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EXAMPLES

The following are known EXAMPLES of the kind of theorems we
will be talking about.

1. If there are n points in R? then there is a subset of size
Q(n'/3) such that all distances between points are
DIFFERENT. (KNOWN)

2. If there are n points in R?, no 3 collinear, then there is a

subset of size Q((log log n)/18%) such that all triangle areas
are DIFFERENT. (OURS)
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An Erdos Problem Plus Plus

Definition:

1. hpq(n) is the largest integer so that the following happens:
For all subsets of RY of size n there is a subset Y of size
ha 4(n) such that all distances are DIFFERENT.

2. h, 4(n) is the largest integer so that the following happens:
For all subsets of RY of size n, no a on the same
(a — 1)-hyperplane, there is a subset Y of size h, 4(n) such
that all a-volumes are DIFFERENT.

3. h, q(a) where g < o < 2% makes sense.

4. Erdos, others studied hy 4(n). Little was known about h, 4(n).
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BEST KNOWN RESULTS AND OURS

BEST KNOWN RESULTS:
1. hy g(n) = Q(n'/(39=2)). Torsten (1995).
2. haa(n) = Q(n'/3/log n). Charalambides (2012).
3. (AC) hpg(a) = a. Erdés (1950)
4. (AC) If « regular than h, 4(a) = .
OUR RESULTS (FEB 2013):
1. hyg(n) > Q(n'/(®9)). (Uses Canonical Ramsey)
2. h3a(n) > Q((loglog n)'/18) (Uses Canonical Ramsey)
3. h33(n) > Q((loglog n)'/3%) (Uses Canonical Ramsey)
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OUR RECENT RESULTS

OUR RECENT RESULTS:
(With David Harris and Douglas Ulrich)

- hoq(n) > Q(nﬁ) (Simple Proof!)
- hpg(n) > Q(nﬁ) (Simple Proof PLUS hard known result)

haa(n) > Q(n(Zail)d) (Uses Algebraic Geometry)
. (AC) If a regular then h, g(a) = o (Simple Proof)
. (AD) If « regular then h, 4() = o

A W N
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Standard Canonical Ramsey

Definition Let COL: (If) — w. Let V C [n].
V is homog if (Va < b, c < d)[COL(a, b) = COL(c, d)]

V is min-homog if
(Va < b,c < d)[COL(a, b) = COL(c,d) iff a = ]

V is max-homog if
(Va < b,c < d)[COL(a, b) = COL(c,d) iff b= d|

V is rainbow if
(Va < b,c < d)[COL(a,b) = COL(c,d) iff a= c and b = d]

Theorem: (Lefmann-Rodl, 1995) (Vk)(3n < 20(k*legk)y,

veol : (I = 3V, |V| = k), V is either homog, min-homog,
2

max-homog, or rainbow.
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Variant of Canonical Ramsey

Definition: The set V is weak-homog if either

(Va, b,c,d € V)[COL(a, b) = COL(c, d)]

(Va< b,c<de V)a=c = COL(a,b) = COL(c,d)]
(Va< b,c<deV)b=d = COL(a,b) = COL(c,d)]
(Note: only one direction.)

Definition: WER(k, k2) is least n such that for all
CoL : (['27]) — w either have weak homog set of size k; or
rainbow set of size k.

Theorem: WER(ky, ko) < k200,
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Easy Geom Lemma

Lemma: Let py,...,p, C RY. Let COL be defined by
COL(i,j) = |pi — pj|. Then COL has no weak homog set of size
d—+3.
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POINT 1: hy4(n) > Q(n/(9)) VIA CAN RAMSEY

Theorem: For all d > 1, hy 4(n) = Q(n?/(69).
Proof: Let P = {p1,...,p,} CR?. Let COL: () — R be
defined by COL(i,j) = |pi — pjl-

k is largest integer s.t. n > WER(d + 3, k).
By VARIANT OF CANONICAL RAMSEY k = Q(n'/(69)),

By the definition of WERs3(d + 3, k) there is either a weak homog
set of size d + 3 or a rainbow set of size k.

