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Ramsey’s Theorem For Graphs

Theorem: (∀k)(∃n) for every COL :
([n]

2

)
→ [c] there is a homog

set of size k.

What if the number of colors was unbounded?

Do not necc get a homog set since could color EVERY edge
differently. But then get infinite rainbow set.
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Attempt

Theorem: (∀k)(∃n) for every COL :
([n]

2

)
→ ω there is either a

homog or rainbow set of size k.
FALSE:

I COL(i , j) = min{i , j}.
I COL(i , j) = max{i , j}.
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Min-Homog, Max-Homog, Rainbow

Definition: Let COL :
([n]

2

)
→ ω. Let V ⊆ [n].

I V is homogenous if COL(a, b) = COL(c , d) iff TRUE .

I V is min-homogenous if COL(a, b) = COL(c , d) iff a = c .

I V is max-homogenous if COL(a, b) = COL(c , d) iff b = d .

I V is rainbow if COL(a, b) = COL(c , d) iff a = c and b = d .
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One-Dim Can Ramsey Theorem

Definition: Let COL :
([n]

1

)
→ ω. Let V ⊆ [n].

I V is homogenous if COL(a) = COL(c) iff TRUE .

I V is rainbow if COL(a) = COL(c) iff a = c .

We write the next Theorem in an odd way to make it conform to
the a-ary Can Ramsey Theorem.

Theorem: Let COL :
([k2]

1

)
→ ω. Then there exists either a homog

set or a rainbow set of size k.
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Canonical Ramsey Theorem for Graphs

Theorem: (∀k)(∃n) for all COL :
([n]

2

)
→ ω there is either

I an homog set of size k,

I an min-homog set of size k,

I an max-homog set of size k,

I a rainbow set of size k.
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I -homog for a-hypergraphs

Definition: Let COL :
([n]

a

)
→ ω. Let V ⊆ [n]. Let I ⊆ [a]. The

set V is I -homog if for all x1 < · · · < xa ∈
([n]

a

)
and

y1 < · · · < ya ∈
([n]

a

)
,

COL(x1, . . . , xa) = COL(y1, . . . , ya) iff (∀i ∈ I )[xi = yi ].
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Canonical Ramsey Theorem for a-hypergraphs

Theorem: (∀a)(∀k)(∃n) for all COL :
([n]

a

)
→ ω there exists

I ⊆ [a] and V ⊆ [n], |V | = k and V is I -homog.

Definition: ERa(k) is the least n that works.

Note: ER1(k) ≤ k2.
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Definition:

Γ0(k) = k, Γa+1(k) = 2Γa(k).
Recall:

I R1(k) = 2k − 1 ≤ Γ0(O(k))

I Ra(k) ≤ Γa−1(O(k)). (Constant depends on a.)

I Rc
a (k) ≤ Γa−1(O(k)). (Constant depends on a, c .)
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GOAL

We give MANY proofs of:

I Can Ramsey for graphs.

I Can Ramsey for a-hypergraphs.

We note

I Ease of proof.

I Bound on ERa(k) in terms of Γ.
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PROOF ONE: The 2-ary Case

This is original proof due to Erdos-Rado (1950)‘
This proof:

I Bounds ER2(k) using ER1 and R4

I Bounds ERa(k) using ERa−1 and R2a.

I Shows ERa(k) ≤ Γa2−1(O(k2)).
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Proof of Can Ramsey Theorem for Graphs

Given COL :
([n]

2

)
→ ω define COL′ :

([n]
4

)
→ [16]

1. If COL(x1, x2) = COL(x1, x3) then COL′(x1, x2, x3, x4) = 1.

2. If COL(x1, x2) = COL(x1, x4) then COL′(x1, x2, x3, x4) = 2.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1, x2, x3, x4) = 3.

