
Proving Programs Terminate using
Well Orderings, Ramsey Theory, and Matrices

Exposition by William Gasarch

Abstract

Many programs allow the user to input data several times during its execution.
If the program runs forever the user may input data infinitely often. A program
terminates if it terminates no matter what the user does.

We discuss various ways to prove that program terminates. The proofs use well
orderings, Ramsey Theory, and Matrices. These techniques are used by real program
checkers.

General Terms: Verification, Theory.
Keywords and Phrase: Proving programs terminate, Well Orderings, Ramsey Theory,
Matrices.

1 Introduction

We describe several ways to prove that programs terminate. By this we mean terminate on
any sequence of inputs. The methods employed are well-founded orderings, Ramsey Theory,
and Matrices. This paper is self contained; it does not require knowledge of any of these
topics or of Programming Languages. The methods we describe are used by real program
checkers.

Our account is based on the articles of B. Cook, Podelski, and Rybalchenko [12, 13,
14, 33, 34, 35, 36] Lee, Jones, and Ben-Amram [29, 30]. Termination checkers that use the
methods of B. Cook, Podelski, and Rybalchenko include ARMC [40], Loopfrog [27], and
Terminator [11]. Earlier Terminator checkers that used methods from [30] are Terminlog
[31] and Terminweb [9]. Termination checkers that use the methods of Lee, Jones, and
Ben-Amram include ACL2 [1], AProVE [2], and Julia [3].

Convention 1.1 The statement The Program Terminates means that it terminates no mat-
ter what the user does. The user will be supplying inputs as the program runs; hence we are
saying that the user cannot come up with some (perhaps malicious) inputs that make the
program run forever.

In the summary below we refer to Programs which appear later in the paper.

1. Section 3: We prove Program 3 terminates using the well founded order (N,≤). We
then state Theorem 3.2 that encapsulates this kind of proof.

2. Section 4: We prove Program 4 terminates using the well founded order (N×N×N×
N, <lex), where <lex is the lexicographic ordering, and Theorem 3.2.

1



3. Section 5: We prove Program 4 terminates using Ramsey’s Theorem. We then state
Theorems 5.5 and Theorem 5.6 which encapsulates this kind of proof.

4. Section 6: We prove Program 4 terminates using Ramsey’s Theorem (via Theorem 5.5)
and matrices. We then state and prove Theorems 6.4 and 6.5 that encapsulates this
kind of proof.

5. Section 7: We prove Program 5 terminates using Ramsey’s Theorem (via Theorem 5.6)
and transition invariants. We then state Theorem 7.3 that encapsulates this kind of
proof. It seems difficult to obtain a proof that Program 5 terminates without using
Ramsey’s Theorem.

6. Section 8: We prove Program 5 terminates using Ramsey’s Theorem and Matrices.
Program 5 has some properties that make this a good illustration.

7. Section 9: We prove Program 6 terminates using Ramsey’s Theorem and transition
invariants. Program 6 has some properties that make this a good illustration.

8. Section 10: The proofs of Theorems 5.4, 5.5, and 5.6 only used Ramsey’s Theorem for
Transitive colorings. We show, in three ways, that this subcase of Ramsey’s theorem
is strictly weaker than the full Ramsey’s Theorem.

9. Section 11: We examine some cases of program termination that are decidable and
some that are undecidable.

10. Section 12: We discuss open problems.

11. In the Appendix we present an interesting example by Ben-Amram.

2 Notation and Definitions

Notation 2.1

1. N is the set {0, 1, 2, 3, . . . , }. All variables are quantified over N. For example For all
n ≥ 1 means for all n ∈ {1, 2, 3, . . . , }.

2. Z is the set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}.

3. Q is the set of rationals.

4. R is the set of reals.

Notation 2.2

2



1. In a program the command

x = Input(N)

means that x gets an integer provided by the user.

2. More generally, if A is any set, then

x = Input(A)

means that x gets a value from A provided by the user.

3. If we represent the set A by listing it out we will write (for example)

x = Input(y, y + 2, y + 4, y + 6, . . .)

rather than the proper but cumbersome

x = Input({y, y + 2, y + 4, y + 6, . . .}

All of the programs we discuss do the following: initially the variables get values supplied
by the user, then there is a While loop. Within the While loop the user can specify which
one of a set of statements get executed through the use of a variable called control. We focus
on these programs for two reasons: (1) programs of this type are a building block for more
complicated programs, and (2) programs of this type can already do some things of interest.
We give a very general example.

Let n, m ∈ N. Let gi as 1 ≤ i ≤ m be computable functions from Zn+1 to Zn. Program 1
is a general example of the programs we will be discussing.

We define this type of program formally. We call it a program though it is actually a
program of this restricted type. We also give intuitive comments in parenthesis.

Def 2.3

1. A program is a tuple (S, I, R) where the following hold.

• S is a decidable set of states. (If (x1, . . . , xn) are the variables in a program and
they are of types T1, . . . , Tn then S = T1 × · · · × Tn.)

• I is a decidable subset of S. (I is the set of states that the program could be in
initially.)

• R ⊆ S × S is a decidable set of ordered pairs. (R(s, t) iff s satisfies the condition
of the While loop and there is some choice of instruction that takes s to t. Note
that if s does not satisfy the condition of the While loop then there is no t such
that R(s, t). This models the While loop termination condition.)

2. A computation is a (finite or infinite) sequence of states s1, s2, . . . such that

• s1 ∈ I.

• For all i such that si and si+1 exist, R(si, si+1).

3



Program 1

Comment : X i s (x[1], . . . , x[n])
Comment : The gi are computable f unc t i on s from Zn+1 to Zn

X = (Input(Z), Input(Z), . . . , Input(Z))
While x[1] > 0 and x[2] > 0 and · · · x[n] > 0

con t r o l = Input(1, 2, 3, ...,m)
i f c on t r o l==1
X = g1(X, Input(Z))

else
i f c on t r o l==2
X = g2(X, Input(Z))

else
.
.
.

else
i f c on t r o l==m
X = gm(X, Input(Z))

• If the sequence is finite and ends in s then there is no pair in R that begins with
s. Such an s is called terminal.

3. A program terminates if every computation of it is finite.

4. A computational segment is a sequence of states s1, s2, . . . , sn such that, for all 1 ≤ i ≤
n− 1, R(si, si+1). Note that we do not insist that s1 ∈ I nor do we insist that sn is a
terminal state.

Consider Program 2.

Program 2

(x, y) = (Input(Z), Input(Z))
While x > 0

con t r o l = Input(1, 2)
i f c on t r o l == 1

(x, y) = (x + 10, y − 1)
else
i f c on t r o l == 2

(x, y) = (y + 17, x− 2)

Program 2 can be defined as follows:

• S = I = Z× Z.

4



Program 3

(x, y, z) = (Input(Z), Input(Z), Input(Z))
While x > 0 and y > 0 and z > 0

con t r o l = Input(1, 2, 3)
i f c on t r o l == 1 then

(x, y, z) = (x + 1, y − 1, z − 1)
else
i f c on t r o l == 2 then

(x, y, z) = (x− 1, y + 1, z − 1)
else
i f c on t r o l == 3 then

(x, y, z) = (x− 1, y − 1, z + 1)

• R = {(x, y), (x + 10, y − 1) : x, y ≥ 1}
⋃
{(x, y), (y + 17, x− 2) : x, y ≥ 1}.

Def 2.4 An ordering T is well founded if every set has a minimal element. Note that if T is
well founded then there are no infinite descending sequences of elements of T .

