Cutting Plane Rank Lower Bound for Ramsey’s Theorem

Daniel Apon

University of Maryland – College Park
1. **Proof Complexity**: “How large must proofs of Theorem X in Proof System Y be?”
1. **Proof Complexity**: “How large must proofs of Theorem X in Proof System Y be?”

2. What is the relative **complexity** of proving upper bounds on Ramsey numbers?
1. **Proof Complexity**: “How large must proofs of Theorem X in Proof System Y be?”

2. What is the relative **complexity** of proving upper bounds on Ramsey numbers?

3. **Focus on Cutting Plane proofs**
 3.1 High-dimensional geometric proofs
 3.2 IPs vs LPs
 3.3 More details soon =)
QUESTION:

What is the proof complexity of the propositional statement $r(k, k) \leq 4^k$?
QUESTION:

What is the proof complexity of the propositional statement $r(k, k) \leq 4^k$?

1. This is TRUE and KNOWN (Erdös, Szekeres)
QUESTION:

What is the proof complexity of the propositional statement \(r(k, k) \leq 4^k \)?

1. This is TRUE and KNOWN (Erdös, Szekeres)
2. We’d like: An exp lower bound on proof size w.r.t. formula size
QUESTION:

What is the proof complexity of the propositional statement
\[r(k, k) \leq 4^k? \]

1. This is TRUE and KNOWN (Erdös, Szekeres)
2. We’d like: An exp lower bound on proof size w.r.t. formula size
3. We get: An exp lower bound on RANK w.r.t. \(k \)
Plan for the Talk

1. Intro to Cutting Plane Proofs
Plan for the Talk

1. Intro to Cutting Plane Proofs
2. A Prover/Delayer game
Plan for the Talk

1. Intro to Cutting Plane Proofs
2. A Prover/Delayer game
3. A Protection Lemma
 3.1 Long games \implies High CP Rank
1. Intro to Cutting Plane Proofs
2. A Prover/Delayer game
3. A Protection Lemma
 3.1 Long games \implies High CP Rank
4. The Delayer’s Strategy
 4.1 Games are long!
 4.2 Proof by Io’s Method
A **CUTTING PLANE PROOF** is a series of lines where:

1. First line: List of AXIOMS (e.g. \(\vec{a} \cdot \vec{x} \leq \vec{b} \in A \) \(\vec{x} \leq \vec{b} \))
2. Final line: An arithmetically FALSE statement (e.g. \(1 \leq 0 \))
3. In between: Anything derivable from previous lines using:
 3.1 Inequality Addition
 3.2 Scalar Multiplication
 3.3 Rounded Division

A CP derivation of a false statement from \(A \) \(\vec{x} \leq \vec{b} \) is EQUIVALENT to showing "\(A \vec{x} \leq \vec{b} \not\in \text{SAT} \)"
A **CUTTING PLANE PROOF** is a series of lines where:

1. First line: List of **AXIOMS** (e.g. \(\vec{a} \cdot \vec{x} \leq b \in A\vec{x} \leq \vec{b} \))
A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \leq b \in A\vec{x} \leq \vec{b}$)
2. Final line: An arithmetically FALSE statement (e.g. $1 \leq 0$)
A **CUTTING PLANE PROOF** is a series of lines where:

1. **First line:** List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \leq b \in A\vec{x} \leq \vec{b}$)
2. **Final line:** An arithmetically **FALSE** statement (e.g. $1 \leq 0$)
3. **In between:** Anything derivable from previous lines using:
 3.1 Inequality Addition
 3.2 Scalar Multiplication
 3.3 Rounded Division

Daniel Apon
Cutting Plane Rank Lower Bound for Ramsey’s Theorem
A CUTTING PLANE PROOF is a series of lines where:

1. First line: List of AXIOMS (e.g. $\vec{a} \cdot \vec{x} \leq b \in A\vec{x} \leq \vec{b}$)
2. Final line: An arithmetically FALSE statement (e.g. $1 \leq 0$)
3. In between: Anything derivable from previous lines using:
 3.1 Inequality Addition
 3.2 Scalar Multiplication
 3.3 Rounded Division

A CP derivation of a false statement from $A\vec{x} \leq \vec{b}$ is EQUIVALENT to showing “$A\vec{x} \leq \vec{b} \notin SAT$”
A geometric interpretation...

