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Grid Coloring

Notation: If n ∈ N then [n] is the set {1, . . . , n}.

Definition
Gn,m is the grid [n]× [m].

1. Gn,m is c-colorable if there is a c-coloring of Gn,m such that
no rectangle has all four corners the same color.

2. χ(Gn,m) is the least c such that Gn,m is c-colorable.
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Examples

A FAILED 2-Coloring of G4,4

R B B R
B R R B
B B R R
R R R B

A 2-Coloring of G4,4

R B B R
B R R B
B B R R
R B R B
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Example: a 3-Coloring of G(10,10)

EXAMPLE: A 3-Coloring of G10,10

R R R R B B G G B G

R B B G R R R G G B

G R B G R B B R R G

G B R B B R G R G R

R B G G G B G B R R

G R B B G G R B B R

B G R B G B R G R B

B B G R R G B G B R

G G G R B R B B R B

B G B R B G R R G G

It is known that CANNOT 2-color G10,10. Hence χ(G10,10) = 3.
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Obstruction Sets

Fenner-Gasarch-Glover-Purewall [FGGP] showed:

1. For all c there exists OBSc , a finite set of grids, such that

Gn,m is c-colorable iff no element of OBSc is inside Gm,n.

2. FGGP have a proof which shows |OBSc | ≤ 2c2.

3. If OBSc is known then the set of c-colorable grids is
completely characterized.
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OBS-2 and OBS-3 Known

FGGP showed

OBS2 = {G3,7,G5,5,G7,3}
OBS3 = {G4,19,G5,16,G7,13,G10,11,G11,10,G13,7,G16,5,G19,4}

2-colorability table. C for Colorable, U for Uncolorability.

2 3 4 5 6 7

2 C C C C C C
3 C C C C C U
4 C C C C C U
5 C C C U U U
6 C C C U U U
7 C U U U U U
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4-Colorability

1. FGGP did not (as of 2009) determine OBS4.

2. FGGP had reasons to think G17,17 is 4-colorable but they did
not have a 4-coloring.

3. In 2009 Gasarch offered a prize of $289.00 for the first person
to email him a 4-coloring of G17,17.

4. Brian Hayes, Scientific American Math Editor, popularized the
challenge.
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Challenge Was Hard

1. Lots of people worked on it.

2. No progress.

3. Finally solved in 2012 by Bernd Steinbach and Christian
Posthoff [SP]. Clever, and SAT-solver, but did not generalize.

4. They and others also found colorings that lead to
OBS4 = {

G5,41,G6,31,G7,29,G9,25,G18,23,G11,22,G13,21,G17,19,
G41,5,G31,6,G29,7,G25,9,G23,18,G22,11,G21,13,G19,17

}
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Is Grid Coloring Hard?

We view this two ways:

1. Is there an NP-complete problem lurking here somewhere?
YES!

2. Is there a Prop Statement about Grid Coloring whose
resolution proof requires exp size? YES!
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Part I of Talk—NP Completeness of GCE

THERE IS AN NP-COMPLETE PROBLEM
LURKING!
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Grid Coloring Hard!-NP stuff

1. Let c ,N,M ∈ N. A partial mapping χ of N ×M to {1, . . . , c}
is a extendable to a c-coloring if there is an extension of χ to
a total mapping which is a c-coloring of N ×M.

2.
GCE = {(N,M, c , χ) | χ is extendable}.

GCE is NP-complete!
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GCE is NP-complete

φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm is a 3-CNF formula. We determine
N,M, c and a partial c-coloring χ of N ×M such that

φ ∈ 3-SAT iff (N,M, c , χ) ∈ GCE
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Forcing a Color to Only Appear Once in Main Grid

G

G

R G

G

G

G

G G G G G G G G G

G can only appear once in the main grid, where it is, but what
about R? (The double lines are not part of the construction. They
are there to separate the main grid from the rest.)
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Forcing a Color to Only Appear Once in Main Grid

R G

R G

R R G

R G

R G

R G

R G G G G G G G G G

R G R R R R R R R R

G can only appear once in the main grid, where it is. R cannot
appear anywhere in the main grid.
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Using Variables

D means that the color is some distinct, unique color.

