?
P5: For each U C V(G) with |U| = lEJ e(U) ~ IR

is a quasi-random property for p = 1/2.
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Proof. The implication P4 = P7 is immediate, so we show P, = P4. By ignoring

one vertex possibly, we assume that n is even so that n/2 is an integer. Suppose that
for any subset S with |S| = n/2, |e(S) - ’1‘—2| < en?, where € > 0 is fixed. We shall

show that for any subset 7,

< 20en?, (10.5)

1(t
T) - =
« -5
where t = |T|.
Casel 1 =|T| = n/2.

By averaging over all S C T with |S| = n/2, we have

e(T):%z) Z e(S)

n/2-2) ST, |S|=n/2

—

as each edge of T appears in exactly (nt/iz) such n/2-sets. Thus

e(T) < ((:lzi)) (’11—2 +en2) < (;) (% +9e).

n/2-2

ey [} (2o

Similarly,

Therefore, (10.5) follows.
Case2 1 =|T| < n/2.
We shall show that the assumption

1(t
e(T) = 3 (2) +20en?
leads to a contradiction. Set T = V \ T. Note that |T| = n — ¢ > n/2. By Case 1, we

(";f)(%_ge) <e( < (”;‘) (%+9e).

Consider the average value of e(7" U T”), denoted by A, where T’ ranges over all
subsets of T with |T’| = n/2 — ¢ so that [T UT’| = n/2, we have that

1
A=—— D e(ruT)
(n/2—t) T T'CcT
IT"|=n/2-1
as there are (n'/’; ,) such T'U T"-sets. Counting how much different edges contribute
to the sum, we know that the sum equals to
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t—2 r—1
e()(/z )”)(/2 )+(TT)(/2 )

since each edge in T appears in exactly (n /2- z) such T U T’, each edge in T appears

ntl)

n-t-2 ) such T UT’ and each edge in (T, T) appears in exactly (n/Z—t—l

n/2—t-2
such T U T”, respectively. Note that ¢(T, T) = e(G) — e(T) — e(T), we obtain that

n/2 (n/2 —=t)n/2 —
= — e(T)— (n—t)(n—t—l)e(T)+ e(G)

n/2 (n/2-=0n/2 (n—1t\(1
Zn—t{2(2)+20 }_(n—t)(n—t—l)( 2 )(T%)
n/2—t(n\(1
e (z)(z‘%)

2

>n+
16 El’l

in exactly (

nf2—t

which contradicts the property Ps.
Similarly, the assumption

e(T) < 5(2) —20en

will lead to a contradiction too. This completes the proof. O

The analogous results of Theorem 10.1 can be established by a similar argument
for general edge density p, where 0 < p < 1 is fixed.

Theorem 10.3 Let {G }, | be a sequence of graphs, where G = G, is a graph of
order n. If 0 < p < 1 is fixed, then the following properties are equivalent:

Pi(h): For any fixed h > 4 and graph H of order h,
h
NG (H) ~ p*M (1 = p) D=yl

Py(1): e(G) ~ i and Ng(C;) < (pn)' +o(n") for any even t > 4.
P3: e(G) > % +o0(n?), A1 ~ pn and A3 = o(Ay).

Py: Foreach U C V(G), e(U) = p(“zjl) +o(n?).

Ps: For any two subsets U,V C V(G), e(U,V) = p|U||V| + o(n?).
Ps: Yy |[IN() N N(Y)| = p*n| = o(n?).

Py Yoy |s(xy) = (p*+ (1= p))n| = o(n?).

For the quasi-randomness of the sparse graphs, the situation is much different.
Under some certain conditions, there are several equivalent properties, see Chung
and Graham (2002).
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Return to the Paley graph P,,. It satisfies that

qlg-1) q*
py=+1_~1_ 21
e( q) 4 4’
g-1 g¢q
=~ 2
2 2
Vg +1
/l:’— 7 =o0(q).

Thus P, satisfies quasi-random property P3 hence all other quasi-random properties
with p = 1/2.

10.2 Graphs with Small Second Eigenvalues

The last section was devoted to the quasi-random graphs with fixed edge density. Let
us now switch to the case of density p = p(n) = o(1), which is more important for
some applications.

In applications, we shall allow the graphs to be semi-simple, that is, each vertex
is attached with at most one loop. When p tends to zero, the situation is significantly
more complicated as revealed by Chung and Graham (2002). The first remarked fact
is that the properties defined for quasi-random graphs with fixed edge density may
be not equivalent anymore.

Recall the Erdés-Rényi graph E R, which has order n = g*>+q+1 and each vertex
of ER, has degree g or (g +1). So the edge density p ~ Ln We know from Lemma

7.6 that 4} = g + 1, and A ~ /g = 0(41). So the property P3 holds. However,

p*(1-p)n* ~n?,

and thus the property P (4) of Theorem 10.3 does not hold as ER,; does not contain
Cy hence N(;(Cy) = 0.

Recall that the quasi-random property P3, the magnitude of A = A1(G) is a measure
of quasi-randomness. For sparse graphs with p = o(1), Chung and Graham (2002)
found some equivalent properties under certain conditions. One of the properties is
that 1 ~ pnand 2 = 0(4)).

In this section, we shall focus on (7, d, 1)-graphs defined by Alon. We say a graph
G is an (n, d, A)-graph if G is d-regular with n vertices and

A=AG) =max{|4;| : 2 <i<n},

where 1) = d, and A5, ..., 4, are all eigenvalues of G. For an (n, d, 1)-graph, the
spectral gap between d and A is a measure for its quasi-random property. The smaller
the value of A compared to d, the closer is edge distribution to the ideal uniform
distribution. How small A can be?
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Theorem 10.4 Let G be an (n,d, A)-graph and let € > 0. If d < (1 — €)n, then
A > Ved.

Proof. Let A be the adjacency matrix of G. Note that G is d-regular, so we obtain
that

n
nd=t4A5==§:a?sd2+(n-1m2g(1—emd+nz{
i=1

which follows by what claimed. m}

On this estimate, we can say, not precisely, that an (n,d, 1)-graph with 1 =
Q(Vd) has good quasi-randomness. Recall that if G is a strongly regular graph
srg(n,d, iy, ) with n > 3, then all eigenvalues except 1| = d are solutions of the
equation

A+ (2 = p) A+ (2 — d) = 0.

Thus when us — y; is small compared to d, which implies that A is close to Vd
and G has good quasi-randomness. For example, the Paley graph P, has good
quasi-randomness since pp — up = 1.

For a simple graph G with vertex set V and for two subsets B,C C V, e¢(B, C)
counts each edge from B\ C to C \ B once, and each edge in BN C twice. When G is
semi-simple, it also counts each loop in B N C once. For disjoint subsets B and C in
arandom graph, e(B, C) is expected to be % |B||C|, which is close to the expectation
as shown in the following when A is much smaller than d.

Some graphs G constructed by algebraic method are nearly regular with A(G) —
6(G) < 1, which will be regular if we attach some vertices with a loop. Hence, to
get a regular graph, we always add a loop to some vertices when necessary.

Theorem 10.5 Let G be a semi-simple (n, d, 1)-graph with vertex set V and edge set
E. For each partition of V into disjoint subsets B and C,

o(5.C) » A= VIBIC]
R

Proof. Let A be the adjacency matrix of G and [/ the identity matrix of order n.
Observe that for any real vector x of dimension 7 (as a real valued function on V),
we have the coordinate (x” A), = 3, ,vc g *v. Thus the inner product

((dI — A)x,x) =dx’x —xT Ax = Z (dxi - Z xvxu) = Z (xu — xv) 2.

ucv viuveE uveE

Set b = |B| and ¢ = |C| = n — b. Define a vector x = (x,) by

| =c if v€B,
WEVp ifvec.
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Note that dI — A and A have the same eigenvectors, and that the eigenvalues of
dI — A are precisely d — u as p ranges over all eigenvalues of A. Also, d is the largest
eigenvalue of A corresponding to the eigenvector 1 = (1,1,...,1)" and (x,1) = 0.
Hence x is orthogonal to the eigenvector of the smallest eigenvalue (zero) of dI — A.

Since dI — A is a real symmetric matrix, its eigenvectors are orthogonal each
other and form a basis of the n-dimensional space and x is a linear combination of
these eigenvectors other than that of 1/+/n. This together with the fact that d — A is
the second smallest eigenvalue of dI — A, we have

((dl = A)x,x) > (d = ) (x,x) = (d = 1) (bc? +¢cb?) = (d — D)ben.  (10.6)
However, as B and C form a partition of V,
Z (xu —xv)2 = e(B,C)(b +¢)* = e(B,C)n,
uveE
implying the desired inequality. O

In a random d-regular graph, we expect that a vertex v has %|B| neighbors in B.
The theorem below shows that if A is small, then |[Ng(v)| is not too far from the
expectation for most vertices v, where Ng(v) = N(v) N B.

Theorem 10.6 If G is a semi-simple (n, d, 1)-graph with vertex set V, then for each

BCV, )
Z(lNB(V)|—g|B|) S/ﬂw.
veV n n

Proof. Let A be the adjacency matrix of G. Define a vector f : V — R by

n

£ = 1-2 if ues,
“71 -2 ifug¢B,

where b = |B|. Therefore, }, f, = 0 and f is orthogonal to the eigenvector 1 =
(1,1,..., DT of the largest eigenvalue d of A. Thus f is a linear combination of
eigenvectors other than 1, and

(Af.Af) = 1A < 2. p = 2200

Now, let A, be the row of A corresponding to vertex v. Note that the coordinate
(Af), of Af atvis

Avf = (1 - é) N5 = 2{d = INsW)]) = N0 - 2,

it follows that

2
(47,40 =3 (a1 - 52

v
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the desired inequality follows. O
Corollary 10.1 Let G be a semi-simple (n, d, 1)-graph with vertex set V. For every
two subsets B and C of V,

d
e(B.C) = 2IBIIC|| < VIBICI.

Proof. Set b = |B| and ¢ = |C|. Note that

db db
(8.0 - 2| | (a1 - 22
veC
db av\?]"?
< 3 wsn =T v | 3 (s - ) |

where the Cauchy-Schwarz inequality is used. By Theorem 10.6,

12
dbc db\?
e(B,C) - —| <ve| >’ (lNB(V)| - —)
n vev ¢
b
< AWe b(l—;) < Wbc
as desired. O

Let e(B) and ¢(B) be the number of edges and loops in B, respectively. Note that
e(B,B) =2e(B) +{(B),
and ¢(B) < |B| if G is semi-simple.

Corollary 10.2 Let G be a semi-simple (n, d, A)-graph with vertex set V. For any

subset B CV,
A+1

<
2

d
e(B) - =-|BI’ IBI.
n

By setting e(B) = 0, together with the Turdn bound (Theorem 3.2), we have

n A+1
< <
d+1 <a(0) <

n.

For an (n,d, 1)-graph G = (V,E) and B C V, define C as the set of vertices u
so that the proportion of its neighborhood N(u) in B, which is |[Ng(u)|/|B], is at
most half of that in V. The following result implies that | B||C| is at most ©(n?/d) if
A=0(Vd).

Corollary 10.3 Let G be a semi-simple (n,d, 1)-graph with vertex set V. For any
subset B C 'V, define
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d
C=5ueV: |Ng(u) < —|B|;.
2n

We have
2An
B||C| < .
et < (%)

Consequently, |BN C| < z/m

Proof. By Theorem 10.6,

2
Z (lNB(v)| - C—ZlBI) < 2Bl —1B) 22|B|.
n n

vev
Note that each v € C contributes to the left-hand side more than (dlB| )2, thus we
obtain that
d|B
(9 ') <228,
2n
implying what as claimed. O

10.3 Some Multicolor Ramsey Numbers

For H| = - -- = Hy = H, let us write the multicolor Ramsey numbers as
Fiel (H; Hiy) = r(Hy, .. Hy, Hyyg).

For k > 2, Alon and Ra&dl (2005) gave sharp bounds for riy1 (H; K,,) when H is
a (some kind) bipartite graph or K3. Their main idea is to estimate the number of
independent sets of given size in a quasi-random graph G, which contains no H,
and then consider the random shifting of G. The number of shifts is k. The bigger
of k we choose, the tighter of the bound follows. When k = 1, there are no shifting
actually.

Theorem 10.7 Let G be a semi-simple (N, d, A)-graph with vertex set V. For any
N logN , the number M of independent sets of size n in G satisfies that

no n
M < edn 2eAN
2Ang dn
Proof. Consider the number of ways to choose an ordered set v,vs,...,v, of

n vertices which form an independent set. Starting with By = V, we choose v
arbitrarily. Define

n=ng=

B; —V\U, 1 [Vj],
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i.e., B; is the set of vertices by deleting {vy, v,,...,v;} and their neighbors, where
vi,...,Vv; are the vertices that have been chosen. Clearly the size of B; is decreasing
since B; 2 B;4i, and v, has to lie in B;. Define

d
Ci = :u eV INg )l < mlBil}-

If the next chosen vertex v;4+; from B; does not lie in C;, then B;,; is obtained by
deleting v;4 and at least % | B;| neighbors of v;;; from B; and so

d
B; 1 - —|I|Bil.
Bl < (1= 55| 1
_ 2Nlog N

Hence throughout the process there cannot be more than ng = =—;=— choices like
that, since otherwise the corresponding set of non-neighbors will be empty before
the process terminates from

d ny d (2NlogN)/d 1
1-—| =[(1-— <—.
2N 2N N

It follows that with at most ny possible exceptions, each vertex v;;; has to lie in
B; N C;. By Corollary 10.3, we have

2AN
|B; N C;| < T

Therefore, the total number of choices for the ordered set v, v, ..., v, is at most
n—ng no n

) o 2AN < edn 2AN '

no d - 2/11’10 d
Indeed, there are (rz)) possibilities to choose a set of indices covering all indices i for
which the vertex v;,; has not been chosen in B; N C;. Moreover, there are at most
N ways to choose each such vertex v;, and at most MTN ways to choose each vertex
v j4+1 for each other index j.

Now, dividing the above bound by 7!, we obtain an upper bound for the number
of unordered independent sets of size n as claimed. O

Lemma 10.1 Let G be a graph of order N that contains no H, and let M be the
number of independent sets of size n in G. If

k-1
N
n

then riy1 (H; K,,)) > N.

Proof. For each i, 1 < i < k, let G; be a random copy of G on the same vertex set
V, that is, a graph obtained from G by mapping its vertices to those of V according



236 10 Quasi-Random Graphs

to a random one to one mapping. The probability that a fixed set of n vertices of V
will be an independent set in each G; is

k

M ) _ 1
Ny Ny
G G)
implying that with a positive probability there is no such independent set. This gives
the existence of the graphs G; as required.

Now we color each edge of K on V(G) by the minimum i if the edge belongs to
G ;. Otherwise, color the edge by k + 1. Therefore, there is no monochromatic H in
the first k£ colors and no K, in the last color k + 1, so the lower bound follows. O

[}

One can also find the second part of the following result in Lin and Li (2011).

Theorem 10.8 The Ramsey number ri.1(Cy; K,,) satisfies the following:
(1) For any fixed k > 3, ri+1(Cyq; Ky,) = O( n’ ).

log2 n
(2) There are positive constants ¢y and ¢y such that

nloglogn
'\ (logn)?
We know that for every fixed bipartite graph H, there exists some real number

t > 1 such that the Turdn number ex(n, H) < O(N?~'/") by Theorem 7.5. The upper
bound of the above theorem follows from the following general result.

2 2
) SV(C4,C4,Kn)SCZ( 4 ) .
logn

Lemma 10.2 Let H be a fixed bipartite graph such that ex(n, H) < O(N>~Y/") for
some real t > 1. For every fixed k > 1,
'
n
(log n ) )

Proof. Let N = rp+1 (H; K,;) — 1. Given an edge-coloring of Ky by k + 1 colors with
no monochromatic copy of H in each of the first k colors, and no monochromatic
K, in the last color. Let T be the graph whose edges are all edges of Ky colored
by one of the first k colors. Thus, the total number of edges of T is clearly at
most k - ex(n, H) < ¢;N*>"/", where c; is a constant depending only on k and
H. Moreover, the neighborhood of any vertex of degree d in T contains at most
k - ex(d; H) < cpd*~'/" edges of T, where ¢, is a constant.

Ajtai, Komlés and Szemerédi (1981) proved that if a graph on N vertices with
average degree at most D contains at most ND>~" triangles, then it contains an in-
dependent set of size at least c(n)N IO%D. Therefore, if D is the average degree of T
then, as T contains an induced subgraph, denoted by 7’, with N /2 vertices and max-
imum degree at most 2D and hence at most O(D?>/") edges in any neighborhood
of a vertex in 7”. Thus

re+1(H; Kp) <O

log D
a(T) > Q (N Of) ) > Q(N"* log N).
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Since a(T") < a(T) < n it follows that n > Q(N'/* log N), implying the desired
upper bound. [
Proof of Theorem 10.8. It remains to prove the lower bounds. Consider the Erdc')'s—
Rényi graph ERg (we attach a loop to each vertex (a1, az, a3) if a + a2 + a3 0)
of order N = ¢> + g + 1 and let M be the number of 1ndependent sets of size n.
It suffices to show that M* < ( )k_1 by Lemma 10.1. Note that the graph ERY is

d-regular, where d = g + 1. Set ng = M

. Thus for large ¢,
4glogg <ng <4(g+1)logg.

From Theorem 10.7, if n > ny which can be seen as follows then
M < edn \" (2eAN\"
~ \2ang dn ’

(1) For k > 3, it suffices to show that r4(Cy; K,,) > Q((log—zn)Z)‘ Setn = cqloggq,
where ¢ > 4 is a large constant to be chosen later. We shall show that

2/n
M < (N ) . (10.7)
n

where 4 = +/q.

Substituting d, A, ng, n, N by values in terms of g, we have
12
aoin < (cela+ DY (+1/a) 1 2e g \? -~ Clqlz/c+3/2
- 8vq clogg (loggq)3”’

where ¢ is a positive constant, and

N\ 2/ oN\2 eq 2
b)) -]
Thus the inequality (10.7) holds if we choose ¢ such that 12/c + 3/2 < 2, which is

¢ > 24. Then we have n > ng and N ~ ¢> ~ n?/(clogn)* as ¢ — oo, completing
the proof for £ > 3.

(2) For r(Cy, C4, Ky), set n = cqlog® g/loglog ¢, where ¢ is a positive constant

will be chosen later. It suffices to show that M?/" < (1:{ )l/n by Lemma 10.1. Note
that for some constant ¢; > 0,

M2 < («/‘logq) («/‘bglogq)
loglog g log q

|4 4Hoglogg log logq q(log log q)2
S caq T ehea = 2 log q)t-alc
log? ¢ (log g)
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and y
N n
( ) s N s loglogg
n n logg
We are done by taking ¢ > 4/3 sothat4 —4/c > 1. O

Note that we have found the spectrum of the projective norm graph G ; in the
last section and it contains no K, s for s > (r — 1)! + 1. Similar argument as above
gives the following result.

Theorem 10.9 For any fixedt > 2 and s > (t — 1)! + 1,
(1) Forany k > 3,

t
n
rk+1(Kt,s;Kn)=®(1 ) .
ogn

(2) There are positive constants ¢y and ¢y such that

nloglogn n o\
: (logn)? logn|

Alon and Rddl (2005) also solved a conjecture of Erdds and Sés that

t
) < r(Kl,s, Kl’,SaKl’l) < (

1. V(K3,K3,Kn) —
m —/=
n—eo r(K39 KI’L)

The r-blow-up G’ of a graph G is the graph obtained by replacing each vertex
v of G by an independent set S, of size r, and each edge uv of G by the set of all
edges xy withx € S, and y € §,,.

Lemma 10.3 There is a constant ¢ = ¢y > 0 such that

k+1

cn
K3, Kp) 2 ———
ric+1 (K35 Kn) (ogn)*

for all large n.

Proof. Let N = cs%/logs < r(K3, Kyy1), where ¢; > 0 is a fixed constant. Thus
there is a graph F of order N with no K3 and its independence number a(F) < s.
Let G be the r-blow up of F, where r = r(s) will be chosen later. Denote M by the
number of independent sets of size n in G. Note that there are at most (]:/ ) ways to
choose these blocks, and each independent set of size n can be chosen from at most
s blocks, so we obtain that

M< —<
n!

(M) (o) (ﬂ)s (ﬂ)"’

N n

where we use the fact that 1! > (L)’
Since G has rN vertices and it contains no K3, by Lemma 10.1, we can deduce
that rr41(K3; K,,) > rN if
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We now take r = s 1(log s)>~% and n = cslogs, where ¢ > 0 is a constant to be
chosen. Thus

i _ [@1es Ki(clogs) [, k-1 k<2 o \KU=D
log s c(logs)k=1] = ck \logs ’

where ¢, and henceforth c3 and c4 are positive constants that is independent of c,

and
+N\ (-D/n orN\ & ca ¢ \k(k=D)
> ey | — > .
n n ck=1 \logs

Thus the condition is satisfied if we take large ¢ such that ¢;/ck < ¢4/c*1, and
hence

k+1 k+1
c1s n
K3;K,) >rN = =0 ,
rk+1( 3 n) r (logs)k_l ((logn)Zk)

completing the proof. O

Theorem 10.10 For each fixed k > 1, there are constants ¢; = c¢;(k) > 0 such that

k+1 ¢ nk+l
< ris1 (K3 Kp) < (log n)k

cin
(logn)%

for all large n.

Proof. It remains to show the upper bound. The proof is by induction on k£ > 1.
For k = 1, it is already implied by Theorem 3.5. Now we suppose k > 2 and
assume that the upper bound holds for k — 1, we will prove it also holds for k. Let
N = ri41(K3; K,,) — 1. There is an edge-coloring of Ky by colors 1,2,...,k + 1
with no monochromatic K3 in any of the first k£ colors, and no monochromatic K,
in the last color. Consider the graph T induced by all edges of the first k colors.
The neighborhood N (v) of a vertex v in T is Ul’.‘:lNi(v), where N;(v) is the set of
neighbors of v that are connected to v by an edge in the color i, 1 < i < k. Note that
for 1 <i <k, |N;(v)| < re(K3; Ky) as there is no monochromatic K3 in any of the
first k colors, and no monochromatic K,, in the last color. Let D be the maximum
degree of T. Thus

D < k(rk(K3;Kn) - l) < krk(K3;Kn)-

For a vertex u in N (v), we consider the neighborhood of # in the subgraph induced
by N(v) in T. Suppose u € N1(v), say. Such neighbors are these in

N(u) A N(v) = U, (u{;l (N:(u) 0 Nj(v))) .
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First of all, Ni(u) N Ni(v) = 0 since there is no monochromatic triangle in the
color 1. For 2 < i < k, N;(u) N N{(v) contains no edge in the colors i and 1, thus
IN;(u) N N1 (v)| < rp-1(K3; K,,) — 1 which implies that

UL, (Ni(u) "Ny ()| < (k = Drie—1 (K3: Kp).
Similarly, for2 < j < k,
UK, (Ni(u) N N;(0)| < (k = Dreo1 (K35 Kn).

Thus the maximum degree of the subgraph induced by N(v) in T is less than
m = k*ri_1(K3; K,). By Theorem 3.4, we obtain that

log(D/m) —1

>a(T) >N
n > a(T) D

Therefore, using the induction hypothesis for D and m, the desired upper bound
follows. o

10.4 A Related Lower Bound of r (s, t)

Constructions of (n, d, 1)-graphs arise from a number of sources, including Cayley
graphs, projective geometry and strongly regular graphs — we refer the reader to
Krivelevich and Sudakov (2006) for a survey of (n, d, 1)-graphs. Sudakov, Szabo
and Vu (2005) proved that a K-free (n, d, 1)-graph satisfies

1=Q(d* " n*7?) (10.8)

asn — oo. For s = 3, if G is any triangle-free (n, d, 1)-graph with adjacency matrix
A, then

0=1r(A)>d>-2(n-1). (10.9)

If A = Vd, then this gives d = O(n?/?) matching (10.8). Alon (1994b) constructed
a triangle-free pseudorandom graph attaining this bound, and Conlon (2017) more
recently analyzed arandomized construction with the same average degree. A similar
argument to (10.9) shows that a K-free (n,d, 1)- graph with 1 = Vd has d =
O(nl‘ﬁ). The Alon-Boppana Bound (see Nilli 1991, 2004) shows that A = Vd for
every (n, d, 1)-graph provided d/n is bounded away from 1. Sudakov, Szabo and Vu
(2005) raised the question of the existence of optimal pseudorandom K-free graphs
for s > 4, namely (n, d, 1)-graphs achieving the bound in (10.8) with 1 = Vd and
d= Q(nl‘ﬁ). The following result due to Mubayi and Verstraéte (2019+) shows
that a positive answer to this question will give the exponent of the Ramsey numbers
r(s,t).
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Theorem 10.11 Let F be a graph, n, d, A be positive integers withd > 1 and A > 1/2
and let t = [2nlog? n/d). If there exists an F-free (n, d, A)-graph, then

n
r(F,K;) > 201 log” n.

Proof. Let G be an F-free (n, d, 1)-graph and let U be a random set of vertices of G

where each vertex is chosen independently with probability p = log?® n/2¢?1. Let Z

be the number of independent sets of size ¢ = [2nlog? n/d] in the induced subgraph

G[U]. By Theorem 10.7, the number of independent sets of size 7 in G is at most

(edlogn)znlogn/d (Ze/ln)[ < ey ( ed )t B ( 2¢%1 )t
22 e | — log® n log’n

by noting (d/21)'/1°¢" < ¢ and (e logn)'/°¢" < 1.1. Therefore,

2

2020\
E(IU| - 1Z]) an—p’(lo;n) =pn—1,

which implies that there is a subset U C V(G) such that if we remove one vertex
from every independent set in U, the remaining set T has |T| > pn—1 and G[T] has
no independent set of size ¢. It follows that

n
r(F,K;) > pn > mlog2 n,

completing the proof. O

Theorem 10.11 provides good bounds if there exists an F-free (n,d, 1)-graph
with many edges and good pseudorandom properties (meaning that d is large and A
is small). For example, we immediately obtain the following consequence.