3 A Proof Using the Ordering (N,≤)

To prove that every computation of Program 3 is finite we need to find a quantity that,
during every iteration of the While Loop, decreases. None of x, y, z qualify. However, the
quantity x + y + z does. We use this in our proof.

Theorem 3.1 Every computation of Program 3 is finite.

Proof:
Let

f(x, y, z) =

{
0 if any of x, y, z are ≤ 0;

x + y + z otherwise.
(1)

Before every iteration of the While loop f(x, y, z) > 0. After every iteration of the
While loop f(x, y, z) has decreased. Eventually there will be an iteration such that, after
it executes, f(x, y, z) = 0. When that happens the program terminates.

The keys to the proof of Theorem 3.1 are (1) x+y+z decreases with every iteration, and
(2) if ever x + y + z = 0 the the program has terminated. There is a more general theorem
lurking here, which we state below without proof. Our statement uses a different notation
than the original, due to Floyd [17].

Theorem 3.2 Let PROG = (S, I, R) be a program. Assume there is a well founded order
(P, <P ), and a map f : S → P such that the following occurs.

5



Program 4

(w, x, y, z) = (Input(Z), Input(Z), Input(Z), Input(Z))
While w > 0 and x > 0 and y > 0 and z > 0

con t r o l = Input(1, 2, 3)
i f c on t r o l == 1 then

x = Input(x + 1, x + 2, . . .)
w = w − 1

else
i f c on t r o l == 2 then

y = Input(y + 1, y + 2, . . . , )
x = x− 1

else
i f c on t r o l == 3 then

z = Input(z + 1, z + 2, . . .)
y = y − 1

1. If R(s, t) then f(t) <P f(s).

2. If the program is in a state s such that f(s) is a minimal element of P , then the
program terminates.

Then any computation of PROG is finite.

4 A Proof Using the Ordering (N× N× N× N, <lex)

To prove that every computation of Program 4 is finite we need to find a quantity that,
during every iteration of the While Loop, decreases. None of x, y, z qualify. No arithmetic
combination of w, x, y, z qualifies.

Def 4.1 Let P be an ordering and k ≥ 1. The lexicographic ordering on P k is the ordering

(a1, . . . , ak) <lex (b1, . . . , bk)

if for the least i such that ai 6= bi, ai < bi.

Example 4.2 In the ordering (N4, <lex)

(1, 10, 10000000000, 99999999999999) <lex (1, 11, 0, 0).

Theorem 4.3 Every computation of Program 4 is finite.

6



Proof:
Let

f(w, x, y, z) =

{
(0, 0, 0, 0) if any of w, x, y, z are ≤ 0;

(w, x, y, z) otherwise.
(2)

We will be concerned with the order (N4, <lex). We use the term decrease with respect
to <lex.

We show that both premises of Theorem 3.2 hold.
Claim 1: In every iteration of the While loop f(w, x, y, z) decreases.
Proof of Claim 1:

Consider an iteration of the While loop. There are three cases.

1. control=1: w decreases by 1, x increases by an unknown amount, y stays the same,
z stays the same. Since the order is lexicographic, and w is the first coordinate, the
tuple decreases no matter how much x increases.

2. control=2: w stays the same, x decreases by 1, y increases by an unknown amount,
z stays the same. Since the order is lexicographic, w is the first coordinate and stays
the same, and x is the second coordinate and decreases, the tuple decreases no matter
how much y increases.

3. control=3: w stays the same, x stays the same, y decreases by 1, z increases by an
unknown amount. This case is similar to the two other cases.

End of Proof of Claim 1
Claim 2: If f(w, x, y, z) = (0, 0, 0, 0) then the program has halted.
Proof of Claim 2:

If f(w, x, y, z) = (0, 0, 0, 0) then one of w, x, y, z is ≤ 0. Hence the While loop condition
is not satisfied and the program halts.
End of Proof of Claim 2

By Claim 1 and 2 both premises of Theorem 3.2 are satisfied. Hence Program 4 termi-
nates.

5 A Proof Using Ramsey’s Theorem

In the proof of Theorem 4.3 we showed that during every single step of Program 4 the
quantity (w, x, y, z) decreased with respect to the ordering <lex. The proof of termination
was easy in that we only had to deal with one step but hard in that we had to deal with the
lexicographic order on N× N× N× N rather than just the ordering N.

In this section we will prove that Program 4 terminates in a different way. We will not
need an ordering on 4-tuples. We will only deal with w, x, y, z individually. However, we will
need to prove that, for any computational segment, at least one of w, x, y, z decreases.

We will use the infinite Ramsey’s Theorem [38] (see also [19, 20, 28]) which we state here.

7



Notation 5.1

1. If n ≥ 1 then Kn is the complete graph with vertex set V = {1, . . . , n}.

2. KN is the complete graph with vertex set N.

Def 5.2 Let c, n ≥ 1. Let G be Kn or KN. Let COL be a c-coloring of the edges of G. A
set of vertices V is homogeneous with respect to COL if all the edges between vertices in V
are the same color. We will drop the with respect to COL if the coloring is understood.

Infinite Ramsey’s Theorem:

Theorem 5.3 Let c ≥ 1. For every c-coloring of the the edges of KN there exists an infinite
homogeneous set.

Theorem 5.4 Every computation of Program 4 is finite.

Proof:
We first show that for every finite computational segment one of w, x, y will decrease.

There are several cases.

1. If control=1 ever occurs in the segment then w will decrease. No other case makes w
increase, so we are done. In all later cases we can assume that control is never 1 in the
segment.

2. If control=2 ever occurs in the segment then x decreases. Since control=1 never occurs
and control=3 does not make x increase, x decreases. In all later cases we can assume
that control is never 1 or 2 in the segment.

3. If control=3 is the only case that occurs in the segment then y decreases.

We show Program 4 terminates. Assume, by way of contradiction, that there is an infinite
computation. Let this computation be

(w1, x1, y1, z1), (w2, x2, y2, z2), . . . .

Since in every computational segment one of w, x, y decrease we have that, for all i < j,
either wi > wj or xi > xj or yi > yj. We use this to create a coloring of the edges of KN.
Our colors are W, X, Y . In the coloring below each case assumes that the cases above it did
not occur.

COL(i, j) =


W if wi > wj;

X if xi > xj;

Y if yi > yj.

(3)

8



By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

such that

COL(i1, i2) = COL(i2, i3) = · · · .

(We actually know more. We know that all pairs have the same color. We do not need
this fact here; however, see the note after Theorem 5.6.)

Assume the color is W (the cases for X, Y are similar). Then

wi1 > wi2 > wi3 > · · · .

Hence eventually w must be less than 0. When this happens the program terminates.
This contradicts the program not terminating.

The keys to the proof of Theorem 5.4 are (1) in every computational segment one of
w, x, y decreases, and (2) by Ramsey’s Theorem any nonterminating computation leads to
an infinite decreasing sequence in a well founded set. These ideas are from Theorem 1 of [34],
though similar ideas were in [30]. The next theorem, which is a subcases of Theorem 1 of [34],
captures this proof technique.

Theorem 5.5 Let PROG = (S, I, R) be a program of the form of Program 1. Note that
the variables are x[1], . . . , x[n]. If for all computational segment s1, . . . , sn there exists i such
that x[i] in s1 is strictly less than x[i] in sn then any computation of PROG is finite.

To prove that a program terminates we might use some function of the variables rather
than the variables themselves. The next theorem, which is a generalization of Theorem 5.5,
captures this.

Theorem 5.6 Let PROG = (S, I, R) be a program. Assume that there exists well founded
orderings (P1, <1),. . . , (Pm, <m) and functions f1, . . . , fm such that fi : S → Pi. Assume the
following.