D D D D D D D D D D D

x1 D D D D D D D D T F

x1 D D D D D D T F T F

x1 D D D D T F T F D D

x1 D D T F T F D D D D

x1 T F T F D D D D D D

x1 T F D D D D D D D D

The labeled x1, x1 are not part of the grid. They are visual aids.
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Coding a Clause

C1 = L1 ∨ L2 ∨ L3. Where L1, L2, L3 are literals (vars or their
negations).

· · · D T T
...

...
...

...

L1 · · · D F
...

...
...

...

L2 · · ·
...

...
...

...

L3 · · · F D
...

...
...

...

The L1, L2, L3 are not part of the grid. They are visual aids.
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Coding a Clause—More Readable

C1 = L1 ∨ L2 ∨ L3.
D T T

L1 D F

L2

L3 F D

One can show that

I If put any of TTT, TTF, TFT, FTT, FFT, FTF, TFF in first
column then can extend to full coloring.

I If put FFF in first column then cannot extend to a full
coloring.
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Example: (F,F,T)

C1 = L1 ∨ L2 ∨ L3.
D T T

L1 F D F

L2 F ∗
L3 T F D

The * is forced to be T .
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Example: (F,F,T)

C1 = L1 ∨ L2 ∨ L3.
D T T

L1 F D F

L2 F ∗ T

L3 T F D

The * is forced to be F .
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Example: (F,F,T)

C1 = L1 ∨ L2 ∨ L3.
D T T

L1 F D F

L2 F F T

L3 T F D
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Other Assignments

1. We did (F ,F ,T ).

2. (F ,T ,F ), (T ,F ,F ) are similar.

3. (F ,T ,T ), (T ,F ,T ), (T ,T ,F ), (T ,T ,T ) are easier.
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Cannot Use (F,F,F)

C1 = L1 ∨ L2 ∨ L3. Want that (F ,F ,F ) CANNOT be extended to
a coloring.

D T T

L1 F D F

L2 F ∗ ∗
L3 F F D

The *’s are forced to be T .
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Cannot Use (F,F,F)

D T T

L1 F D F

L2 F T T

L3 F F D

There is a mono rectangle of T ’s. NOT a valid coloring!
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Put it all Together

Do the above for all variables and all clauses to obtain the result
that GRID EXT is NP-complete!
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Big Example

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

C1 C1 C2 C2 C3 C3

D D D D D D D D D D D T T T T T T

x4 D D D D D D D D T F D D D D D F

x4 D D D D D D D D T F D D D F D D

x3 D D D D D D T F D D D D D D D D

x3 D D D D T F T F D D D D D D

x3 D D D D T F D D D D D F D D

x2 D D T F D D D D D D D D F D D D

x2 D D T F D D D D D D D D D D

x1 T F D D D D D D D D D D D D F D

x1 T F D D D D D D D D F D D D D D
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Does this Explain why the Challenge was Hard?

1. MAYBE NOT: GCE is Fixed Parameter Tractable: For fixed c
GCEc is in time O(N2M2 + 2O(c4)). But for c = 4 this is
huge!

2. MAYBE NOT: Our result says nothing about the case where
the grid is originally all blank.
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KEY to O(N2M2 + 2O(c4)) Result

Lemma Let χ be a partial c-coloring of Gn,m. Let U be the
uncolored grid points. Let |U| = u. There is an algorithm that will
determine if χ can be extended to a full c-coloring that runs in
time O(cnm22u) = 2O(nm).
Sketch: For S ⊆ U and 1 ≤ i ≤ c let

f (S , i) =

{
YES if χ can be extended to S using colors {1, . . . , i};
NO if not.

For S ⊆ U and 1 ≤ i ≤ c use Dynamic Programming to compute
f (S , i). f (U, c) is your answer.
End of Sketch
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Computing f (S , i)

Assume that (∀S ′, |S ′| < |S |)(∀1 ≤ i ≤ c)[f (S ′, i) is known].

1. For all 1-colorable T ⊆ S do the following

1.1 If f (S − T , i) = NO then f (S , i) = NO and STOP.
1.2 If f (S − T , i − 1) = YES then determine if coloring T with i

works. If yes then f (S , i) = YES and STOP. Note that this
takes O(nm).

