
Homework 1 SOLUTIONS. Was due Morally Tue Feb 5, 2013
COURSE WEBSITE: http://www.cs.umd.edu/̃gasarch/858/S13.html
(The symbol before gasarch is a tilde.)

1. (10 points) What is your name? Write it clearly. Staple your HW.
When is the midterm (give Date and Time)? If you cannot make it
in that day/time see me ASAP. Join the Piazza group for the course.
The codename is cmsc858. Look at the link on the class webpage
about projects. Come see me about a project. READ the note on the
class webpage that say THIS YOU SHOULD READ that you haven’t
already read.

2. (20 points) Recall that the a-ary infinite Ramsey Theorem dealt with
colorings of

(
N
a

)
. We have only dealt with a ≥ 2.

(a) Formulate the 1-ary infinite Ramsey Theorem, for c colors, and
prove it.

(b) Formulate the ω-ary infinite Ramsey Theorem. (Extra Credit-
prove or disprove it.)

SOLUTION TO PROBLEM 2

The key to this problem was to DEFINE homog sets.

1) Given COL :
(
N
1

)
→[2], a homog set is a set of numbers that are all

colored the same. Hence the statement is:

For all COL :
(
N
1

)
→[2] there is an infinite subset A ⊆ N such that all

the elements of A are colored the same.

OR, if you defined homog you could just say

For all COL :
(
N
1

)
→[2] there is an infinite homog subset A ⊆ N.

2) Given COL :
(
N
ω

)
→[2], a homog set is an infinite set A such that all

infinite subsets of A are colored the same. Hence the statement is:

For all COL :
(
N
ω

)
→[2] there is an infinite subset A ⊆ N such that all

subsets of A are colored the same.

OR, if you defined homog you could just say

For all COL :
(
N
ω

)
→[2] there is an infinite homog subset A ⊆ N.
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3. (40 points) State and prove (rigorously) the c-color a-ary Ramsey The-
orem. Your statement should start out for all a ≥ 1, for all c ≥ 1, . . ..
The proof should be by induction on a with the base case being a = 1.

Omitted- very similar to what we did in class.

4. (40 points) Show (rigorously) that there exists a computable 2-coloring
of

(
N
2

)
with no c.e.-in-HALT homog set. (HINT- the proof is very

similar to the one you saw in class. Instead of looking at We,s you look
at WHALTs

e,s .) (NOTE- I ALLOW THE FOLLOWING TECHNICAL
ASSUMPTION: if WHALT

e is a c.e.-in-HALT set then it can only change
its mind finitely often on any one number. Formally: For every x there
is an s0 ∈ N such that one of the two holds:

(1) (∀s ≥ s0)[x ∈ WHALTs
e,s ]

(2) (∀s ≥ s0)[x /∈ WHALTs
e,s ].

)

SOLUTION TO PROBLEM 4

The construction is similar to the one I did in class: just replace We,s

with WKs
e,s . But the proof that it works needs some serious changes.

I do the proof as though its the proof I did in class and then say where
it differs.

We show that each requirement is eventually satisfied.

For pedagogue we first look at R1.

If WK
1 is finite then R1 is satisfied.

Assume WK
1 is infinite. We show that RK

1 is satisfied. Let x < y be
the least two elements in WK

1 . Let s0 be the least number such that

x, y ∈ W
Ks0
1,s0

.

NO NO NO!!!!- It could be that for some later s ≥ s0 we have x, y /∈
WKs

1,s . ALSO it is possible that for some later s ≥ s0 some SMALLER

values x′, y′ are in WKs
1,s and they will be the ones whose edges to s get

colored.

It is ESSENTIAL to take x0 such that

• x, y ∈ W
Ks0
1,s0
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• (∀s ≥ s0)[x, y ∈ WKs
1,s ].

• (∀s ≥ s0)[0, . . . , x− 1, x + 1, x + 2, . . . , y − 1 /∈ WKs
1,s ].

NOW we have that, for ALL s ≥ s0:

COL(x, s) = RED

COL(y, s) = BLUE

Since WK
1 is infinite there is SOME s ≥ s0 with s ∈ WKs

e,s . Hence
x, y, s ∈ WK

1 and show that WK
1 is NOT homogenous.

Can we show R2 is satisfied the same way? Yes but with a caveat-
we won’t use the least two elements of WK

2 . We’ll use the least two
elements of WK

2 that are bigger than the least two elements of WK
1 .

We now do this rigorously and more generally.

Claim: For all e, Re is satisfied:

Proof: Fix e. If WK
e is finite then Re is satisfied.

Assume WK
e is infinite. We show that Re is satisfied. Let x1 < x2 <

· · · < x2e be the first (numerically) 2e elements of WK
e . Let s0 be the

least number such that

• x1, . . . , xe ∈ W
Ks0
1,s0

• (∀s ≥ s0)[x1, . . . , xe ∈ WKs
1,s ].

• (∀s ≥ s0)(∀z ∈ [x2e]− {x1, . . . , x2e}[z /∈ WKs
1,s ].

KEY: for all s ≥ s0, during stage s, the requirements R1, . . . , Re−1 may
define COL(x, s) for some of the x ∈ {x1, . . . , x2e}. But they will NOT
define COL(x, s) for ALL of those x. Why? Because Ri only defines
COL(x, s) for at most TWO of those x’s, and there are e − 1 such i,
so at most 2e − 2 of those x’s have COL(x, s) defined. Hence there
will exist x, y such that Re gets to define COL(x, s) and COL(y, s).
Furthermore, they will always be the SAME x, y since the Ri with
i < e have already made up their minds about the x in {x1, . . . , x2e}.
UPSHOT: There exists x, y ∈ WK

e such that, for all s ≥ s0,

COL(x, s) = RED

COL(y, s) = BLUE
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Since WK
e is infinite there is SOME s ≥ s0 with s ∈ WK

e . Hence
x, y, s ∈ WK

e and show that We is NOT homogenous.
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