1. For all computational segment si, . . . , sj there exists a such that fa(si) >a fa(sj).

2. If the program is in a state s such that, for some k, fk(s) is a minimal element of Pk,
then the program terminates.

Then any computation of PROG is finite.

9



Proof sketch:
Assume, by way of contradiction, that PROG does not terminate. Then there is an

infinite computation. Let this computation be

(s1, s2, s3, . . .)

For all computational segment si, . . . , sj there exists a such that fa(si) >a fa(sj). We
use this to create a coloring of the edges of KN. Our colors are 1, . . . ,m.

COL(i, j) = the least a such that fa(si) >a fa(sj) .

The rest of the proof is similar to the proof of Theorem 5.4.

The proofs of Theorems 5.4, 5.5 and 5.6 do not need the full strength of Ramsey’s
Theorem. Consider Theorem 5.6. For any i, j, k if COL(i, j) = a (so a is the least number
such that fa(si) >a fa(sj)) and COL(j, k) = a (so a is the least number such that fa(sj) >a

fa(sk)) then one can show COL(i, k) = a. Such colorings are called transitive. Hence we
only need Ramsey’s Theorem for transitive colorings. We discuss this further in Section 10.

6 A Proof Using Matrices and Ramsey’s Theorem

Part of the proof of Theorem 5.4 involved showing that, for any finite computational segment
of Program 4, one of w, x, y, z decreases. Can such proofs be automated? Lee, Jones, and
Ben-Amram [30] developed a way to partially automate such proofs. They use matrices and
Ramsey’s Theorem.

We use their techniques to give a proof that Program 4 terminates. We will then discuss
their general technique. Cook, Podelski, Rybalchenko have also developed a way to partially
automate such proofs. We discuss this in Section 7.

Let P be a program with variables x[1], . . . , x[n] and control takes values in {1, . . . , m}.
Let 1 ≤ k ≤ m. Let x[1], . . . , x[n] be the values of the variables before the control=k
code executes and let x[1]′, . . . , x[n]′ be the values of the variables after. In some cases
we know how x[i] relates to x[j]′. We express this information in a matrix. The key will
be that matrix multiplication (defined using (+, min) rather than (×, +)) of two matrices
representing pieces of code will result in a matrix that represents what happens if those
pieces of code are executed one after the other.

• If it is always the case that x[i]′ ≤ x[j] + L then the (i, j) entry of the matrix is L ∈ Z.

• In all other cases the (i, j) entry is ∞. Note that this may well be most of the cases
since we often do not know how x[i]′ and x[j] relate.

10



Example 6.1 We describe the matrices for Program 4.
The matrix for control=1 is

C1 =


−1 ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


The matrix for control=2 is

C2 =


0 ∞ ∞ ∞
∞ −1 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


The matrix for control=3 is

C3 =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −1 ∞
∞ ∞ ∞ ∞


We want to define matrix multiplication such that if C1 is the matrix for control=1 and

C2 is the matrix for control=2 then C1C2 is the matrix for what happens if first the control=1
code is executed and then the control=2 code is executed.

Lets call the variables x[1], . . . , x[n].

1. If C1[i, k] = L1 then x[i] ≤ x[k]′ + L1. If C2[k, j] = L2 then x[k]′ ≤ x[j]′′ + L2. Hence
we know that x[i] ≤ x[j]′′ + (L1 + L2). Therefore we want C1C2[i, j] ≤ L1 + L2 Hence

(∀k)[C1C2[i, j] ≤ C1[i, k] + C2[k, j]].

If we define ∞+ L = ∞ and ∞+∞ = ∞. then this inequality is true even if if L1 or
L2 is infinity

2. Using the above we define

C1C2[i, j] = min
k
{C1[i, k] + C2[k, j]}.

The following theorem, from [30], we leave for the reader.

Lemma 6.2 Let PROG1 and PROG2 be programs that use the variables x[1], . . . , x[n]. (We
think of PROG1 and PROG2 as being what happens in the various control cases.) Let C1 be
the matrix that represent what is known whenever PROG1 is executed. Let C2 be the matrix
that represent what is known whenever PROG2 is executed. Then the matrix produce C1C2

as defined above represents what is known when PROG1 and then PROG2 are executed.

11



Theorem 6.3 Every computation of Program 4 is finite.

Proof:
Let C1, C2, C3 be the matrices that represent the cases of Control=1,2,3 in Program 4 .

(These matrices are in Example 6.1). We show that the premises of Theorem 5.5 hold. To
do this we prove items 0-7 below. Item 0 is easily proven directly. Items 1,2,3,4,5,6,7 are
easily proven by induction on the number of matrices being multiplied.

0. C1C2 = C2C1, C1C3 = C3C1, C2C3 = C3C2.

1. For all a ≥ 1

Ca
1 =


−a ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


2. For all b ≥ 1

Cb
2 =


0 ∞ ∞ ∞
∞ −b ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


3. For all c ≥ 1

Cc
3 =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −c ∞
∞ ∞ ∞ ∞


4. For all a, b ≥ 1

Ca
1Cb

2 =


−a ∞ ∞ ∞
∞ −b ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


5. For all a, c ≥ 1

Ca
1Cc

3 =


−a ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −c ∞
∞ ∞ ∞ ∞


6. For all b, c ≥ 1

Cb
2C

c
3 =


0 ∞ ∞ ∞
∞ −b ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞


12



7. For a, b, c ≥ 1

Ca
1Cb

2C
c
3 =


−a ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


We are interested in any sequence of executions of control=1, control=2, and control=3.

Hence we are interested in any product of the matrices C1, C2, C3. Since the multiplication
of these matrices is commutative we need only concern ourselves with Ca

1Cb
2C

c
3 for a, b, c ∈ N.

In all of the cases below a, b, c ≥ 1.

1. Ca
1 : w decreases.

2. Cb
2: x decreases.

3. Cc
3: y decreases.

4. Ca
1Cb

2: Both w and x decrease.

5. Ca
1Cc

3: Both w and y decrease.

6. Cb
2C

c
3: x decreases.

7. Ca
1Cb

2C
c
3: w decreases.

Hence, for any computational segment s1, . . . , sn of Program 4 either w, x, y, or z de-
creases. Hence by Theorem 5.5 Program 4 terminates.

The keys to the proof of Theorem 6.3 are (1) represent how the old and new variables
relate after one iteration with a matrix, (2) use these matrices and a type of matrix mul-
tiplication to determine that for every computational segment some variable decreases, (3)
use Theorem 5.5 to conclude the program terminates.

The proof technique we used above is quite general. Lee, Jones, and Ben-Amram [30](Theorem
4) have noted the following folk theorem which captures it:

Theorem 6.4 Let PROG = (S, I, R) be a program in the form of Program 1. Let C1, C2, . . . , Cm

be the matrices associated to control=1, . . ., control=m cases. If every product of the Ci’s
yields a matrix with a negative integer on the diagonal then the program terminates.

Proof: Consider computational segment s1, . . . , sn. Let the corresponding matrices be
Ci1 , . . . , Cin . By the premise the product of these matrices has a negative integer on the
diagonal. Hence some variable decreases. By Theorem 5.5 the program terminates.

13



Theorem 6.4 leads to the following algorithm to test if a programs terminates. There is
one step (alas, the important one) which we do not say how to do. If done in the obvious
way it may not halt.