Corollary 10.4 If there exists a Kg-free (n,d, A)-graph with d = Q(nl‘ﬁ) and
A=0d), then
ts—l )
r(s,t) > Q| ———
B

ast — oo,

Proof. From ¢ = [2nlog® n/d], we have n = Q(dt/log®t). Apply Theorem 10.11
with F = Ky, d and 1 = O(Vd) we obtain that the lower bound holds as desired. O

Alon and Krivelevich (1997) gave a construction of K-free (n, d, 1)-graphs with
d= Q(nl‘ﬁ) and 1 = O(Vd) for all s > 3, and this was slightly improved by
Bishnoi, Thringer and Pepe (2020+) to obtain d = Q(nl‘ﬁ). This is the current
record for the degree of a Ky-free (n, d, 1)-graph with A = O(Vd). The problem
of obtaining optimal K-free pseudorandom constructions in the sense (10.8) with
A= 0(Vd) for s > 4 seems difficult and is considered to be a central open problem in
pseudorandom graph theory. The problem of determining the growth rate of r(s, 1) is
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classical and much older, and it wasn’t completely clear whether the upper bound in
Theorem 3.5 or the lower bound in (5.10) was closer to the truth. Based on Theorem
1, it seems reasonable to conjecture that if s > 4 is fixed, then r(s, ) = s~ 1o a¢
t — oo,

10.5 A Lower Bound for Book Graph

Let Bflm) denote the book graph that consists of n copies of K}, sharing a common
K. The study of Ramsey numbers of books goes back to Erdds, Faudree, Rousseau
and Schelp (1978), and Rousseau and Sheehan (1978). For convenience, we also
denote r(G) instead of r(G, G). It is shown by ErdGs et al. (1978) that for fixed
m>2,

r(BY") = (2" = o(1))n

by using the elementary probabilistic method, see Theorem 3.16. For the upper
bound, Thomason (1982) conjectured that

F(BU) < 2™ (n+m—2) +2.

For m = 2, Rousseau and Sheehan (1978) verified this conjecture and proved that it
is tight for infinitely many values of n. Using the refined regularity lemma, Conlon
(2019) proved that

r(By") < (2" +o()n,

and thus r(Bi,m)) ~ 2™n as n — oo. This anwsers a question of Erdds et al.
(1978) and confirms a conjecture of Thomason (1982) asymptotically. Recently,
the upper bound was improved further by Conlon, Fox and Wigderson (2021) as
r(Bflm)) <2"n+ O(W). For more Ramsey numbers on books, see e.g.
Nikiforov, Rousseau and Schelp (2005, three papers) and other related references.

Let us point out that the lower bound r(Bflm)) > (2™ — o(1))n by Erdds et al.
(1978) follows from considering the random graph space of edge density 1/2. We
shall improve this by a constructive bound by using the Paley graph as follows, one
can see Thomason (1982).

Theorem 10.12 If g = 1 (mod 4) is a prime power and m > 2, then
r(BYY) > 2Mn — m2"2\n

Jor sk +(m = 1)\Jg < n < 55 +my/q.

We will apply Weil bound in the proof. The characters of a finite field F, are
group homomorphisms from Fy or F; = Fy \ {0} to

S1={8i9:0S9<27r},
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respectively, where S! is viewed as a multiplicative group of complex numbers.
A multiplicative character of Fy is a function y : Fj — § ! such that for any
x,y€eF ZI‘ s
X (xy) = x(x) x(¥).

We often extend the domain of a multiplicative character y from F; to F,; by defining
x(0) = 0. The trivial function yo with yo(x) = 11is called the principal multiplicative
character of F;. The order of a multiplicative character y is the smallest positive
integer d such that y? = yq.

Let F,[x] be the set of all polynomials over F,. Let y be the multiplicative
character of F, of order d > 1 and f(x) € F,[x]. If f(x) has precisely s distinct
zeros and it is not the form ¢ (g (x))? for some ¢ € F, and g(x) € F,[x], then

> x ()

x€F,

< (s =g, (10.10)

which is known as the Weil bound (1948).

Proof of Theorem 10.12. Let U C F, be a subset of vertices of the Paley graph P,
with |U| = m which forms a clique. Denote by J(U) for the common neighbors of
the vertices of U. If |J(U)| < n for any such clique U, then r(Bf,m)) > ¢ since the
Paley graph P, is self-complementary. For a fixed clique U with |U| = m, define a
function f(x) depending on U as that

Foy =[]0+ xx-w), xer,
uelU
where y is the quadratic residue character defined by (2.2). Note that
2, f0 = [ [ +xt-w)=m2mt.
xeU xeU ueU
Forx € F,\ U, if x € J(U) then f(x) = 2", and if x ¢ J(U) then f(x) = 0 as

x(x —u) = -1 for some u € U. Therefore,

D o =2")l.

xeF,\U

Suppose that U = {uy, us, ..., u,}. We have
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DW= ) f@ - )

xeF\U x€eF, xeU

Z Z X((x_“‘)il "‘(X—um,)i"') —m2m!

x€Fq iy,..., ime{0,1}

Z (1+ Z X((X—Ml)il "'(X—“m)im))—m?”_l

xeFy i seensim 40,1}
i+ Him =1

2"J(U)I

o TS et ) -

i].-im€{0.1} x€F,
i1+-~-+im21

Note that the polynomial (x — u)™ --- (x — u,,)™ is not the form a(g(x))*> with
a € Fyand g(x) € Fy[x] asiy,...,im € {0, 1}, it follows from Weil bound (10.10)
that

D, fW =g+ 3 (m-Dyg-m2"!

XEFq\U i]seees im€{0,1}

it im =1
=g+ (m—1)2" = 1)yJg —m2"™ ",
Consequently,

IO =57 D1 F0) <o+ (m-1vE

xeF,\U
If we suppose that % +(m—1)\g <n< 2% + m+/q, then |J(U)| < n and
r(Bﬁlm)) >q+1>2"n-m2"\Jg>2"n- m23™2\n

as claimed. o

10.6 Exercises

1. Let G be a graph of order n satisfying that for any vertex v and subset B,
IN(v) N B| = p|B| + o(n). Is G quasi-random for fixed p?

2. Define a property: For any U C V with |U| = |n/2], e(U,V\U) ~ p”Tz. Is this
a quasi-random property for fixed edge density p?

3. Prove that the inequality holds in (10.6).
4. Estimate bry (Cy; K, ) for k > 3 by modifying the argument for ry (Cs; K,,).

5. Let G be a finite group and S be an inverse-closed subset of G that contains
no identity. Prove that each eigenvalue of the Cayley graph I'(G, S) is of the form
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Yses X (s) with respective to the eigenvector is (y(g) : g € G), where y is a
character of G.

6. Prove that if ¢ is a complex-valued function such that ¢ (x) # O and ¥ (x +y) =
Y (x)y (y), then ¢ is an additive character of F,.

7. Prove that if i is an additive character of F,, where g = p™ with p > 3, then
Y(x) #—1foranyx € F,.

8. Let G be a semi-simple (N, d, 1)-graph with vertex set V. Prove that for any

n> ‘WI%N, the number M of K,, , in G satisfies that
4N log N
M < ed*n d 2eAN\>"
~ \4ANlogN dn '
(Hint: Consider the number of ways to _choose ordered subsets {u,...,u,} and
{vi,...,va} of G which form a K, , in G, where u; # v; for 1 <, j < n. Starting

with choosing a pair of distinct and non-adjacent vertices #; and v;. See Lin and Li
(2011) or Liu and Li (2021))



)]
Chapter 11 e
Regularity Lemma and van der Waerden
Number

Bartel L. van der Waerden (February 2, 1903-January 12, 1996) was a Dutch
mathematician, who published his Algebra, an influential two-volume treatise on
abstract algebra at age 27. Before this, in 1927, he proved the following result,
conjectured by Baudet in 1926, which is now called van der Waerden theorem:
For any positive integers k and ¢, there exists a positive integer N such that if the
set {1,2,...,N} is partitioned into k classes, then at least one class contains an
arithmetic progression of ¢ terms. This is one of the most important Ramsey-type
results on the integers, and another such result is that of Schur, discussed in Chapter
2. Let wi(t) be the smallest N for the van der Waerden theorem, which has a very
huge upper bound in the original proof. Much later, in 1988, a substantially improved
upper bound was given by Israeli mathematician Saharon Shelah (born on July 3,
1945, recipient of the 2001 Wolf prize). He gave the first primitive recursive upper
bound for wg(t), which is proved in Section 11.2 as it is almost transparent even
the bound is still enormous. The bound was further improved greatly by Timothy
Gowers (born on November 20, 1963, recipient of the 1998 Fields Medal) to a tower
of height 6. He is a British mathematician, and his research is connecting the fields
of functional analysis and combinatorics in surprise.

In the 1930s, Erdés and Turdn conjectured that if a set A of positive integers
satisfies nh_I& |A N [n]|/n > 0, then A contains arbitrarily long arithmetic progres-

sions. The conjecture in case of length 3 was proved by Roth in 1953 and 1954.
Klaus F. Roth (born on 29 October 1925, recipient of the 1958 Fields Medal) is a
German-born British mathematician. The full conjecture was proved by Szemerédi
in 1975 with a deep and complicated combinatorial argument, which thus becomes
Szemerédi theorem. Endre Szemerédi (born on August 21, 1940, recipient of the
2012 Abel prize) is a Hungarian-American mathematician, working in the field of
combinatorics and theoretical computer science. In the proof, he used a result which
is called the Regularity Lemma (in bipartite version). In 1978, he proved the full
lemma, which is a powerful tool in extremal graph theory. Sometimes the Regularity
Lemma is called uniformity lemma, see e.g., Bollobas (1998). The proof of Sze-
merédi theorem is beyond our book, but we shall have an clear and detailed proof for
the Regularity Lemma in this chapter. Let us remark that fully understanding of the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 247
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lemma is important for its applications. For many applications, we refer the reader
to the survey of Komlés and Simonovits (1996) and other related references.

A further problem of Erdds and Turdn (1936) is still open, who conjectured that
if A = {a;} is a set of positive integers such that )} 1/a; = oo, then A contains
arbitrarily long arithmetic progression. Note that 3’ ,, 1/p ~ loglogn, where the
sum is taken over all primes no more than n. The most important special case by
Green and Tao (2008) states that there are arbitrarily long arithmetic progression of
primes. Terence Tao (Chinese name Chi-Shen Tao, born on July 17, 1975, recipient
of the 2006 Fields Medal) is an Australian-born American mathematician working
in many mathematical fields with excellent results.

11.1 van der Waerden Number

Let #-AP denote an arithmetic progression of ¢ terms. If no specifying, a r-AP
always means non-trivial one (with distinct # terms). The existence of an arithmetic
progression in partition of integers by van der Waerden (1927) is as follows.

Theorem 11.1 Let k and t be positive integers. If an integer w is sufficiently large
and the set [w] ={1,2,...,w} is partitioned into k classes, then one of the classes
must contain a t-AP.

Asusual, a partition of [w] is called a coloring of [w]. Define wy, (¢) as the smallest
integer w so that the mentioned property holds, and write w(¢) = w,(f). We call
wi () the van der Waerden number. It is trivial to see that wi (1) = 1, wi(2) = k+ 1
and w (¢) = t. However, for general k and ¢, the functions w(t) = w,(¢) and wg(3)
are not trivial at all. The following data for wy (f) was announced by Heule in his
own web page, which improves that in the paper of Herwig, Heule, Lambalgen and
Maaren (2007).

3 4 5 6 7 8

9 35 178 1132 > 3703 | > 11495

27 | >292|>2173 | > 11191 | > 48811 |> 238400

76 |> 1048|> 17705| > 91331 |> 420217
> 170|> 2254|> 98740|> 540025
> 223|> 9778|> 98748 |> 816981

O\Ul-bwl\)z

Table 12.1 Small van der Waerden numbers wy (7).

The original proof of van der Waerden (1927) gave an extremal large upper bound
for w(t). Shelah (1998) improved this with a cerebrated upper bound, it is still a
tower, in which the height of the tower on ¢ is somehow like the value of the tower
on ¢ — 1. The current best upper bound for w() is a striking result of Gowers (see
Gowers (2001), Corollary 18.7) as a tower of height 6 as

(1) < 22222(t+9>
w
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These upper bounds may be far away from the truth. However, it is hard to show the
existence of finite wy (¢). In fact, nobody has found an easy proof for the statement:
If all natural numbers are k-colored, then there exists an arbitrary long AP, where
an arbitrary length signifies that the length of AP can be any given ¢ > 0, as this
statement implies wy () < oo immediately, see Exercise 12.2.

Proof of Theorem 11.1. We shall prove wg(f) < oo by induction on ¢. For t = 2,
we have wi (2) = k + 1. To conduct the induction step for positive integers r, s and
N = 4rs, we partition [N] into 2r blocks By, By, ..., By-—1 as

BO = {1,2,...,2S},
By ={2s+1,25+2,...,4s},
By 1 ={Qr-12s+1,2r—1)2s+2,...,4rs},

where each B; is a block containing 2s consecutive integers, and
B; =i-2s+ By.

We shall call a + td the continuation of a t-AP {a,a +d,...,a+ (t — 1)d}. Note
that a partition {Cy, ..., Cr} of [N] induces an equivalence relation on the sets of
all colorings of blocks By, By, ..., By-_1, for which B; and B; withi < j are in the
same equivalence class if and only if

CgﬁBj =(j—i)2s+ (CeNBy),

forall 1 < ¢ < k. In this case, we say that B; and B; have the same pattern. i.e.,
bin € Cp N B; if and only if b, + (j —i)2s € Cp N B;. It follows that there are at
most k2% equivalence classes (different patterns) since there are 2s elements of B;
and each element of B; has k choices of Cg.

By the induction hypothesis, the number w2 (#) exists, which means that in case
r > wyas (1), there exists some #-AP

{a,a+d,...,a+(@-1)d} c{0,1,...,r =1},

such that all blocks By, Basa, ..., Batr(t-1)a have the same pattern. Each k2s-
coloringon {0, 1, ...,r—1} can be referred to as a kzs-coloring onBy,Bi,...,B_1.
Note that the block B4 is still contained in [N] asr — 1 +d < 2r.

The induction step will be completed by verifying the following claim: For each
¢ with 1 < ¢ < k, there exists some N (€) such that the following assertion holds: If
[N(£)] is partitioned into k classes, then either one class contains a (¢ + 1)-AP or
there are £ APs Ay, ..., Ay with |A;| = ¢ such that

(i) All A; are monochromatic but of different colors, namely, A; € Cj,,1 <i < ¢,
where ji, ..., je are distinct.

(ii) All A; have the same continuation that are still in [N (£)].
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Suppose first the claim is proved, we then choose that N > N (k). If no (¢ +1)-AP
exists, then we have k APs Aq,..., A of all colors with the same continuation
in [N]. Since this element is also colored by one of the k-colors, one AP can be
extended.

The proof of our claim is by induction on €. For £ = 1, we have N(1) < wy(z).
For the induction step, the set [N] is partitioned into blocks By, B, ..., By—1 as
above with s = N(€ — 1) and r = wyas (¢). If there is no monochromatic (7 + 1)-AP,
then we conclude from the above two induction hypotheses with the following two
facts:

(1) There is an AP of blocks B, Ba+d, - - - » Ba+(:-1)a, all of the same pattern as
described above;

(2) In the block B,, without loss of generality, we may assume that there are
{—1APs A’l, .. ,AZ_I such that A} C C;, 1 < i < ¢ — 1, which all have the same
continuation ¢ € B,. We may assume that ¢ € Cy.

Let Ay ={c,c+2sd,...,c+(t—1)2sd}. From (1), we have Ay C C¢. Indeed, we
have that ¢ +2sd € Cy since C¢,NByrg = (a+d—a)2s+(C¢,NB,) and c € C,N B,
Inductively, we can get that A, C C,. Moreover, ¢ +1 - 2sd is the continuation of A,.

If Al ={a,a+6,...,a+(t—1)6} C C;, then ¢ = @ + 16 € B, and a similar
argument as above yields that A; = {a, @ + 6 +2sd,...,a+ (t — 1)(6 + 2sd)} C C;
is a r-AP with continuation & + (6 + 2sd) = ¢ + 1 - 2sd. O

What about the lower bound of wy (7)? The first lower bound wy (7) > Q(Vtk?)
was due to Erdds and Rado (1952) by a counting method, see the exercises. Szabd
(1990) proved that if k > 2 is fixed, then w () > k’~!/(et), which can be slightly
improved as follows.

Theorem 11.2 Let k > 2 be fixed and t > 2. Then

kl

wi(t) > —e(k D

Proof. Randomly k-color [N], eachx € [N] being colored by a color with probability
1/k. For each S of t-AP, let Ag be the event that S is monochromatic in color i. Then
Pr(Ag) = 1/k". We try to use the local lemma. Define a graph whose vertex set

consists of all events Ag, which contains edges from joining events Ag and A; if
andonly if SNT # @ and i # j. For fixed S of #-AP, the number of 7 with SNT # 0
is at most Nt, and thus the maximum degree d of the dependency graph satisfies
d < (k—-1)Nt.

If N = [k'/(e(k — 1)1)], then ep(d + 1) < 1. When the symmetric form of
the local lemma is applied, we know Pr(N sAg) > 0, which implies that there is a
k-coloring of [ N] without monochromatic ¢-AP. Therefore, wy (t) > N + 1, and the
assertion holds. O

Let us call a prime of the form 27 — 1 to be a Mersenne prime, where p is
necessarily a prime. Most known top primes are such ones and an old conjecture
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is that there are infinitely many of them. The following bound is due to Berlekamp
(1968).

Theorem 11.3 [f2” — 1 is a prime, then w(p + 1) > p(2P - 1).

Proof. Let F(2P) be the finite field of 27 elements. As 2”7 — 1 is a prime, any
a € F(2P) \ {0, 1} is a primitive element, which generates the cyclic multiplicative
group F*(2P). Fix a primitive element @ € F(27). Since F(2”) is a linear space
of dimension p over Z,, we can have a basis vy, v, ..., v,. For any integer j with
1 <j<p2P-1),set

@ =ajpvi+aiva+--+apivp,  aij € 7.

We shall partition the set [p(2P — 1)] of integers into Cy and C; according to the
first coordinate of o/ as

Co={j: a;=0,1<j<pP -1},

and
Ci={j:ay=11<j<p2’ -1}

We then claim that (Cy, Cy) is a 2-coloring of [p (2P — 1)] with no monochromatic
(p+1)-AP.For k =0or k = 1, suppose that a,a+b,a+2b, . ..,a+ pb are integers
from the same Cy, where a, b > 1. We shall show that this leads to a contradiction.
Let 8 = %, and y = a®. Then the vectors in

{aa’ aa+b’ aa+2b, 8. ’aa+pb} S {ﬁ,ﬁy,ﬂ)’z, L ’B,yp}

have the same first coordinates when they are expressed as linear combinations of

Vi,V2,...,Vp. Since 1 <a <a+pb < p(2P —1),wehave 1 < b <27 -2, and
y = aP is a primitive element as 2P — 1 is a prime.

Casel k =0.

Then p vectors 3, By, ..., ByP~! are linearly dependent as they are linear com-
bination of {v,v3,...,v,} as all first coordinates are 0 over Z,. Thus there exist
€0,C1s-..,Cp—1in Zp, not all 0, such that

p—1 p-1
Z ci(By') =0, and hence Z ciy' =0.
i=0 i=0

Buty = a” € F(2P), y # 0, 1, so y satisfies a non-trivial polynomial of degree at
most p — 1 over F(27), a contradiction.

Case2 k =1.

For this case, each of {8, By, ..., By"} has the first coordinate 1 and thus B(y —
1),8(y*>=1),...,B(y” — 1) are linearly dependent. i.e.,
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p .
Dlalpy' =1l =0,
i=1

where ¢; € Z,, and some ¢; # 0. Dividing by B(y — 1), we have
cr+ea(y+ D)+ tep(yPt+yP 244 1) =0.

Since y cannot be a root of any polynomial of degree at most p — 1, we have ¢, = 0,
and consequently ¢,_1 = cp_3 =--- = ¢y = 0, a contradiction. O

For two colors, the lower bounds in the above two theorems are very close, but
the proofs are completely different. This may suggest that the lower bounds are much
closer to the truth than the known upper bounds.

Let v(n) be the maximum cardinality of a subset in [r] that does not contain any
3-AP. The first non-trivial upper bound concerning the size of 3-AP-free sets was
given by Roth (1953) who showed v(n) < n/loglogn. Subsequently, it was refined
by several researchers, see Heath-Brown (1987), Szemerédi (1990), Bourgain (1999,
2008), Sanders (2011,2012), Bloom (2016), Bloom and Sisask (2019), and Schoen
(2021(b)) etc. To our best knowledge, the current bounds for v are

ne ¢! Vlogn < y(n) < n/(lOg n)l+6‘2’

in which the lower and upper bounds were given by Behrend (1946) and Bloom and
Sisask (2021+) respectively, where c¢; and ¢, are positive constants.

What about bounds of wy(¢) for fixed ¢t as k — co? The first nontrival case is
wi(3). Let n = wy(3) — 1. Then there exists a k-coloring on [n] such that there is no
monochromatic 3-AP, which means each color class has size at most v(n). It follows
from that n < k - v(n), which combines the above upper bound of v(n) yield that for
some constant ¢ > 0,

wir(3) < ekwm.
For the lower bound, Brown (2008) obtained that w (3) > e®(*™?)

The off-diagonal van der Waerden number w(m, n) in two colors is the smallest
positive integer w such that if [w] is red-blue colored, then there is either a red m-AP
or a blue n-AP. It is easy to see that w(1,n) = n, and forn > 2, w(2,n) = 2nif nis
odd and 2n — 1 otherwise. However, it is also hard to prove the existence of w(m, n)
for fixed m > 3 as that is similar to that of w(n, n).

For the van der Waerden function w(3, n), it is known that

— 2
}’l2 1/loglogn < W(3,I’l) < pen,

The upper bound is due to Bourgain (1999), and the lower bound is a special case of
that for w(m, n) of Brown, Landman and Robertson (2008), whose proof is from the
symmetric form of the local lemma. This result was improved by Li and Shu (2010)
by using the local lemma as w(m, n) > cn™~" /log™~! n. Recently, Guo and Warnke
(2021+) show that w(m,n) > Q(n™""/log™ 2 n) by using a different method. A
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breakthrough due to Green (2021+) states that there is a constant ¢ > 0 such that

)1/3

w(3,n) 2 n® (el 4/3-0(1) n) .

= exp (log
For the upper bound, Schoen (2021(a)) obtain that there is a small positive € such
that

€

w(3,n) < e,

11.2 Recursive Bounds for wy (¢)*

Rather than proving van der Waerden theorem directly, we shall introduce a remark-
able extension of the theorem by Hales and Jewett in 1963, which leads to the proof of
Shelah (1988). We introduce Shelah’s proof in this section because it is transparent.

A cube C}' is a set of sequences of length n formed from ¢ symbols. The sym-
bols are ordered, usually as [¢f] = {1,2,...,t} if no specified, or in example as
{A,B,C,...,Z} with t = 26. The symbol in the ith position of an element is called
its ith coordinate. The elements are called points often.

Some points of C§6: Py : AAAAB, P, : AXYCN, P3; : PPPPP. The third
coordinate of P, is Y.

The points of C}' can be viewed as the points of the n-dimensional discrete cube.
For example, the points of CZ with symbols 1, 2, 3,4 can be arranged in a matrix.

11112{13{14
21)22|23|24
31|32(33(34
41(42(43(44

Asetoftpoints L = {Py, Py, ..., P;}in C} is called a line if there is a non-empty
set I of indices such that for any i € I, the ith coordinate of any point P; € L is just
the jth symbol, and for i ¢ I, the ith coordinates of all points of L are the same. The
ith coordinates for i € I are called moving coordinates, and those for i ¢ I are called
constant coordinates.

Let us take a look at two lines L and L, in CS() as follows.

L, L,
Py : XAQAB AAAAA
P, : XBOBB BABAA
P3;: XCOCB CACAA

Py : XYQYB YAYAA
P : XZOZB ZAZAA
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In line L, the first, third, and fifth coordinates are constant coordinates; the second
and fourth are moving coordinates.
In C‘%, there are totally 9 lines, namely, each row and each column, and one
diagonal line {11, 22, 33, 44}. The last line does not have constant coordinates.
Clearly, every line has 7 points, and there are

n-1
Z t|J|=Z(n.)tj=(t+l)"—t"
JcinlJ#n] =Y

lines in C7'. For example, the cube Cf contains 2¢ + 1 lines: ¢ horizontal lines, ¢
vertical lines, and one diagonal line. Note that a line is not determined completely
by the set of indices of moving coordinates.

The following is an important result of Hales and Jewett in 1963.

Theorem 11.4 For any positive integers k and t, there exists an integer N such that
if the points of CN are k-colored in any fashion, then there is a monochromatic line.

The Hales-Jewett function HJ (k, t) is defined as the minimal value of N that will
satisfy the above theorem. To see that the function makes sense, one needs to make
sure that N + 1 will do the theorem. This is clear if we consider the derived coloring
x’ on CN from a given coloring y on CN*! by x’(P) = x(Pt), where P is a point
of CN, and Pt is a point of CN*! with the last coordinate #. More importantly, we
need to show that such finite N exists.

The theorem of van der Waerden follows from Theorem 11.4 immediately.

Proof of Theorem 11.1. For given k and ¢, let N be an integer such that any k-
coloring of CN contains a monochromatic line, where the set of symbols of C/ is
{0,1,...,¢t—1}. Then each point can be viewed as a representation of a nonnegative
integer in base 7. The largest such integer is tN — 1. This representation establishes
a bijection from CN to {0, 1,...,#Y — 1}. A key observation is that a line in C¥
is exactly a t-AP. Now any coloring of {1,2,...,t"} with k colors yields a natural
coloring for {0, 1,. .., N — 1} and hence a coloring of CtN with k colors. By Theorem
11.4, we have a monochromatic line in C¥ hence a monochromatic #-AP. O

The above proof in fact gives an upper bound for wy ().
Theorem 11.5 Let k and t be positive integers and let N = HJ (k,t). Then
wi(r) < V.

The remaining part of this section is Shelah’s proof of Theorem 11.4. However, in
order to make the proof clearer, we shall give some examples and details to explain
the concepts in the context.

A line L in C}' is called a Shelah line if for some i, j with 1 <i < j < n, the
following holds:

(i) Coordinates 1,...,i — 1 are all equal to # — 1 (constant);
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(i1) Coordinates i, . . ., j are moving;
(iii) Coordinates j + 1, ..., n are all equal to ¢ (constant).

Namely, a line is a Shelah line if the positions of moving coordinates are consecu-
tive, and all constant coordinates are 7 — 1 and ¢ before and after moving coordinates,
respectively. In the above definition, the first condition disappears if i = 1, and the
third condition disappears if j = n. A point is called Shelah point if it is on some
Shelah line.

Let us take a look at some Shelah lines in C;G as follows.

L L, Ly
YAAZZ AAZZZ AAAAA
YBBZZ BBZZZ BBBBB
YCCZZ CCZZZ CCCCC

YYYZZ  YYZZZ  YYYYY
YZZZZ  7ZZZZZ ZZZZZ
i=2,j=3i=1j=2i=1,j=5

The points YYQZZ, YCCCZ, HHHHZ, SSSSS are Shelah points, but YFGZZ,
AAYYY are not.