By GEOMETRIC LEMMA can't be weak homog case.
Hence there must be a rainbow set of size k.
THIS is the set we want!

William Gasarch-U of MD, Sam Zbarsky- Mont. Blair. HS Applications of the Erdos-Rado Canonical Ramsey Theorem to



William Gasarch-U of MD, Sam Zbarsky- Mont. Blair. HS

POINT 2: hs,(n) > Q((log log n)Y/1%) VIA CAN RAMSEY

Theorem: h3 »(n) = Q((log log n)/18%).
Proof: Let P = {p1,...,pn} C R2 Let COL: (J) — R be
defined by COL(i,j, k) = AREA(pi, pj, p«)-

k is largest integer s.t. n > WERs(6, k).
By VARIANT OF CANONCIAL RAMSEY
n > Q((log log n)1/180).

By the definition of WER3(6, k) there is either a weak homog set
of size 6 or a rainbow set of size k.

By HARDER GEOMETRIC LEMMA can't be weak homog case.

Hence there must be a rainbow set of size k.
THIS is the set we want!
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POINT 3: hs3(n) > Q((log log n)V/3%) VIA CAN RAMSEY

Theorem: hs 3(n) = Q((log log n)1/3%).
Proof: Let P = {p1,...,pn} C R3. Let COL: (J) — R be
defined by COL(i,j, k) = AREA(pi, pj, p«)-

k is largest integer s.t. n > WERs3(13, k).
By VARIANT OF CANONICAL RAMSEY
n > Q((log log n)1/39).

By the definition of WER3(13, k) there is either a weak homog set
of size 13 or a rainbow set of size k.

By HARDER GEOMETRIC LEMMA can't be weak homog case.

Hence there must be a rainbow set of size k.
THIS is the set we want!
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AUX RESULT: A} ,(n) > Q(n3) via MAXIMAL SETS

ONWARD to NEW Results

To prove hy 4(n) > Q(n%d) need result on spheres first.

Definition h ,(n) is the largest integer so that the following

happens: For all subsets of S? of size n there is a subset Y of size
h, 4(n) such that all distances are DIFFERENT.

We prove

Theorem For d > 1, H, ,(n) > Q(n%).

Use induction on d. ’
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BASE CASE

Base Case: d = 1. X C S? (acircle). M is the maximal subset of
X with all distances distinct. m = |M]|.
x € X — M. Either

1. (3ue M)(FHur, w2} € (MNIx — u| = |u — wl].
2. (Hun, w2} € (Plx— | = x — o).

Map X — M to M x (¥)u (¥). Map is < 2-to-1.

o (£)o()

M| = Q(n'/3).
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INDUCTION STEP

X C S99 M a a maximal subset of X.
x € X — M. Either

1. (3ue M)(FHur, o} € (M)x — u = |u1 — wa].
2. (Hur, o} € (Y))Ix — w] = [x — o).

Map X — M to M x (A;) U (I\le) Two cases based on param 4.
Case 1: (VB € co-domain)[|map~1(B)| < n’]. Map is < n°-to-1.

)
\X—M\gn‘s‘Mx( YU (5 )‘.Hencemzﬂ(nl?sé).
)

Case 2: (3B € co-domain)[|map~1(B)| > n’].
KEY: map~(B) C S9~. By IH have set of size Q(n®/3(¢-1),

Take § = =1 to obtain Q(n'/37) in both cases.
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BETTER AUX RESULT: hj 4(n) > Q(n%)

Lemma (Charalambides)
1. h 4(n) > Q(n1/3).
2. hyg(n) > Q(n'/3).
Theorem For d > 2, k) 4(n) > Q(n3d 3).

Only change is the BASE CASE.
Start at d = 2. Use Charalambides result that h) 4(n) > Q(n'/3).
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NEW RESULT: hy4(n) > Q(n53) via MAXIMAL SETS

Theorem For d > 2, hy 4(n) > Q(nTlf?’).