1. Input Program P.

2. Form matrices for all the cases of control. Let them be C1, . . . , Cm.

3. Find a finite set of types of matricesM such that that any product of the Ci’s (allowing
repeats) is in M. (If this step is implemented by looking at all possible products until
a pattern emerges then this step might not terminate.)

4. If all of the elements of M have some negative diagonal element then output YES the
program terminates!

5. If not the then output I DO NOT KNOW if the program terminates!

If all products of matrices fit a certain pattern, as they did in the proof of Theorem 6.3,
then this idea for an algorithm will terminate. Even in that case, it may output I DON”T
KNOW if the program terminates!. However, this algorithm can be used to prove that
some programs terminate, just not all. It cannot be used to prove that a program will not
terminate.

Theorem 6.4 only dealt with how the variables changed. We will need a more general
theorem where we look at how certain functions of the variables change. Note also the next
three theorems are if-and-only-if statements.

Theorem 6.5 Let PROG = (S, I, R) be a program. The following are equivalent:

1. There exists functions f1, . . . , fj such that the following occur.

(a) The associated matrices are A1, A2, . . . , Am describe completely how fi on the
variables before the code is executed compares to fj on the variables after the code
is executed, in the control=1, . . ., control=m cases.

(b) When one of the fi is ≤ 0 then the While loop condition does not hold so the
program stops.

(c) Every product of the Ai’s yields a matrix with a negative integer on the diagonal.

2. Every computation of PROG is finite.

Theorem 6.5 also leads to an algorithm to test if programs of the type we have been
considering halt. This algorithm is similar to the one that follows Theorem 6.4 and hence
we omit it. Similar to that algorithm, this one does not always terminate.

The following extensions of Theorem 6.5 are known. The first one is due to Ben-
Amram [4].

14



Theorem 6.6 Let PROG = (S, I, R) be a program. The following are equivalent:

1. There exists functions f1, . . . , fj such that the following occur.

(a) Items 1.a and 1.b of Theorem 6.5 hold.

(b) For all i, every column of Ai has at most one non-infinity value.

(c) For every product of the Ai’s there is a power of it that has a negative integer on
the diagonal.

Then every computation of PROG is finite.

The condition on the columns turns out to not be necessary. Jean-Yves Moyen [32] has
shown the following.

Theorem 6.7 Let PROG = (S, I, R) be a program. The following are equivalent:

1. There exists f1, . . . , fj, functions such that premises 1.a, 1.b, 1.d of Theorem 6.5 hold.

2. Every computation of PROG is finite.

Is there an example of a program where the matrices have a product that has no negative
on the diagonal, yet by Theorem 6.7 terminates? Yes! Ben-Amram has provided us with an
example and has allowed us to place it in the appendix of this paper.

7 A Proof Using Transition Invariants and Ramsey’s

Theorem

We proved that Program 4 terminates in three different ways. The proof in Theorem 4.3
used that (N × N × N × N, <lex) is a well founded order; however, the proof only had to
deal with what happened during one step of Program 4. The proofs in Theorem 5.4 and
6.3 used the ordering (N,≤) and Ramsey’s Theorem; however, the proofs had to deal with
any computational segment of Program 4. Which proof is easier? This is a matter of taste;
however, all of the proofs are easy once you see them.

We present an example from [34] of a program (Program 5 below) where the proof of
termination using Ramsey’s Theorem is easy. Podelski and Rybalchenko found this proof
by hand and later their termination checker found it automatically. A proof of termination
using a well founded ordering seems difficult to find. Ben-Amram and Lee [5, 29] have shown
that a termination proof that explicitly exhibits a well-founded order can be automatically
derived when the matrices only use entries 0,−1, and ∞. Alas, Program 5 is not of this
type; however, using some manipulation Ben-Amram (unpublished) has used this result to
show that Program 5 terminates. (The proof is in the Appendix.) Hence there is a proof
that Program 5 terminates that uses a well-ordering; however, it was difficult to obtain.

15



Program 5

(x, y) = (Input(Z), Input(Z))
While x > 0 and y > 0

con t r o l = Input(1, 2)
i f c on t r o l == 1 then

(x, y) = (x− 1, x)
else
i f c on t r o l == 2 then

(x, y) = (y − 2, x + 1)

Theorem 7.1 Every computation of Program 5 is finite.

Proof:
We assume that the computational segment enters the While loop, else the program has

already terminated.
We could try to show that, in every computational segment, either x or y decreases. This

statement is true but seems hard to prove directly. Instead we show that either x or y or
x + y decreases. This turns out to be much easier. Intuitively we are loading our induction
hypothesis. We now proceed formally.

We show that both premises of Theorem 5.6 hold with P1 = P2 = P3 = N, f1(x, y) = x,
f2(x, y) = y, and f3(x, y) = x + y. It may seem as if knowing that x + y decreases you know
that either x or y decreases. However, in our proof, we will not know which of x, y decreases.
Hence we must use x, y, and x + y.
Claim 1: For any computational segment, one of x, y, x + y decreases.
Proof of Claim 1:

We want to prove that, for all n ≥ 2, for all computational segment of length n

(x1, y1), (x2, y2), . . . , (xn, yn),

either x1 > xn or y1 > yn or x1 + y1 > xn + yn. However, we will prove something stronger.
We will prove that, for all n ≥ 2, for all computational segment of length n

(x1, y1), (x2, y2), . . . , (xn, yn),

one of the following occurs.

(1) x1 > 0 and y1 > 0 and xn < x1 and yn ≤ x1 (so x decreases),

(2) x1 > 0 and y1 > 0 and xn < y1 − 1 and yn ≤ x1 + 1 (so x + y decreases),

(3) x1 > 0 and y1 > 0 and xn < y1 − 1 and yn < y1 (so y decreases),

(4) x1 > 0 and y1 > 0 and xn < x1 and yn < y1 (so x and y both decreases, though we
just need one of them).

16



(In the note after the proof we refer to the OR of these four statements as the invariant.)
We prove this by induction on n.

Base Case: n = 2 so we only look at one instruction.
If (x2, y2) = (x1 − 1, x1) is executed then (1) holds.
If (x2, y2) = (y1 − 2, x1 + 1) is executed then (2) holds.

Induction Step: We prove Claim 1 for n + 1 assuming it for n. There are four cases, each
with two subcases.

1. xn < x1 and yn ≤ x1.

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < x1 − 1 < x1

• yn+1 = xn < x1

Hence (1) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 ≤ x1 − 2 < x1

• yn+1 = xn + 1 ≤ x1

Hence (1) holds.

2. xn < y1 − 1 and yn ≤ x1 + 1

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1

Hence (3) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 ≤ x1 − 1 < x1

• yn+1 = xn < y1

Hence (4) holds.

3. xn < y1 − 1 and yn < y1

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1.

Hence (3) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

17



• xn+1 = yn − 2 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1

Hence (3) holds.

4. xn < x1 and yn < y1

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < x1 − 1 < x1

• yn+1 = xn < x1

Hence (1) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 < y1 − 2 < y1 − 1.

• yn+1 = xn < x1 < x1 + 1.

Hence (2) holds.

We now have that, for any computational segment either x, y, or x + y decreases.
End of Proof of Claim 1

The following claim is obvious.
Claim 2: If any of x, y, x + y is 0 then the program terminates.

By Claims 1 and 2 the premise of Theorem 5.6 is satisfied. Hence Program 5 terminates.

We can state the invariant differently. Consider the following four orderings on N × N
and their sum.

• T1 is the ordering (x′, y′) <1 (x, y) iff x > 0 and y > 0 and x′ < x and y′ ≤ x.

• T2 is the ordering (x′, y′) <2 (x, y) iff x > 0 and y > 0 and x′ < y − 1 and y′ ≤ x + 1.