2. We know that for all 1-colorable T ⊆ S f (S − T , i) = YES
and either
(1) f (S − T , i − 1) = NO or
(2) f (S − T , i − 1) = YES and coloring T with i bad.
In all cases f (S , i) = NO.
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Open Questions

1. Improve Fixed Parameter Tractable algorithm.

2. NPC results for mono squares? Other shapes?

3. Show that

{(n,m, c) : Gn,m is c-colorable }

is hard.
I If n,m in unary then sparse set, not NPC—New framework for

hardness needed.
I If n,m binary then not in NP. Could try to prove

NEXP-complete. But we the difficulty of the problem is not
with the grid being large, but with the number-of-possibilities
being large.
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Part II of Talk—Lower Bounds on Tree Resolution

YOU SAY YOU WANT A RESOLUTION!
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Resolution

Definition
Let ϕ = C1 ∧ · · · ∧ CL be a CNF formula. A Resolution Proof of
ϕ /∈ SAT is a sequence of clauses such that on each line you have
either

1. One of the C ’s in ϕ (called an AXIOM).

2. A∨B if A∨ x and B ∨¬x were on prior lines. Variable that is
resolved on is x .

3. The last line has the empty clause.
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Example

ϕ = x1 ∧ x2 ∧ (¬x1 ∨ ¬x2)

1. x1 (AXIOM)

2. ¬x1 ∨ ¬x2 (AXIOM)

3. ¬x2 (From lines 1,2, resolve on x1.)

4. x2 (AXIOM)

5. ∅ (From lines 3,4, resolve on x2.)
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Resolution is Complete

Definition
Let ϕ = C1 ∧ · · · ∧ CL be a CNF formula on n variables.

1. If exists a Res Proof of ϕ /∈ SAT then ϕ /∈ SAT .
Proof: Any assignment that satisfies ϕ satisfies any node of
the Res Proof including the last node ∅.

2. If ϕ /∈ SAT then exists a Res Proof of ϕ /∈ SAT of size 2O(n).
Proof: Form a Decision Tree that has at every node on level i
the variable xi . Right=T and Left=F . A leaf is the first
clause that is false with that assignment. Turn Decision Tree
upside down! View nodes as which var to resolve on! This will
be Res Proof! (It will even be Tree Res Proof.)
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Another Example

The AND of the following:

1. For i , j ∈ {1, . . . , 5}
xij1 ∨ xij2.

Interpretation: (i , j) is colored either 1 or 2.

2. For i , j , i ′, j ′ ∈ {1, . . . , 5}

¬xij1 ∨ ¬xi ′j1 ∨ ¬xij ′1 ∨ ¬xi ′j ′1

Interpretation: There is no mono 1-rectangle.

3. For i , j , i ′, j ′ ∈ {1, . . . , 5}

¬xij2 ∨ ¬xi ′j2 ∨ ¬xij ′2 ∨ ¬xi ′j ′2

Interpretation: There is no mono 2-rectangle.

We interpret this statement as saying
There is a 2-coloring of G5,5.

This statement is known to be false.
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GRID(n,m,c)

Definition
Let n,m, c ∈ N. GRID(n,m, c) is the AND of the following:

1. For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

xij1 ∨ xij2 ∨ · · · ∨ xijc

Interpretation: (i , j) is colored either 1 or · · · or c .

2. For i , i ′ ∈ {1, . . . , n}, j , j ′ ∈ {1, . . . ,m}, k ∈ {1, . . . , c},

¬xijk ∨ ¬xi ′jk ∨ ¬xij ′k ∨ ¬xi ′j ′k

Interpretation: There is no mono rectangle.

We interpret this statement as saying
There is a c-coloring of Gn,m.

NOTE: GRID(n,m, c) has nmc VARS and O(cn2m2) CLAUSES.
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GRID(n,m,c)—How to View Assignments

Given an assignment:

1. For all i ∈ [n] and j ∈ [m] let k be the LEAST number such
that xijk = T . View this as saying that (i , j) is colored k.