1. Start at $P \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : A\vec{x} \leq \vec{b} \}$ for integral A, b
A geometric interpretation...

1. Start at $P \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : A\vec{x} \leq \vec{b} \}$ for integral A, b
2. Target is P_I – the convex hull of $P \cap \mathbb{Z}^n$
A geometric interpretation...

1. Start at $P \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : A\vec{x} \leq \vec{b} \}$ for integral A, b
2. Target is P_I – the convex hull of $P \cap \mathbb{Z}^n$
3. Add/mult gives linear comb. of earlier inequalities
A geometric interpretation...

1. Start at $P \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : A \vec{x} \leq \vec{b} \}$ for integral A, b
2. Target is P_I – the convex hull of $P \cap \mathbb{Z}^n$
3. Add/mult gives linear comb. of earlier inequalities
4. Another option: Derive P' from P with rounded division.
 4.1 Observe that for all $c \in \mathbb{Z}^n, \delta \in \mathbb{R}$,

 $$c^T y \leq \delta \text{ for all } y \in P \Rightarrow c^T x \leq \lfloor \delta \rfloor$$
1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated Cuts.
1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS
2. **THM**: \exists integer $r \geq 0$ s.t. $P^{(r)} = P_I$.

Daniel Apon
Cutting Plane Rank Lower Bound for Ramsey’s Theorem
1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS
2. **THM:** \exists integer $r \geq 0$ s.t. $P^{(r)} = P_I$.
3. **DEFN:** The *RANK* of P is the min such r
1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \cdots$ corr. to repeated CUTS.
2. **THM:** \exists integer $r \geq 0$ s.t. $P^{(r)} = P_I$.
3. **DEFN:** The RANK of P is the min such r.
4. **THM:** If $c^T x \leq d$ has a CP derivation of depth r beginning from $Ax \leq b$ defining a polyhedron P, then the rank of $c^T x \leq d$ relative to P is at most r.

Daniel Apon

Cutting Plane Rank Lower Bound for Ramsey's Theorem
1. Define $P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \ldots$ corr. to repeated CUTS
2. THM: \exists integer $r \geq 0$ s.t. $P^{(r)} = P_I$.
3. DEFN: The RANK of P is the min such r
4. THM: If $c^T x \leq d$ has a CP derivation of depth r beginning from $Ax \leq b$ defining a polyhedron P, then the rank of $c^T x \leq d$ relative to P is at most r.
 4.1 \exists integral pt inside $c^T x \leq d$ with rank $\geq s$ relative to $Ax \leq b$
 \Rightarrow any CP derivation from $Ax \leq b$ has depth $\geq s$
OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER will fight a BLOODY DUEL TO THE DEATH over:

“Any graph with 4^k vertices has either a clique of size k or an independent set of size k.”
A Prover/Delayer Game

OUR EVER-HEROIC CHAMPIONS PROVER and DELAYER will fight a BLOODY DUEL TO THE DEATH over:

“All graph with \(4^k\) vertices has either a clique of size \(k\) or an independent set of size \(k\).”

This is serious action movie material.
Rules of THE GAME

1. Parameter: \(k \in \mathbb{N} \)

2. Game begins on an uncolored complete graph on \(n = 4^k \) vertices. Players \textbf{color} the edges until...

3. \textbf{PROVER} wants to force a monochromatic complete graph on \(k \) vertices

4. \textbf{DELayer} wants to \ldots delay!

5. \textbf{PROVER} will eventually win. The interesting question is \ldots how long does it take?
Rules of THE GAME

1. Parameter: $k \in \mathbb{N}$

2. Game begins on an uncolored complete graph on $n = 4^k$ vertices. Players color the edges until...

3. PROVER wants to force a monochromatic complete graph on k vertices

4. DELAYER wants todelay!

Daniel Apon
Cutting Plane Rank Lower Bound for Ramsey’s Theorem
Rules of THE GAME

1. Parameter: $k \in \mathbb{N}$
2. Game begins on an uncolored complete graph on $n = 4^k$ vertices. Players color the edges until...
3. PROVER wants to force a monochromatic complete graph on k vertices
4. DELAYER wants to delay!
5. PROVER will eventually win. The interesting question is HOW LONG does it take?
1. PROVER plays first. All vertices are initially uncharged. C_i are the charged vertices after PROVER’s i^{th} move.
1. PROVER plays first. All vertices are initially uncharged. \(C_i \) are the charged vertices after PROVER’s \(i^{th} \) move.