• T3 is the ordering (x′, y′) <3 (x, y) iff x > 0 and y > 0 and x′ < y − 1 and y′ < y.

• T4 is the ordering (x′, y′) <4 (x, y) iff x > 0 and y > 0 and x′ < x and y′ < y.

• T = T1 ∪ T2 ∪ T3 ∪ T4. We denote this order by <T .

Note that (1) each Ti is well founded, and (2) for any computational segment

(x1, y1), (x2, y2), . . . , (xn, yn)

we have (x1, y1) <T (xn, yn)
It is easy to see that these properties of T are all we needed in the proof. This is Theorem

1 of [34] which we state and prove.

18



Def 7.2 Let PROG = (S, I, R) be a program.

1. An ordering T , which we also denote <T , on S × S is transition invariant if for any
computational segment s1, . . . , sn we have sn <T s1.

2. An ordering T is disjunctive well-founded if there exists well founded orderings T1, . . . , Tk

such that T = T1 ∪ · · · ∪ Tk. Note that the Ti need not be linear orderings, they need
only be well founded. This will come up in the proof of Theorem 9.1.

Theorem 7.3 [34] Let PROG = (S, I, R) be a program. Every run of PROG terminates
iff there exists a disjunctive well-founded transition invariant.

Proof: We prove that if there is a disjunctive well-founded transition invariant then every
run terminates. The other direction we leave to the reader.

Let T = T1∪· · ·∪Tk be the disjunctive well-founded transition invariant for PROG. Let
<c be the ordering for Tc.

Assume, by way of contradiction, that there is an infinite sequence s1, s2, s3, . . . , such
that each (si, si+1) ∈ R. Define a coloring COL by, for i < j,

COL(i, j) = the least L such that sj <L si.

By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·
such that

COL(i1, i2) = COL(i2, i3) = · · · .

Let that color be L. For notational readability we denote <L by < and >L by >. We
have

si1 > si2 > · · · >
This contradicts < being well founded.

Note 7.4 The proof of Theorem 7.3 seems to need the full strength of Ramsey’s Theorem
(unlike the proof of Theorem 5.6, see the note following its proof). We give an example, due
to Ben-Amram, of a program with a disjunctive well-founded transition invariant where the
coloring is not transitive. Consider Program not-transitive

Program not-transitive

x = Input(Z)
While x > 0

x = x÷ 2

19



It clearly terminates and you can use the transition invariant {(x, x′) : x > x′} to prove it.
This leads to a transitive coloring. But what if instead your transition-invariant-generator
came up with the following rather odd relations instead:

1. T1 = {(x, x′) : x > 3x′}

2. T2 = {(x, x′) : x > x′ + 1}

Note that T1∪T2 is a disjunctive well-founded transition invariant. We show that the coloring
associated to T1 ∪ T2 is not transitive.

• COL(4, 2) = 2. That is, (4, 2) ∈ T2 − T1.

• COL(2, 1) = 2. That is, (2, 1) ∈ T2 − T1.

• COL((4, 1) = 1. That is (4, 1) ∈ T1.

Hence COL is not a transitive coloring.

Note 7.5 If in the premise of Theorem 7.3 all of the Ti’s are linear (that is, every pair of
elements is comparable) then the transitive Ramsey Theorem suffices for the proof.

Finding an appropriate T is the key to the proofs of termination for the termination
checkers Loopfrog [27], and Terminator [11].

8 Another Proof Using Matrices and Ramsey’s Theo-

rem

We prove Program 5 terminates using matrices. The case control=1 is represented by the
matrix

C1 =

(
−1 0
∞ ∞

)
.

The case control=2 is represented by the matrix

C2 =

(
∞ −2
1 ∞

)
.

This will not work! Note that C2 is has no negative numbers on its diagonal. Hence we
cannot use these matrices in our proof! What will we do!? Instead of using x, y we will use
x, y, and x + y. We comment on whether or not you can somehow use C1 and C2 after the
proof.

Theorem 8.1 Every computation of Program 5 is finite.

20



Proof: We will use Theorem 6.5 with functions x, y, and x + y. Note that x + y is not
one of the original variables which is why we need Theorem 6.5 rather than Theorem 6.4.

The control=1 case of Program 5 corresponds to

D1 =

 −1 0 1
∞ ∞ ∞
∞ ∞ ∞


The control=2 case of Program 5 corresponds to

D2 =

 ∞ 1 ∞
−2 ∞ ∞
∞ ∞ −1


We show that the premises of Theorem 6.5 hold. The following are true and easily proven

by induction on the number of matrices being multiplied.

1. For all a ≥ 1

Da
1 =

 −a −a + 1 −a + 2
∞ ∞ ∞
∞ ∞ ∞


2. For all b ≥ 1, b odd, b = 2d− 1,

Db
2 =

 −d ∞ ∞
∞ −d ∞
∞ ∞ −2d


3. For all b ≥ 2, b even, b = 2e,

Db
2 =

 ∞ −e + 1 ∞
−e− 2 ∞ ∞
∞ ∞ −2e− 1


4. For all a, b ≥ 1, b odd, b = 2d− 1.

Da
1D

b
2 =

 −a− d −a− d + 1 −a− 2d + 2
∞ ∞ ∞
∞ ∞ ∞


5. For all a, b ≥ 1, b even, b = 2e.

Da
1D

b
2 =

 −a− e− 1 −a− e + 1 −a− 2e + 1
∞ ∞ ∞
∞ ∞ ∞


21



6. For all a, b ≥ 1, a is odd,

Da
2D

b
1 =

 ∞ ∞ ∞
−(ba/2c+ b + 2 −(ba/2c+ b + 1 −(ba/2c+ b

∞ ∞ ∞


7. If a, b ≥ 1, a is even,

Da
2D

b
1 =

 −(a/2) + b −(a/2) + b− 1 −ba/2c+ b− 2
∞ ∞ ∞
∞ ∞ ∞


We use this information to formulate a lemma.

Convention: If we put < 0 (≤ 0) in an entry of a matrix it means that the entry is some
integer less than 0 (less than or equal to 0). We might not know what it is.
Claim: For all n ≥ 2, any product of n matrices all of which are D1’s and D2’s must be of
one of the following type:

1.  < 0 ≤ 0 ≤ 0
∞ ∞ ∞
∞ ∞ ∞


2.  ∞ ∞ ∞

< 0 < 0 < 0
∞ ∞ ∞


3.  < 0 ∞ ∞

∞ < 0 ∞
∞ ∞ < 0


4.  ∞ < 0 ∞

< 0 ∞ ∞
∞ ∞ < 0


End of Claim

This can be proved easily by induction on n.

One can show that every computation of Program 5 terminates using the original matrices
2 × 2 matrices C1, C2. This requires a more advanced theorem (Theorem 6.7 above). Ben-
Amram has done this and has allowed us to place his proof in the appendix of this paper.

22



9 Another Proof using Transition Invariants and Ram-

sey’s Theorem

Showing Program 6 terminates seems easy: eventually y is negative and after that point x
will steadily decrease until x < 0. But this proof might be hard for a termination checker to
find since x might increases for a very long time. Instead we need to find the right disjunctive
well-founded transition invariant.

Program 6

(x, y) = (Input(Z), Input(Z))
While x > 0

(x, y) = (x + y, y − 1)

Theorem 9.1 Every run of Program 6 terminates.

Proof: We define orderings T1 and T2 which we also denote <1 and <2.

• (x′, y′) <1 (x, y)) iff 0 < x and x′ < x.