2. If there is NO such number then (i , j) is not colored and this
assignment makes GRID(n,m, c) FALSE.

Hence we view assignments as attempted colorings of the grid
where some points are not colored.
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Two Ways to Invalidate GRID(n,m,c)

1. There is a mono rectangle.

2. There is some point that is not colored: there is some i , j such
that all xijk are FALSE.
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Tree Resolution Proofs

Definition
A Tree Res Proof is a Res Proof where the underlying graph is a
tree. Note that if you remove the bottom node that is labeled ∅
then the Tree Res Proof is cut into two disjoint parts.

Known: If ϕ /∈ SAT and ϕ has v variables then there is a Tree Res
Proof of ϕ of size 2O(v).
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Our Goal

Assume that there is no c-coloring of Gn,m.

1. GRID(n,m, c) has a size 2O(cnm) Tree Res Proof.

2. We show 2Ω(c) size is REQUIRED. THIS IS OUR POINT!

3. The lower bound is IND of n,m.
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Interesting Examples

1. Fenner et al [FGGP] showed that G2c2−c,,2c is not c-colorable.
Hence

GRID(2c2 − c , 2c)

has O(c3) vars, O(c6) clauses but 2Ω(c) Tree Res proof.

2. Easy to show Gc3,c3 is not c-colorable.

GRID(c3, c3, c)

has O(c7) vars, O(c13) clauses and 2Ω(c) Tree Res proof.

These are poly-in-c formulas that require 2Ω(c) Tree Res proofs.
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The Prover-Delayer Game

(Due to Pudlak and Impagliazzo [PI].) Parameters of the game:
p ∈ R+,

ϕ = C1 ∧ · · · ∧ CL /∈ SAT .

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.

2. DEL either

2.1 Sets x to F or T , OR
2.2 Defers to PROVER who then sets x to T or F while DEL gets

a point.

At end if DEL has ≥ p pts then he WINS; else PROVER WINS.
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Convention

We assume that PROVER and DEL play perfectly.

1. PROVER wins means PROVER has a winning strategy.

2. DEL wins means DEL has a winning strategy.
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Prover-Delayer Game and Tree Res Proofs

Lemma
Let p ∈ R+, ϕ /∈ SAT. If ϕ has a Tree Res Proof of size < 2p then
PROVER wins.

Proof.
PROVER Strategy:

1. Initially T is res tree of size < 2p and DEL has 0 pts.

2. PROVER picks x , the LAST var resolved on.

3. If DEL sets x then DEL gets no pts.

4. If DEL defers then PROVER sets T or F—whichever yields a
smaller tree. NOTE: One of the trees will be of size < 2p−1.
DEL gets 1 point.

5. Repeat: after ith stage will always have T of size < 2p−i , and
DEL has ≤ i pts.
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smaller tree. NOTE: One of the trees will be of size < 2p−1.
DEL gets 1 point.

5. Repeat: after ith stage will always have T of size < 2p−i , and
DEL has ≤ i pts.
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Contrapositive is Awesome!

Recall:

Lemma
Let p ∈ R+, ϕ /∈ SAT. If ϕ has a Tree Res Proof of size < 2p then
PROVER wins.

Contrapositive:

Lemma
Let p ∈ R+, ϕ /∈ SAT. If DEL wins then EVERY Tree Res Proof
for ϕ has size ≥ 2p.

PLAN: Get AWESOME strategy for DEL when ϕ = GRID(n,m, c).
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GRID(n,m,c) Requires Exp Tree Res Proofs

Theorem
Let n,m, c be such that Gn,m is not c-colorable. Let c ≥ 2. Any
tree resolution proof of GRID(n,m, c) /∈ SAT requires size 20.5c .

PROOF: Parameters: p = 0.5c , ϕ = GRID(n,m, c).

Daniel Apon—U of MD, William Gasarch—U of MD, Kevin Lawler—PermanentThe Complexity of Grid Coloring



Del Strategy

Assume xijk was chosen by the PROVER.

1. If setting xijk = T creates a mono rect (of color k) then DEL
DOES NOT let this happen— he sets xijk to F .

2. If none of the xij∗ are T and ≥ c
2 of the xij∗ are F via

PROVER then DEL sets xijk to T .

3. In all other cases the DEL defers to the PROVER.
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Case 1: Prover Set c/2 Vars to F

Game ends when there is some i , j such that

xij1 = xij2 = · · · = xijc = F .

Who set those variables to F?