2. PROVER \(i^{th} \) move:
 2.1 CHARGE two new vertices \(u_i, v_i \)
 2.2 COLOR \((u_i, v_i) \)
Rules of THE GAME

1. PROVER plays first. All vertices are initially uncharged. C_i are the charged vertices after PROVER’s i^{th} move.

2. PROVER i^{th} move:
 2.1 **CHARGE** two new vertices u_i, v_i
 2.2 **COLOR** (u_i, v_i)

3. DELAYER i^{th} move:
 3.1 For uncolored $(w, w') \in (C_i \setminus \{u_i, v_i\})^2$, **COLOR** them
Goal: Show that Long Games \Rightarrow High Rank
GOAL: Show that Long Games \Rightarrow High Rank

1. Equate colored graphs with POINTS in high-dim space
 1.1 $\{\text{BLUE, NONE, RED}\} \mapsto \{0, \frac{1}{2}, 1\}$
 1.2 $G \in \{0, \frac{1}{2}, 1\}^{\binom{|V|}{2}} \mapsto G \in [0, 1]^{\binom{|V|}{2}}$
GOAL: Show that Long Games \Rightarrow High Rank

1. Equate colored graphs with POINTS in high-dim space

 1.1 $\{\text{BLUE, NONE, RED}\} \mapsto \{0, \frac{1}{2}, 1\}$

 1.2 $G \in \{0, \frac{1}{2}, 1\}^{(|V|/2)} \mapsto G \in [0, 1]^{(|V|/2)}$

2. **DEFN**: The AVERAGE, $\frac{1}{2}(G_1 + G_2)$, of two graphs G_1, G_2 is the graph $H = (V, \frac{E_1 + E_2}{2})$
DEFN: The PROTECTION SET $S = S(G)$ for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in (V, E)^2$ s.t.

1. The charged part of G is C
2. The charged part of both $G(u, v)$ and $G(u, v)$ is $C \cup \{u, v\}$
3. $G = 1/2 (G(u, v) + G(u, v))$
DEFN: The PROTECTION SET $S = S(G)$ for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in (V, E)^2$ s.t.

1. The charged part of G is C
2. The charged part of both $G(u, v)$ and $G(u, v)$ is $C \cup \{u, v\}$
3. $G = \frac{1}{2}(G(u, v) + G(u, v))$
DEFN: The PROTECTION SET $S = S(G)$ for a colored graph G is the set of all graph pairs $(G(u, v), G(u, v)) \in (V, E)^2$ s.t.

1. The charged part of G is C
2. The charged part of both $G(u, v)$ and $G(u, v)$ is $C \cup \{u, v\}$
3. $G = \frac{1}{2}(G(u, v) + G(u, v))$

Note: For fixed (u, v), the two colored graphs PROVER can choose in the i^{th} round average to the $(i - 1)^{th}$ round graph
A Protection Lemma

KEY LEMMA: Let G be a colored graph with an even number of vertices and a charged part of even size. If G has a protection set $S(G) \subseteq P^{(i)}$, then $G \in P^{(i+1)}$.

Intuitively, Long Games \Rightarrow High Rank

Daniel Apon
Cutting Plane Rank Lower Bound for Ramsey’s Theorem
A Protection Lemma

KEY LEMMA: Let G be a colored graph with an even number of vertices and a charged part of even size. If G has a protection set $S(G) \subseteq P^{(i)}$, then $G \in P^{(i+1)}$.

Intuitively, Long Games \Rightarrow High Rank
Consider some G at the start of some round i in the P/D game. Note there are an even number of vertices and charged part of even size.

1. $G \in P^{(i)}$:

 1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.
Consider some G at the start of some round i in the P/D game. Note there are an even number of vertices and charged part of even size.