• (x′, y′) <2 (x, y)) iff 0 ≤ y and y′ < y′.

Let

T = T1 ∪ T2.

Clearly T1 and T2 are well-founded (though see note after the proof). Hence T is dis-
junctive well-founded. We show that T is a transition invariant.

We want to prove that, for all n ≥ 2, for all computational segment of length n

(x1, y1), (x2, y2), . . . , (xn, yn)

either T1 or T2 holds.
We prove this by induction on n.
We will assume that the computational segment enters the While loop, else the program

has already terminated. In particular, in the base case, x > 0.
Base Case: n = 2 so we only look at one instruction. There are two cases.

If y1 ≥ 0 then y2 = y1 − 1 < y1. Hence (x2, y2) <2 (x1, y1) whatever x1, x2 are.
If y1 < 0 then x2 = x1 + y1 < x1. Hence (x2, y2) <1 (x1, y1) whatever x1, x2 are.

Induction Step: There are four cases based on (1) y ≤ 0 or y > 0, and (2) <1 or <2 holds
between (x1, y1) and (xn, yn). We omit details.

T1 and T2 are partial orders not linear orders. In fact, for both T1 and T2 there are an
infinite number of minimal elements. In particular

23



• the minimal elements for T1 are {(x, y) : x ≤ 0}, and

• the minimal elements for T2 are {(x, y) : y < 0}.

Recall that the definition of a transition invariant, Definition 7.2, allows partial orders. We
see here that this is useful.

10 How Much Ramsey Theory Do We Need?

As mentioned before Podelski and Rybalchenko [36] noted that the proofs of Theorems 5.4, 5.5,
and 5.6 do not need the strength of the full Ramsey’s Theorem. In the proofs of these theo-
rems the coloring is transitive.

Def 10.1 A coloring of the edges of Kn or KN is transitive if, for every i < j < k, if
COL(i, j) = COL(j, k) then both equal COL(i, k).

Def 10.2 Let c, n ≥ 1. Let G be Kn or KN. Let COL be a c-coloring of the edges of G. A set
of vertices V is a monochromatic increasing path with respect to COL if V = {v1 < v2 < · · · }
and

COL(v1, v2) = COL(v2, v3) = · · · .

(If G = Kn then the · · · stop at some k ≤ n.) We will drop the with respect to COL if the
coloring is understood. We will abbreviate monochromatic increasing path by MIP from
now on.

Here is the theorem we really need. We will refer to it as the Transitive Ramsey’s
Theorem.

Theorem 10.3 Let c ≥ 1. For every transitive c-coloring of KN there exists an infinite
MIP.

The Transitive Ramsey Theorem is weaker than Ramsey’s Theorem. We show this in
three different ways: (1) Reverse Mathematics, (2) Computable Mathematics, (3) Finitary
Version.

Def 10.4

1. For all c ≥ 1 let RT (c) be Ramsey’s theorem for c colors.

2. Let RT be (∀c)[RT (c)].

3. For all c ≥ 1 let TRT (c) be the Transitive Ramsey’s theorem for c colors.

4. Let TRT be (∀c)[TRT (c)]. (This is the theorem that we really need.)

24



Reverse Mathematics: Reverse Mathematics [42] looks at exactly what strength of axioms
is needed to prove results in mathematics. A weak axiom system called RCA0 (Recursive
Comprehension Axiom) is at the base. Intuitively a statement proven in RCA0 is proven
constructively.

Notation 10.5

Let A and B be statements.

• A → B means that one can prove B from A in RCA0.

• A ≡ B means that A → B and B → A.

• A 6→ B means that, only using the axioms in RCA0, one cannot prove B from A. It
may still be the case that A implies B but proving this will require nonconstructive
techniques.

The following are known. Items 1 and 2 indicate that the proof-theoretic complexity of
RT is greater than that of TRT .

1. RT → TRT . The usual reasoning for this can easily be carried out in RCA0.

2. Hirschfeldt and Shore [22] have shown that TRT 6→ RT .

3. For all c, RT (2) ≡ RT (c). The usual reasoning for this can easily be carried out in
RCA0. Note how this contrasts to the next item.

4. Cholak, Jockusch, and Slaman [8] showed that RT (2) 6→ (∀c)[RT (c)].

The proof of Theorem 5.4 showed that, over RCA0,

TRT (3) → Program 4 terminates.

Does the following hold over RCA0?

Program 4 terminates → TRT (3).

We do not know.
In the spirit of the reverse mathematics program we ask the following: For each c is there

a program Pc such that the following holds over RCA0?

P terminates ⇐⇒ TRT (c).

The following is open: for which i, j ≥ 2 does TRT (i) → TRT (j)?
Computable Mathematics: Computable Mathematics [16] looks at theorems in math-
ematics that are proven non-effectively and questions if there is an effective (that is com-
putable) proof. The answer is usually no. Then the question arises as to how noneffective
the proof is. Ramsey’s Theorem and the Transitive Ramsey’s Theorem have been studied
and compared in this light [18, 22, 23, 24, 41].

25



Def 10.6 Let M
(··· )
1 , M

(··· )
2 , . . . be a standard list of oracle Turing Machines.

1. If A is a set then A′ = {e : MA
e (e) ↓}. This is also called the Halting problem relative

to A. Note that ∅′ = HALT .

2. A set A is called low if A′ ≤T HALT . Note that decidable sets are low. It is known
that there are undecidable sets that are low; however, they have some of the properties
of decidable sets.

3. We define the levels of the arithmetic hierarchy.

• A set is in Σ0 and Π0 if it is decidable.

• Assume n ≥ 1. A set A is in Σn if there exists a set B ⊆ N × N that is in Πn−1

such that
A = {x : (∃y)[(x, y) ∈ B]}.

• Assume n ≥ 1. A set A is in Πn if A is in Σn.

• A set is in the Arithmetic hierarchy if it is in Σn or Πn for some n.

The following are known. Items 1 and 3 indicate that the Turing degree of the infinite
homogenous set induced by a coloring is greater than the Turing degree of the infinite
homogenous set induced by a transitive coloring.

1. Jockusch [24] has shown that there exists a computable 2-coloring of the edges of KN

such that, for all infinite homogeneous sets H, H is not computable in the halting set.

2. Jockusch [24] has shown that for every computable 2-coloring of the edges of KN there
exists an infinite homogeneous sets H ∈ Π2.

3. For all c, for every computable transitive c-coloring of the edges of KN, there exists an
infinite MIP P that is computable in the halting set.

4. There exists a computable transitive 2-coloring of the edges of KN with no computable
infinite MIP .

5. Hirschfeldt and Shore [22] have shown that there exists a computable transitive 2-
coloring of the edges of KN with no infinite low infinite MIP .

Finitary Version: There are finite versions of both Ramsey’s Theorem and the Transitive
Ramsey’s Theorem. The finitary version of the Transitive Ramsey’s Theorem yields better
upper bounds.

Notation 10.7 Let c, k ≥ 1.

26



1. R(k, c) is the least n such that, for any c-coloring of the edges of Kn, there exists a
homogeneous set of size k.

2. TRT (k, c) is the least n such that, for any transitive c-coloring of the edges of Kn,
there exists a MIP of length k.

It is not obvious that R(k, c) and TRT (k, c) exist; however, they do.
The following is well known [19, 20, 28].

Theorem 10.8 For all k, c ≥ 1, ck/2 ≤ R(k, c) ≤ cck−c+1,

Improving the upper and lower bounds on the R(k, c) (often called the Ramsey Numbers)
is a long standing open problem. The best known asymptotic results for the c = 2 case are
by Conlon [10]. For some exact values see Radziszowski’s dynamic survey [37].