Case 1: At least c
2 set F by Prover. Then DEL gets at least

0.5c pts.
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Case 2: Del Set c/2 Vars to F

xij1 = xij2 = · · · = xijc = F . Who set those vars to F?
Case 2: At least c

2 set F by DEL. Assume they are
xij1, xij2, . . . , xijc/2.

I xij1 set to F by DEL. Why? There exists i ′, j ′ such that
xi ′j1, xij ′1, xi ′j ′1 all set to T . (Do not know by who.)

I xij2 set to F by DEL. Why? There exists i ′′, j ′′ such that
xi ′′j2, xij ′′2, xi ′′j ′′2 all set to T . (Do not know by who.)

I etc.

For every k such that xijk is set to F by DEL there exists THREE
vars of form x∗∗k set to T .
KEY: All these 3-sets are DISJOINT, so at least 3c/2 vars set T
(by who?).
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Case 2a: Prover Set 3c/2 Vars to T

KEY: At least 3c/2 vars set T (by who?).
Case 2a: PROVER set ≥ 3c

4 to T . DEL gets at least

0.75c = 0.75c pts.
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Case 2b: Del Set 3c/2 Vars To T

Case 2b: DEL set ≥ 3c
4 to T .

DEL set xijk to T :

I At time there are c/2 k ′ such that PROVER set xijk ′ to F .

I DEL will NEVER set an xij∗ to T again! NEVER!!

Every xijk set T by DEL implies that c/2 vars set F by PROVER,
and these sets of c/2 vars are disjoint.
UPSHOT: PROVER had set 3c

4 × c
2 to F . DEL gets at least

0.375c2 = 0.375c2 pts.
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Final Analysis

I Case 1: DEL gets at least 0.5c pts.

I Case 2a: DEL gets at least 0.75c pts.

I Case 2b: DEL gets at least 0.375c2 pts.

UPSHOT: For c ≥ 2 DEL gets at least 0.5c pts.
PUNCHLINE: By Lemma any Tree Res Proof has size ≥ 20.5c .
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Optimize

1. In construction use cutoff of c/2 for when DEL sets xijk to T .
Choose fraction CAREFULLY!

2. In analysis we twice do a half-half cutoff. Choose fractions
CAREFULLY!

3. Use asymmetric PROVER-DEL game (next slide) and choose
a, b CAREFULLY!

Theorem
Let n,m, c be such that Gn,m is not c-colorable. Let c ≥ 9288.
Any tree resolution proof of GRID(n,m, c) /∈ SAT requires size
20.836c .
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Asymmetric Prover-Delayer Game

(Due to Beyersdorr, Galesi, Lauria [BGL].) Parameters of the
game: a, b ∈ (1,∞), with 1

a + 1
b = 1, p ∈ R+,

ϕ = C1 ∧ · · · ∧ CL /∈ SAT .

Do the following until a clause is proven false:

1. PROVER picks a variable x that was not already picked.

2. DEL either

2.1 Sets x to F or T , OR
2.2 Defers to PROVER.

2.2.1 If PROVER sets x = F then DEL gets lg a pts.
2.2.2 If PROVER sets x = T then DEL gets lg b pts.

At end if DEL has ≥ p pts then he WINS; else PROVER WINS.

Daniel Apon—U of MD, William Gasarch—U of MD, Kevin Lawler—PermanentThe Complexity of Grid Coloring



Other Shapes

What is special about rectangles? NOTHING!

Definition
(Informally) Let S be a set of at least 2 grid points. Let
GRID(n,m, c ;S) be the prop statement that there is a c-coloring
of Gn,m with no mono configuration that is “like S”.

Theorem
(Informally) Let S be a set of at least 2 grid points. Let n,m, c be
such that GRID(n,m, c ;S) /∈ SAT. Any tree resolution proof of
GRID(n,m, c ;S) /∈ SAT requires size 2Ω(c).
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Open Questions

1. Want matching upper bounds for Tree Res Proofs of
GRID(n,m, c) /∈ SAT .

2. Want lower bounds on Gen Res Proofs of
GRID(n,m, c) /∈ SAT .

3. Want lower bounds on in other proof systems
GRID(n,m, c) /∈ SAT .

4. Upper and lower bounds for GRID(n,m, c ;S) for various S in
various proof systems.
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