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Proof Complexity and Ramsey’s Theorem

1. Proof Complexity: “How large must proofs of Theorem X in
Proof System Y be?”

2. What is the relative complexity of proving upper bounds on
Ramsey numbers?

3. Focus on Cutting Plane proofs

3.1 High-dimensional geometric proofs
3.2 IPs vs LPs
3.3 More details soon =)
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The Question!

QUESTION:

What is the proof complexity of the propositional statement
r(k , k) ≤ 4k?

1. This is TRUE and KNOWN (Erdös, Szekeres)

2. We’d like: An exp lower bound on proof size w.r.t. formula
size

3. We get: An exp lower bound on RANK w.r.t. k
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Plan for the Talk

1. Intro to Cutting Plane Proofs

2. A Prover/Delayer game

3. A Protection Lemma

3.1 Long games =⇒ High CP Rank

4. The Delayer’s Strategy

4.1 Games are long!
4.2 Proof by Io’s Method
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Cutting Plane Proofs

A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of AXIOMS (e.g. ~a · ~x ≤ b ∈ A~x ≤ ~b)

2. Final line: An arithmetically FALSE statement (e.g. 1 ≤ 0)

3. In between: Anything derivable from previous lines using:

3.1 Inequality Addition
3.2 Scalar Multiplication
3.3 Rounded Division

A CP derivation of a false statement from A~x ≤ ~b is
EQUIVALENT to showing “A~x ≤ ~b 6∈ SAT”
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More on Rounded Division

A geometric interpretation...

1. Start at P
def
= {x ∈ Rn : A~x ≤ ~b} for integral A, b

2. Target is PI – the convex hull of P ∩ Zn

3. Add/mult gives linear comb. of earlier inequalities

4. Another option: Derive P ′ from P with rounded division.

4.1 Observe that for all c ∈ Zn, δ ∈ R,

cT y ≤ δ for all y ∈ P ⇒ cT x ≤ bδc
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Chvátal Rank

1. Define P = P(0) ⊇ P(1) ⊇ P(2) · · · corr. to repeated CUTS

2. THM: ∃ integer r ≥ 0 s.t. P(r) = PI .

3. DEFN: The RANK of P is the min such r

4. THM: If cT x ≤ d has a CP derivation of depth r beginning
from Ax ≤ b defining a polyhedron P, then the rank of
cT x ≤ d relative to P is at most r .

4.1 ∃ integral pt inside cT x ≤ d with rank ≥ s relative to Ax ≤ b
⇒ any CP derivation from Ax ≤ b has depth ≥ s
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A Prover/Delayer Game

OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER
will fight a BLOODY DUEL TO THE DEATH over:

“Any graph with 4k vertices has either a clique of size k or an
independent set of size k .”

This is serious action movie material.
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Rules of THE GAME

1. Parameter: k ∈ N
2. Game begins on an uncolored complete graph on n = 4k

vertices. Players color the edges until...

3. PROVER wants to force a monochromatic complete graph on
k vertices

4. DELAYER wants to ....delay!

5. PROVER will eventually win. The interesting question is
HOW LONG does it take?
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Rules of THE GAME

1. PROVER plays first. All vertices are initially uncharged.
Ci are the charged vertices after PROVER’s i th move.

2. PROVER i th move:

2.1 CHARGE two new vertices ui , vi
2.2 COLOR (ui , vi )

3. DELAYER i th move:

3.1 For uncolored (w ,w ′) ∈ (Ci\{ui , vi})2, COLOR them
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Graph Averages

GOAL: Show that Long Games ⇒ High Rank

1. Equate colored graphs with POINTS in high-dim space

1.1 {BLUE, NONE, RED} 7→ {0, 12 , 1}
1.2 G ∈ {0, 12 , 1}

(|V |
2 ) 7→ G ∈ [0, 1](

|V |
2 )

2. DEFN: The AVERAGE, 1
2(G1 + G2), of two graphs G1,G2 is

the graph H = (V , E1+E2
2 )
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Protection Sets

DEFN: The PROTECTION SET S = S(G ) for a colored graph G
is the set of all graph pairs (G (u, v),G (u, v)) ∈ (V ,E )2 s.t.