1. $G \in P^{(i)}$:
 1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$.
 By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

2. Assume toward a contradiction: $G \not\in P^{(i+1)}$:
 2.1 By def: We have $a^T G > b$ where $a^T x \leq b$ has rank $i + 1$.
Consider some G at the start of some round i in the P/D game. Note there are an even number of vertices and charged part of even size.

1. $G \in P^{(i)}$:
 1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$.
 By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

2. Assume toward a contradiction: $G \notin P^{(i+1)}$:
 2.1 By def: We have $a^T G > b$ where $a^T x \leq b$ has rank $i + 1$.
 2.2 Let $a'^T x \leq b'$ have rank i s.t. for some $q, r \in \mathbb{Z}, 0 < r < q$,
 2.2.1 $a'[u,v] = qa[u,v]$
 2.2.2 $b' = qb+r$
Consider some G at the start of some round i in the P/D game. Note there are an even number of vertices and charged part of even size.

1. **$G \in P^{(i)}$:**
 1.1 By constr: For $u, v \notin C_i$, G is the average of $(G(u, v), G(u, v)) \in S(G)$. By assmp, $S(G) \subseteq P^{(i)}$, so $G \in P^{(i)}$.

2. Assume toward a contradiction: $G \notin P^{(i+1)}$:
 2.1 By def: We have $a^T G > b$ where $a^T x \leq b$ has rank $i + 1$.
 2.2 Let $a'^T x \leq b'$ have rank i s.t. for some $q, r \in \mathbb{Z}, 0 < r < q$,
 2.2.1 $a'[u,v] = qa[u,v]$
 2.2.2 $b' = qb + r$
 2.3 Then, $G \in P^{(i)} \Rightarrow a'^T G \leq b' < q(b + 1) \Rightarrow b < a^T G < b + 1$. By constr: $a^T G = b + \frac{1}{2}$.
We have: $a^T G = b + \frac{1}{2}$
Prot Lemma Proof

We have: $a^T G = b + \frac{1}{2}$

Since $a \in \mathbb{Z}^m$, then

$$\sum_{(u,v) \in \mathcal{U}^2} a[u,v] + \sum_{u \in \mathcal{U}, w \in C} a[u,w] \equiv 1 \pmod{2},$$

else $a^T G$ would be integral.
Prot Lemma Proof

We have: \(a^T G = b + \frac{1}{2} \)

Since \(a \in \mathbb{Z}^m \), then

\[
\sum_{(u,v) \in \mathcal{U}^2} a[u, v] + \sum_{u \in \mathcal{U}, w \in \mathcal{C}} a[u, w] \equiv 1 \pmod{2},
\]

else \(a^T G \) would be integral.

Claim: This implies \(\exists (u, v) \in \mathcal{U}^2 \) s.t.

\[
a[u, v] + \sum_{w \in \mathcal{C}} a[u, w] + \sum_{w \in \mathcal{C}} a[v, w] \equiv 1 \pmod{2}.
\]

Proof: Formal proof is a bit lengthy. High-level idea: Suppose not, then can show some fixed part of \(G \) has both even and odd size.
Fix \((u, v)\) as implied by prev.

Look at sum over three groups of edges:

1. \((A)\): all edges between two charged vertices,
2. \((B)\): edges enumerated in defn of \((u, v)\) (those induced in one round of P/D),
3. \((C)\): rest of the edges in \(G\).
1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color $1/2$. So B is half-integral, and $A + C$ is integral.
1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color $1/2$. So B is half-integral, and $A + C$ is integral.
2. Consider $(G(u, v), G(u, v)) \in S(G)$:
1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color $1/2$. So B is half-integral, and $A + C$ is integral.

2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 2.1 By defn: Only differ from G on edges in B.
Prot Lemma Proof

1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color $1/2$. So B is half-integral, and $A + C$ is integral.

2. Consider $(G(u, v), G(u, v)) \in S(G)$:
 2.1 By defn: Only differ from G on edges in B.
 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''
1. $|B| \equiv 1 \pmod{2}$, and all $e \in B$ have color $1/2$. So B is half-integral, and $A + C$ is integral.