The following result is clear from the fact that a Shelah line is uniquely determined
by i and j in the definition.

Lemma 11.1 The cube C?' contains ("}') Shelah lines and at most ("3')t Shelah
points.

Assume n =nj; +ny + - - - +ng. Then
Cl'=C"xXCPx---xC/.
Let L; be a Shelah line of Ct"" forj=1,2,...,s. Wecall
Ly XLyX---XLg

a Shelah s-space of C}', which contains #* points of C;*.
For example, if n; = 5 and n, = 6, then

(YaaZZ |YYBBZZ),

where @ and 3 are letters in alphabet and the vertical line is added for clarity of
conjunction, forms a Shelah 2-space in Czlél. It contains 267 points. If n; = 3, ny = 4
and n3 = 4, then

{YaZ |YBBZ|yyZZ}

forms a Shelah 3-space in C,. It contains 26> points.
We now define a canonical isomorphism ¢ between a Shelah s-space of C{' and
C; as follows.
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¢: LiXxLyx XLy =>C;, ¢ =ai@z...a;,

where a is the common value of the moving coordinate in L ;, which can be viewed
as the index of the corresponding point in L ;. Using the previous examples,

¢(YaaZZ |YYBBZZ) = af € C3,,
¢(YQZ|YBBZ|yyZZ) = aPy € C;,.

It is easy to see that the map ¢ is really a bijection.

During the rest of the proof, y is used as a coloring function, thus y (P) is the color
of the point P € C}'. A coloring y on C} is called a flip-top if P = p1p> ... pn, O =
q192 .. .qn € C7, for which there exists / C [n] such that p; =t -1, g; =t for
i€l and p; = g; for j ¢ I, then y(P) = x(Q), where ¢ — 1 and ¢ are last two
elements of the set of symbols. Equivalently, y(P) = x(Q) if P and Q are the last
two points of some line. For example, a flip-top coloring y of C;G satisfies

Y(BAYYO) = y(BAZZO),
Y(ZEZAK) = x(YEYAK),
Y(YYYYY) = y(ZZZZZ).

It is easy to see that y (ZEYAK) = y(YEZAK) as both of them are equal to
x(ZEZAK).

Let y be a coloring of the points of L; X Ly X - -+ X Lg, and let ¢ be the canonical
isomorphism from L; X L, X- - - X Ls to C;. Define a coloring " on C; asfor P € C7,

X' (P) = x(¢7'(P)),

which is called the derived coloring of y. The coloring y is called flip-top on the
Shelah s-space if ' is flip-top on C7.

For example, if y is a flip-top coloring of the Shelah 2-space in the form of
{YaaZZ |YYBBBZ}, then

Y(YQQZZ|YYYYYZ) = x(YQQZZ |YYZZZZ)

since ' (QY) = x’(QZ) by noting that y’ is flip-top on C5.

If s = 1, then the above definition gives flip-top coloring of a Shelah line. In this
case ¢ maps a Shelah line L in C? onto C/, and the derived coloring on C;} must be
flip-top. However, a flip-top coloring of C;' simply says that the color of ¢ — 1 equals
to the color of 7. This gives the following remark.

Let us remark that the points of a Shelah line L = {Py, P,...,P;} in C}' are
colored flip-top if and only if the “last two points” P,_; and P; have the same color.

Lemma 11.2 (Shelah Cube Lemma) Ler positive integers k,s,t be fixed. Then
there exist ny,ny, . ..,ng with the following property: Any k-coloring of the points
of C' = C"™* s s flip-top on a suitable Shelah s-space Ly x Ly X -+ X Ly,
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where L; is a Shelah line in Ctn . In fact, the numbers n j can be explicitly given by
ny =k and niyy = kA for1 <i < s, where

i+ 1
A= [ngjgi(nj+ ) t

Proof. We shall prove the lemma by induction on s. For s = 1, take ny = n = k. We
have to show that in an arbitrary k-coloring of C¥ there is a flip-top colored Shelah
line. Consider the following points in CX:

Pi: t—-1¢t-1---t—-1¢t-1¢t-1
Py: t—-1t-1---t—=-1¢t-1 ¢

Pr: t—1 ¢t - t t t
Pry: A t t

Each of these points consists of a block of # — 1 followed by a block of ¢. Two of
them, say P; and P; with i < j, are colored with the same color in this k-coloring.
Note that P; and P; are the last two points of the following Shelah line determined
by themselves:

—_—
~
~

Qr: t—1---t=1| 1 ... .-
Qr: t—1---t=1| 2 ... 2 |t---1t

Qi t=1---t—=1{t=2...t=2[t -t
P,: t—1---¢t—11t=1...t=1jt--- ¢
Pi: t=1---t—=1 t ... t |[t---1t

By the previous remark, the above line is exactly what we want: a flip-top colored
Shelah line.
For s =2, letn; = k" and np, = k' with A; = ("‘;l)t. Let y be a k-coloring on

Cl=CM™M = M ox C2,

In order to find a Shelah 2-space L; X L, such that y is flip-top on it, we shall define
new colorings x; and y, on C;"' and C,?, respectively. Let us write points of CI" as
XY with X € C;"" and Y € C;”.

Let us define y, on C;” first. Denote by m the number of Shelah points in C;"" and
label these Shelah points as X1, X», ..., X,,. Forany Y € C,"z, we assign a vector for
its color as

x2(Y) = (x (X1Y), x (X2Y), ..., x (XmY)).

Clearly two points Y and Y’ of C;”* have same color in y; if and only if y(XY) =
x (XY’) for any Shelah point X of C;"'.
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Since m < A; = (")t as mentioned, and each coordinate of x»(¥) is one of

the k colors, so the coloring y» uses at most k™ < k1 = n, colors. Referring to the
case s = 1, the coloring x is flip-top on a suitable Shelah line L, in C,”.

The Shelah line L, contains ¢ points, say Ly = {Y, Y2, ...,Y;}. We then define a
coloring y; on any point X of C;'' as a vector

x1(X) = (x(XY1), x(XT2), ..., x (XY})).

Thus two points X and X’ of C;'' have same color in y; if and only if x (XYg) =
Xx(X'Yg) for any point Yg of L;.

Clearly y; uses at most k! = n; colors. Again, referring the case s = 1, the
coloring y is flip-top on a suitable Shelah line L, in C;".

Next we verify that y is flip-top on L X L,: the derived coloring y’ of y is a
flip-top coloring on C2. That is to say, we need to verify

X' (a(t-1) =x'(ar),
X ((t=1)p)=x"(th),
X (=1 (=1)=x"(t1)

for any symbols @ and 8. We verify the first equality, and omit the similar proofs
for the others. By relabelling the Shelah points of C;'', we may assume that L; =
{X1,X>,...,X;}. Note that points of L; X L have form X,Yg, where

Xe=t—-1l...t—la...at...t, Yg=1t—-1...t—18...8t...1.

Since y; is flip-top on Ly, we have x> (Y;-1) = x2(Y;), implying x (PY;_1) = x (PY;)
for any Shelah point P of C;"' from the definition of y,. In particular, we have
x(XoYio1) = x(XoY:), which yields y/(a (t — 1)) = x'(at).

The proof for s > 3 is similar to the case s = 2, we thus omit it. O

Lemma 11.3 (Induction Lemma) Assume that s = HJ (k,t — 1) is defined, namely,

in any k-coloring of C;_, there is a monochromatic line. Then under any flip-top

k-coloring of C?, there is a monochromatic line.

Proof. Consider a flip-top k-coloring x on Cj. Since C7_, is a subset of C7, x is
a k-coloring on C f_l. From the definition of s, there is a monochromatic line L in

C;_|.say L ={Py,Py,...,P;_1} in color 1, then the following line
Pr: ---a---| 1 |-+ colorl
P2: cee Q@ v 2 “e. 00101’1
Piy:--a---t=1]--- colorl
P,: ---a---| t |- new point

is a monochromatic line, where P, is a new point, and « is a constant coordinate.
The point P; is colored in 1 since y is flip-top on C7. O
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Proof of Theorem 11.4. Now it is easy to see the existence of HJ(k, ). We use the
induction on ¢ for fixed k.

Basis It is a trivial fact that HJ(k, 1) = 1 for any k.

Inductive Step Assume s := HJ(k,t — 1) exists, i.e., HJ(k,t — 1) < oo. Define n
as above which satisfies the cube lemma for the given &, ¢ and s.

Claim For any k-coloring of C}', there is a monochromatic line.

Proof. Let y be a k-coloring of C}}, the cube lemma shows that y is flip-top on
a suitable Shelah s-space L; X Ly X - - - X L. By definition, the derived coloring y’
is flip-top on C;. By the definition of s = HJ(k,t — 1), we can apply the induction
lemma to x’ to obtain that there is a monochromatic line L in C;. The ¢~ '(L)isa
monochromatic line in C}' under the coloring y, each point of which is formed from
the corresponding point of L by adding constant coordinates. m}

Let us remark a bit how Shelah’s bound increases. Define a sequence of functions
N=A{1,2,...} > N as fi(n) =2nand

fm+l(n) =fmo fmo---o fm(l)
—_———

Some small values of f;,(n) are listed in the following table.

fum)|n=1n=2n=3] n=4 |- n
Al 2 146 g |- n

Al 2 [ 2 [ 2| 2 |- 2

fmy| 2 | 22| 2% 2 .. 22" } n
f| 2 | 2 |2 |2 A2 - )
S 2 | 2% [fa@)] filfs@)

Table 12.2  Some values of f,(n)

The function f3(n) is called a “tower”, whose height is n. The function f4(n)
grows much faster, which is called a wowzer, wow! Note that f4(n) is a tower of
height f4(n — 1). For example f4(3) = 65536, which is the height of the tower of
f1(4). The huge value of f4(f4(4) — 1) is just the height of the tower of f5(4). The
Ackerman function A(n) is defined as the diagonal value f,(n).

No reasonable upper bound for wy (z) or wy(¢) has been found. Shelah’s proof
gives “wowzer” bound for HJ(k,t) hence wy(t) because it iterates the cube
lemma, which gives a “tower” bound by iterating the exponential functions. In fact,
HJ(k,t) < fi(c(k+t)) for some constant ¢ by noticing that ng in the cube lemma is
a tower of height around s. Even so, this proof for the van der Waerden theorem still
reduces the original bound of van der Waerden greatly, who used double induction
on k and ¢, even for w(t) = w;(¢). The original upper bound of van der Waerden in
Section 11.1 is a Ackerman function.



260 11 Regularity Lemma and van der Waerden Number

Shelah’s proof for upper bound of w(#) is celebrated, but it is far away from the
truth from Gower’s upper bound of tower of height 6. Graham offered 1000 USD for
a proof or disproof of w(z) < 2]‘2, see Chung, Erdds and Graham (2000).

11.3 Szemerédi’s Regularity Lemma

Let G be a graph with vertex set V and let X and Y be nonempty disjoint subsets of
V. Denote by e(X,Y) the number of edges between X and Y in G. The ratio

46(X.¥) = e|(;||’YY|)

is called the edge density of (X,Y). It can be seen as the probability that any pair
(x,y) selected randomly from X X Y is an edge. It is easy to see 0 < dg(X,Y) < 1,
and

dg(X.Y) +dg(X.Y) = 1,

where G is the complement of G. We always simply denote dg (X, Y) by d(X,Y) if
the context is clear.
The density d(X,Y) behaves in a fair continuous fashion.

Lemma 11.4 Suppose X and Y are disjoint subsets of V(G), and X’ C X andY’ C Y
with | X'| > (1 =n)|X| and |Y’| > (1 = n)|Y|. Then

|d(X',Y") - d(X,Y)| <2n and |d*(X',Y’) -d*(X,Y)| < 47.
Proof. Note that

0<e(X,Y)—e(X',Y)
=e(X\X,Y)+e(X,Y\Y')—e(X\ X, Y\Y)
<e(X\X,Y)+e(X,Y\Y')
< 2n|X|IY1,

s0d(X,Y)—d(X’,Y’") < 2n. Similarly,
d(X',Y') —d(X,Y) =dg(X,Y) —dg(X",Y") < 2n.

Hence the assertion follows immediately. O

Let € > 0 be a real number. We say a disjoint pair (X,Y) is e-regular if any
X’ C Xand Y’ CY with |X’| > €|X| and |Y’| > €|Y] satisfy that

1d(X,Y) —d(X',Y")| < e.
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A partition Vp, Vi, ...,V of V is said to be equitable with exceptional set Vj
if [Vi| = |Va| = --+ = |Vk|. Furthermore, we say a partition Vy, Vi,...,V; of Vis
e-regular if the following two conditions hold:

(W Vi = [Va| = -+ = |Vi| and [Vo| < €|V

(2) All but at most ek? pairs (V;, Vi) with 1 <i < j < k are e-regular.

Theorem 11.6 (Regularity Lemma) For any real € > 0 and any integer m > 1,
there exist ng = ny(e,m) and M = M (e, m) > m such that every graph G onn > ng
vertices has an e-regular partition Vo, Vi,..., Vi withm < k < M.

The above theorem is trivial for [V(G)| < M since a partition that each class
contains at most one vertex is O-regular. The crucial point for the lemma is that the
number of classes of the partition can be bounded.

The defect form of Cauchy-Schwarz inequality is as follows, which can be applied
to sequences that the average is greater than some local average.

Lemma 11.5 Let d; be reals and s > t > 1 be integers. If

1 & 1 t
—ZdiZ—Zdi+5,
si:l ti:l

then

1< 1< ? 162 1< ? 162

2 . LR . fo”

;Ed,.z(gé d,) +s—t2(s§ dl) =
1

i=1

Proof. Let D = 31 i_ di. The Cauchy-Schwarz inequality implies that

N t N S 2
1
2 2 2 2
Y=Y de Y dzmivs-n| Y
i=1 i=1 i=t+1 i=t+1
2 2
D, —tD t(Dy—-D
=tD?+(s—t)(—s > t) =s(D§+—( > ’)),
s—1 s—1
so the assertion follows. O

Given an equitable partition P = {Vy, V1, ..., Vi } with exceptional set V}), define

(P =5 Y ELY).

1<i<j<k

It is easy to see that 0 < g(#P) < 1/2since d(V;,V;) < 1.

The function g () is a cornerstone in the proof of the Regularity Lemma. We will
show that if P is not e-regular, then there is a partition $’ with the new exceptional
class a bit larger than the old one, but g(?’) > ¢(P) +¢€> /2. Continue this procedure
until we obtain the partition as desired. The number of iterations is thus at most 1/€>
to guarantee the occurrence of an e-regular partition.
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Note that for € < €, an e-regular pair is also €’-regular. Thus, without loss of
generality, we may assume that 0 < € < 1/2 since if € > 1/2, then one can take
M(e,m) = M(1/2,m).

Lemma 11.6 Let G be a graph with vertex set V, where |V| = n. Suppose P =

{Vo, V1, ..., Vi} is a partition of V with exceptional class Vj,
Vil = Vol = = [Vil =y 2 2% and 2F > 8/€.
If P is not €-regular, then there is an equitable partition " = {V{, V|, ..., V/} with

exceptional class V! 2 Vo and € = k(4% — 2K=1Y such that

(1) |V§| < Vol +n/2%,

(2) q(P') = q(P) +€/2.
Proof.* For each pair (V;,V;) with 1 < i < j < k, put the corresponding indices
pair (i, j) into S if (V;, V;) is e-regular, and put (7, j) into T otherwise. If (i, j) € S,
thenset V;; =V;; = 0.1f (i, j) € T, i.e., (V;, V}) is not e-regular, then we can choose
Vij € Viand Vj; C V; with |V;;| > eny, |V};i| > eny such that

|d(Vij, Vi) =d(Vi,Vj)| 2 €.

Fix i for 1 < i < k, consider an equivalence relation = on V; as x = y if and
only if both x and y belong to the same subset V;; for every j # i. (Clearly, there
are vertices that may not lie in any such V;;.) Thus V; has at most 2k=1 equivalent
classes. Set d = |n/4*]. Clearly,

d>2"" and 4%d <n; <4%d+1).

Cut V; into pairwise disjoint d-subsets such that each d-subset belongs to some
equivalent class of V;. Denote z by the maximal number of these d-subsets that one
can take. It follows that

2d +25(d - 1) > ny > 454,
yielding z > 4% — 2k=1. Set H = 4K — 2%~ Take exactly H such d-subsets and put
the remainder into the “rubbish bin” to get a new exceptional set V. Label all these
d-subsetsin V; as D;1,D;»,...,D;qg. Set

Vo=V U [Ule (Vi \ Ug:lDih)] :

Note that |V{| = [Vo| + k(n; — Hd), and

Hd > (45 -2k ) (ZL ) sy = 1 gk sy I8
4k

as ny > 23+1 Hence n; — Hd < n;/2* and

Vil < [Vol + k(ny — Hd) < |Vo| +n/2%.
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Rename Dy, as VJ’. forl1 < j < ¢, wheref{=kH.SetP ={V/, Vl’, - th}. All that

remains is to show g(P’) > q(P) + € /2.
Fori,j=1,2,...,k,set

H
Vi = UDih and V;; = U Dip.
h=1 D;p CVij

Set P = {V(;, vi,... V_k} with exceptional class Vé.
Claim 1 ¢(P) > q(P) - €' /4.
Proof. For any pair (V;, V),

VA\Vil m-Hd 1 €
= — < —. 11.1
Vi] n 2k 8 (11.1)
By Lemma 11.4,
5
= = €
ld(Vi,V;) =d(Vi, V))| < ™ (11.2)

Consequently, |d>(V;, V;) = d*(Vi, V)| < %5, andso d*>(V;,V;) > d*(V;, V) —€/2,
which implies that ¢(P) > ¢(P) — € /4 as claimed. O
To illustrate what can be obtained in the proof, we shall use A Cx B to represent

for “A C Band |A| = (1+0(1))|B|”,and A c< B for “A C B and |A| = o(|B|)”.
For a pair (i, j) € T, we have

(Vij,
(Vij

Vi) c< (V;,V)) c= (V, V)).
So for (i, j) € T, it is expected that |d(V;;,V;;) — d(V;,V;)]| is almost as large as
|d(Vij, Vji) —d(Vi, Vj)l.

55
m

Claim 2 If (i, j) € T, then |d(V;;, V};) — d(V;, V})| >

Proof. Note that V;; \ V;; € Vi \ V;, so from (11.1),

Vi \Vigl _ VAVl Vil _ € 1 _ €t 113)
Vil Vil Ivijl — 8 € 8
which and Lemma 11.4 give
R 64
ld(Vij, Vji) =d(Vij, Vi)l < 7 (11.4)

The definition of V;;, the bounds (11.2) and (11.4) with the assumption that 0 < € <
1/2 yield
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1d(Vij, Vi) = d(Vi, V)l
>|d(Vij, Vi) = d(Vi, V)| = 1d(Vij, Vi) = d(Vij, Vi)
—1d(Vi, Vj) = d(Vi, ;)
4 5 - E

S € €
€—— — — €,
"7 44716

as claimed. O

Let us return to @e partition ' in which each class is a d-subset D;;, except the
class Vé. Note that V; = UthlD,-h, we obtain that

—— e(Vi,V)) YichwsneDun D) 1
d(Vi, V) = —=- = = 2S = ’T7) E d(Din, Djp)
[VilIV;] H2|Dip||D | H | o

since |V;| = |V_j| = Hd. Set
.. 1
A, j) = 7 Z d*(Din, D).
I1<h,h’<H

For any pair (V;, V;), from Cauchy-Schwarz inequality, we have

2

1 _
AG ) 2|25 D dDinDw)| =d*(V.,V)). (11.5)
H
1<h,h’<H

If (i, j) € T, we have some gain. Let R = R(i, j) be the set of indices (/, h") such
that D;;, € V;; and D jr € Vj;. Then

1

d(Din, D jp).
(h,h')eR

So for (i, j) € T, from Lemma 11.5 and Claim 2,

s 272 B 4 T g )
A ) 2 PVLV) + s (dVi V) - d(Viy. V)

— —  |R| {15€\?
zdz(vi,vj)+|H—2|(1—6) ) (11.6)

Let H;; be the number of D;j, € V_U Then by (11.1),

Hijd = |Vij| = Vij \ Vi;| > [Vij| = Vi \ Vi
> (e—€/8)|Vi] = (1-27")elVil.

Note that |R| = H;;Hj; and |V;||V;| > (Hd)?, so for (i, j) € T,
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R _ Bl Bullid (1-27)e)'
H— Hd T Vv

and thus recall (11.6) we obtain that

2
A(i, ) de(W,Vj)+((1 —2*7)6)2 (%f) zdz(Vi,V,)+§e4. (11.7)

Note that £ = kH and so we have

’ 1 ’ ’
aP) =5 ), dVLV)

I<t<s<t
1 1 . .
2 5 dZ(Dih,Djh/)zﬁ D AGH,  (18)
l<i<j<k1<h,h’<H I<i<j<k

where the summands of form d?(D;,, D jw) with i = j are ignored in the inequality.
Now combining (11.5), (11.7) and (11.8) we obtain that

qP)z 5| Y AG+ Y AG)H)

(i,j)es (i,j)eT

1 — O —— 3
2 Z d*(Vi, V) + Z (dz(Vi, Vi) + 164)
(i,j)es (i,j)eT

3IT| 4 By L 35
4—]{26 ZQ(P)+Z€,

=q(P) +

where we used the fact that |T| > ek? as P is not e-regular. From this fact and Claim
1, we have

(P) > q(P) - S 436 —q(P)+ S
-—+-€ = —.
DAL 4T 1 2
This completes the proof of Lemma 11.6. O

Now, we give the proof for Theorem 11.6.

Proof of Theorem 11.6. We shall use Lemma 11.6 repeatedly by showing that at
most ¢ = | €3] iterations will yield a required partition. Let ko be an integer such
that kg > m and 2750 < €3/8, and define k;,; = k; (4% — 2% ~1). Set M; = k;4% and
M =k,.

Let G be a graph of order n. We may assume that n > M since otherwise the
partition with each class being a singleton with empty exceptional set will do. Let
Py = {V(EO), Vl(o), cee VIE(?)} be an equitable partition with |V1(0)| =...= |V]£(?)| =
[n/ko]. So

V) < ko < My/4% < %
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If Py is e-regular, then we are done. Otherwise, by Lemma 11.6, there is an equitable
partition P = {VO(I), Vl(l), R V,Ell)} such that

WV < VO +n/2% < en, and q(P1) = q(P) +€°/2.

If P, is not e-regular yet, then we continue the procedure to obtain $,. Suppose we
have obtained an equitable partition #°; with exceptional class VO(] ) in the Jjth step.
Thus, _

Vel < W +n@ 04278 4o < em,

and q(P;) = q(Po) +j%5. It follows that j < ¢ since g(#;) < 1/2. This completes
the proof of Theorem 11.6. O

The bound on M (€, m) given in the Regularity Lemma is enormous, it is a tower
of the height up to €™ since the number of iterations in the proof. This seems
to be very bad at the first glance. However, a celebrated result of Gowers (1997)
proved that M(e,2) grows at least as a such tower of height about €~!/1°. His
argument is powerful. Subsequently, Conlon and Fox (2012) estimated the number
of irregular pairs in the Regularity Lemma, and Moshkovitz and Shapira (2016) gave
a simpler proof of a tower-type lower bound. By using the mean square density, i.e.,

q(P) = Zﬁj:l l‘/li‘ul\;fl d*(V;,V;), Fox and Lovdsz (2017) showed that the bound on

the number of parts is at most a tower of height at most 2 + €~2/16. They also gave
a tight lower bound on the tower height in the Regularity Lemma, which addresses
a question of Gowers.

The size of the exceptional class may be larger than that of normal ones. To see
this, if m is much larger than 1/e, then the size of normal classes is around n/k,
which is much less than en.

For graph G = (V, E), we say that a partition Vi, ..., Vy of V is an equipartition
if |V;| and |V;| differ by no more than 1 forall 1 <7 < j < k. One of reformulations
of the Regularity Lemma is as follows.

Theorem 11.7 For any € > 0 and integer m > 1, there exist ny = no(e,m) and

M = M(e,m) > m such that every graph G on n > ng vertices has an equipartition
Vi.Va,...,Vi with m < k < M, in which all but at most €k pairs (V;, V),
1 <i<j<k, aree-regular.

Proof. By Theorem 11.6, for any real € > 0 and m > 1, there exist ng = ng(e, m)
and M = M (e, m) > m such that every graph G on n > ng vertices has an ETz-regular
partition P = {Vy,Vy,...,Vi} withm < k < M. Note that |Vp| < %zn, we have
L(1 — €*/4)n/k] < |V;| < n/k. Partition V; into k classes By, Bs, ..., By such that
|Bi| = LIVol/k] or |B;| = [[Vol/k]. Set

Vi/ =V;UB;.
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Thus the sizes of any V! and V]’. differ at most by one. We aim to prove that the
partition P’ = {V[,V],...,V,} is as desired. It suffices to verify that if a pair
(Vi,V;) is ETz-lregular, then (V/, ij) is e-regular.

Indeed, suppose X] C V/ and XJ’ - V; with |X/| > €|V/| and |X]| > ele’.|,
respectively. Set X; = X/ \ B; € V;. Note that |V/| = |n/k] or |V/| = [n/k], so for
sufficiently large n,

. . 2
Xl g 1B [En/@RT e
x5 X eln/k] 3

Hence by Lemma 11.4,

, o 2e
|d(Xi,Xj) -d(X;, X;)| < R (11.9)

The sizes of V; and Vl.’ are close. Indeed,

Vil _ LA —€2/4)n/k| S 1 e
14 [n/kT 2’

and thus
|d(V;,V;) —d(V], V)] < €. (11.10)

Also, since (V;,V;) is %z-regular and

1X:| 1% X € €2
B, DXL (s 2
Vil — X/ V]| 3 4
it follows that )
€
|d(Xi, X;) —d(Vi,Vj)| < T (11.11)

Consequently, by inequalities (11.9), (11.10) and (11.11),

ld(X;, X}) —d(V{,V})]

< |d(X], X)) — d(Xi, Xj)| + 1d(Xi, X;) = d(Vi, V)|
+1d(Vi, V) = d(V], V)]
2e €’

2
< —+4+€+— <e.
3 4

This completes the proof of Theorem 11.7. O

A similar proof yields another formulation of the Regularity Lemma as following.

Theorem 11.8 For any € > 0 and integer m > 1, there exist ny = no(e,m) and

M = M(e,m) > m such that every graph G on n > ng vertices has a partition

Vo, Vi, ..., Viewith Vol < k=1, |Vi| = |[Va| =+ = |Vi|, and m < k < M, in which
all but at most €k? pairs (V;, Vi), 1 <i<j<k, are e-regular.
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The following is the multicolor Regularity Lemma.