The following theorem is easy to prove; however, neither the statement, nor the proof,
seem to be in the literature. We provide a proof for completeness.

Theorem 10.9 For all k, c ≥ 1 TRT (k, c) = (k − 1)c + 1.

Proof:
I) TRT (k, c) ≤ (k − 1)c + 1.

Let n = (k− 1)c + 1. Assume, by way of contradiction, that there is transitive c-coloring
of the edges of Kn that has no MIP of length k.

We define a map from {1, . . . , n} to {1, . . . , k − 1}c as follows: Map x to the the vector
(a1, . . . , ac) such that the longest mono path of color i that ends at x has length ai. Since
there are no MIP ’s of length k the image is a subset of {1, . . . , k − 1}c.

It is easy to show that this map is 1-1. Since n > (k − 1)c this is a contradiction.

2) TRT (k, c) ≥ (k − 1)c + 1.
Fix k ≥ 1. We show by induction on c, that, for all c ≥ 1, there exists a transitive

coloring of the edges of K(k−1)c that has no MIP of length k.
Base Case: c = 1. We color the edges of Kk−1 all RED. Clearly there is no MIP of length
k.

Induction Step: Assume there is a transitive (c−1)-coloring COL of the edges of K(k−1)c−1

that has no homogeneous set of size k. Assume that RED is not used. Replace every vertex
with a copy of Kk−1. Color edges between vertices in different groups as they were colored
by COL. Color edges within a group RED. It is easy to see that this produces a transitive
c-coloring of the edges of and that there are no MIP of length k.

Note 10.10 Erdös and Szekeres [15] showed the following:

• For all k, for all sequences of distinct reals of length (k − 1)2 + 1, there is either an
increasing monotone subsequence of length k or a decreasing monotone subsequence
of length k.

27



• For all k, there exists a sequences of distinct reals of length (k − 1)2 with neither an
increasing monotone subsequence of length k or a decreasing monotone subsequence
of length k.

This is equivalent to the c = 2 case of Theorem 10.9. For six different proofs see Steele’s
article [43]. Our proof of Theorem 10.9 was modeled after Hammersley’s [21] proof of the
upper bound and Erdös-Szekeres’s proof of the lower bound.

If c is small then TRT (k, c) is substantially smaller than R(k, c). This indicates that the
Transitive Ramsey’s Theorem is weaker than Ramsey’s Theorem.

11 Solving Subcases of the Termination Problem

The problem of determining if a program is terminating is unsolvable. This problem is not
the traditional Halting problem since we allow the program to have a potentially infinite
number of user-supplied inputs.

Def 11.1

1. Let M
(··· )
1 , M

(··· )
2 , . . . be a standard list of oracle Turing Machines. These Turing Ma-

chines take input in two ways: (1) the standard way, on a tape, and (2) we interpret
the oracle as the user-supplied inputs.

2. If A ⊆ N and s ∈ N then MA
i,s ↓ means that if you run MA

i (no input on the tape) it
will halt within s steps.

3. Let M
(··· )
1 , M

(··· )
2 , . . . be a standard list of oracle Turing Machines.

TERM = {i : (∀A)(∃s)[MA
i,s ↓]}.

Def 11.2

1. X ∈ Π1
1 if there exists an oracle Turing machine M (··· ) such that

X = {x : (∀A)(∃x1)(∀x2) · · · (Qnxn)[MA(x, x1, . . . , xn) = 1]}.

(Qn is a quantifier.)

2. A set X is Π1
1-complete if X ∈ Π1

1 and, for all Y ∈ Π1
1, Y ≤m X.

The following were proven by Kleene [25, 26] (see also [39]).

Theorem 11.3

28



1. X ∈ Π1
1 if there exists an oracle Turing machine M (··· ) such that

X = {x : (∀A)(∃y)[MA(x, y) = 1]}.

2. TERM is Π1
1-complete.

3. If X is Π1
1-complete then, for all Y in the arithmetic hierarchy, Y ≤m X.

4. For all Y in the arithmetic hierarchy Y ≤m TERM . This follows from (2) and (3).
(See Definition 10.6 for the definition of the Arithmetic Hierarchy.)

Hence TERM is much harder than the halting problem. Therefore it will be very inter-
esting to see if some subcases of it are decidable.

Def 11.4 Let n ∈ N. Let FUN(n) be a set of computable functions from Zn+1 to Zn. Let
m ∈ N. An (F (n), m))-program is a program of the form of Program 1 where the functions
gi used in Program 1 are all in FUN(n).

Open Question: For which FUN(n), m is the Termination Problem restricted to (FUN(n), m)-
programs decidable?

We list all results we know. Some are not quite in our framework. Some of the results
use the While loop condition Mx ≥ b where M is a matrix and b is a vector. Such programs
can easily be transformed into programs of our form.

1. Tiwari [44] has shown that the following problem is decidable: Given matrices A, B
and vector c, all over the rationals, is Program 7 in TERM . Note that the user is
inputting a real.

Program 7

x = Input(R)
while (Bx > b)

x = Ax + c

2. Braverman [7] has shown that the following problem is decidable: Given matrices
A, B1, B2 and vectors b1, b2, c, all over the rationals, is Program 8 in TERM . Note
that the user is inputting a real.

Program 8

x = Input(R)
while (B1x > b1 ) and (B2x ≥ b2 )

x = Ax + c

29



3. Ben-Amram, Genaim, and Masud [6] have shown that the following problem is unde-
cidable: Given matrices A0, A1, B and vector v all over the integers, and i ∈ N does
Program 9 terminate.

Program 9

x = Input(Z)
while (Bx ≥ b)

i f x[i] ≥ 0
then x = A0x

else
x = A1x

4. Ben-Amram [4] has shown a pair of contrasting results:

• The termination problem is undecidable for (FUN(n), m)-programs where m = 1
and FUN(n) is the set of all functions of the form

f(x[1], . . . , x[n]) = min{x[i1] + c1, x[i2] + c2, . . . , x[ik] + ck}
where 1 ≤ i1 < · · · < ik and c1, . . . , ck ∈ Z.

• The termination problem is decidable for (FUN(n), m)-programs when m ≥ 1
and FUN(n) is the set of all functions of the form

f(x[1], . . . , x[n]) = x[i] + c

where 1 ≤ i ≤ n and c∈ Z. Note that Program 5 falls into this category.

12 Open Problems

1. For which (FUN(n), m) is the Termination Problem restricted to (FUN(n), m)-programs
decidable?

2. Find a natural example showing that Theorem 7.3 requires the Full Ramsey Theorem.

3. Prove or disprove that Theorem 7.3 is equivalent to Ramsey’s Theorem.

4. Classify more types of Termination problems into the classes Decidable and Unde-
cidable. It would be of interest to get a more refined classification. Some of the
undecidable problems may be equivalent to HALT while others may be complete in
some level of the arithmetic hierarchy or Π1

1 complete

5. Prove or disprove the following conjecture: for every c there is a program Pc such that,
over RCA0, TRT (c) ⇐⇒ every run of Program Pc terminates.

30



13 Acknowledgments

I would like to thank Daniel Apon, Amir Ben-Amram, Peter Cholak, Byron Cook, Denis
Hirschfeldt, Jon Katz, Andreas Podelski, Brian Postow, Andrey Rybalchenko, and Richard
Shore for helpful discussions. We would also like to again thank Amir Ben-Amram for
patiently explaining to me many subtle points that arose in this paper. We would also like
to thank Daniel Apon for a great proofreading job.