2. Consider $(G(u, v), G(u, v)) \in S(G)$:

 2.1 By defn: Only differ from G on edges in B.

 2.2 Let $a^T G(u, v) = A + B' + C$ and $a^T G(u, v) = A + B'' + C$ for some B', B''

 2.3 Then, B', B'' are integral since their edges are colored in the new graphs.
1. \(|B| \equiv 1 \pmod{2}\), and all \(e \in B\) have color \(1/2\). So \(B\) is half-integral, and \(A + C\) is integral.

2. Consider \((G(u, v), G(u, v)) \in S(G)\):
 2.1 By defn: Only differ from \(G\) on edges in \(B\).
 2.2 Let \(a^T G(u, v) = A + B' + C\) and \(a^T G(u, v) = A + B'' + C\) for some \(B', B''\).
 2.3 Then, \(B', B''\) are integral since their edges are colored in the new graphs.

3. Therefore, the numbers \(a^T G(u, v), a^T G(u, v)\) are integral and (from before) less than \(b + 1\).
1. \(|B| \equiv 1 \pmod{2}\), and all \(e \in B\) have color \(1/2\). So \(B\) is half-integral, and \(A + C\) is integral.

2. Consider \((G(u, v), G(u, v)) \in S(G)\):
 - 2.1 By defn: Only differ from \(G\) on edges in \(B\).
 - 2.2 Let \(a^T G(u, v) = A + B' + C\) and \(a^T G(u, v) = A + B'' + C\) for some \(B', B''\).
 - 2.3 Then, \(B', B''\) are integral since their edges are colored in the new graphs.

3. Therefore, the numbers \(a^T G(u, v), a^T G(u, v)\) are integral and (from before) less than \(b + 1\).

4. Therefore, they are at most \(b\).
Prot Lemma Proof

1. \(|B| \equiv 1 \pmod{2}\), and all \(e \in B\) have color \(1/2\). So \(B\) is half-integral, and \(A + C\) is integral.

2. Consider \((G(u, v), G(u, v)) \in S(G)\):
 2.1 By defn: Only differ from \(G\) on edges in \(B\).
 2.2 Let \(a^T G(u, v) = A + B' + C\) and \(a^T G(u, v) = A + B'' + C\) for some \(B', B''\).
 2.3 Then, \(B', B''\) are integral since their edges are colored in the new graphs.

3. Therefore, the numbers \(a^T G(u, v), a^T G(u, v)\) are integral and (from before) less than \(b + 1\).

4. Therefore, they are at most \(b\).

5. As \(G\) is their average, \(a^T G \leq b\), contradicting the assumption \(G \notin P^{(i+1)}\). \(\square\)
A Delayer Strategy to Force Long Games

We need an AWESOME strategy for DELAYER, and we’re done!
We need an AWESOME strategy for DELAYER, and we’re done!

1. **DEFN**: A diagonal pair of vertices is any pair \(\{2m - 1, 2m\}\) for \(m \in [2^{k/2-1}]\).

2. A diagonal edge is an edge between a diagonal pair of vertices.
A Delayer Strategy to Force Long Games

We need an AWESOME strategy for DELAYER, and we’re done!

1. **DEFN:** A diagonal pair of vertices is any pair \(\{2m - 1, 2m\} \) for \(m \in \left[2^{k/2} - 1\right]\).

2. A diagonal edge is an edge between a diagonal pair of vertices.

3. We need the existence of a certain graph with extremal Ramsey properties for DELAYER to use!
CLAIM: There is a complete graph H, all edges colored either red or blue, s.t.

1. there is no monochromatic clique of size k,
2. above holds even if the colors of diagonal edges are toggled arbitrarily,
3. for any diagonal pair of vertices \(\{2m - 1, 2m\} \) and any vertex \(a < 2m - 1 \), the color of \((a, 2m - 1)\) and \((a, 2m)\) are DIFF
We show \(H \) exists using the Prob Method.
We show H exists using the Prob Method.

1. For all $i \in [2^{k/2-1}]$ and $v < 2i - 1$, color $(v, 2i - 1)$ uniformly at random; set $(v, 2i)$ to the opposite
We show H exists using the Prob Method.