Theorem 11.9 (Multicolor Regularity Lemma) For any € > 0 and any positive
integers m and s, there exist no = no(e,m,s) and M = M(e, m, s) such that if the
edges of a graph G on n > nq vertices are colored in s colors, all monochromatic
graphs have a same partition Vo, V1, . .., Vi that is e-regular with exceptional set V)
andm < k < M.

Proof. Using the original proof, but modify the definition of ¢(#) by summing the
indices over all colors: for a partition P = {Vy, V1, ..., Vi } of V(G) with exceptional

set Vp, let
1 S
4P) =5, D, ViV,

=1 1<i<j<k
where d¢(V;, V) is the edge density in the £-th color. O

Similar to Theorem 11.7, we have the following multicolor Regularity Lemma.

Theorem 11.10 For any € > 0 and integer m > 1, there exist ng = no(e, m,s)
and M = M (€, m,s) such that if the edges of a graph G on n > ng vertices are
colored in s colors, all monochromatic graphs have a partition Vi, ..., Vi with
Vil < Vol < -+ < [Vi| < Vil + 1, and m < k < M, in which all but at most ek?
pairs (V;,V;), 1 <i < j <k, are e-regular.

In some applications, the following degree form of the Regularity Lemma is more
applicable.

Theorem 11.11 For any € > 0, there exist an M = M (€) such that for any graph
G = (V,E) and any d € [0, 1], there exists a partition Vo, Vi,...,Vy of V with
k < M, Vy < €|V|, each V; has the same size m < €|V|, and there exists a subgraph
G’ C G with the following properties:

(1) degg (v) > degg(v) — (d+€)|V|forallv eV,

(2) e(G'(V;)) =0 foralli > 1,

(3) all pairs G'(V;,V;), 1 <i < j <k, are e-regular, each with a density either
0 or greater than d.

11.4 Two Applications

Recall that the Ramsey-Turdn number RT (n; K4, 0(n)) is the maximum number of
edges among all K4-free graph whose independence number is o(n). We know that
RT (n; K4,0(n)) > %nz + o(n?) by Bollobas and Erdds (1976). Now, let us have an
application of the regularity lemma on the upper bound of RT (n; K4, 0(n)) given by
Szemerédi (1972).

Theorem 11.12 We have RT (n; K4, 0(n)) < gn* + o(n?).
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Proof. Let G be a graph on n vertices satisfying ¢(G) > (1/8 + 4€)n*> where € > 0
is sufficiently small and n is large. Let d = 2e. We apply Theorem 11.11 to obtain
an M = M (e€) and a partition Vy, Vi, ..., Vi of V with k < M, V < €|V], each V;
has the same size m < €|V/|, and there exists a subgraph G’ C G with the following
properties:

(1) degg (v) > degg(v) — (d+¢€)|V|forallv eV,
2)e(G'(V;))=0foralli > 1,
(3) all pairs G’ (V;,V}), 1 <i < j < k, are e-regular, each with a density either O
or greater than d.
We assume that 5
M
a(G) < € n- I, and n > —.
M €

We aim to show that K4 C G.
Let G” = G’ — V. We have e(G”’) > (1/8 + €)n®. Also note that

a(G) < € (%—1) <é (%—l) < €m.

Case 1. The reduced graph contains more than k”/4 edges.

For this case, by Turan’s theorem, the reduced graph contains a triangle which
corresponding to sets Vi, V5, V3 without loss of generality. By Lemma 11.7, we obtain
asubset V| C Vi with [V]| > (1 -2€)[V| such that each vertex in V| is adjacent to at
least (d — €)m vertices in V, and V3 respectively. Fix a vertex v| € V|, we consider
the pair (N(vy) N Vo, N(v1) N V3). We again apply Lemma 11.7 to obtain a vertex
va € N(v1) N V5 such that [N(v2) N N(vy) N V3] > €m. Thus N(v2) N N(v1) N V3
contains an edge by noting that (G) < €>m, and so we can get a K4 C G as desired.

Case 2. The reduced graph contains at most k2 /4 edges.
Note that

PRAANE

I<i<j<k

’” 7"\ 1,2
(0 LOU (1, )
m n

For this case, their average density of pairs is greater than 1/2 + 4€. Thus, at least
one pair, say (V1,V2), has a density greater than 1/2 + 4€. A similar argument by
using Lemma 11.7 we can show that the subgraph induced by (V}, V3) together with
the edges inside the two clusters contains a copy of Kj. O

In the following, let us have another application of the regularity lemma.

A family G = {G,}, where G, is a graph of order n, is said to be Ramsey linear
if there exists a constant ¢ = ¢(G) > O such that r(G,) < cn for any G,, in G, where
r(Gn) =1(Gn,Gp).

For dense graph G, r(G,) may tend to grow exponentially in n. For example, the
extreme case r(K,,) is lying roughly between 2'/? and 4" as discussed in previous
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Chapters. However, for relatively sparse graphs, r(G,,) grows much more modestly.
A special class which has been investigated from this aspect is the class of graphs
G, with maximum degree A(G,) < A, where A is fixed. Denote

G(A)={G, : n>=1and A(G,) < A},

and
D(d)={G, : n>1and G, is d-degenerate}.

Conjecture 11.1 (Burr-Erdds, 1975) For any fixed positive integers A and d,
(1) the family G(A) is Ramsey linear.
(2) the family D(d) is Ramsey linear.

A well known application of the Regularity Lemma by Chvatal, Rodl, Szemerédi
and Trotter (1983) tells us that G(A) is Ramsey linear. Given a graph G, let Ng (x)
be the neighborhood of x in G and for X, Y C V(G), Ny(X) = (UyexNg(x))NY. A

graph G of order n is called p-arrangeable if there exists an ordering vy, va, ..., Vv,
of the vertices of G such that for each 1 < i < n—1, [N, (Ng,(v:))| < p, where
L;={vi,va,...,v;} and R; = {vi41,Vis2, ...,V }. Set a family of graphs as

Gp ={G. | G, is p-arrangeable}.

Chen and Schelp (1993) showed that the family of p-arrangeable graphs is also
Ramsey linear, and so does the family of planar graphs. Recently, a celebrate result
of Lee (2017) confirms the second conjecture of Burr and Erdds (1975), in which
one of the main ingredients of the proof is the dependent random choice introduced
in Chapter 9.

In this section, we will mainly give the proof of the first conjecture by Chvital,
Ro6dl, Szemerédi and Trotter (1983).

Theorem 11.13 For any fixed integer A > 1, G(A) is Ramsey linear.

Before giving a proof for the above result, let us have some properties of an
e-regular pair as follows.

Lemma 11.7 Let (A, B) be an e-regular pair of density d € (0,1]. If Y C B with
|Y| > €|B|, then there exists a subset A” C A with |A’| > (1 — €)|A| such that each
vertex in A’ is adjacent to at least (d — €)|Y| vertices in'Y.

Proof. Let X be the set of vertices with fewer than (d — €)|Y| neighbors in Y. Thus
e(X,Y) < (d - €)|X]|Y|, which implies that d(X,Y) < d — €. Since (A, B) is
e-regular, we have that | X| < €|A|. O

Lemma 11.8 Let (A, B) be an e-regular pair of density d € (0,1]. If X C A and
Y C B with |X| = a|A| and |Y| > «|B| for some a > €, then (X,Y) is € -regular
satisfying |d(A, B) — d(X,Y)| < €, where € = max{£,2¢}.
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Proof. Let X’ C X and Y’ C Y. If |[X’| > €'|X]| and |Y’| > €’|Y], then |X’| > €|A|
and |Y’| > €|B|. Hence the assertion follows from the assumption that (A, B) is
e-regular. O

Proof of Theorem 11.13. Let A > 1 be fixed. Letm > r(A+1,A+1)and0 < € < 6#
such that

((I/Z—E)A—Ae)mzl hence (1/2— €)™ — Ae > e.

Let M = M(€,2m) > 2m be the integer determined by € and 2m in Theorem 11.7.
Finally, let ¢ = mM, which is a constant depends only on A. We shall show that
r(G) < cn for any graph G of order n with A(G) < A.

Consider a red/blue edge coloring of the complete graph K., with vertex set V.
Let R be the graph spanned by all red edges on V.

From Theorem 11.7, there is a partition {V1, V2, ..., Vi } of V with ||V;| - [V;]| < 1
and 2m < k < M such that all but at most ek? pairs (V;,V;), 1 <i < j <k, are
e-regular. Clearly, |V;| > mn for 1 <i < k.

Let F be the reduced graph on vertex set {1,2, ..., k}, in which (i, j) is an edge
if and only if (V;, V;) is e-regular. Note that the number of edges of F is at least

k K\ k¥ m-1k%
—€k? = - N—— _1(k).
(2) € (2) om > m 2 m1k)

By Turédn’s theorem, i.e., Theorem 7.2, the subgraph of F spanned by all red edges
contains a complete graph K,,. Color an edge (i, j) of K,,, red if dr(V;,V;) 2 1/2,
and blue otherwise. Since m > r(A+1, A+1), this will yield a monochromatic Ka+ .
Without loss of generality, suppose that Ka4; is red for otherwise we consider the
complement graph R.

Relabeling the sets of the partition if necessary, we may assume that the vertex
set of Kay1is {1,2,...,A+ 1}. Thus we have

(i) all pairs (V;,V;) for 1 <i < j < A+ 1 are e-regular, and
(i) dr(V;, V) > 1/2.

Assume that V(G) = {uy,uz,...,u,}. Since the chromatic number of G is at
most A + 1, we can define amap y: {1,...,n} — {1,...,A+ 1}, where y(i) is the
color of the vertex u;, such that (i) # x(j) if u;u; is an edge of G. In order to
prove that the red graph R contains G as a subgraph, we will define an embedding
¢: u; - v;for 1 <i < nsuchthatv; € V,(; and v;v; is an edge of R whenever
u;u;j is an edge of G.

Our plan is to choose the vertices vy, ..., v, inductively. Throughout the induc-
tion, we shall have a rarget set Y; C V, ;) assigned to each i. Initially, ¥; is the
entire V), (;). As the embedding proceeds, ¥; will get smaller and smaller since some
vertices will be deleted. However, for each i = 1,...,A + 1, the number that V, ;)
will have some vertices deleted is at most A times, and each time there are majority
of vertices remaining for us. This guarantees that each Y; will not get too small to
make this approach work.
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Let us begin the initial step. Set
0 _ 0 _ 0 _
Yi=Veay ' =Vy@-- o Y = Ve

Note that ¥ and Y? are not necessarily distinct sets.

We first consider u; € V(G) with degree dg(11) = d. Denote its neighbors by
Ug,...,Ug . Since (YO, Y](.)) is e-regular for j = ay,..., B, by using Lemma 11.7
repeatedly, there exists a subset Yl1 cY 10 with

Y| > (1-de)Y? = n

such that each vertex in ¥} has at least (1/2 — €)|Y}| neighbors in Y}. Choose a
vertex v; from Yl1 arbitrarily. For j = a1, ..., 31, define Y} as the neighborhood of
vy in Yj(.). Forj >2,j # ay,..., B, define le = Yj(.), that is, no vertices are deleted

from such Y?. In this step, v{ has been chosen which is completely adjacent to Y} in
R whenever u; and u; are adjacentin G. See Fig. 13.1 fori = 1.

Fig. 13.1 Embed G into R

Generally, we consider u; and its neighbors. We will choose v; from Y} i-1 Suppose
that u; has dy neighbors in {u1,...,u;_1}, and d> neighbors, say u,,...,ug,, in
{uis1,...,uy}. Itis clear that d; + d2 < A, and

Y/~ > (172 - ey,

i.e., the current set Yii_1 are obtained from Yl.0 by deleting some vertices d; times
. . . ; _1
be.fore this step. By using Lemma 11.7 repeatedly again, we have a subset Y; C ¥/
with . _
Y12 Y]] - daelY?)
so that each vertex in Y has at least (1/2 — e)|Y}_l| neighbors in Y}_l, where
J =a;,...,[Bi. Note that

Y12 Y = doel¥?] 2 ((1/2 = % = daoe) 1Y)

> ((1/2- & - Ae) Y] 2 n,
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thus we can choose a vertex v; from Yii, which is distinct from vy, ..., v;_; that
have been chosen before this step. For j = «;, ..., 8;, define YJ’. as the neighborhood
of v; in Y]’:‘l. Forj>i+1,j # ai,...,B; define le: = Y}_l, i.e., no vertices are

deleted from such Y}‘l. Note that for j < i, v; is adjacent to v; in R whenever u is
adjacent to u; in G. Moreover, v; is completely connected with each set Y]’f, in which
a neighbor of v; will be selected after this step. This finishes the general step and
hence the proof of Theorem 11.13. O

More generally, we have the following result, in which the proof will use the
multicolor Regularity Lemma, i.e., Theorem 11.10.

Theorem 11.14 For any positive integers k and A, there is a constant ¢ = c¢(k,A) > 0
such that ri.(G) < cn for any graph G of order n with maximum degree A(G) < A.

A problem needed to consider is that the huge constant obtained in Theorem 11.13
by using the Regularity Lemma. Some improvements on the constant have been
done by Eaton (1998), and further by Graham, R&dl, and Rucirski (2000, 2001), in
which they showed that the constant can be bounded from above by 2¢A(1024)° "ang
particularly 2(A+¢)1ogA for bipartite graphs, one can see Chapter 9 for more better
bounds of that for bipartite graphs. The authors also showed that there is a positive
constant ¢’ such that for each A and rn sufficiently large there is a bipartite graph H
on n vertices with maximum degree A for which r(H) > 2¢"%n. Therefore, one can
only improve the constant of the exponent by noting Theorem 9.5.

The constant for the d-degenerate graphs due to Lee (2017) is as follows, which
confirms a conjecture of Burr and Erdés. Let us point out that the following result
does not apply the regularity method.

Theorem 11.15 There exists a constant ¢ such that the following holds for every
natural number d and r. For every edge two-coloring of the complete graph on at
least 292" n vertices, one of the colors is universal for the family of d-degenerate
r-chromatic graphs on at most n vertices.

11.5 Extensions on the Regularity Lemma

There are many generalizations of Szemerédi’s Regularity Lemma. In this section,
we will introduce more forms on the Regularity Lemma.

At first, we would like to introduce the sparse Regularity Lemma. Let G = (V, E)
be a graph. Let 0 < p < 1,7 > 0 and K > 1. For two disjoint subsets X, Y of V, let

eG(X, Y)

dc,p(X,Y) = ,
P pIX|Y|

which is referred to as the p-density of the pair (X,Y). We say that G is an (7, 1)-
bounded graph with respect to the p-density if any disjoint subsets X,Y of V with
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|X| = n|V|,|Y| = n|V| satisfy
eG.p(X,Y) < Ap|X||Y|.

For fixed € > 0, we say such a pair (X,Y) is (¢, p)-regular if for all X" C X and
Y’ C Y with
|X’| > €|X]| and |Y’| > €|Y]|,

we have
ldG.p(X,Y) —dg p(X',Y')| < €.

The following is a variant of the Szemerédi’s Regularity Lemma for sparse graphs,
developed by Kohayakawa and Rodl (1997, 2003).

Theorem 11.16 For any fixed € > 0, 1 > 1 and to > 1, there exist Ty, n and Ny, such
that each graph G = (V, E) with at least Ny vertices that is (n, A)-bounded with

respect to density p with Q0 < p < 1, has a partition {Vy, V1, ..., V:} withty <t < Ty
such that
(i) Vol < eNand [Vi| = [Vo| = --- = [V4;

(ii) all but at most et® pairs (V;, V;) are (€, p)-regular for 1 <i# j <t.

Denote
H(An) = {H C Ky, : A(H) < A},

where H C K, means that H is a spanning subgraph of K,,. We say that a graph
F is partition universal for H(A,n), if F — (H, H) for each H € H(A,n). The
well-known result of Chvatal, Rodl, Szemerédi and Trotter (1983) implies that K
is partition universal for H (A, n). Applying the above sparse Regularity Lemma Ko-
hayakawa, R6dl, Schacht and Szemerédi (2011) strengthened this result by replacing
K with sparse graphs as follows.

Theorem 11.17 For fixed A > 2, there exist constants B = B(A) and C = C(A)
such that if N > Bn and p = C(log N/N)'/*, then

lim Pr(G(N, p) is partition universal for H(A,n)) = 1.

The above result implies the following result.

Corollary 11.1 For fixed A > 2, there exist constants B = B(A) and C = C(A)
such that for every n and N > Bn there exists a graph F on N vertices and at most
CN?~ 15 (log N)'/A edges that is partition universal for H (A, n)).

The size Ramsey number 7(H) is defined as min{e(G) : G — (H, H)} in Erdds,
Faudree, Rousseau and Schelp (1978). Rodl and Szemerédi (2000) conjectured that,
for every A > 3, there exists € = €(A) > 0 such that

n'*€ <Fa, =max{f(H) : H e H(A,n)} <n’"€.

For the lower bound, R6dl and Szemerédi proved that there exists a constant ¢ > 0
such that #(H) > nlog® n for some graphs H of order n with maximum degree three.
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From Corollary 11.1, we have #(H) < @(n>~'/2(logn)'/*) for H € H (A, n). Hence
this confirms the upper bound of the conjecture in a stronger form.

Note that, for p = C(logN/N)'/2, we have a.a.s. the chromatic number
x(G(N,p)) = O((N/logN)'~1/2), see e.g. Bollobds (2000, Theorem 11.29) and
Fuczak (1991). A natural problem is that do there exist some sparse graphs with
small chromatic number such that they are also partition universal for 7 (A, n). The
answer is yes. Indeed, as an application of the sparse Regularity Lemma we obtain
that the r-partite random graph G, (N, p) is also partition universal for H (A, n),
where r = r(A) is a constant, see Lin and Li (2018).

Another extension of the Regularity Lemma is the following multi-partite Regu-
larity Lemma, one can find a detailed proof in Lin and Li (2015).

Lemma 11.9 For any € > 0 and integers m > 1, p > 2 and r > 1, there exists an

M = M(e,m, p,r) such that if the edges of a p-partite graph G(V(D, ..., v(P))
with V)| > M, 1 < s < p are r-colored, then all monochromatic graphs have the
same partition {VI(S), cee Vli‘q)}for each V), where k is same for each part V)
andm < k < M, such that

(1) ||Vl.(s)| - |V;S)|| < 1 for each s;

(2) All but at most ekzr(g) pairs (Vl.(s),V;t)), 1<s<t<p 1<ij<k, are
e-regular in each monochromatic graph.

Proof of Lemma 11.9. A similar proof as Theorem 11.6, but modify the definition
of index by summing the indices for each color,

q(P) = % Z Z Z dz(V[(S),V;’)).

I<h<rl<s<r<p 1<i,j<k

Then we have analogy of Lemma 11.6, and the proof follows. )

Define a family ¥ (G; p) of graphs as
F(H,p)={F:F — (H,H) and w(F) < p},

where w(F) is the order of the maximum clique of graph F, and define f(H;p) =
min{|V(F)| : F € F(H; p)}, which is called the Folkman number. We admit that
f(H;p) =c0if F(H;p)=0,and thus f(H; p) = o if p < w(H).

Let us call a family H of graphs H,, of order n Ramsey linear if there exists a
constant ¢ = ¢(H) > 0 such that R(H,) < cn for any H,, € H. Similarly, we call
H to be Folkman p-linear if f(H,; p) < cn for any H,, € G, where p is a constant.

The multicolor multi-partite Regularity Lemma has many applications. A classic
result of Chvatal, Rodl, Szemerédi and Trotter (1983) tells that the family H (A, n)
is Ramsey linear. Lin and Li (2015) extended this result to that the family H (A, n)
is Folkman p-linear, where p = p(A).

Theorem 11.18 Let A > 3 be an integer and p = R(Kp). Then there exists a
constant ¢ = c(A) > 0 such that K,,(cn) — (H, H) for any graph with n vertices
and A(H) < A. Particularly, the family H (A, n) is Folkman p-linear.
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The above result can easily generalized to multicolor case. For more applications,
see e.g. Bottcher, Heinig and Taraz (2010), Shen, Lin and Liu (2018), etc.

For graph G = (V, E), recall that a partition A = {V; : 1 <i < k} of Vis an
equipartition if |V;| and |V;| differ by no more than 1 forall 1 <i < j < k. A
refinement of such an equipartition is an equipartition of the form 8 = {V; ; : 1 <
i <k,1<j<{}suchthatV;;isasubsetof V;foreveryl <i<kandl<j<{.
Now, we will introduce another variant of Szemerédi’s Regularity Lemma due to
Alon, Fischer, Krivelevich and Szegedy (2000), which can be used to find induced
subgraphs in graph G.

Lemma 11.10 For every natural number m and function 0 < €(r) < 1, there exists
a natural number S = S(m, €) with the following property.

For any graph G onn > S vertices, there is an equipartition A = {V; : 1 <i < k}
and a refinement B ={V; ; : 1 <i < k,1 < j < {} that satisfy:

(1) |A| =k = mbut |B| =kl <S.

(2) For all 1 < i < i < k but at most 6(0)(]2‘) of them the pair (V;,Vy) is
€(0)-regular.

(3) Forall 1 <i < i’ <k, forall1 < j,j < butat most €(k)t? of them the
pair (Vi j, Vi i) is €(k)-regular.

(4)All1 <i<i < kbutatmoste(O)(g) of them are such thatforall 1 < j, j’ <€
but at most €(0)£? of them |dg (V;, Vir) — dc(Vi,j, Vir j)| < €(0) holds.

The following lemma implies that for any graph G, there exists an induced
subgraph having an equipartition in which all pairs are regular.

Lemma 11.11 For every m and 0 < €(r) < 1, there exist S = S(m,€) and 6§ =
6(m, €) with the following property.

For any graph G onn > S vertices, there is an equipartition A = {V; : 1 <i < k}
and an induced subgraph G’ of G, with an equipartition A’ = {V! : 1 <i < k} of
vertices of G’, that satisfy:

(I)m <k <S.
(2) V] c Vi foralli 2 1, and V] 2 én.
(3) In the equipartition A’, all pairs are €(k)-regular.

A graph H is e-unavoidable in G if no adding and removing more than €|G|?
edges results in G not having an induced subgraph isomorphic to H. H is called
S-abundant if G contains at least §|G|!P! (distinct) induced subgraphs isomorphic
to H.

As an application of Lemma 11.11, Alon, Fischer, Krivelevich and Szegedy
(2000) showed that a certain degree of unavoidability also implies a certain degree
of abundance.

Theorem 11.19 For every € and e, there is 6 = 6(¢, €), such that for any graph H
with € vertices, if H is e-unavoidable in a graph G, then it is also 6-abundant in G.
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We conclude this section with a refined Regularity Lemma. For graph G defined
onvertexsetV = V(G) and X,Y C V,recall that the edge density dg (X, Y) = %
we admit that if X N'Y # 0, then edges in X N'Y are counted twice. We say a subset
U is e-regular if the pair (U, U) is e-regular.

The following lemma due to Conlon and Fox (2012) tells that every graph contains
a large e-regular subset.

Lemma 11.12 For every 0 < € < 1, there exists a constant § such that every graph
G contains an e-regular vertex subset U with |U| > 6|V (G)|.

The following is a refined version of the Regularity Lemma by Conlon (2019).

Lemma 11.13 For every 0 < n < 1 and natural number my, there exists a natural
number M such that every graph G with at least mq vertices has an equipartition
V(G) = U,V with mg < m < M parts and subsets W; C V; such that W; is n-
regular for alli and, for all but ym? pairs (i, j) with 1 <i # j < m, (Vi,V;), (W, V})
and (W;, W;) are n-regular with |dg(W;, V;) —dg (V;, V)| < nand |dGg(W;, W;) —
dG (Vi V)l < 1.

Proof. Apply the Regularity Lemma (Theorem 11.7) to G with € =7 - §(17), with ¢
as in Lemma 11.12. This yields an equitable partition V(G) = U, V; where all but
em? < nm? pairs (V;, Vi) with 1 <i # j < m are e-regular. Within each piece V;,
now apply Lemma 11.12 to find a set W; of order at least 6(77)|V;| which is n-regular.
Note that if (V;, V;) is e-regular, then, since |W;| > 6(n)|V;| and € = n-5(n), the pairs
(W;,V;) and (W;, W;) are iy are p-regular with |dg(W;,V;) —dg(V;,V;)| < e <n
and |dg (W;, Wj) - dG(Vi,Vj)| <n. O

Using the above refined Regularity Lemma, Conlon (2019) proved that the fol-
lowing result.

Theorem 11.20 For each fixed integer m > 2, r(Bi,m)) <™ +o(1))n.

This upper bound together with the lower bound obtained by Erdés et al. (1978)
yield that r(Bﬁlm)) ~ 2™pn as n — oo. This answers a question of Erdds et al. (1978)
and confirms a conjecture of Thomason (1982) asymptotically.

The following refined Regularity Lemma due to Conlon, Fox and Wigderson
(2021) is a further strengthening of that due to Conlon (2019), which guarantees that
each part itself is regular.

Lemma 11.14 For every € > 0 and My € N, there is some M = M(e, My) > M
such that for every graph G, there is an equitable partition V(G) = Ul].‘:lVl- into
My < k < M parts so that the following hold:

(1) Each part V; is e-regular.

(2) Forevery 1 <i <k, there are at most €k values 1 < j < k such that the pair
(Vi, V}) is not e-regular.

By using the above refined Regularity Lemma, Conlon, Fox and Wigderson (2021)
further improved the upper bound of r(B\™, BY™) as that for each m > 2,
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(m) (m) m n
r(B, ,B <2"n+0|—mm—|.
( ) (logloglog n)!/25

For hypergraph Regularity Lemma, one can see Frankl and Rodl (1992) and
later Chung (1991) in which the author discussed the problems of quasi-random
hypergraphs.

11.6 Exercises

1. Show that w(3) = 9.

2. Show that w(4) > 34 by red/blue coloring {0, 1, ...,33}, in which x is red if
x =0, 11 or a quadratic non-residue (mod 11).

3. Prove that for n > 2, the off-diagonal van der Waerden numbers w(1,n) = n
and w(2,n) is 2n — 1 if n is even and 2n otherwise.

4.* The following conjecture was due to Baudet, which is a weaker version of
van der Waerden Theorem “wy () < oo”. If all natural numbers are k-colored, then
there is a monochromatic and arbitrarily long AP. Assuming the conjecture is true,
give a short proof for “wy () < co”. (Hint: See Schreier (1926), reported in van der
Waerden (1971). For k and ¢, let us call a k-partition to be bad if no class contains
a 1-AP. Suppose the statement “wy (f) < co” is not true for some k and ¢, we shall
find a bad k-partition of N = {1,2, ...} for this . Assume k = 2. Suppose for each
w, there is a bad partition [w] as [w] = Cl(w) u Cz(w). For any wi and w > wy,
CI(W) N [wi] and Cz(w) N [wi] form a bad partition of [w]. Since the number of bad
partitions of [w] is finite, there is wp > w/ such that

™ nwi=c™, ¢ nwi] =
Generally, we can find a sequence w; < wy < w3 < --- such that
™ aw =™, ™ A fw] = ™)
for all i < j. Then, we define Ci, ..., Cy by x € C; if and only if x € C™" for all

wy = x,and {Cy, ..., Cy} is a bad k-partition of N.)