1. The charged part of G is C

2. The charged part of both G (u, v) and G (u, v) is C ∪ {u, v}
3. G = 1

2(G (u, v) + G (u, v))

Note: For fixed (u, v), the two colored graphs PROVER can
choose in the i th round average to the (i − 1)th round graph
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A Protection Lemma

KEY LEMMA: Let G be a colored graph with an even number of
vertices and a charged part of even size. If G has a protection set
S(G ) ⊆ P(i), then G ∈ P(i+1).

Intuitively, Long Games ⇒ High Rank

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



A Protection Lemma

KEY LEMMA: Let G be a colored graph with an even number of
vertices and a charged part of even size. If G has a protection set
S(G ) ⊆ P(i), then G ∈ P(i+1).

Intuitively, Long Games ⇒ High Rank

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Prot Lemma Proof

Consider some G at the start of some round i in the P/D game.
Note there are an even number of vertices and charged part of
even size.

1. G ∈ P(i):

1.1 By constr: For u, v 6∈ Ci , G is the average of
(G (u, v),G (u, v)) ∈ S(G ).
By assmp, S(G ) ⊆ P(i), so G ∈ P(i).

2. Assume toward a contradiction: G 6∈ P(i+1):

2.1 By def: We have aTG > b where aT x ≤ b has rank i + 1.
2.2 Let a′T x ≤ b′ have rank i s.t. for some q, r ∈ Z, 0 < r < q,

2.2.1 a’[u,v] = qa[u,v]
2.2.2 b’ = qb+r

2.3 Then, G ∈ P(i) ⇒ a′TG ≤ b′ < q(b + 1)⇒ b < aTG < b + 1.
By constr: aTG = b + 1

2 .
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Prot Lemma Proof

We have: aTG = b + 1
2

Since a ∈ Zm, then∑
(u,v)∈U2

a[u, v ] +
∑

u∈U ,w∈C
a[u,w ] ≡ 1 (mod 2),

else aTG would be integral.

Claim: This implies ∃(u, v) ∈ U2 s.t.

a[u, v ] +
∑
w∈C

a[u,w ] +
∑
w∈C

a[v ,w ] ≡ 1 (mod 2).

Proof: Formal proof is a bit lengthy. High-level idea: Suppose not,
then can show some fixed part of G has both even and odd size
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Prot Lemma Proof

Fix (u, v) as implied by prev.

Look at sum over three groups of edges:

1. (A): all edges between two charged vertices,

2. (B): edges enumerated in defn of (u, v) (those induced in one
round of P/D),

3. (C): rest of the edges in G .
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Prot Lemma Proof

1. |B| ≡ 1 (mod 2), and all e ∈ B have color 1/2. So B is
half-integral, and A + C is integral.

2. Consider (G (u, v),G (u, v)) ∈ S(G ):

2.1 By defn: Only differ from G on edges in B.
2.2 Let aTG (u, v) = A + B ′ + C and aTG (u, v) = A + B ′′ + C for

some B ′,B ′′

2.3 Then, B ′,B ′′ are integral since their edges are colored in the
new graphs.

3. Therefore, the numbers aTG (u, v), aTG (u, v) are integral and
(from before) less than b + 1.

4. Therefore, they are at most b.

5. As G is their average, aTG ≤ b, contradicting the assumption
G 6∈ P(i+1).
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A Delayer Strategy to Force Long Games

We need an AWESOME strategy for DELAYER, and we’re done!

1. DEFN: A diagonal pair of vertices is any pair {2m − 1, 2m}
for m ∈ [2k/2−1].

2. A diagonal edge is an edge between a diagonal pair of vertices.

3. We need the existence of a certain graph with extremal
Ramsey properties for DELAYER to use!
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The Magic Graph, H

CLAIM: There is a complete graph H, all edges colored either red
or blue, s.t.