1. For all $i \in [2^{k/2} - 1]$ and $v < 2i - 1$, color $(v, 2i - 1)$ uniformly at random; set $(v, 2i)$ to the opposite.

2. We want to count the prob that k-size subsets have both a BLUE and RED edge that are not between diagonal pairs.
Io’s Method

We show H exists using the Prob Method.

1. For all $i \in [2^{k/2-1}]$ and $v < 2i - 1$, color $(v, 2i - 1)$ uniformly at random; set $(v, 2i)$ to the opposite

2. We want to count the prob that k-size subsets have both a BLUE and RED edge that are not between diagonal pairs.

3. **DEFN:** K_0 – family of sets of k vertices with no diagonal pair

4. **DEFN:** K_1 – family of sets of k vertices where (only) the LEAST two vertices are diagonal
Fix \(n = 2^{k/2} \). Then,

\[
\Pr[H \text{ has a monochromatic } k-\text{clique}] \\
\leq |K_0| \frac{2}{2^\binom{k}{2}} + |K_1| \frac{2}{2^\binom{k}{2} - 1}
\]

\[
\leq \frac{2}{2^\binom{k}{2}} \left[2^k \binom{n/2}{k} + 2^{k-1} \binom{n/2}{k - 1} \right] < 1.
\]

Therefore, some such \(H \) exists! \(\square \)
Putting It All Together

AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices \((2i - 1, 2i)\) onto vertices \((2i - 1, 2i)\) of \(H\).
AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices \((2i - 1, 2i)\) onto vertices \((2i - 1, 2i)\) of \(H\).

2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)

Therefore: The P/D game continues for \(e^{\text{def}} = 2^k / 2 - 1\) rounds.

Therefore: \(G_{e - 1} \subseteq P_1\), \(G_{e - 2} \subseteq P_2\), \[2120x2073\], \(G_0 \subseteq P_e\).

Therefore: Ramsey's theorem has CP Rank at least \(e = \Omega(2^k)\).
AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices \((2i - 1, 2i)\) onto vertices \((2i - 1, 2i)\) of \(H\).
2. Let PROVER color these diagonal edges however he wants. *(NO ONE CARES WHAT YOU DO, PROVER)*
3. Color the remaining edges according to \(H\). \(\square\)
AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices \((2i - 1, 2i)\) onto vertices \((2i - 1, 2i)\) of \(H\).

2. Let PROVER color these diagonal edges however he wants. *(NO ONE CARES WHAT YOU DO, PROVER)*

3. Color the remaining edges according to \(H\). □

THEREFORE: The P/D game continues for \(e \overset{\text{def}}{=} 2^{k/2-1}\) rounds.
AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices \((2i - 1, 2i)\) onto vertices \((2i - 1, 2i)\) of \(H\).

2. Let PROVER color these diagonal edges however he wants. *(NO ONE CARES WHAT YOU DO, PROVER)*

3. Color the remaining edges according to \(H\). □

THEREFORE: The P/D game continues for \(e \equiv \frac{2^k}{2^k - 1}\) rounds.

THEREFORE: \(G_e \subseteq P_0\). So, by the Prot Lemma, \(G_{e-1} \subseteq P_1\), \(G_{e-2} \subseteq P_2\), \ldots, \(G_0 \subseteq P_e\).
AWESOME DELAYER STRATEGY:

1. In each round, map the new charged vertices \((2i - 1, 2i)\) onto vertices \((2i - 1, 2i)\) of \(H\).

2. Let PROVER color these diagonal edges however he wants. (NO ONE CARES WHAT YOU DO, PROVER)

3. Color the remaining edges according to \(H\).

\[
\text{THEREFORE: The P/D game continues for } e \overset{\text{def}}{=} 2^{k / 2 - 1} \text{ rounds.}
\]

\[
\text{THEREFORE: } G_e \subseteq P_0. \text{ So, by the Prot Lemma, } \\
G_{e-1} \subseteq P_1, G_{e-2} \subseteq P_2, \cdots, G_0 \subseteq P_e.
\]

\[
\text{THEREFORE: Ramsey’s theorem has CP Rank at least } e = \Omega(2^k).
\]
Thanks for listening!