5. Give a 2-coloring for natural numbers such that there exists no monochromatic
AP of infinite length.

6. Prove that wy (1+1) > V2rk’ as follows. (Hint: Show the number of (z+1)-APs
in [N] is less than 1;’—: from the fact that the number of APs with common difference
din [N]is at most N —dt for d < N/t. Then let X be the number of monochromatic
(t+1)-APs in a uniform random k-coloring of [ N]. Then E(X) < % (Erdés-Rado,
1952))
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7.Let N = wi (1> + 1), and let y be a coloring of [N] in two colors. Show that
there exists a t-AP {a +id : 0 < i <t — 1} which together with d is monochromatic.
(Hint: Consider a monochromatic 2-AP with difference d, and {d, 24, . .., td}.)

8. Let (X,Y) be a pair of disjoint subsets of a graph G and let ¢’ > € > 0. If
(X,Y) is e-regular, then they are €’-regular.

9. Let G = (A, B, E) be a bipartite graph with |A| = |B] = n and d = d(A, B),
where (A, B) is an e-regular pair.

(1) There are A} C A and By C Bsuch that|A{| > (1 —€)nand |By| = (1 —¢€)n,
and the subgraph of G induced by A; U B; has minimum degree at least (d — 2¢)n.

(2) There are A, C A and By C Bsuch that |A3| > (1 —€)nand |By| > (1 —€)n,
and the subgraph of G induced by A, U B, has maximum degree at most (d + 2¢)n.

(3) What can we say about the subgraph of G induced by A; N A and By N B,?

10.* Sketch the proof of Theorem 11.6. In particular, define the function ¢(%P)
for a partition P.
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Chapter 12 e
More Ramsey Linear Functions

From an application of the regularity lemma by Chvatal, Rodl, Szemerédi and Trotter
(1983) introduced in the last chapter, we know that the family of graphs with bounded
maximum degree is Ramsey linear. The Ramsey linearity of families of graphs with
bounded degeneracy is confirmed by Lee (2017), which confirms a conjecture of Burr
and Erdds (1975). In this chapter, we shall discuss more Ramsey linear functions.
The first section discusses the linearity of subdivided graphs, and the second is on a
special linearity: so called Ramsey goodness. All results on Ramsey goodness may
be viewed as the generalizations of Chvatal’s result (1977).

12.1 Subdivided Graphs

The following result is due to Alon (1994), whose original constant was 12. The
improved constant 6 is due to Li, Rousseau, and Soltés (1997). Note that if G is
an essential subdivided graph, then all vertices on G of degree at least three are
independent.

Theorem 12.1 If G is a graph of order n > 3 in which all vertices of degree at least
three are independent, then r(G) < 6n — 12.

Corollary 12.1 The family of essential subdivided graphs is Ramsey linear.
We need two lemmas for the proof.

Lemma 12.1 Let G be a graph without isolated vertices. Then
r(K3,G) < 3¢,

where q is the number of edges of G.

Proof. For g = 1, the assertion is trivial. It is easy to see that

r(K3,G1 U G2) <r(Ks3,Gy) +r(K3, Ga),
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so we may assume that G is connected and g > 2.

Suppose to the contrary, the assertion fails, then there is a connected graph G
with ¢ edges, where ¢ is minimal such that »(K3, G) > 3q. Let us write n for the
order of G and N for 3g. From the definition, there is a red-blue edge coloring of
K on vertex set V such that there is neither red K3 nor blue G. Denote by R and B
for the subgraphs on V with edge sets consisting of all red edges or all blue edges,
respectively. Note that for any vertex u € V, dg(u) < n — 1 since R is triangle-free
thus the subgraph induced by Ng(u) is completely blue.

Let 6 = 6(G) = 1 be the minimum degree of G, and let G’ be the subgraph of
G by deleting a vertex v of degree 6. By the minimality of ¢, we have (K3, G’) <
3(q — §) < 3q and thus B contains G’ as a subgraph. Let X C V be the subset of
vertices not belonging to V(G’) in B. Since B contains no G and dg(v) =6 > 1,
we have that each vertex u € X is adjacent to at least one vertex in Ng(v) in R.
However, each vertex in N (v) can be adjacent to at most n — 1 vertices of X in R,
so|X|=N-(n-1) <6(n-1),implying N < (§ + 1)(n — 1), which with the facts
that on < 2g andn — 1 < g yield

N <3¢g-6<3q-1,

leading to a contradiction. O

The above lemma has been improved as (K3, G) < 2q + 1 by Sidorenko (1993),
and Goddard and Kleitman (1994), which was conjectured by Harary.

Another lemma for the proof of main result is as follows.
Lemma 12.2 Let m > 1 and n > 2 be integers. Then
r(K,,mK;) =n+2m—2.

Proof. The graph K,,_, + Egm,l does not contain K, and its complement, fn,z U
K>,,—1 does not contain m independent edges. Hence r(K,,, mK3) > n+2m — 2.
On the other hand, let G be a graph of order n + 2m — 2 that does not contain
K,.. We shall prove that G contains m independent edges by induction on m. This is
clear if m = 1. For general m > 2, by deleting a pair of non-adjacent vertices u and
v, which form an edge in G, we have a graph H of order n +2(m — 1) — 2, which
does not contain K. By induction hypothesis, the complement of H contains m — 1
independent edges, which with the edge uv give m independent edges of G. O

We will need that (K3, ,) < 4n — 2 and the equality holds for infinitely many
n, proved in Chapter 8. This indicates that the constant in Theorem 12.1 cannot be
replaced by one less than 4.

Proof of Theorem 12.1. With the fact r(K3) = 6, we may assume that n > 4. We
also assume that G is not a subgraph of K> ,_» by the upper bound just mentioned.
LetV = {vy,v2,...,v,} be the vertex set of G, without loss of generality, let

I={vi,va,..., vy} CV
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be a maximal independent set containing all vertices of degree at least three, where
m < n. Since I is maximal, each vertex in V' \ I has at least one neighbor in /. Thus
each component C of G — [ is a single vertex or an edge. If C is a single vertex, it
has either one or two neighbors in /; and if C is an edge, then each of its end-vertices
has exactly one neighbor in /.

We now define a new graph H with vertex set V(H) = {1,2,...,m}, and {i, j}
is an edge of H if v; and v; are commonly in the neighborhood of some component
of G — I. Since there are at most n — m components of G — I, we have |E(H)| <
n — m as any component associates at most one such pair (v;,v;). Consider a
red-blue edge coloring of the complete graph of order 6n — 12 on vertex set U =
{uy,uz,...,usn—12}. Denote by R and B for the subgraph with vertex set U and edge
set consisting of all red edges or all blue edges, respectively. By symmetry, we may
assume that at least half of the vertices in U have red degrees at least 3n—6. Therefore
there is a subset U; C U, say Uy = {uy,uy, ..., Usn—6}, such that [Ng(u;)| > 3n -6
for 1 <i < 3n— 6. We then define a yellow graph F on vertex set Uy with u; and u
are connected by a yellow edge if and only if [Ng (u;) N Nr(u;)| = n - 3.

We claim that the independent number of the graph F is at most two. In fact, if
u1,uy and u3 are independent in F, then

3
UL Nr ()| = DT INR )l = D" INR(ur) 0 Ng ()] + [0y Ne ()
i=1

1<i<j<3

>3(Bn-6)-3(n—4) > 6n-12,

a contradiction. Then by the fact from Lemma 12.1, we know that F' contains H as
a subgraph including all isolated vertices since F' has enough vertices.
Therefore, by the definitions of H and F', we obtain a subset

I'={v],v),...,vi,} C U,

with |[Ng(vi)| 2 3n—6for 1 <i < m, and [Ng(v)) N NR(V;-)l > n — 3 if both v;
and v; are commonly in the neighborhood of some component of G — 1.

We shall seek to embed G into the red graph R such that v; — v for 1 <i < m.
Suppose that we have constructed the appropriate embedding of some components
of G — I. We now wish to extend this embedding to one more component C.

Case 1 C = {v} is a single vertex.
Subcase 1.1 v has two neighbors v; and v; in /.

Since we have chosen at most n — 3 vertices previously that are not all in Nz (v}) N
NR(v;) as G is not isomorphic to K 2, there is at least one vertex in Ng(v}) N
N, R(v;.) left that can be chosen for v.

Subcase 1.2 v has only one neighbor v; in /.
Simply take any vertex that has not been chosen in Ng(v?).

Case 2 C = e is an edge.
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Subcase 2.1 Two end-vertices of e have a common neighbor v; in 1.

We can choose any red edge in Ng(v?) for e. If no such red edge available, then
Ng(v}) induces a complete blue graph of order at least 3n — 6 > n. We thus have a
blue graph G.

Subcase 2.2 Each end-vertex of e has a (different) neighbor in /, say v; and v;
with 1 <i < j < m, respectively.

We shall seek a red path of length three with end-vertices v; and v’, and one
internal vertex in Ng(v;) and one in Ng (v }), which have not been chosen previously.
Suppose that no such path exists, then any edge between N (v}) and Ng (v;.) is blue
unless one of its end vertices has been chosen previously. We shall construct a blue
G in another way. Let W be the set of vertices chosen so far and all vertices of I in
the embedding of G into red graph R, then |W| < n — 2. And let

X = (Nr(v})) "N Nr(V)))\ W,
Y =Nr(vi) \ (WUNr())),
Z=Nr(v))\W.

We may assume that |[X| < n — 2 since otherwise we have a complete blue graph
induced by X and a vertex in Y of order at least n hence a blue G. Since ¥ =
Nr(v)\(WUX)and [WUX| <2n-4,wehave |[Y|>23n-6-(2n—4)=n-2.
Also|Z| =2 3n—-6—(n-2) =2n—4.By Lemma 12.2, r (K, (|n/2]-1)K;) < 2n-4,
we assume that there is a blue matching M on n — 2 or n — 3 vertices in Z if n is
even or odd, respectively. Take a subset J C Y with |J| = |I| = m < n. Let M’ be
the set of union of M and one more vertex from Z, then all edges between J and M
are blue. We can use J and M to construct a blue G with J corresponding to /. This
completes the proof. O

Recently, a result of Chen, Yu and Zhao (2021) states that for any #,
45n-5<r(F,) <55n+6.

where F,, = K| + nK> is an n-fan, or a friendship graph, see Chapter 7. The above
lower bound follows from the following construction. Let 7 be the largest even number
less than 3n/2. Thus ¢ > 3n/2 — 2. We construct a graph G = (V, E) on 3t vertices
as follows. Let V| U V, U V3 be a partition of V such that |Vi| = |V,| = |V3] = ¢
and all G[V;] are complete graphs. For each i € [3], further partition V; into two
subsets X; and ¥; with |X;| = |Y;| = #/2, and add edges between X; and Y;;; such
that G[X;, Y;41] is an [n/2]-regular bipartite graph, where we assume Yy = Y;. It is
not difficult to check that both G and G do not contain a copy of F,.

Note that the graph F;, has at most one vertex of degree more than two, so F,
satisfies the condition of Theorem 12.1. Therefore, we cannot expect the upper bound
of Theorem 12.1 to go down to less than 4.57 — 5.

We conclude this section with the following problem.
Problem 12.1 Determine r(F;,).
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12.2 Ramsey Goodness

Recall a result of Chvavtal in Chapter 1 that for k,n > 1,
r(Ki,T,) = (k- 1)(n-1)+1.

Burr (1981) generalized Chvital’s result in the following way. Denote by s(G) for
the minimum number of vertices in a color class among all proper vertex colorings
of G by x(G) colors and call s(G) the chromatic surplus. For example, s(Ky) = 1,
5(Com) = m and s(Comq1) = 1.

Theorem 12.2 Let G be a graph with x(G) = k and let H be a connected graph of
order n > s(G), then

r(G,H) > (k—-1)(n-1) +s(G).

Proof. Let s = s(G) and N = (k — 1)(n — 1) + s — 1. Color the edges of K red and
blue such that the blue graph is isomorphic to (k — 1)K, _; U K_1, so it contains no
H. The chromatic number of the red graph is k, and the smallest vertex color class
has size s — 1, so it contains no G. Thus (G, H) > N + 1 as desired. o

Burr and Erdés (1983) initiated the study of Ramsey goodness problems. We say
that the connected graph H is G-good if

r(G,H) = (x(G)-1)(n-1)+s(G).

A Kj-good graph is also called a k-good graph. So any tree is k-good from Chvatal’s
result, but the edge density of a tree is less than 1. We shall prove F,, is 3-good. Let us
recall a lemma in the last section, r (Ky, mK») = k+2m—2, thus r(K3,nK,) = 2n+1.
The following result is due to Li and Rousseau (1996). Generally, we have that for
any fixed graph F and G, K| + nF is (K, + G)-good for large n by using stability
lemma.

Theorem 12.3 Let n > 2 be an integer, then F, is 3-good, that is
r(Ks, F,) =4n+ 1.

Proof. Theorem 12.2 yields r (K3, F,,) = 4n+1. We then verify the inverse inequality.
For an arbitrary two-coloring of edges of K4,+1, let R and B be the subgraph induced
by all red edges and all blue edges, respectively. Suppose that R contains no K3 and
B contains no F,,. For any vertex u, the absence of K3 implies that Ng(u) induces
a complete graph in B, and thus |Ng(u)| < 2n. Also, by r(K3,nK») = 2n+ 1 as
mentioned, the absence of a blue F, implies |[Np(u)| < 2n. It follows that both
graphs R and B are regular of degree 2n.

Suppose that # and v are adjacent in R. Then Ng(u) and Ng(v) are disjoint sets,
each inducing a complete graph in B of order 2n, and Ng(u) N Ng(v) has a single
vertex, which we denote by w. If w were adjacent to one or more vertices of Ng (i)
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or to one or more vertices of Ng(v), there would yield a blue F),. It follows that the
degree of w in B, already determined to be 2n, is 2, so n = 1. This contradiction
proves that r (K3, F,,) < 4n + 1. m|

We have seen that any tree T is k-good and F,, = K| + nKj is 3-good if n > 2.
For more Ramsey numbers on fans, we refer the reader to Lin and Li (2009, 2010),
Zhang, Broersma and Chen (2015), and Chen, Yu and Zhao (2021), etc. We shall
discuss Ramsey goodness more in this section. Before goodness was defined, Bondy
and Erd6s (1973) proved that a long cycle (hence a long path) is C,,,-good and K (¢)-
good. Rosta (1973), and Faudree and Schelp (1974) independently proved that when
m is odd, C, is Cy,-good for n > m and (m,n) # (3,3). When m is even, C,, is
Cn-good for n > m and (m, n) # (4,4) unless n is odd and 3m /2 > n > m, in which
case r(Cy,, C,) = 2m — 1. This and r(C3, C3) = r(C4,C4) = 6 gave all Ramsey
numbers r(C,,, Cy,). In particular, we have that

2n—1 foroddn > 5,
3n/2 -1 forevenn > 6.

(Cp) = {
Lemma 12.3 Ifn > 3 is an odd integer, then
r(Cp) > 25" (n=1) + 1.

If n > 2 is an even integer, then

k+1
re(Cp) = A n—k+1.

Proof. It is easy to see, as proved in Chapter 8, we have
rk(G) = (x = D(re-1(G) = 1) + 1,

where y = x(G), the first lower bound follows immediately. The second is also
easy. For an even integer n > 2, let Ny = ri(C,,) — 1. There is an edge-coloring of
complete graph of order Ny by k colors such that there is no monochromatic C,.
Consider such a colored complete graphs and a new complete graph of order n/2—1.
Color all edges of the new graph and all edges between the two complete graphs by a
new color. Clearly, there is no monochromatic C,, thus Ng,; > Nx +n/2 — 1, which
and the fact that Ny = r1(C,,) — 1 = n — 1 imply the assertion. O

An application of the regularity lemma showed that for three colors, the above
lower bounds are asymptotical equalities. Namely, it was shown that

(4+o0(1))n forodd n,
(2+0(1))n foreven n.

r3(Cp) = {

The result for the odd length n case was obtained by Luczak (1999), and Gyarfas,
Ruszinkd, Sarkézy and Szemerédi (2007), and the other by Figaj and Luczak (2007).
Kohayakawa, Simonovits and Skokan (2005) used Luczak’s method together with
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stability methods proved that r3(C,,) = 4n — 3 for sufficiently large odd n. By using
the regularity method together with nonlinear optimisation, Jenssen and Skokan
(2021) established that

re(Cr) =25 n-1)+1

for all fixed £ > 2 and sufficiently large odd n, which confirms a conjecture by
Bondy and Erdds (1973). For each fixed £ > 3 and large even n, we have

(k=14+0())n <ri(Cp) < (k-1/2+0(1))n

where the lower bound is due to Yongqi, Yuansheng, Feng and Bingxi (2006) while
the upper bound by Knierim and Su (2019) improves that of Davies, Jenssen and
Roberts (2017) and an earlier upper bound by Sarkozy (2016).

Burr (1981) generalized the above results for long cycle C, to a graph H that
contains a long suspended path. A path of H is called suspended if the degree of
each internal vertex is two.

Lemma 12.4 Let G be a graph of order m, and H a connected graph of order n
that contains a suspended path of length €. Let Gy be a graph from G by deleting
an independent set of t vertices, and let H\ be a graph from H by shortening the
suspended path by 1. If € > (m —2)(m —t) +t + 1, then

r(G,H) < max{r(G,H;), r(G1,H) +n—1}.

Proof. For m = 1 or m = 2, the assertion holds trivially. So we assume that m > 3.
Write the right-hand side of the above by N. Consider a red-blue edge coloring of
K. We shall prove that there is either ared G or a blue H. Since N > r(G, Hy), we
are done unless there is a blue H;. Delete n — 1 vertices of this blue Hy, there are at
least r (G, H) vertices left, so we may assume that there is a red G ;. Thus we obtain
ablue H and ared G;. Let X and Y be their disjoint vertex sets with |X| =n — 1
and |Y| = m — ¢, respectively.
The blue H| has a suspended path with ¢ vertices, say

X ={x1,x2,...,x¢} CX

in order. Write X"’ = {x,x2,...,x¢-1} € X’.Forany y € Y, consider all £{— 1 edges
between y and X”’. We assume that no two consecutive edges yx; and yx;,| are both
blue, since otherwise we have a blue H. Furthermore, suppose that m — 1 of these
edges are blue, say yx;,, yxi,,...,yx;, , are blue. Consider any edge Xi 41X +15 if
this edge is blue, we have a blue H with the new suspended path

X1.. .xi_fyxikxik+1 . .xi_].+1 Lo Xp.

If all edges Xij+1Xi+1 Are red, then x; 41, Xjy+1, - . ., Xi,,_,+1 and y will form a red K,,,
hence a red G. Consequently, we may assume that any y € Y is connected with X"’
in at most m — 2 blue edges. Therefore there are at most (m — 2)(m — t) blue edges
between Y and X”. Hence at least
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—1-(m-2)(m—-1)>t

vertices in X’/ are connected with each vertex of Y in red completely. These vertices
and Y yield a red G, completing the proof. O

Theorem 12.4 Let G be any graph and let H be a connected graph of order p.
Choose an edge of H and form a sequence of graphs H, by putting n — p extra
vertices to that edge. If n is sufficiently large, then H,, is G-good.

Proof. Set k = ¥(G), s = s(G) and m = |V(G)|. We shall use the induction on k
to show that (G, H,) = (k — 1)(n — 1) + s for sufficiently large n. The assertion
is trivial for k = 1 since (K, H,) = s if n > 2, so we assume that k > 2 and the
assertion holds for k — 1. Note that H,, has a suspended path of length n — p + 1,
which would yield graph H,,_; by shortening the suspended path by 1. Let H,, and
H,_\ play the roles of H and H; in Lemma 12.4. Consider a vertex coloring of G
with k colors such that there is a color class with s vertices. Let # > s be the number
of vertices in some other color class and let G be the graph from G by deleting
those ¢ vertices. Applying Lemma 12.4, we have

r(G,H,) <max{r(G,H,-1), r(G,H,) +n—1}.

By the induction hypothesis, (G, H,) = (k —2)(n — 1) + s when n > ng for some
no = p. Consequently, for n > ny,

r(G,H,) <max{r(G,H,-1), (k=1)(n—1) +s}.
Using Lemma 12.4 repeatedly, we have
r(G,Hy,-1) < max{r(G, H,-3), (k—1)(n—-1) + s},
and

r(G,H,) <max{r(G,H,_»), (k-=1)(n—1) + s}
<max{r(G,Hp), (k-1)(n—-1) +s}

for all n > ng. Hence if (k — 1)(n— 1) +s > r(G, Hp,), then
r(G,H,) =(k—=1)(n—-1) +s,

completing the proof. O

Recall that a graph H is called a subdivision of F if it is obtained by replacing
each edge of F by a path. We shall say that H; is homeomorphic to H, if they have
isomorphic subdivisions.

Theorem 12.5 Let G be a graph and let H be a connected graph. Let H,, be a graph
of order n which is homeomorphic to H. Then if n is large enough, then H, is
G-good.
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Proof. Let k = x(G), s = s(G), m = |V(G)| and p = |V(H)|. We shall proceed the
proof by induction on k as that in the proof of Theorem 12.4. The assertion is trivial
for k = 1, so we assume that k > 2 and the assertion holds for k — 1. If H has g edges,
then H,, has a suspended path of length at least (n — p)/q + 1. Let H,_ be formed
from H,, by shortening the suspended path by 1 and let G; be a graph as defined in
the proof of Theorem 12.4. Therefore, if (n — p)/qg+1 > (m =2)(m —t) +t+ 1,
then Lemma 12.4 gives that

r(G,H,) < max{r(G,H,-1), r(Gy,H,) +n —1}.

Applying the induction hypothesis on (G, H,), we know that there is some ng > p,
such that for all n > nyg,

r(G,H,) < max{r(G,H,-1), (k—1)(n—1) + s}.

The proof concludes as before. O

Theorem 12.4 has been generalized to multi-color cases r(By, . . ., Bx, H,) where
B; are bipartite graphs, and

r(Ki,....Kj, Copsts - . ., Cop1, Hp),

see Burr (1982).
One can find the following result in Lin, Li and Dong (2009).

Theorem 12.6 Let G be a graph with s(G) = 1 and let T be a tree. If T is G-good,
then it is (K1 + G)-good.

Proof. Let n be the order of 7. As y(K; +G) = x(G) + 1 and s(K; + G) = 1 we
have
r(Ki+G,T) 2 x(G)(n—1) +1,

so the assertion follows from
r(Ki+G,T) <r(G,T)+n—-1.

Let N =r(G,T) + n — 1 and consider any red-blue edge coloring of K. Let 7’ be
the maximum subtree of T in color blue. If 77 = T, we are done. So we assume that
the order of 7”7 is at most n — 1, and delete these vertices. There are at least r(G,T)
vertices left. Since there is no blue 7', we have a red G on a vertex set X. Among
deleted vertices, there is a vertex, say v, from which one blue edge to a vertex in X
will yield a large blue subtree of 7. By this reason, v is connected to X completely
red, so we have ared K| + G. O

Let G be a fixed graph. We may wonder whether or not an enough sparse large
connected graph is G-good. The answer for general graph G is negative such as
G =Cy.

Recall graph ER,; constructed by Erdds, Rényi, S6s and Brown in Chapter 9. The
order of ER, is g*+qg+1land E R, contains no C4 as a subgraph. From the fact that
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each vertex has a degree g or g + 1, we know that the maximum degree of Eq is g2
Hence forn = ¢> + 1,

r(Cs, K1) 2n+Vn—1+1.

The above lower bound means that ¥(C4, K1 ,,) > n+2 forn = q2 +1.
Proposition 12.1 The star K| ,, is not C4-good for n = g* + 1.

For more non-goodness examples, we refer the reader to Lin, Li and Dong (2010),
and Lin and Liu (2021).

However, we can find some star-like graphs are G-good for any G. Before giving a
result, we define the upper chromatic surplus 5(G) as maximum number of vertices
in a color class among all proper vertex coloring of G using x(G) colors. Clearly,
5(G) = s(G). Also, a pendant edge of a graph H is an edge that has an end vertex
of degree one.

Theorem 12.7 Let G be any graph without isolates and let H be a connected graph
of order p > 5(G). For any U C V(H) with |U| = 5(G), let H,, denote the class of
graphs obtained from H by adding n — p pendent edges joining with vertices in U.
If n is sufficiently large, then H,, is G-good for some H,, € H,,.

Proof. Let k = y(G) and s = s(G). We shall prove that for some H,, € H,,,
r(G,Hy) < (k—1)(n—1)+s

if n is sufficiently large. For k = 1, G = K and the assertion is trivial. Here we admit
that the only vertex in K is not an isolate. Suppose that k > 2 and the assertion
holds for £ — 1. Consider a vertex coloring of G by k colors with color classes
C1,Cy, ..., Cy satisfying

s=|Ci| £|Cy| £--- < |Ck| £ 5(G).

Denote by G’ for the graph from G by deleting Cy. Then x(G’) = k — 1 and
s(G”) = s. By the induction hypothesis, there exists N > 0 such that if n > N we
can find some specific H" € H,, that is G'—good, namely

r(G',H)=(k-2)(n—1) +s.

Take Niy > N such that (k — 1)(Ny - 1)+s > r(G,H). For n > Nj set g =
(k—=1)(n—-1)+sand let (R, B) be an edge-coloring of K, in red and blue. We want
to show that either G c (R) or H"" c (B) for some H"” € ‘H,,.

Suppose to the contrary, that (R) contains no G and (B) contains no any member
of H,,. Since q > r(G, H), we have H C (B). We thus assume that there is some
m with p < m < n such that (B) contains some member of H,, but no member of

Hips1. Then there is a partition X UY of vertex set K, with |X| = m and

Yl=g-m>(k-2)(n-1)+s=r(G,H)
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such that (X)p (the blue graph induced by X) contains some member of H,, and all
edges xy withx € U C V(H) € X and y € Y are red. Since (Y)p contains no H’,
we have that (Y)r contains G’. Finally from the fact |U| = 5§(G) > |Ci|, we obtain
ared G. This contradiction completes the proof. O

We have seen that any tree is k-good for any k, and a long path is G-good for
any fixed G. Negatively, all large stars are not C4-good. So we do not expect that a
large sparse graph is G-good for a non-complete graph G. But we may believe that
r(G, K1 ,,) achieves the maximum value among all (G, T,,), where T}, is a tree on n
vertices.