4. If COL(x1, x2) = COL(x2, x4) then COL′(x1, x2, x3, x4) = 4.

5. If COL(x1, x2) = COL(x3, x4) then COL′(x1, x2, x3, x4) = 5.

6. If COL(x1, x3) = COL(x1, x4) then COL′(x1, x2, x3, x4) = 6.

7. If COL(x1, x3) = COL(x2, x3) then COL′(x1, x2, x3, x4) = 7.

8. If COL(x1, x3) = COL(x2, x4) then COL′(x1, x2, x3, x4) = 8.

9. If COL(x1, x3) = COL(x3, x4) then COL′(x1, x2, x3, x4) = 9.

10. If COL(x1, x4) = COL(x2, x3) then COL′(x1, x2, x3, x4) = 10.

11. If COL(x1, x4) = COL(x2, x4) then COL′(x1, x2, x3, x4) = 11.

12. If COL(x1, x4) = COL(x3, x4) then COL′(x1, x2, x3, x4) = 12.

13. If COL(x2, x3) = COL(x2, x4) then COL′(x1, x2, x3, x4) = 13.

14. If COL(x2, x3) = COL(x3, x4) then COL′(x1, x2, x3, x4) = 14.

15. If COL(x2, x4) = COL(x3, x4) then COL′(x1, x2, x3, x4) = 15.
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Finish up the proof

If NONE of the above then COL′(x1, x2, x3, x4) = 16.

CLASS DO IN GROUPS: Cases 1-15. Some use One-Dim Can
Ramsey.

If color is 16 get Rainbow EASILY.

ER2(k) ≤ R4(ER1(k)) ≤ R4(k
2) ≤ Γ3(O(k2)).

I GOOD- All cases EASY.

I GOOD- Rainbow case trivial.

I BAD- number of cases is large.

I BAD- Proof yields ER2(k) ≤ Γ3(O(k2)) LARGE!
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PROOF ONE: The a-ary Case

List all unordered pairs of elements of
(2a

a

)
.

COL′(x1, . . . , x2a) is the least i such that the ith pair is equal.

Else color it
((2a

a )
2

)
+ 1. (Get rainbow EASILY.)

Need to prove it this works.

When get Homog set {h1, h2, h3, . . . hr} actually take
{ha, h2a, h3a, . . .}. We ignore this in the analysis.
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Proof by Example

I need a number a

I need two subsets of [2a]

(i1, i2, i3, i4, i5) and (j1, j2, j3, j4, j5)
such that some coordinates are the same.
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Proof by Example

a = 5.
(1, 5, 7, 9, 10) and (2, 5, 6, 8, 10)

COL(x1, x5, x7, x9, x10) = COL(x2, x5, x6, x8, x10)

Define COL′(x , y) = COL(−, x ,−,−, y) (Here is where we use
{ha, h2a, . . .}.)
Easy: COL′ is well defined. Apply ER2. Say Max-homog.

COL(y1, y2, y3, y4, y5) = COL(z1, z2, z3, z4, z5) iff

COL′(y2, y5) = COL′(z2, z5)(Def of COL′) iff

y5 = z5 (COL′ is Max-homog).

SO get {5}-homog
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Proof by Harder Example

a = 7.
(1, 2, 7, 8, 10, 11, 13) and (2, 3, 7, 8, 9, 11, 14)

COL(x1, x2, x7, x8, x10, x11, x13) = COL(x2, x3, x7, x8, x9, x11, x14)

Define COL′(x , y , z) = COL(−,−x , y ,−, z ,−)
COL′ is well defined (HW). If get {1, 3}-homog.

COL(y1, y2, y3, y4, y5, y6, y7) = COL(z1, z2, z3, z4, z5, z6, z7) iff

COL′(y3, y4, y6) = COL′(z3, z4, z6) (Def of COL′) iff

y3 = z3 AND y6 = z6 (COL′ is {1, 3}-homog).

SO get {3, 6}-homog.
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Upshot and PROS/CONS

Arity: 2a

Number of colors: c =
((2a

a )
2

)
+ 1.

Get ERa(k) ≤ Rc
2a(ERa−1(k)) Can show

ERa(k) ≤ Γa2−1(O(k2))

I GOOD- All cases EASY.

I GOOD- Rainbow case trivial.

I BAD- number of cases is large.

I BAD- ERa(k) ≤ Γa2−1(O(k2)). LARGE!
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