Induction on d.

Base Case: Use Charalambides result that hy 4(n) > Q(n'/3).
Induction Step: Similar to that in lower bound for hj ,(n).
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NOTES ON THE PROOF

1) Contrast:
> H, 4(n) Induction Step reduces 5% to S9°1.
» h,4(n) Induction Step reduces RY to RY~1 OR S9-1.

I1) KEY: In prove that hy 4(n) > Q(nﬁ) we need that inverse
image of map was S9~1 or RY~1.

I11) Two views of result:

1 . . .
> hy 4(n) > Q(n3d) via self contained elementary techniques.

> hy q(n) > Q(nﬁ) via using hard known result.
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hs 4(n) ATTEMPT
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Theorem Attempt: For all d > 2, h3 4(n) > LET'S FIND OUT!
Base Case: d =2. X C R?, no 3 collinear. M is the maximal
subset of X with all areas diff. m = |M]|.

x € X — M. Either

(H{ w1, w2} € (I;/,))(H{U3, us} € (g’))
AREA(x, u1, u2) = AREA(x, uz, us).
(Hun, w2} € (5))Clus, s, us) € ()

AREA(x, u1, uz) = AREA(us, ug, us).

Map X — M to (5) x () U (3) x (5).

Need Nice Inverse Images. DO NOT HAVE THAT!
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Definition of h, 4 ,(n)

Definition: Let 1 <a<d+ 1. Let r € N. h, 4, is the largest
integer so that the following happens: For all varieties V of
dimension d and degree r (in complex proj space), for all subsets
of V of size n, no a points in the same (a — 1)-hyperplane, there is
a subset Y of size hp 4 ,(n) such that all a-volumes are
DIFFERENT.
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Theorem about h, 4(n)

1
Theorem Let 1 <a<d+1. Let r € N. h,q,(n) > Q(nG-149).
(The constant depends on a,d,r.)
Comments on the Proof

1. Proof uses Algebraic Geometry in Proj Space over C.
2. Cannot define Volume in Proj space!

3. Can define VOL(a, b, c) # VOL(d, e, f) via difference of
determinents (a homog poly) being 0.

4. Proof uses Maximal subsets.

Corollary Let 1 <a<d+1. Let r € N. h,q4(n) > Q(n(hil)d).
(The constant depends on a, d.)
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h,.4(a) Under AC

Theorem: (AC) Rg < o < 2%, « regular, then had(a) = . We
do h3 case.

X C R?, no 3 collinear. M is a maximal subset of X. m = |M|.
x € X — M. Either

(Hun, w2} € () FHus, ua} € (V)

AREA(x, u1, us) = AREA(x, us, ug)
(3{ur, w2} € (5))(3Hus, ua, us} € (5))

AREA(x, u1, up) = AREA(u3, ug, us)

Map X — M to (%) x (M) U (%) x (¥). Assume M| < a.
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h,4(a) = a Cases of Proof

Case 1: (VB € co-domain)[|map~1(B)| < a]. Contradicts
regularity.

Case 2: (3B € co-domain)[|map~%(B)| = a.

KEY: Using Determinant Def of AREA, any such B is alg variety.
Let By be one such B. Can show B; C X.

Repeat procedure on Bj. If get Case 1—DONE. If not get alg
variety B, C By C X,

If process does not stop then have

XDBlDBQDB3---

Contradicts Hilbert Basis Theorem.
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Theorem: (AD+DC) If Ry < o < 2% and « is regular then for all
1<a<d+1, hyg(e) = .
Proof omitted for space.
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Open Questions

1. Get better lower bounds and ANY non-trivial upper bounds
on h, 4(n).

2. What is h, 4(a) for a singular? What axioms will be needed
to prove results (e.g., AC, AD, DC)?

3. (DC) Assume a = 2% is regular. We have
AC — h, 4(a)) = a. We have AD — h, 4(a) = a. What if we
have neither AC or AD?
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