However, for fixed k and d, if H is d-degenerate, then r (K, H) grows linearly on
the order of H.

Theorem 12.8 Let k and d be fixed positive integers. Then there exists a constant
¢ = c(k,d) > 0 such that for any d-degenerate graph H of order n,

r(Kg, H) < cn.

Proof. For k = 1, the assertion is trivial. Noting the fact that (K>, H) = n, we
recursively define a sequence of constants {c;} by setting ¢, = 1 and cx = dcg—1 + 1
for k > 3. We shall prove that r(Ky, H) < cy n. Suppose to the contrary that there
is a red-blue coloring of edges of Ky, where N = cgn, that contains neither a
red Ky nor a blue H. Moreover, suppose k > 3 is the smallest integer with this
property. If the colored K has a vertex v incident with at least cx_in red edges,
since r(Kx_1, H) < cy_1n with the choice of k, then we obtain a blue H or a red
K1 extendable to a red K by the addition of v. Both cases violate our assumption.
Thus each vertex is incident with at most c¢x_jn — 1 red edges.

Now we shall show that any d vertices have at least n common blue neighbors. To
see this, fixed d vertices and remove them and their red neighbors. Since each vertex
is incident with at most cx_1n — 1 red edges, we delete at most dci_1n vertices.
The remaining set, which is the intersection of blue neighborhoods of fixed vertices,
contains at least cgn — dcy_1n = n vertices.

Since H is d-degenerate, we may set V(H) = {vi,va,...,v,} with the property
that any vertex v; has at most d neighbors in {vy,...,v;_1}. Let H,, be the subgraph
of H induced by {vy,...,v,,}. Since the colored K contains neither red K; nor
blue H, we may assume that m is the largest integer such that a blue H,, exists with
1 < m < n—1.However, v,,;1 has at most d neighbors in {v1, ..., v,,}, we can easily
obtain a blue H,,; since any d vertices have at least » common blue neighbors, and
fewer than n of them have been used. This is a contradiction. O

12.3 Large Books Are p-Good

Burr and Erd8s (1983) asked a problem as follows. Let p and d be fixed. Let G
be large connected graphs with A(G) < d. Is G p-good? This was disproved by
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Brandt (unpublished), see ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/1996/pr-a-
96-24.ps. Nikiforov and Rousseau (2009) mentioned that they showed that almost all
100-regular graphs are not 3-good. Their paper contains positive answers for almost
all problems of Burr and Erd8s on Ramsey goodness. Define the m-th power H™
of a graph H as a graph on vertex set V(H) and uv is an edge of H™ if and only if
the distance of u and v in H is at most m. Nikiforov and Rousseau (2009) showed
that for fixed graph H and integers k, £ and m, if H; is large and homeomorphic to
H, then Ky + H" is k-good; and the essential subdivision of large K, is p-good.
Allen, Brightwell and Skokan (2013) proved that for any fixed integer m > 1 and
graph G, then P} (hence the connected subgraph of order n) is G-good for large n.
Their method is a mix of the regularity lemma and Turén type stability. Before these
results, Nikiforov and Rousseau (2004) already proved that the large book graph Bflk)
are p-good. However, all of the bounds on 7 of these results are of tower type when
the proofs rely on the regularity lemma. Recently, avoiding to use regularity lemma,
Fox, He and Wigderson (2021+) obtain that if n > 28" then the book graph B’
is p-good. For more results on Ramsey goodness, we refer the reader to the survey
by Conlon, Fox and Sudakov (2015, Section 2.5) and other related references.

Theorem 12.9 If n > 28", then B is K ,-good.

We first have the following lemmas. For convenience, we use By , to denote the
(k)
book graph B, .

Lemma 12.5 Let k, 7, s, t be positive integers with s < t and 2k < t, and let G be any

graph. Let T be a G-free graph with N > (;)rﬁr(G, Ky) vertices which contains

K, (t) as an induced subgraph, with parts V1, ..., V,. IfF does not contain a book
By, withn = (1 —4ks/t)N/r vertices, then ' contains an induced copy of K, +1(s)
with parts Wy, ..., W,., where W; C V; forevery 1 <i <r.

Proof. Let € = s/t. Partition the vertex set of I" into r + 1 parts Uy, Uy, ..., U,,
where, for each i € [r], every vertex in U; has degree at most €t to V;, and every
vertex in Uy has degree at least ef to each V;. Note that by construction, V; C U; for
ielr].

Suppose there is i € [r] such that |U;| > (1 —2ke)N/r. Let X denote the set of
all vertices v € V; with at most 2¢|U; \ V;| neighbors in U; \ V;. Since each vertex
in U; has density at most € to V;, we have |X| > |V;|\ 2 =¢/2 > k. Let Q be any
k vertices in X. Then all but at most a 2ke fraction of the vertices in U; \ V; are
empty to 0. So Q together with the vertices of U; that have no neighbors in Q form
a k-book in " with at least (1 — 2ke)|U; \ V;| + |V;| = (1 — 4ke) N /r vertices.

So we may assume that there isno i € [r] with |U;| > (1 —2ke)N/r. In this case,
we have |Ug| > N —r(1 — 2ke)N/r = 2keN. By the pigeonhole principle, there is
a subset T C Uy of size at least (1) |Uy| > r(G,K;) such that there are subsets
W; C V; with |[W;| = s for i > 1 such that every vertex in T is complete to each
W;. As T and hence the induced subgraph I'[T] is G-free and |T| > r(G, Ky), we
know that T contains an independent set Wy of order s. Then Wy, Wy, ..., W, form
a complete induced (r + 1)-partite subgraph of I with parts of size s. O
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The next lemma shows that, once we find a large induced complete multipartite
subgraph of I', we can find a large book in T".

Lemma 12.6 If a K,-free graph T" on n vertices contains K,,_1(k) as an induced
subgraph, then its vertex set can be partitioned into p — 1 subsets that each span a
k-book inT.

Proof. Let Vi, ..., V,_1 be the p — 1 parts of the induced K,_1 (k). As I" is K ,-free,
each vertex in I" has no neighbors in some V;. Partition the vertex set of I" into p — 1
parts Uy, ..., Up_1, where, for each i € [p — 1], each vertex in U; has no neighbors
in V;. Then each U; spans a k-book in T with spine V;. ]

The next result is the main form in which we use Lemma 12.5, and follows from
it by a simple inductive argument.

Lemma 12.7 Let k, p,x be positive integers, and let z = x - (20k)P. Let T" be a
Kp-free graph on at least N = (p — 1)(n — 1) + 1 vertices, and suppose S C V(I')
satisfies |S| > z% - r(Kp,K;). Then either I contains a copy of By, or else T’
contains K,,_1(x) as an induced subgraph, one part of which is a subset of S.

Proof. Forr =1,...,p—2,lete, = (1 —r/(p — 1))/(4k) so that (1 — 4dke,)/r =
1/(p—-1).Lett, 1 =xandt, =t.41/e forr =p—2,...,1. Observe that

= tp_1/Hf:_12€r = x(4k)P72(p - 1)P72/(p - 2)! < (20k)Px = z.

Since t; > tp > --- > t,_1, this implies that #, < z for all ». We now prove by
induction on r for r € [p — 1] that I" contains K, (¢,) as an induced subgraph,
with the first part of K, (¢,) being a subset of S. For the base case r = 1, we have
IS| = r(Kp,K;) > r(Kp,K; ), so T contains an independent set of order ¢y, that is,
I'[S] contains K, (¢,) with » = 1 as an induced subgraph. Now suppose I" contains
K, (t,) as an induced subgraph, with the first part a subset of S. We apply Lemma
125 withs =t +1,¢ =t,, and G = K,,. Observe that

tre1\ (2Kt 4\ e\ 2kt 7!
( +l) (—H) r(KP’Ktr-H) < (6_) ([—H) r(KP’KtrH)

ty ty r r

<F-r(Kp, Kz) < |S].

So either I" contains a k-book with at least (1 — 4ker)N/r = N/(p — 1) > n
vertices, in which case we are done, or I" contains an induced K, (#,+1) whose first
r parts are subsets of the r parts of the K, (¢,). In particular, the first part of this
induced K, (¢,) is a subset of S. This proves the claimed inductive statement. The
desired statement is just then the case r = p — 1. O

Proof of Theorem 12.9. Let N = (p — 1)(n — 1) + 1. Our choice of n guarantees
that if z = k(20k)?, then N > z% - r(K,, K;). Suppose for the sake of contradiction
that there is a K,-free graph on N vertices such that I" does not contain a k-book
with n vertices. By Lemma 12.7, applied with S = V(I") and x = k, we see that I"
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must contain K, (k) as an induced subgraph. But then Lemma 12.5 implies that I"
contains a k-book with n vertices as a subgraph, completing the proof. [

Note that all bounds on the parameters are of tower types whenever the proofs
depend on the regularity lemma. Fox, He and Wigderson (2021+) also obtain general
goodness results involving books. As pointed out by Fox, He and Wigderson (2021+),
it would be very interesting to see how far one can push these ideas. In particular, is
it possible to completely eliminate the use of the regularity lemma from the proof of
Nikiforov and Rousseau (Theorem 2.1, 2009)?

12.4 Exercises

1. Let a, b, k be positive integers and let G, - - - , G be graphs of order n. If in
each G; the number of vertices with degrees greater than a is at most b, then there
exists a constant ¢ = c¢(a, b, k) such that (G, -+ ,Gg) < cn.

2. Prove that B,, is 3-good for n > 2.

3. Prove that ri (K ¢, ..., Kim) =€+---+m—k+71, where 7 = 1 if the number
of even integers in {¢, ..., m} is even and positive, and 7 = 2 otherwise.

4. Provethatr(Kl,g, cey Kl,m’Kp) = (r—l)(p—1)+1,wherer = F(Kl’[, . >K1,m)~

5. Let Gy, ...,Gy be connected graphs. Denote r; = r(Gy,...,Gy) and rp =
r(Kn,...,Ky,).

(1) Prove that if r(Gy,...,Gg,Ke) = (r; = 1)(€ = 1) + 1 for any £ > 2, then
r(Gy,...,Gi, Ky, ..., K,) = (r1 = 1)(rp — 1) + 1. (Hint: Omidi and Raeisi, 2011)

(2) Prove taht (K1 ¢, ..., Ki,m: Kp, ..., Kq) = (r1 =1)(ro — 1) + 1, where r| =
V(Kl,g, e ,Kl,m) and rp = r(K AN ,Kq).

(3) Given p,...,q, prove r(Cp,Kp,...,Ky) = (n = 1)(r = 1) + 1 for large n,
where r = r(K,,...,K,).

6." Prove that for any k > 1 and large n, r (K, F,,) = 2(k — 1)n+ 1. (Hint: Li and
Rousseau, 1996)

7.* Let G be a graph of order m, and H a connected graph of order n that contains
a suspended path of length £. Let G be a graph from G by deleting an independent
set of ¢ vertices, and H; a graph from H by shortening the suspended path by 1.
Prove that if £ > (m —2)(m —t) +t + 1, then

r(G,H) < max{r(G,H;), r(G,H) +n—1}.

(Hint: Burr, 1981)

8." Let k and d be fixed positive integers. Prove that there exists a constant
¢ = c(k,d) > 0 such that for any d-degenerate graph H of order n, r (K, H) < cn.
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9.* Chen, Yu and Zhao (2021) obtained that 4.57n — 5 < r(F,) < 5.5n + 6. Prove
the upper bound.



)]
Chapter 13 e
Various Ramsey Problems

Ramsey theorem has inspired many striking and difficult problems with a lot of vari-
ations. We discuss some of them in this chapter, particularly size Ramsey numbers,
bipartite Ramsey numbers, and Folkman numbers, etc.

13.1 Size Ramsey Numbers

For graphs G, G| and G», let
G — (G1,G2)

signify that any red-blue edge coloring of G contains a red G or a blue G,. So
Ramsey number r(G1, G,) is the smallest N such that Ky — (G, G2), namely

r(Gi,G,) =min{N : Ky — (G,G>»)}
=min{|V(G)| : G — (G1,G2)},

where the second equality holds as G — (G, G,) implies Ky — (G1, G;) with
N = |V(G)|. As the number of edges e¢(G) of a graph G is often called the size of
G, Erdés, Faudree, Rousseau and Schelp (1978) introduced an idea of measuring
minimality with respect to size rather than order of the graphs with G — (G, G»).
Recall the size Ramsey number

7(G1,G2) =min{e(G) : G — (G1,G2)}.

Directly from the definition, we see that #(G1,G,) < ¢ is equivalent to the
existence of a graph G with ¢ = ¢(G) such that G — (G, G;). However, a
statement 7(G1, G») > ¢ is equivalent to that for any graph G with e(G) = ¢, there
is a coloring of E(G) in red and blue, such that there is neither red G| nor blue G,
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that is denoted by G 4 (G1, G3). Needless to say, an edge coloring in two colors is
equivalent to a partition of edge set into two subsets.

Lemma 13.1 Let G| and G, be graphs. Then

r(Gy, Gz)).

#(G1,Gy) < ( 5

Proof. Set r = (G, G3). Then K, — (G, G»), so

F(G1,Ga) < e(K,) = (;)

as claimed. O

The following result is due to Chvatal, reported in Erd&s, Faudree, Rousseau and
Schelp (1978), which indicates that the problem is not new if both G and G, are
complete graphs.

Theorem 13.1 Let r = r(m, n). Then
R r
r(Km’ Kn) = (2)

Furthermore, if G is a connected graph with e(G) < (;) such that G — (K, K,),
then G = K,

Proof. To avoid the trivial case, we assume that m,n > 2. Let us begin with an
observation. Let the edge set of a graph G be colored by red and blue and let u
and v be two non-adjacent vertices of G. Consider the induced edge colorings of
graphs G — u and G — v. If there is neither a monochromatic K,,, in G — u nor a
monochromatic K, in G — v, then the same is true in G. The reason is simple. Any
assumed monochromatic complete graph in G cannot contain both u and v, since
these two vertices are not adjacent. Hence, any monochromatic complete graph
would appear in the induced coloring of either G —u or G — v.

Set R = (}). Let G = (V, E) be a connected graph of size ¢ with ¢ < R. We shall
prove the following claim first.

Claim If G # K, then G /> (K, Kp).

Proof. Let p be the order of G. We shall prove the claim by induction on p.
The claim is certainly true for p < r = r(m, n), since K,, > (K, K,,) induces an
edge coloring of G for G / (K, K,;). So we assume that p > r. Since ¢ < R and
G # K,, we know that G is not a complete graph. Let u and v be two non-adjacent
vertices of G and set

W=V \{u,v}, H=G —{u,v}.
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If there exist red-blue edge colorings of G — u and G — v, respectively, which agree
on H, such that there is neither red K,,, nor blue K,,, then, by the observation made
before, G /> (K, K,,). The proof is then to establish such an edge coloring.

Let X = Ng (1) U Ng(v). Denote by H’ for the graph obtained from H by adding
anew vertex x and joining x and each vertex in X. That is to say, the vertices # and v
are contracted to a new vertex x in G. Note that the order of H is p — 1 and its size
is at most q.

For the reasons which follow, we may assume H’ # K., where r = r(m,n). In
fact,if H' = K,,then H = K,_; and X = W.Itis clear N(u) NN (v) = O since ¢ < R.
By taking w € W with dist(u,w) =2 sow € N(v), we may simply consider G — u
and G — w at the beginning since u and w are not adjacent and N(u) N N(w) # 0.
Hence, we can apply the induction hypothesis on H’. The existence of the desired
edge coloring which agree on H is manifest. Clearly, the deletion of edges so that
H'’ returns to G — u and G — v spoils nothing so the desired edge coloring of G has
been constructed. This proves the claim. O

Now we return to the main proof. Suppose that the size g of a graph G is less
than R, then if G is complete, its order is less than r, so G A (K, Ky,). If G is not
complete, the claim shows that G / (K, K,,). Thus #(K,,, K,;) > ¢, in particular
F(Km, K,) > R — 1, which and Lemma 13.1 yield the desired assertion. O

We shall see that the values of 7(K , K1,,) and r (K m, K1 ) are very close.
Theorem 13.2 For any positive integers m and n,
f(Kl,m’Kl,n) =m+n-1.

Proof. Since in any edge coloring of Kj_ ,+n—1 by red and blue, there is either a
red K, or a blue K;_,,, we have #(K| m, K1, n) < m+n— 1. In what follows, we
suppose m < n. Let G be a graph of size ¢ < m +n — 2. It is clear that G has
at most one vertex v with d(v) > n. If this is the case, then every other vertex u
satisfies d(u) < m — 1. We may color all edges of G — v red. Then at most m — 1
edges incident with v have been colored. We shall color other edges incident with v
in such a way that there is neither red K _,, nor blue K _,,. If every vertex has degree
at most n — 1, we may color all edges of G in blue. We thus reach a conclusion that
G / (Ki,m, K1, n). Since G is arbitrary, we have #(K1 ,, K1,,) 2m+n—1. 0O

We shall write #(G) for 7(G, G). The above theorem gives that 7#(K ,) = 2n — 1.
However, it is difficult to find the exact values of #( P, ). With an impressive proof and
disproving a conjecture of Erdgs (1981), Beck (1983) showed that 7(P,,) < 900n. In
the proof he used transforms defined by Pésa (1976) for finding an upper threshold
function p = c log n/n inrandom graph G € G(n, p) of being Hamiltonian. Bollobas
(2001) noted a better bound, and the current best upper bound due to Dudek and
PralLat (2017) gives that #(P,) < 74n. In this section, we will include a slightly
weak result by Letzter (2016).

The following lemma was obtained independently by Dudek and PraLat (2015)
and Pokrovskiy (2014).



300 13 Various Ramsey Problems

Lemma 13.2 For every graph G there exist two disjoint subsets U,W C V(G) of
equal size such that there are no edges between them and G \ (UUW) has a Hamilton
path.

Proof. In order to find sets with the desired properties, we apply the following
algorithm, maintaining a partition of V(G) into subsets U, W and a path P. Start
with U = V(G), W = 0 and P an empty path. At each stage of the algorithm, do the
following. If |U| < |W|, stop. Otherwise, if P is empty, move a vertex from U to P
(note that U # 0). If P is non-empty, let v be its endpoint. If v has a neighbor u € U,
then put u in P, otherwise move v to W.

Note that at any given point in the algorithm there are no edges between U and
W. Moreover, |U| — |W| is positive at the beginning of the algorithm and decreases
by one at every stage, thus at some point the algorithm will stop and will produce
sets U, W with the required properties. [

It is easier to use the following immediate consequence of Lemma 13.2.

Corollary 13.1 If G is a balanced bipartite graph on n vertices with bipartition
{V1, Va} which has no path of length k, then there exist disjoint subsets X; C V; such
that |X1| = 1Xo| = (n—k)/4 and eg(X,Y) = 0.

Proof. By Lemma 13.2, there exist disjoint subsets U, W C V(G) of equal size
such that eg(U,W) = 0 and V(G) \ (U U W) has a Hamilton path P. Note that
P must alternate between V| and V, and has an even number of vertices, implying
that |V N V(P)| = |V, N V(P)|. It follows that |U;| + |W;| = |Uz| + |W>|, where
U =UnV;and W; = W NV, Since |U| = |W|, we conclude that |U;| = |W>|
and |U,| = |W,|. Without loss of generality, suppose that |U;| > |U,|. Then |U;| =
[Wa| = (n—|V(P)|)/4 = (n—k)/4. Take X; = Uy and X = Wy. O

The following is an easy consequence of Corollary 13.1.

Corollary 13.2 If G is a graph on n vertices such that G - Py, then there exist
disjoint subsets X,Y C V(G) of size at least (n — 2k) /4 such that eg(X,Y) = 0.

Proof. Consider a red-blue coloring of edges of G with no monochromatic Py ;. Let
Gr and G p be the graphs induced by all red and blue edges, respectively. Since Gr
contains no Py, we can apply Lemma 13.2 to G to obtain disjoint sets U and W,
both of size at least (n — k) /2, with no red edges between them. Now we consider
the subgraph G g[U, W] induced by blue edges between U and W. Since Gg[U, W]
contains no Pg.1, it follows from Corollary 13.1 that there exist sets X C U, Y C W
of size at least (n —2k) /4, with no blue edges between them. We conclude that there
are no edges of G between X and Y. o

We now have the following lemma.

Lemma 13.3 Let ¢ = 4.86, d = 7.7 and G = G(cn,d/n). Then w.h.p. (with high
probability) the following two conditions hold.

(i) |E(G)| < (1+0(1))c2dn/2.

(ii) For every two disjoint sets U,W C V(G) of size at least (¢ —2)n/4, we have
EG(U, W) > 0.
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Proof. The number of edges in G is a binomial random variable with mean

cn\ d c2d
(2) . ; = (l +()(1))T}’l.

Thus (i) follows immediately from the concentration of binomial random variables
around their mean.

For (ii), we will apply the first moment method. Let Z denote the number of pairs
(U, W) of disjoint subsets of V(G) of size (¢ — 2)n/4 with eq(U,W) = 0. The
expectation of Z satisfies the following, where a = (¢ — 2)/4:

(an)?
ro=[oa“L) 0 )

(cn)!

2
S (am (e —2aymy S{-da’n) < exp{fn}.

By Stirling’s formula, we can take
B =clogc —2a — (¢ —2a)log(c — 2a) — da® < —0.0005.

It follows that E(Z) — 0 as n — oo, implying that w.h.p. Z = 0, and hence (ii)
holds. O

The constants ¢, d in the above lemma were chosen to minimize the number of
edges in G under condition (ii).

Theorem 13.3 For all large n,
7(Pn) < 91n.

Proof. Let ¢ = 4.86 and d = 7.7. Take a graph G € G(cn, d/n) such that it satisfies
conditions (i) and (ii) in Lemma 13.3. If G -+ P, then Corollary 13.2 implies
that there exist disjoint subsets X,Y C V(G) of size at least (¢ — 2)n/4 such that
eg(X,Y) = 0, contradiction condition (ii) from Lemma 13.3. We conclude that
G — P,. Note that |[E(G)| < 91n by condition (i) of Lemma 13.3, it follows that
7(P,) < 91n for large n as desired. O

Friedman and Pippenger (1987) generalized Beck’s linear bound of 7#(P,) for
proving that there is some constant ¢ = c(A) > 0 such that #(7;) < cn for any
tree T, on n vertices and maximum degree A. Subsequently, this was improved
by Ke (1993), and Haxell and Kohayakawa (1995). Let V(T) = Vo(T) U Vi(T)
be the partition determined by the unique proper two-coloring of the vertex set of
V(T). Set A; = max{dr(v) : v € V;(T)} and n; = |V;(T)| for i = 0,1 and let
B(T) = npAg + n1A;. Solving a conjecture of Beck (1990), Dellamonica (2012)
proved that #(T') = ©(B(T)).

Beck (1990) even asked if there is some constant ¢ = c(A) > 0 such that
7(G) < cn for any graph with n vertices and maximum degree at most A. Rodl



302 13 Various Ramsey Problems

and Szemerédi (2000) answered the question of Beck negatively for even A = 3. By
applying the sparse regularity lemma, Kohayakawa, Rodl, Schacht and Szemeredi
(2011) proved that #(G) < cn®>"Y2(logn)'/* for any graph G with n vertices
and maximum degree at most A. For the size Ramsey number of cycle, Haxell,
Kohayahawa and Luczak (1995) proved that #(C,,) < cn. This upper bound has been
improved by Javadi, Khoeini, Omidi and Pokrovskiy (2019) to that #(C,,) < 10° xcn,
where ¢ = 6.5 is n is even and ¢ = 1989 otherwise.

The size Ramsey numbers of graphs with bounded degrees can not be bounded
linearly as mentioned above even for maximum degree A = 3. However, #(Ky;.»)
has a linear upper bound if m is fixed. The following result was proved by Erdés,
Faudree, Rousseau and Schelp (1978).

Theorem 13.4 For any fixed positive integer m, if n is sufficiently large, then
1
2—m2mn < F(Kp.n) < 4m>2™n.
e

Let us have a lemma at first.

Lemma 13.4 Suppose that G is a subgraph of Ky, y with e(G) > Np and
M
(2ol
m m

Proof. The proof is similar to that of Theorem 8.4. The key for the proof is so
called “double counting argument”. Without loss of generality, we assume that G is
a spanning subgraph of K, n that contains no K, ,. Let the bipartition of Kjs y be
X and Y with |X| = M and |Y| = N, and let d1,d>, . .., dy be the degree sequence
of vertices in Y of G. For any vertex v € Y, an m-set in neighborhood of v is covered
by at most n — 1 vertices in Y. So

3 () s - 0(¥).

k=1

then G contains K, ,,.

The left hand side is at least N(”) by the convexity of the function () since
(> dy) /N =e(G)/N = p, which leads to a contradiction. O

Proof of Theorem 13.4. The assertion is obvious for m = 1 by Theorem 13.2, so
we assume m > 2. For the upper bound, let us consider a complete bipartite graph
K, v on bipartition (A, B) and an edge partition (£, E»). We may assume that
|E|| = MN/2. Hence, by setting p = M /2 in Lemma 13.4, the subgraph induced by

E| contains K,,, ,, if
M2 M
N( /)><n_1>( )
m m
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This will certainly be the case if we set N = l(% )n/ (A/fn/ 2)J It follows that for all
M >2m,
#(Km,n) < MN < Cn,

where

_MG) ety (M= DM =2) - [M— (i~ 1)]
B (M/2) - (M=2)(M -4)---[M~-2(m—-1)]

By taking M = Lm2/2J, we have C < 4m?2™ form < 8. Form > 9,

_ m—1 _1)2
C < m?2m? (1 + %) < m?2m2 exp (%) < 4m?2m,
m— m—

2(m-1)2

)2 attains at

where we use the facts that 1 + x < e* and the minimum value of
m =9, so the desired upper bound follows.

The proof of the lower bound employs the probabilistic method. Suppose that
G = (V,E) is a graph in which every edge coloring in two colors produces a

monochromatic K, ,. Let

Vi={veV:.:dy) >k}

Then |Vi| < 2|E|/k. If G contains K, , on bipartition (A, B) as a subgraph, then,
clearly, A C V,, and B C V,,. Hence, setting M = |V,| and N = |V,,,], it must be
true that every two-coloring of edges of Ky y produces a monochromatic K, ..
However, in a random edge coloring of Ky, » in red and blue in which

1
Pr[e is red] = Pr[e is blue] = 5

the probability that there is a monochromatic K, , is at most

S 2 2 2 (5

2mn m n 2mn m 2Mp

Now suppose that ¢(G) < m2™ 'n/e. Then M = |V,,| < m2™ /e and N = |V,,| <
n2™/e so that eN/(2™n) < 1 — € for some € > 0. It follows that if # is sufficiently
large, then the probability there is a monochromatic K,,, ,, is less than one. Hence, for
any graph G if e(G) < m2™ 'n/e, then G /> (K,n.,), which follows by the desired
lower bound follows. )

It is natural to believe that #(K,, ) = (2 + o(1))", which is exactly the case. The
following result is due to ErdGs and Rousseau (1993).