1. there is no monochromatic clique of size k ,

2. above holds even if the colors of diagonal edges are toggled
arbitrarily,

3. for any diagonal pair of vertices {2m − 1, 2m} and any vertex
a < 2m − 1, the color of (a, 2m − 1) and (a, 2m) are DIFF
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Io’s Method

We show H exists using the Prob Method.

1. For all i ∈ [2k/2−1] and v < 2i − 1, color (v , 2i − 1) uniformly
at random; set (v , 2i) to the opposite

2. We want to count the prob that k-size subsets have both a
BLUE and RED edge that are not between diagonal pairs.

3. DEFN: K0 – family of sets of k vertices with no diagonal pair

4. DEFN: K1 – family of sets of k vertices where (only) the
LEAST two vertices are diagonal
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Io’s Method

Fix n = 2k/2. Then,

Pr[H has a monochromatic k−clique]

≤ |K0|
2

2(k2)
+ |K1|

2

2(k2)−1

≤ 2

2(k2)

[
2k
(
n/2

k

)
+ 2k−1

(
n/2

k − 1

)]
< 1.

Therefore, some such H exists!
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Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices (2i − 1, 2i) onto
vertices (2i − 1, 2i) of H.

2. Let PROVER color these diagonal edges however he wants.
(NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for e
def
= 2k/2−1 rounds.

THEREFORE: Ge ⊆ P0. So, by the Prot Lemma,
Ge−1 ⊆ P1,Ge−2 ⊆ P2, · · · ,G0 ⊆ Pe .

THEREFORE: Ramsey’s theorem has CP Rank at least e = Ω(2k).

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices (2i − 1, 2i) onto
vertices (2i − 1, 2i) of H.

2. Let PROVER color these diagonal edges however he wants.
(NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for e
def
= 2k/2−1 rounds.

THEREFORE: Ge ⊆ P0. So, by the Prot Lemma,
Ge−1 ⊆ P1,Ge−2 ⊆ P2, · · · ,G0 ⊆ Pe .

THEREFORE: Ramsey’s theorem has CP Rank at least e = Ω(2k).

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices (2i − 1, 2i) onto
vertices (2i − 1, 2i) of H.

2. Let PROVER color these diagonal edges however he wants.
(NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for e
def
= 2k/2−1 rounds.

THEREFORE: Ge ⊆ P0. So, by the Prot Lemma,
Ge−1 ⊆ P1,Ge−2 ⊆ P2, · · · ,G0 ⊆ Pe .

THEREFORE: Ramsey’s theorem has CP Rank at least e = Ω(2k).

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices (2i − 1, 2i) onto
vertices (2i − 1, 2i) of H.

2. Let PROVER color these diagonal edges however he wants.
(NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for e
def
= 2k/2−1 rounds.

THEREFORE: Ge ⊆ P0. So, by the Prot Lemma,
Ge−1 ⊆ P1,Ge−2 ⊆ P2, · · · ,G0 ⊆ Pe .

THEREFORE: Ramsey’s theorem has CP Rank at least e = Ω(2k).

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices (2i − 1, 2i) onto
vertices (2i − 1, 2i) of H.

2. Let PROVER color these diagonal edges however he wants.
(NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for e
def
= 2k/2−1 rounds.

THEREFORE: Ge ⊆ P0. So, by the Prot Lemma,
Ge−1 ⊆ P1,Ge−2 ⊆ P2, · · · ,G0 ⊆ Pe .

THEREFORE: Ramsey’s theorem has CP Rank at least e = Ω(2k).

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices (2i − 1, 2i) onto
vertices (2i − 1, 2i) of H.

2. Let PROVER color these diagonal edges however he wants.
(NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to H.

THEREFORE: The P/D game continues for e
def
= 2k/2−1 rounds.

THEREFORE: Ge ⊆ P0. So, by the Prot Lemma,
Ge−1 ⊆ P1,Ge−2 ⊆ P2, · · · ,G0 ⊆ Pe .

THEREFORE: Ramsey’s theorem has CP Rank at least e = Ω(2k).

Daniel Apon Cutting Plane Rank Lower Bound for Ramsey’s Theorem



Thanks for listening!
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