The Infinite Ramsey Theorem (An Exposition)

William Gasarch-U of MD
Notation

1. K_N is the graph (V, E) where

 \[V = N \]
 \[E = \binom{N}{2} \]

2. K^a_N is the hypergraph (V, E) where

 \[V = N \]
 \[E = \binom{N}{a} \]

3. A \textit{coloring of a graph} is a coloring of the edges of the graph. A \textit{coloring of a hypergraph} is a coloring of the edges of the hypergraph.
Definition

1. Let $c \in \mathbb{N}$. Let COL be a c-coloring of the edges of K_N. Let $V' \subseteq V$. The set V' is *homogenous* if there exists a color c such that EVERY edge between vertices in V' is colored c.

2. Let $c \in \mathbb{N}$. Let COL be a c-coloring of the edges of K_N^a. Let $V' \subseteq V$. The set V' is *homogenous* if there exists a color c such that EVERY edge that uses only vertices of V' is colored c.

William Gasarch-U of MD
The Infinite Ramsey Theorem (An Exposition)
Theorem: For every 2-coloring of the edges of K_N there is an infinite homogenous set.

Proof: COL is a 2-coloring of K_N. We define an infinite sequence of vertices,

$$x_1, x_2, \ldots,$$

and an infinite sequence of sets of vertices,

$$V_0, V_1, V_2, \ldots,$$

that are based on COL. See next slide
Ramsey’s Theorem For Graphs—CONSTRUCTION

\(V_0 = \mathbb{N} \)
\(x_1 = 1 \)

\(c_1 = \begin{cases} \text{RED} & \text{if } |\{v \in V_0 \mid \text{COL}(v, x_1) = \text{RED}\}| \text{ is infinite} \\ \text{BLUE} & \text{otherwise} \end{cases} \)
\(V_1 = \{v \in V_0 \mid \text{COL}(v, x_1) = c_1\} \) (note that \(|V_1| \) is infinite)

Let \(i \geq 2 \). Assume \(V_{i-1} \) is defined. We define \(x_i, c_i, \) and \(V_i \):

\(x_i = \) the least number in \(V_{i-1} \)

\(c_i = \begin{cases} \text{RED} & \text{if } |\{v \in V_{i-1} \mid \text{COL}(v, x_i) = \text{RED}\}| \text{ is infinite} \\ \text{BLUE} & \text{otherwise} \end{cases} \)
\(V_i = \{v \in V_{i-1} \mid \text{COL}(v, x_i) = c_i\} \) (note that \(|V_i| \) is infinite)
Ramsey’s Theorem- the sequence

\(c_1, c_2, \ldots\)

There is an infinite sequence \(i_1, i_2, \ldots\) such that \(i_1 < i_2 < \cdots\) and

\[c_{i_1} = c_{i_2} = \cdots = c\]

\[H = \{x_{i_1}, x_{i_2}, \cdots\}\]

We leave it to the reader to show that \(H\) is homogenous.

End of Proof