Theorem 13.5 For all large integer n,

1 3
%HZZ” < A(Kp.n) < En32".
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Proof. The proof for the upper bound is similar with that in Theorem 13.4 as if M

and N satisfy
N(M/Z) > (n- 1)(M)’
n n

then Ky v — K, ». In particular, if we set N = |n?/2] and M = 3n2", then the
above holds for all n > 6 and we have the upper bound as desired.
The proof of the lower bound depends on the following counting result.

Lemma 13.5 A graph with q edges contains at most
2eq) (2¢%¢\"
n n?
Proof. Let G = (V, E) be a graph with g edges and let

e e G

Without loss of generality, we assume that G contains no isolated vertices. To
distinguish the magnitude of the degrees of vertices, we set

copies of Ky .

d_i =1, di = nek/" (k=0,1,...,m), dyy = oo,

and set
Xpe={xeV.dy <dx) <di}

for k = -1,0,...,m. Then X_{, Xo, . . ., X,, form a partition of V. Let
szu;"szj ={x eV :d(x) = dy}.

Let us say that a subgraph K,, , in G on vertex set U C V is of type k if k is
minimum such that X N U # (0. Equivalently a copy of K, , on U is of type k if and
only if dy < min{dg(v) : v € U} < dy41, where dg(v) is the degree of v in G not
that in K, ,,. Denote by M for the number of type k copies of K, ,, in G. Note there
isno K, , of type —1 and M = ZZL:O M is the total number of copies of K, , in G.
In a type k copy of K, , every vertex belongs to Wy and at least one vertex belongs
to Xi. Thus one side of the K, ,, is an n-element subset of the neighborhood of a
vertex in X; and the other side is an n-element subset of Wy. It follows that

d W,
M, < |Xk|( I;:l)(| nkl)

Note that (]Z) < (eN/n)" and |Wy| < 2q/d, so we have thatfork =0,1,...,m—1,

ed " (2eq\" 2¢2\"
ng|xk|( :“) (ﬁ) :e|Xk|( nzq) .
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Since d,, > +/2¢q, we have that |X,,| < 4/2¢, and each vertex of a type m subgraph
must belong to X,,,. Thus
2 2 \n
M, < (lel) < (26 CI)
n n?

If | X;| = 0, then M,,, = 0. Hence we can write

2
My, < €| X |( eq) ,
n

which coincides with the upper bound of My with 0 < k < m — 1. Therefore we

obtain
m m n 2 \n 2 \n
2e 2e 2e
N Ze|xk|( 2 = el (257) < (22) (252
k=0 k=0 n n
completing the proof. O

Proof for the lower bound in Theorem 13.5. Now let G be an arbitrary graph with
g edges with ¢ < n?2"/30. Consider a random red-blue edge coloring of G in which
each edge is red with probability 1/2 and colorings of distinct edges are independent.
In view of the lemma, we find that the probability P that such a random coloring
yields a monochromatic K, ,, satisfies

2 n 2, n 2\
) (2 ) o

n n? 15 n? 15

asn — 0. Thus G A (K, »), and the desired lower bound follows. ]

13.2 Induced Ramsey Numbers*

In the definition of Ramsey number (K, ), we ask what is the smallest N such that
in any red-blue edge coloring of Ky, there is either a red K,, or a blue K,,. Here the
clique K, is an induced subgraph. Let us change the problem for a general graph H
and ask what for a graph G such that in any red-blue edge coloring of G, there is
a monochromatic induced graph H. This slightly modification changes the problem
dramatically. A substantial question is whether or not such graph G exists for an
arbitrary given graph H. We call such a graph G a Ramsey graph for H. This should
be different from a definition in Chapter 1, where a graph G was called a Ramsey
graph for a Ramsey number r(H) if the order of G is r(H) — 1 such that neither G
nor G contains H as a subgraph, in which the subgraph is not necessarily induced.

The following existence theorem was proved independently by Deuber (1975), by
Erdés, Hajnal and Pésa (1975), and by Radl (1973).
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Theorem 13.6 Every graph has a Ramsey graph.

The remainder of the section is the proof for this theorem, which begins with its
version on bipartite graphs.

We shall write a bipartite graph B as triples (V}, V>, E), where V| and V, are
bipartition of B and E is the edge set. Given another bipartite graph B = (V}, V5, E),
if B is isomorphic to an induced subgraph of B, in which V; corresponds V; for
i = 1,2, then there is an injective map ¢ : V; UV, — V| UV, so that ¢(V;) C V; for
i=1,2,and ¢(v1)¢(v2) € E if and only v{v, € E. We will call such a map ¢ as an
embedding of B in B, denoted by ¢ : B — B.

As before, let XX) denote the family of all k-subsets of X. Define a bipartite
graph (X, XX, E;), in which the edge set E contains all edges of the form x¥ with
YeX® andxev.

Lemma 13.6 Every bipartite graph B = (V1,Va, E) can be embedded in a bipartite
graph of the form B = (X, X'®) | Ey).

Proof. Let B be a bipartite graph with vertex classes V| = {aj,as,...,a,} and
Vo ={b1,bs,...,by}. Denote by X for a set of 2n + m vertices as

X ={x1, s Xn V1see s Vn>Zls--sZm}-

Let B = (X, X"V E,,1). We shall show that there is an embedding ¢ of B in B.

Set ¢(a;) = x; fori = 1,...,n first. Then for any j = 1,...,m, a member
Y € X1 will be chosen as ¢(b 7), which is denoted by Y;. We in fact construct
Y; as follows. Since ¢(b;) = Y;, we have that the neighbors of b; in B should be
mapped into Y}, that is to say,

#(N(bj)) CY;.
In order to distinguish different Y;, we put z; into ¥; as a label. So far we have chosen
lp(N(b)|+1=d(bj)+1 <n+1

elements for Y;. If the inequality is strict, we then simply fill Y; with elements from
{y1,...,yn} until ¥; has n + 1 elements.

Note that ¢(Vy) = {x1,...,x,} and ¢(V2) = {Y1,..., Y}, and x; is a neighbor
of ¥; in B if and only if a; is a neighbor of b in B. The other neighbors of ¥; are out
of {x1,...,x,}. Thus B is isomorphic to the subgraph induced by {xi,...,x,} and
{Y1,...,Y,,} in B. It follows that the map ¢ is an embedding of B in B as desired. O

The next lemma is the bipartite case of Theorem 13.6, which says that every
bipartite graph has a bipartite Ramsey graph.

Lemma 13.7 Let B be a bipartite graph. Then there exists a bipartite graph B such
that for any two-coloring of edges of B there is an embedding ¢ : B — B in which
all edges of ¢(B) are monochromatic.
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Proof. It is easy to see that if ¢; is an embedding of B; in B, and ¢, is an embedding
of B; in B3, then ¢, ¢ is an embedding of By in Bz. Thus by Lemma 13.6 we may
assume that B = (X, X®) E). Letn = |X|,£ =2k — 1 and s = 2(£). Let X be a set
whose cardinality is an s-color Ramsey number for {-uniform hypergraph as

1X| = rl (kn+k-1).

We shall show the assertion in the lemma with B = (X, X©), E;).

Let us fix a coloring on E, with colors @ and 5. Among ¢ = 2k — 1 edges incident
to a vertex ¥ € X in B, at least k of them are monochromatic. Define Z C ¥ with
|Z| = k so that all edges XY for ¥ € Z are in the same color. The color and the set Z
are called as the color and the set associated with Y, respectively.

Assign a linear order to X as

X = {%1,%2,%3,... }.

For every ¥ € X©) with ¥ = {%;,,...,%;,}, denote by oy for the order-preserving
map with o (¥;;) = J, then oy (Z) e [€].

We now color X©) with s = 2(2) elements of the set [¢]%) x {@, B} as colors.
For a given ¥ € X(©), color ¥ with the pair (oy(Z),y), where Z and y € {, B8} are
the set and the color associated with Y, respectively. By the definition of Ramsey
number for uniform hypergraph, we know that there is W € X with |W| = kn+k — 1
such that all elements of W(¢) are monochromatic. Thus there exists S € [¢]%) and a
color vy, say a, such that all Y € W are colored (S, @). That is to say, all Y ew®
satisfy that oy (Z) = S and they are all associated with the same color a.

We now construct the desired embedding ¢ of B in B. The elements of W have
an order preserved from that in X. Without loss of generality, we assume that W
contains the first kn + k — 1 elements of X,

W={x;:i=12,....,kn+k—1}.

Set
X ={x1,x2,...,%n},

and define ¢(x;) = X;r. Denote by w; for Xk, so ¢(X) = {wy, ..., w,} and there are
exactly k — 1 elements of W between w; and w; in the order.

We then define ¢ on X%). Given Y € X¥), we shall choose ¢(¥) =¥ € X’ so
that the neighbors of ¥ among the vertices in ¢(X) are precisely the images of the
neighbors of Y in B, i.e., the vertices ¢(x) with x € Y, and so that all these edges
incident to Y in B are colored a. To find such Y, we first construct its subset Z as
{¢(x) : x € Y}, which are k vertices of type w;. Then extend Z by £ — k further
vertices u € W\ ¢(X) to aset ¥ € W, in such a way that oy(Z) = S. This is
possible since there are k — 1 = £ — k other vertices of W between w; and w;,;. Then

YNno(X)=Z={¢(x):x ey},
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so ¥ has the right neighbors in ¢(X), and all the edges between ¥ and these neighbors
are colored o. The images ¥ of different vertices Y are distinct since their intersections
with ¢(X) differ, so ¢ is an injective map on X*). Hence, the map ¢ is indeed an
embedding of B in B satisfied the desired condition. O

Proof of Theorem 13.6. The idea of the proof is to reduce the general case of the
theorem to the bipartite case, where Lemma 13.7 can be employed. Let H be a given
graph of order s and let n = r(s, s). Then in any edge coloring of K, by two colors,
there is a monochromatic K hence a monochromatic copy of H. Denote by K for this
K,,. Note that the monochromatic subgraph H in K may be not an induced subgraph
in that color.

We will construct a graph Go. Let £ = (’;) Arrange the vertices of K in a column,
and replace every vertex by a row of ¢ vertices. In each of the £ columns, choose an
s—set so that any pair of such sets contain vertices coming from different rows. Let
us furnish each column in the chosen s—set with the edges of a copy of H. The graph
Gy consists of ¢ disjoint copies of H and (n — s)¢ isolated vertices.

We define G formally as follows. Assume that V(K) = {1,...,n} and choose
copies Hy, ..., Hy of H in K with pairwise distinct (not necessarily disjoint) vertex
sets. We then define

V(Go)={(i,j):i=1,...,n;j=1,...,}
E(Go) = Vi_{(i, (W, )) i’ € E(H))},

where the end vertices of each edge (i, j)(i’, j) are in the same column.

Applying Lemma 13.7 iteratively to all the pairs of rows of G, we construct a
large graph G such that for every edge coloring of G there is an induced copy of
Gy in G that is monochromatic on all the bipartite subgraph induced by its pairs of
rows. By contracting its rows the projection of this Gog C G to {1, ..., n}, we define
an edge coloring of K. Thus one of the H; C K will be monochromatic. But this H
occurs with the same coloring in the jth column of Gy, and it is an induced subgraph
of G¢ hence an induced subgraph of G. We omit the formal definition of desired
embedding map described the above procedure. O

Define the induced Ramsey number ri,q(H) to be the minimum »n such that
there exists a graph G on n vertices satisfying that every 2-edge-coloring of G
contains a monochromatic induced copy of H in G. Theorem 13.6 implies that
rina(H) exists. ErdGs (1975) conjectured that there is a constant ¢ such that every
graph H on k vertices satisfies r;,q(H) < 2°%. The result of Rédl (1973) implies
that this conjecture holds if H is bipartite. Erd6s and Hajnal (1984) proved that

rina(H) < 22k1+om holds for every graph H on k vertices. Kohayakawa, Promel, and
R&dl (1998) improved this bound substantially and showed that if a graph H has k
vertices and chromatic number y, then r;,4(H) < k°K1°¢X where c is a constant. In
particular, their result implies that r;,q(H) < k<*(log ©)? for any graph on k vertices.
In their proof, the graph G which gives this bound is randomly constructed using
projective planes. For more special classes of (sparse) graphs, see e.g. Beck (1990)
in which the author considered the case when H is a tree; Haxell, Kohayakawa, and
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FLuczak (1995) proved that the induced Ramsey number of cycle Ck is linear in k;
FLuczak and Rodl (1996) showed that the induced Ramsey number of a graph with
bounded degree is at most polynomial in the number of its vertices, which confirms
a conjecture of Trotter; Fox and Sudakov (2008) obtained that there is a positive
constant ¢ such that r;,q(H) < k¢1°2X for every d-degenerate graph H with k
vertices and chromatic number y > 2.

13.3 Bipartite Ramsey Numbers

It is likely that there are some similarities between Ramsey numbers of complete
graphs and that of complete bipartite graphs, such as r(K,) and (K, ,). However,
the Ramsey number of bipartite graphs has the bipartite version. Let B; and B;
be bipartite graphs. We define the bipartite Ramsey number br(B1, B;) to be the
smallest integer N such that in any red-blue edge-coloring of Ky n, there is a red
By or ablue B,. As usual, we shall write br (B, B) as bry(B) or br(B). An obvious
relation is as follows.

Lemma 13.8 Let By and B; be bipartite graphs. Then
r(B1, By) < 2br(By, By).

Proof. Set N = br(By, B,). Consider a red-blue edge-coloring of K, on the vertex
set X UY, where X and Y are disjoint and |X| = |Y| = N. The coloring induces an
edge-coloring of Kn_n on the bipartition X and Y, thus we have a red B; or a blue
B from the definition for N. O

The following result is due to Thomason (1982).

Theorem 13.7 For any integersn > m > 1,
br(Km,n) <27 (n—1) + 1.

The result will follow the following lemma immediately. Let G be a bipartite
graph, whose first vertex class is X and the second is Y. As mentioned in Section 2
of Chapter 7, we signify the fact that K,,, , is a subgraph of G with m vertices in X
and n vertices in Y by saying that K., ,,) is a subgraph of G.

Lemma 13.9 Let N = 2" (n — 1) with n > m > 1. Suppose that the edges of Ky N
are red-blue colored such that there is neither a red K, ) nor a blue K, ,,). Then
each vertex of Ky n is incident with exactly N |2 red edges and N |2 blue edges
unless m = n = 2. Furthermore, any red-blue edge colored Ky n+1 yields a red
K (m,n) or a blue K, ).

Proof. Observe that if the first part of the lemma is proven, then the second part
follows. Suppose that the edges of Ky 1 are red-blue colored without ared K, )
nor a blue K, ). Choose x € X and y,y> € Y such that xy; is red and xy; is
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blue. Then fori = 1,2, Ky n+1 — {y:} has a red-blue edge coloring with neither red
K (n,n) nor blue K, ) so x is incident with exactly N /2 red edges in each. This is
impossible since x is incident with more red edges in Kn n+1 — {y2} than that in
Kn,n+1 = {1}

The proof for the first part is by induction on m. Let the vertex sets of Ky n be
X and Y with |[X| = |Y| = N = 2™(n — 1). Suppose its edges are red-blue colored
that contains neither a red K, ) nor a blue K, ). If m = 1, then N = 2(n - 1)
and K n has at most N(n — 1) red edges and at most N(n — 1) blue edges. So

N2 = Z dr(x) + Z dp(y) <2N(n—-1) = N,

xeX yey

hence the equalities hold throughout, implying that dg(x) = dg(y) = n — 1 for any
xeXandyeY.

Let m > 2 be fixed. Suppose that the theorem holds for smaller values of m. Let
t =N/2=2""1(n—1). Suppose that there is vertex xo € X with dg(xo) > t.

Case 1 There is a vertex yg € Y with dg(yo) > 1.

We assume that the edge x(yq is blue, say. Consider the subgraph induced by
Ng(xo) and Ng(yo) \ {xo}. This is a complete bipartite graph. Its vertex class in X
has at least ¢ vertices and that in Y has at least £ + 1 = 2"~ !(n — 1) + 1 vertices. We
thus have a complete bipartite graph K;.; ;. From the induction hypothesis, we have
either a red K (,,—1,) or a blue K, ,»—1). Together with the vertex x or yo, we get a
red K, ) or ablue K, ). This is impossible. The situation is similar if we assume
that the edge x(yo is red.

Case 2 Each vertex y € Y satisfies that dg(y) < t.

We shall show that for 1 < s < m — 1, a red K(50m-s(n-1)+1) yields a red
K (g41,0m-5-1(n-1)+1)- The existence of such a red K5 om-s(n-1)+1) for s = 1is just
the condition dg(xp) > t as given. Suppose that there is a red K, 2m-s(n-1)+1) On
vertex classes Pand Q with P C X, |[P| =s5,0 CY,|0|=2""(n—-1)+1=24+1,
where 1 = 2"75~!(n — 1). Then the number of red edges between X \ P and Q is at
least |Q|(N /2 — s) since each y € Y satisfies dg(y) > N/2.

Suppose that each x € X \ P satisfies [Ng(x) N Q| < A1 =2""5"1(n - 1). Then

X\ Pla = |Q|(N/2 - ),
which gives
(N=5)A = (2A+1)(N/2-2y).
We thus have
s(A+1) > NJ/2 =251,

which is impossible unless s = 1 and m = n = 2.

So we assume that some x € X \ P satisfies [Ng(x) N Q| > 2" (n—-1) + 1.
Thus Nr(x) NQ and P U {x} induce ared K, ym-s-1(,-1)+1) as desired. We hence
obtain ared K(,,, ) withm = s+ 1.
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Therefore, in any edge-coloring of K n that contains neither a red K, ,,) nor a
blue K(,,,m), there is no vertex x with dg(x) > N/2. So each vertex x € X satisfies
dgr(x) < N/2. Similarly each y € Y satisfies dgr(y) < N/2. The same argument
will yield that each vertex v satisfies dg(v) < N/2, so the desired statement follows
immediately. O

For fixed m and large n, the asymptotic formula of br(K,, ) is 2"'n, which is
also that of r(K,.,).

Theorem 13.8 For fixed m, as n — oo,
br(Kp.n) ~2"n.

Proof. The upper bound follows from Theorem 13.7. The proof for the desired lower
bound br (K, n) = (1 —0(1))2™n is similar to that for (K, ) in Theorem 3.16, so
we omit it. O

Theorem 13.7 gives that br(K, ,) < 2"(n — 1) + 1, which was improved by
Conlon (2008).

Theorem 13.9 For all large n,

(1- 0(1))g n2"? < br(K,.,) < (1+0(1))2"" log, n.

The lower bound can be proved by the symmetric form of Local Lemma in the same
manner as that for the lower bound of r(n,n) in Chapter 5, we thus omit it. For
the upper bound, we shall establish a lemma first. From the upper bounds of the
Zarankiewicz number in Chapter 7, we see that an M X N bipartite graph G contains
K n if the density p = e}\ﬁ,) is positively bounded from below and M and N are
large.

Lemma 13.10 Let G be a bipartite graph on vertex sets X and Y, whose edge density
p = a for some constant a > 0. If for any € > 0, ast — oo,

X
|—|—>00, and |Y|Z(1+E)S

Pt
then G must contain K; ) for large .

Proof. Let M = |X| and N = |Y|. If G contains no K, ), from the double-counting
argument used in Chapter 7 and Jensen’s inequality, we have

pM ey d(v) d(v) M
N(t)zN(N tY )sZ(t)s(s—l)(t).

vey

Note that (*)/(”™) can be bounded as

MM-1)---(M-t+1) <(M—t)f_ 1 ( M-t )f.

pM(pM 1)+ (pM —t+1) ~ \pM —1t) ~ p!\M —t/p
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Using the fact that log(1 +x) = x + o(x) as x — 0 and the condition that t/M — 0
as t — oo, we have

M-t \" M-t t(1-p)
(Gr=a7p) = e (o gy ) =exp e (14 2575) ) = 1.
Hence N < (1+0(1))(s —1)/p?, which is a contradiction. O

Proof of the upper bound in Theorem 13.9. For any € > 0, set
N = (1+3€)2"" log, n.
Suppose that edges of K n on vertex sets X and Y are red/blue colored. Let
Yr={veY:dr(v) 2N/2}, Yp={veY:dp(v) > N/2}.

Then one of them, say Yg, satisfies |[Yg| = N/2.

Now consider the red bipartite graph induced by X and Yg, which has density
p > 1/2. An application of Lemma 13.10 for t = n — 21log, n and s = n? log, n tells
us that we can find a red K, ) as |X]/t* — oo and

Yr| = (1+3€)2" logyn > (1+€)2'n* logyn = (1+€)—.
p

Let Xo be the set of ¢ vertices in X which are counted in our red K; sy and let
X’ = X\ Xp. Let Y’ be the set of s vertices in Yg which are counted in this red
K(t,s). Consider the induced red sub-bipartite graph on X’ and Y’. Each vertex in Y’
is red-adjacent to at least N /2 — ¢ vertices in X', so that the density p’ of the induced
subgraph satisfies that

,_ N/2-1t N -2t
> > >

1
P="x1 "2tv=n "2 -

W | =

n
-— >
2}1

Applying Lemma 13.10 to this bipartite graph, since
X' | =N -t > (1+2€)2" log, n, Y| = n’log, n,

we can find a red Ky ,), where s’ = 2log, n and ¢’ = n, since |Y’|/t'> — co and

s’ s" =1
X'>({1+2 > (1+e)——
X2 (1420 = (v 0= 2
Adding all ¢ vertices of Xy to this red K5 ) (in the first vertex class) will produce
ared K, ,, as desired. ]

It is also difficult to obtain a good asymptotic formula of br (K m, Kn.n). The
situation is similar to that for r (m, n) that we have encountered. The following result
is due to Caro and Rousseau (2001).
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Theorem 13.10 Let integer m > 2 be fixed. Then there are positive constant A and
B such that

n (m+1)/2 n m
A( ) Sbr(Kmm,KnnMB( ) |

logn ’ ’ logn
Proof. The lower bound can be seen from Lemma 13.8 and a theorem in Section 3
of Chapter 5 as

)(mz—l)/(Zm—Z) ( )(m+1)/2

1
br(Km,van,n) 2 Er(Km,ma Kn,n) Z A (

logn logn

The upper bound is based on well-known results for the Zarankiewicz numbers
7Z(N, M; s, t), that is defined in Chapter 7. Let z(N; s) denote z(N, N; s, s). Then we
have

_ 1/s
Z(N;s) < (%) NN-s+1)+(s—1)N.

To prove br(Kp.m» Kn.n) < N it suffices to show that z(N;m) +z(N;n) < N2. Take
€ >0and N = c(n/logn)™, where ¢ = (1 +€)/(m — 1)""!. Then

z(N;m)< m—1\"/" 1_m—l +m—1
N2 N N N

1 l/ml 1 m
(=) el () )
C n n

To bound z(N;n)/N?, we first have

I/n m 1/n
-1 -1)1 -1)1 logl
("_) :(w) _q o (m )Ogn+0(0g Og”).

N cn™ n n

Hence

z(N;n) <(n—1)1/"(1_n—1)+n—1

NZ T N N N
-1 logl

=1_(m )ogn+0(ogogn)'
n n

Adding the above bounds, we obtain

z(N;m) +z(N;n) (- 1 (m—1)logn
N? - (1+e)l/m n
L0 (loglogn)’
n

s0 (z(N;m) +z(N;n))/N?* < 1 for all large n as required. )
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We believe the following problems are easier than the corresponding problems
for r(n,n) and r(m, n).

Problem 13.1 Determine lim br(Kn’n)l/ ™ if it exists, and determine the order of

n—oo

br (K. m», Kn.n) for fixed m > 2.

For non-complete bipartite case, Faudree and Schelp (1975), and independently
Gydrfas and Lehel (1973) proved that br (P, P,) = n—1forevenn and br(P,,, P;,) =
n for odd n. By using the regularity lemma, Shen, Lin and Liu (2018) obtained that
br(Cay, Ca) = (2 + o(1))n. For the three color case, Bucid, Letzter, and Sudakov
(2019) obtained the asymptotic order of br(Cs,, Ca,, Cop). Luo and Peng (2020)
obtained the asymptotic order of br(Ca| a,n]> C2| asn > Colazn))s Where @, 1 < i < 3,
are constants.

13.4 Folkman Numbers

The Ramsey number r(m,n) is the smallest N such that Ky — (K, K,). It is
difficult to determine the behavior of r(m, n), and even more difficult if the graphs
are restricted with smaller cliques instead of complete graphs.

Let G| and G, be graph. Define a family (G, Ga2; p) of graphs as

F(G1,G25p) ={G : G — (G1,G2) and w(G) < p}.
Define the Folkman number f (G, Gy; p) as
f(G1,Ga;p) =min{|V(G)| : G € F(G1,G2;p)}-

We admit that f(G1, Ga; p) = 0 if F(G1,G2; p) = 0, and thus (G, Gy; p) =
if p < max{w(G),w(G,)}. As we write G — (m, n) for G — (K,;,, K;,), we write
F (m,n; p) and f(m,n; p) for F (K, Kn; p) and f(K,,, K5 p), respectively.

We list some elementary properties of f(m, n; p) as follows, for which the similar
properties of f(G1,G»,; p) can be given easily.

Lemma 13.11 If p < r(m,n) and F(m,n; p) + 0, then
{G: G— (mn) and w(G)=p}+#0,
and f(m,n; p) =min{|V(G)|: G —» (m,n) and w(G) = p}.

Proof. Since ¥ (m,n;p) # 0, we have p > max{m,n}. Let G be a graph in
F (m,n; p) of order f(m,n;p). If w(G) = p, then we are done. Otherwise, G is
not complete as there is no K, with w < r(m,n) such that K,, — (m,n), and
thus we can obtain a graph G’ from G by adding an edge. Then the order of G’ is
still f(m,n; p), and w(G’) is w(G) or w(G) + 1 and G’ — (m, n). Continuing the
process, we will obtain a graph G of order f(m,n; p) such that G — (m,n) and
w(G) = p. O
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Lemma 13.12 For any positive integer p, ¥ (m,n;p) = F(n,m;p), and thus
f(m,n; p) = f(n,m;p).

Proof. The first equality can be seen from the fact that G — (m, n) if and only if
G — (n,m), and thus the second equality follows. [

Lemma 13.13 If p < g, then f(m,n;p) > f(m,n;q), and if p > r(m,n), then
f(m,n; p) =r(m,n).

Proof. The inequality is from the fact ¥ (m,n;p) € F(m,n;q). If p > r(m,n),
then Ky € F (m,n; p), where N = r(m, n), and there is no graph G of order smaller
than N such that G € ¥ (m, n; p) from the definition of Ramsey number, and thus
f(m,n;p) =N =r(m,n). O

Folkman (1970) proved that F (m,n;p) # 0 if p > max{m,n}, and thus
f(m,n; p) < oo, from which the name after. This investigation was motivated by a
question of ErdGs and Hajnal (1967) who asked what was the minimum p such that
F(3,3;p) # 0. Folkman’s result was generalized by NeSetfil and Rodl (1976) as
follows.

Theorem 13.11 If p > max{w(G1), w(G2)}, then
F(G1,Ga;p) # 0.

Nesetfil and Rodl proved their result even in multi-color cases. Here, we shall
only prove Folkman’s result.

As usual, we signify the isomorphism of graphs G| and G, as G| = G,. For a
subset S of V(G), denote by G[S] the subgraph of G induced by S.

Recall that a graph H is Ramsey for G if any edge-coloring of H by two colors
contains an induced monochromatic G. Correspondingly, we call H to be n-vertex-
Ramsey for G if the vertex set of H is partitioned into V, Vs, --- ,V,, then G is an
induced subgraph of H[V;] for somei =1,2,...,n.

Lemma 13.14 Let n > 2 be an integer and G a graph of order r. Then there is a

graph H = H(n, G) that is n-vertex-Ramsey for G and w(H) = w(G).

Proof. We first construct a graph H = H(2,G) by induction on r such that H is
2-vertex Ramsey and w(H) = w(G).

If r = 1, we simply take H = G = K. We then assume that r > 2.

Let V be the vertex set of G with V = {v|,vy,...,v,}. Let u € V be a fixed
vertex, and V' =V \ {u} and V"’ = N(u). Let G’ = G[V’] and G” = G[V"’]. Then
from the inductive assumption, a graph H” = H(2, G’) can be defined as asserted.

Note the facts that H’ is 2-vertex-Ramsey for G’ and G’ contains a subset S such
that H'[S] = G"’. We shall find an additional vertex to play the role of u. Let W be
the vertex set of H’. Define a family X of subsets of W as

X = {S cW: HI[S] = G}
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Since V" = N(u) is a subset of V” and thus X # 0. Let I = {1,2,...,2/WIr}, a set
of integers, and /") the family of all r-element subsets of 1. For any Tel (") when
we write T = {11, 12, ..., }, we always admit the natural order t; < fp < --- < f,.
We define a graph H as follows. For any (S, T) € (X, ")), we have a copy Gs.7
of G, and for any i € I, we have a copy H; of H'. Let H be the union of those copies
of G and H’ by adding edges between the certain copies of G and that of H’. The
copy of v;in Gg 7, where T = {t1,t2,--- , 1.}, is adjacent to each vertex in the copy
of §in H’ ,Jj=12,...,r. Fig. 12. 1 illustrates the edges between a copy G 7 of

G and that of H'.

UU

Fig. 12.1 GS,T and HII’H/ . .,H;r forT = {tl, f,... ,tr}

7
H;

We now show that H is 2-vertex-Ramsey for G. Let W; be the vertex set of H;
fori = 1,2,...,|I|, which is a copy of W. When we partition the vertex set of H
into two parts, we have a restricted partition for each W; = (A;, B;). Since W has
2IWI partitions, among those |I] = 2!W!r copies of H’, at least r of them have the
identical partition, and thus there are a set T € 1), and a partition (A, B) of W such
that (A;, B;) = (A,B) foreacht € T.

LetuswriteT = {t1, 1, ..., }. As H’ is 2-vertex-Ramsey for G’, when the vertex
set of H’ is partitioned into (A, B), one of subgraph induced by A, say, contains G’
as an induced subgraph. Thus we can find the copies of a fixed S of W in each Hj,
that induces a subgraph isomorphic to G”. Furthermore, we consider G 7. If any
vertex is in the same part as that of B, we have an induced G. Otherwise, one of
vertex of G r, say v;, is in the same part as that of A, then the induced G’ in H;i
and v; give us a induced graph G.

We then show that w(H) = w(G). It suffices to show that w(H) < w(G) as
the inverse inequality is clear. Let C be an independent set of H. Since any pair
of Gg, 7 are disconnected, we have that at most one Gg 7, and one of H has a
non-empty intersection with C. If such G r is none, then C is contained in one H;.
As w(H’) = w(G’), we have |C| < w(G’") < w(G). Otherwise, there is a G 7 that
contains k vertices, say vi,...,vg, of C. If k = 1, clearly |C| < w(G).If k > 2, as
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vy and v, has no common neighbors in Ht’,-’ then C is contained in a G5 r and thus
IC| < w(G).

For n > 2, we assume that there is a graph H,_; = H(n — 1, G) that is (n — 1)-
vertex Ramsey and w(H,,-1) = w(G). Let H,, = H(n,G) = H(2,H,,_1). Then it is
easy to see that H,, is n-vertex Ramsey for G and w(H,) = w(G). O

The proof of Theorem 13.12 needs the Cartesian product of two graphs defined as
follows. Let F and H be vertex disjoint graphs on vertex sets U and V, respectively,
where U = {uy,us, ..., uyand V = {vy,va,...,v,}. The Cartesian product F x H
of F and H is define as a graph on vertex set U X V, in which a pair of distinct vertices
(u,v) and (u’,v’) are adjacent if and only if uu’ € E(F) and v = v’ or u = 1’ and
vv’ € E(H). If we write the vertices of F X H as a matrix

(ur,vi) (ui,va) -+ (ur,vn)
(u2,v1) (uz,v2) -+ (u2,vn)
(um;VI) (um, V2) to (um’.Vn)a

then each edge is vertical or horizonal, and each column preserves the adjacency of
F and each row preserves the adjacency of H.
The following is an easy property of Cartesian product of graphs.

Lemma 13.15 Let F and H be vertex disjoint graphs. Then
w(F X H) = max{w(F),w(H)}.
Theorem 13.12 (Folkman) If p > max{m, n}, then ¥ (m,n; p) # 0.

Proof. From Lemma 13.12, we may assume that n > m > 1. By Lemma 13.11,
it suffices to construct a graph G € ¥ (m,n;n) by induction on m + n. As K, €
F(1,n;n) and K,, € F(2,n;n), we assume that n > m > 3 and the assertion is true
for smaller value of m+n. Let G|, G, and G3 be vertex disjoint graphs such that G| €
F(m—-1,n;n),Gy € F(m,n—1;max{m,n—1}),and Gz € F(m—-1,n—1;n-1).
From Lemma 13.11, we may assume that w(G) = n, w(G;) = max{m,n — 1}
and w(G3) = n— 1. Let H(k,G) be a graph as defined in Lemma 13.14. Write
M for the number of (n — 1)-element subsets of vertices of G| U G,, and let
H, = H((n—1)>M?, G3). Write N for the number of ways partitioning edges of H
into two classes, and let H; = H(N, G| U G3).
Denote by V| and V; the vertex sets of H; and H», respectively, and let

X={TCcV:|T|=n-1}.

We then define a graph G on the vertex set (V; X V,) U X, in which V| X V; preserves
the edges of H; X Hj, and there is no edge between the members of X, and each
vertex (u,v) in V| X V, is adjacent to each T € X if u € T, which means that all
vertices in the u-row of H; X H; are adjacent to T if u € T. From the construction of
G and the facts that w(H;) = n and w(H) = n — 1, we have w(G) = n.
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It remains to show that G — (m, n). Let (R, B) be a red-blue edge-coloring of
G. For each u € Vi, the edges of H; X H> in the u-row, hence the edges of H,, are
colored into (R(u), B(u)). As there are N ways partitioning the edges of H,, the
rows of V| X V;, hence the vertices of Hj, are partitioned into N classes, in which
two vertices u and u’ of H; are in the same class if

(R(u), B(u)) = (R(u"), B(u')).

Since H; = H(N, G| U G;), which is N-vertex Ramsey for G| U G, one of classes
in the above partition must contains a subset U such that H;[U] = G| U G, . From
the definition of the partition, we know that there is a fixed coloring (Ry, By) of
edges of H; such that

(R(u), B(1)) = (Rg, Bg) foreach u € U,

which means that the edges of H; in all rows that U occupies are colored in the same
way. The definition of H; X H, implies that, for any v € V,, the vertex set U X {v}
induces a subgraph of G isomorphic to G| U G,. If this subgraph contains a red
K,,, or a blue K,,, we are done. Otherwise, from the choice of G| € ¥ (m — 1, n;n),
Gy € F(m,n — 1;max{m,n — 1}), for each v € V;, both following situations must
happen:

Case 1 There is a subset Sg(v) of U such that Sg(v) x {v} induces ared K,,,_.

Case 2 There is a subset 75 (v) of U such that Tg(v) x {v} induces a blue K,,_1,
where Sg(v) N Tg(v) = 0 as G and G, are vertex disjoint.

Let Tr(v) be a subset of U extended from Sg (v) such that Tr (v) NTg(v) = 0 and
|Tr(v)| = |Tg(v)| = n— 1. Then both Tg (v) and Tg(v) are members of X, which are
vertices of G and adjacent to every vertex in the set Tg (v) X {v} and Tg(v) X {v} in
Vi x V5, respectively.

If, for some v € V;, the set (Tr(v) X {v}) U{Tg(v)} contains a red K,,, or the set
(Tg(v) x{v})U{Tg(v)} induces a blue K,,, we are done. Otherwise, for each v € V,,
there is a vertex u;(v) € Tg(v) such that the edge {(u;(v),v),Tr(v)} is blue, and
there is a vertex us(v) € Tp(v) such that the edge {(u2(v),v), Tg(v)} is red.

As U has M subsets T with |T| = n — 1, there are (n — 1)>M? ordered quadruples
in the form (ul,uz,Tl,Tz) withu; € Ty CU,uy € T, C U and |T1| = |T2| =n-1.
Then, by considering the rows in V| X V; that U occupies, we can partition V, hence
the columns of V; X V; into (n — 1)>M? classes by putting v and v’ in the same class
if

(1 (v),u2(v), Tr(v), Te(v)) = (1 (v'), u2(v'), Tr(v'), Tg (v")).

As H, = H((n — 1)>M?,G3), we thus obtain a set V C V, and a fixed quadruple
(uy,uz,Tg, Tg) such that Hy[V] = G3 and

(1 (v), ur(v), Tr(v), Tg(v)) = (uy,u2,Tr,Tg) foreach v €V,
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This is to say, for v € V, all (u;(v), v) are in the u;-row, and all (u;(v), v) are in the
uy-row, and the rows that Tg (v) X {v} occupies are as the same as Tg does, and the
rows that Tr (v) X {v} occupies are as the same as T does.

Let us identify G3 with the graph induced by {u} x V for u € U. Then the edges
of G3 in the u;-row and in the u;-row are colored in the same way as uj,u, € U.
Since Gz € F(m—1,n—1,n—1), we either have a subset Wg C V which induces a
red K,,,—1, or a subset Wg C V which induces a blue K,,_;. If the former is the case,
then {up} X Wg U {Tg} induces a red K,,, of G, or otherwise, {u1} X Wg U {Tr}
induces a blue K, of G. O

Let us have a brief analysis on the bound for the growth of Folkman number from
the proofs.

Let g(r) be an upper bound for the order of the graph H = H(2, r) constructed in
Lemma 13.14 with g(1) = 1. As

V(H) = (VxXxI")u W xI).

Then |W| < g(r — 1) and |I] < r28~1 and thus g(r) is a tower of height r. For
n>2letH, | =H(n-1,G)and H, = H(n,G) = H(2, H,_1). Then the tower
of the order of H, is around the value of the order H,,_;. In the proof of Theorem
13.12, as N and M are big, the growth of the height of the tower in the obtained
upper bound for f(n,n;n) is rapid, which is somehow like that for w(n, n) in the
original proof of van der Waerden, see Chapter 11.

Reducing the upper bound for f(n, n; n) or f(3, n;n) isnoteasy. For p = r(m,n)—
1, Lin (1972) proved that in some cases f(m,n; p) = r(m,n) + 2. It is known that
f(3,3;5) = 8 and f(3,3;4) = 15, due to Graham (1968) and Lin (1972), and
Piwakowski, Radziszowski and Urbanski (1999), respectively.

It is known that £(3,3;3) < 3 x 10”, due to Spencer (1988), which improved an
upper bound 10'? of Frankl and Rédl (1986). Chung and Graham (1999) conjectured
f(3,3;3) < 1000, which was confirmed by Lu (2008) with f(3,3;3) < 9697, and
by Dudek and Rodl (2008) with more computer aid. No reasonable lower bound for
f(n,n;n), even for f(3,n;n) or £(3,3;3), is known.

13.5 For Parameters and Coloring Types

We have seen that it is usually difficult to estimate the value of #(G, H), particularly
that of r(m, n). Many researchers made some generalization on Ramsey numbers.
For a parameter f(F) of graph F, similarly to define (G, H), we can define

r#(G.H) = min{f(F) : F — (G, H)}.

We write r¢(G) for (G, G). Burr, ErdSs and Lovasz (1976) define chromatic
Ramsey number r, (G, H) by taking the parameter f as the chromatic number y.
They proved r\ (K, K,) = r(m,n) and r,(G) > (n — D2 +1ifn = y(G), and
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conjectured that for any positive integer n, there is a graph G with y(G) = n such
that r, (G) = (n - 1)? + 1. This conjecture was proved to be true by Zhu (2011) in
an effort to solve another conjecture.

Benedict, Chartand, and Lick (1977) defined u(g; m, H) to be the least integer N
such that any graph G of N , either g(G) > m or G contains H as a subgraph, where
g(G) is a parameter of G.

Let g and g, be graph parameters and let m and n be integers. Define the Ramsey
number r(g| > m, g» > n) as the least integer N such that for any graph G of order
N either g;(G) > m or g2(G) > n. We call r(g; > m,g» > n) as the Ramsey
number on g; and g;, or the mixed Ramsey number on g; and g, if g; and g, are
different. In this new notation, we have

r(m,n)=r(w=m,w>n)=r(a =m,a >n).

Let gy (G) be the indicator that H is a subgraph of G. Then r(gy = 1,gp = 1) is
r(H,F).

The most natural question is that for which pair g; and g, the defined Ramsey
number r(g, > m, g» > n) exists. The answer is not always positive. For example,
r(x = 2,a = 2) does not exist since the empty graph N,, of order n satisfies that
x(N,) =1and a(N,,) = 1. However, for many pairs of parameters, the existence of
the Ramsey number on these parameters can be easily verified.

Theorem 13.13 Let g and g, be graph parameters. Then for any positive integers
m and n, r(g, = m; gy > n) exists if and only if

li i G G))| = . 13.1
Jim | min (21(6) +£2(G)) | = o0 (13.1)

Proof. Suppose that for any positive integers m and n, r(g; > m; gy > n) exists.

Then for any integer M > 0, K(M) = r(fi > M; f, > M) exists. So for any graph
G of order k > K(M), either g1(G) > M or g(G) > M. Therefore,

; >M+1
viin_ (81(G) +£2(G) 2 M +

for k > K(M), so (13.1) holds.
Conversely, suppose (13.1) holds. Then for any positive integers m and n, there
exists K = K(m,n) such that if k > K,

i G)+2,(G)) > m+n.
Smin_ (21(G) +£2(G)) = mo+n

So for any graph G of order k > K, g1(G) + g2(G) > m + n, hence g;(G) > m or
g2(G) = n. Minimizing such K shows the existence of r(g>m; g, > n). O

The following easy result has a similar form as (K, T;,)) = (m — 1)(n—1) + 1
of Chvital in Chapter 1.

Theorem 13.14 Let m and n be positive integers. Then
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rix=myzn)=m-1)n-1)+1,
where y signifies the chromatic number of a graph.

Proof. The assertion is obviously true if one of m and n is one. Assume thatm,n > 2.
LetG = (n— 1)Ky;—1. Then y(G) =m — 1 and y(G) = n — 1, yielding that

rix=2m,y=n)>(m-1)(n-1)+1.

On the other hand, if G is a graph of order N = (m—1)(n—1)+1and y(G) <m—1,
then by the fact that y (G)a(G) = N we have

N | [(m=Dn-1)+1]
)2 |75 - [ =

Therefore y(G) > w(G) = a(G) > n, proving
rixy2my=2n<(m-1)n-1)+1,

and the equality follows. O

Let G’ be a graph obtained by deleting a vertex from G. Similarly as that for
proving
r(F,H) <r(F',H)+r(F,H"), (13.2)

we have the following bound.

Theorem 13.15 For a fixed graph F, define gp(G) be the number of subgraphs
isomorphic to F with different vertex sets in graph G. Then for any graphs F and H
of orders at least two and any positive integers m and n,

r(grp2m,gg2n) <r(grp 2m,gg 2n)+r(gr 2 m, gy 2 n).

Let us turn to some other generalizations of Ramsey number. An obvious one is
as follows. Let 7; is a family of graphs for i = 1, 2. Define the class Ramsey number
r(F1, F2) as the minimum integer N such that any edge coloring of K by red and
blue contains some red F| € 1 or some blue F, € . Let ¥ (n, s) denote the family
of connected graphs with n vertices and s edges forn —1 < s < ('21) We then get
a definition of r(n, s;m, t) as r (¥ (n, s), ¥ (m, t)). General results on class Ramsey
numbers are difficult since it covers the classic Ramsey numbers r(m, n).

In traditional definitions of graph Ramsey numbers, we asked the minimum
number N such that any edge coloring of K contains some monochromatic graphs.
If we change the coloring types either in K or in subgraphs that are contained, we
may have some other definitions of Ramsey numbers. We introduce some of them
without details of discussion.
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Local k-coloring

Let G be a graph and let £ > O be an integer. A subset S C V(G) is said to be a
k-independent set if the subgraph induced by S has a maximum degree at most k.
Correspondingly, an edge-coloring of G by any number of colors is called a local
k-coloring if each vertex of G is adjacent to at most k distinct colors.

There are two ways to define Ramsey numbers with k-independence. One way
is to ask what is the minimum integer N such that any local edge k-coloring of
K contains a monochromatic G. See, for example, Gyarfas, Lehel, Nesetfil, Rodl,
Schelp, and Tuza (1987), and Caro and Tuza (1993). Other way is to ask what is the
minimum integer N such that any edge coloring of K in m colors contains a local
k-colored G.

Zero-sum coloring

Most recent combinatorial research on zero-sum problems is related to a result of
Erdés, Ginzburg and Ziv (1961) as follows.

Theorem 13.16 Let m > k > 2 be integers such that k|m. Then for any sequence of
integers{ay,as, ..., am+k-1}, there exists a subset I ofindices of{1,2, ..., m+k—1}
such that |I| = m and Y;c;a; =0 (mod k).

Let Zx be the additive group modulo k. A Zi-coloring of edges of graph G is a
function f : E(G) — Zi. We say that G is zero-sum, relative to f,if ¥ .c () f(e) =
0 (mod k).

The zero-sum Ramsey number is to ask the minimum integer N such that any
Zi-coloring of edges of K contains a zero sum G. For this topic, see a survey by
Caro (1996).

Rainbow coloring

We call an edge coloring of G to be a rainbow or anti-Ramsey if each pair of
edges have distinct colors. Weakening this condition, an edge coloring of G is called
a (p, g)-coloring if every subset of p vertices spans at least ¢ colors. Erdgs (1981)
asked what is the minimum number f(n, p,q) of colors such that there exists a
(p, q)-coloring of K,. To avoid the trivial cases, we assume that 2 < ¢ < (’2’)
Clearly f(n, p,(5)) = (5). Observe that (p,2)-coloring are equivalent to coloring
without monochromatic K,. For more information, see Erdds and Gyarfds (1997).

Some researchers ask some kind types of Ramsey numbers involving rainbow
subgraphs, among which some are as follows.

(1) Given graph G of order m and integer n > m, what is the minimum number
k of colors such that each k-coloring of edges of K, yields a rainbow G?

(2) Given graphs G and H, and integer k, what is the minimum integer N such
that each k-coloring of edges of K contains a monochromatic G or a rainbow H?

(3) Given graphs G and H, what is the minimum integer N such that each edge-
coloring of K contains a monochromatic G or a rainbow H? Here, no constraint is
placed on the number of colors. Note that this number exists if and only if G is a star
or H is a forest, see Jamison, Jiang and Ling (2003).
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Regular coloring

A graph G is called regular by k if A(G) — 6(G) < k. Recall that many Ramsey
graphs correspond to the Ramsey numbers r(G, H) we met are regular or regular
by 1. We may ask what is the minimum integer N such that if a graph G of order N
is regular by 1 then it contains a copy of K, or an independent set of order n. We
believe that this N is very close to r(m, n).

13.6 Exercises

1. Find size Ramsey numbers of C4 and path of lenght 3.
2. By computing the constant C in the proof of Theorem 13.4.
3. Prove the lower bounds in Theorem 13.8 and in Theorem 13.10, respectively.

4. Let f(n,p,q) be defined in Section 13.5. Show that f(16,3,2) = 3 and
£(17,3,2) = 4. (Hint: r3(3) = 17)

5. Let B and B, be bipartite graphs. Show that the Folkman number f (B, B;;2)
is between br(B1, B,) and 2br(By, B,).

6.* Prove that #(sK| n,tK1 ) = (s +t—1)(m +n — 1). (Hint: Burr and Erdgs,
Faudree, Rousseau and Schelp (1978). They conjectured that for F, = U?_, Ky, and
= Uif:lei, f(Fl, Fz) = Z;;tz Cr, where € = max{ni +mj— Li+j= k})

7.* (Conlon, 2008) obtained that for all large n,
br(Kn.n) < (1+0(1))2" ! log, n.

What expression of the small term o(1) can we have?
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Glossary

Throughout this book, we use the standard notation of graphs. The entries of the
glossary are divided into two lists. Entries such as 8(G) and r(G) that have fixed
letters as part of their representation occur in the first list, in alphabetic order (pho-
netically for Greek characters). Entries of the second list correspond to the meanings
of the first entries.

a.a.s. asymptotically almost surely, 86
A(F) automorphism group of F, 77
B, book graph, 7
B\™ general book graph, 72
B(n, p) binomial distribution, 67
br(By, By) bipartite Ramsey number of B and B,, 307
C, a cycle on n vertices, 13
A(G) the maximum degree of G, 3
diam(G) the greatest distance between two vertices of G, 98
ER, Erdds-Rényi graph, 163
ex(n, H) Turdn number of graph H, 149
F, Friendship graph or a k-fan, 168
F(q)or F, the field of order ¢, 21
v(G) the largest r such that G contains a subdivision of K., 83
G+H join graph of G and H, 7
Gy projective norm graph, 177
x(G) chromatic number of G, 83
Ky complete graph of order N, 1
K,(lr) complete r-uniform hypergraph of order n, 14
Kni,..om complete (k — 1)-partite graph, 149
Kin a star of n edges, 12
[N] {1,2,...,N},26
w(G) clique number of G, 3
P, Paley graph of order ¢, 35
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 343

Y. Li, Q. Lin, Elementary Methods of Graph Ramsey Theory, Applied Mathematical
Sciences 211, https://doi.org/10.1007/978-3-031-12762-5


https://doi.org/10.1007/978-3-031-12762-5

344

P1+n
#(G1,G2)
rk(G],. . .,Gk)
re(G)
rv(G,H)
ri(n)

r]((r)(nl, ce, )
r(G)

rind(H)
r(¢,...,n)
r(n)

0(G)

t-AP

t-1(n)

v

wi (1)
w(m, n)
z(m, n;s,t)

a path of order 1 +n, 10

size Ramsey number, 295

Ramsey number of G, ...,Gy, 1

k-color Ramsey number of G, 2

chromatic Ramsey number of G and H, 317
k-color Ramsey number of K,;, 2

k-color hypergraph Ramsey number, 14
Ramsey number r (G, G), 2

induced Ramsey number of H, 304
classical Ramsey number, 3

Ramsey number r(K,, K,), 2

Shannon capacity of G, 195

an arithmetic progression of ¢ terms, 248
the edge number of Turan graph Ty (n), 149
a tree of order n, 12

the family of all r-subsets of V, 14

k-color van der Waerden number, 248
off-diagonal van der Waerden number, 252
Zarankiewicz number, 157

Glossary



Index

averaging technique, 1
Azuma’s Inequality, 124
bipartite Ramsey number, 307
Cauchy-Schwarz inequality, 49
Cayley graph, 35

Chebyshev’s Inequality, 66

Chernoff bounds, 66

chromatic Ramsey number, 317

class Ramsey number, 30
communication channel, 193
deletion method, 80
d-abundant, 276

dependency graph, 112
dependent random choice, 209
double counting method, 156
edge-transitive, 36

EKR Theorem, 141
e-unavoidable, 276

e-regular, 260

Fano plane, 164

Fisher Inequality, 132
Folkman number, 275
Friendship Theorem, 168
groupie, 53

Jensen’s Inequality, 49
hypergraph, 14

induced Ramsey number, 303
local k-coloring, 319
lopsidependency graph, 115
Lovasz Local Lemma, 111
LYM-inequlity, 140

(m, k)-colorable, 59
monotone decreasing, 94
monotone increasing, 94
Markov’s Inequality, 65
martingale, 121
mathematical induction, 1
Mersenne prime, 250
multiplicative character, 243

(n,d, A)-graph, 230
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Odd-town-theorem, 132
Omitted Intersection Theorem, 137
Paley graph, 33

(p, @)- jumbled, 221
Perron-Frobenius theorem, 41
Pigeonhole Principle, 1
Poisson distribution, 103
Prime number theorem, 34
projective norm graph, 177
projective plane, 130
quasi-random graph, 221
rainbow coloring, 320
Ramsey coloring, 2
Ramsey goodness, 285
Ramsey graph, 2

Ramsey linear, 268
Ramsey number, 1
Ramsey’s theorem, 3
Ramsey theory, 1

random graph, 75

regular coloring, 320

Regularity lemma, 247

Schur number, 25

Second Moment Method, 66
semi-random method, 52
Shannon capacity, 195
spectrum, 40

Shelah Cube Lemma, 256
Sperner hypergraph, 140
Sperner’s Theorem, 140
Stirling formula, 47
strongly regular graph, 35
subdivision, 82

Sunflower Theorem, 143
superline graph, 129
super-multiplicative, 25
threshold function, 95
Turan number, 149
Turan’s Theorem, 151

van der Waerden number, 248
vertex-transitive, 36

Weil bound, 243
Zarankiewicz number, 157

Zero-sum coloring, 320
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