A Using Theorem 6.7 and 2× 2 Matrices to Prove Ter-

mination of Program 5

Def A.1 If C is a set of square matrices of the same dimension then clos(C) is the set
of all finite products of elements of C. For example, if C = {C1, C2} then C2

1C2C
3
1C

17
2 ∈

clos(C1, C2).

This section is due to Ben-Amram and is based on a paper of his [4]. He gives an example
of a proof of termination of Program 5 where he uses the matrices C1, C2 that come out of
Program 5 directly (in contrast to our proof in Theorem 8.1 which used 3 × 3 matrices by
introducing x+y). Of more interest: there is an element of clos(C1, C2) that has no negative
numbers on the diagonal, namely C2 itself. Hence we cannot use Theorem 6.4 to prove
termination. We can, however, use Theorem 6.7.

Theorem A.2 Every computation of Program 5 is finite.

Proof:
The case control=1 is represented by the matrix

C1 =

(
−1 0
∞ ∞

)
.

The case control=2 is represented by the matrix

C2 =

(
∞ −2
+1 ∞

)
.

We find a representation of a superset of clos(C1, C2). Let

E = Y Za, where Y ∈ {C1, C2, C1C2, C2C1} and Z =

(
−1 ∞
∞ −1

)
.

We show that clos(C1, C2) ⊆ E . We will then show that every element of E = clos(E)
satisfies the premise of Theorem 6.7. We prove this by induction on the number of matrices
are multiplied together to form the element of clos(C1, C2).

31



The base case is trivial since clearly C1, C2 ∈ E .
We show the induction step by multiplying each of the four “patterns” in E on the left

by each of the matrices C1, C2. We use the following identities: C2
1 = ZC1 = C1Z = C1C2,

C2
2 = Z, ZC2 = C2Z.

1. C1(C1Z
a) = C2

1Z
a = C1ZZa = C1Z

a+1

2. C2(C1Z
a) = (C2C1)Z

a

3. C1(C2Z
a) = (C1C2)Z

a

4. C2(C2Z
a) = C2

2Z
a = ZZa = Za+1

5. C1(C1C2Z
a) = C2

1C2Z
a = C1ZC2Z

a = C1C2ZZa = (C1C2)Z
a+1

6. C2(C1C2Z
a) = C2(C1ZZa = (C2C1)Z

a+1

7. C1(C2C1Z
a) = (C1C2)C1Z

a = C1(ZC1)Z
a = C2

1Z
a+1 = C1Z

a+2

8. C2(C2C1Z
a) = ZC1Z

a = C1Z
a+1

We have shown that clos(C1, C2) ⊆ E . Now it remains to verify that every matrix
represented by E , or some power thereof, has a negative integer on the diagonal. Note that
in one of the cases, squaring is necessary.

1. C1Z
a =

(
−1− a −a
∞ ∞

)
2. (C2Z

a)2 = C2
2Z

2a = Z2a+1

3. C1C2Z
a = C1ZZa = C1Z

a+1

4. C2C1Z
a =

(
∞ ∞
−3 −2

)
Za =

(
∞ ∞
−3 −2− a

)
.

We can now apply Theorem 6.7 and we are done.

References

[1] Acl2: Applicative common lisp 2. Used for Modeling, simulation, and inductive reason-
ing. http://acl2s.ccs.neu.edu/acl2s/doc/.

[2] Aprove: Automatic program verification environment. http://aprove.informatik.

rwth-aachen.de/.

[3] Julia. Helps find bug in programs. http://julia.scienze.univr.it/.

32



[4] A. M. Ben-Amram. Size-change termination with difference constraints. ACM Trans.
Program. Lang. Syst., 30(3):1–31, 2008. http://doi.acm.org/10.1145/1353445.

1353450.

[5] A. M. Ben-Amram. Size-change termination, monotonicity constraints and ranking
functions. Logical Methods in Computer Science, 6(3), 2010. http://www2.mta.ac.il/
~amirben/papers.html.

[6] A. M. Ben-Amram, S. Genaim, and A. N. Masud. On the termination of integer loops.
In Verification, Model Checking, and Abstract Interpretation, 13th International Con-
ference, VMCAI 2012, Proceedings, pages 72–87, 2012. http://dx.doi.org/10.1007/
978-3-642-27940-9_6. A journal version is under review.

[7] M. Braverman. Termination of integer linear programs. In Proceedings of the 18th
Annual International Conference on Computer Aided Verification Seattle WA, LNCS
4144. Springer, 2006. http://www.cs.toronto.edu/~mbraverm/Pub-all.html.

[8] P. Cholak, C. Jockusch, and T. Slaman. On the strength of ramsey’s Theorem for pairs.
Journal of Symbolic Logic, pages 1–55, 2001. http:www.nd.edu/~cholak/papers/.

[9] M. Codish and C. Taboch. A semantic basis for termination analysis of logic programs.
The Journal of Logic Programming, 41(1):103–123, 1999. preliminary (conference) ver-
sion in LNCS 1298 (1997), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.31.5039.

[10] D. Conlon. A new upper bound for diagonal Ramsey numbers. Annals of Mathematics,
2009. http://www.dpmms.cam.ac.uk/~dc340.

[11] B. Cook, A. Podelski, A. Rybalachenko, J. Berdine, A. Gotsman, P. O’Hearn, D. Dis-
tefano, and E. Koskinen. Terminator. http://www7.in.tum.de/~rybal/papers/.

[12] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination. In
Proceedings of the 12th Symposium on Static Analysis, 2005. http://www7.in.tum.

de/~rybal/papers/.

[13] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In
Proceedings of the 27nd Conference on Programming Language design and Implemen-
tation, 2006. http://www7.in.tum.de/~rybal/papers/.

[14] B. Cook, A. Podelski, and A. Rybalchenko. Proving programs terminate. Communica-
tions of the ACM, 54(5):88, 2011. http://www7.in.tum.de/~rybal/papers/.

[15] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math,
2:463–470, 1935. http://www.renyi.hu/~p_erodso/1935-01.pdf.

33



[16] Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors. Handbook of
Recursive Mathematics. Elsevier North-Holland, Inc., New York, 1998. Comes in two
volumes. Volume 1 is Recursive Model Theory, Volume 2 is Recursive Algebra, Analysis,
and Combinatorics.

[17] R. Floyd. Assigning meaning to programs. In PSAM, 1967. http://www.cs.virginia.
edu/~weimer/2007-615/reading/FloydMeaning.pdf.

[18] W. Gasarch. A survey of recursive combinatorics. In Ershov, Goncharov, Nerode,
and Remmel, editors, Handbook of Recursive Algebra. North Holland, 1997. http:

//www.cs.umd.edu/~gasarch/papers/papers.html.

[19] W. Gasarch. Ramsey’s theorem on graphs, 2005. http://www.cs.umd.edu/~gasarch/
mathnotes/ramsey.pdf.

[20] R. Graham, B. Rothschild, and J. Spencer. Ramsey Theory. Wiley, 1990.

[21] J. Hammersley. A few seedlings of research. In Proc. 6th Berkeley Symp. Math. Stat.,
pages 345–394, 1972. http://projecteuclid.org/DPubS?service=UI&version=1.

0&verb=Display&hand%le=euclid.bsmsp/1200514101.

[22] D. Hirschfeldt and R. Shore. Combinatorial principles weaker than Ramsey’s theorem
for pairs. Journal of Symbolic Logic, 72:171–206, 2007. http://www.math.cornell.

edu/~shore/papers.html.

[23] T. Hummel. Effective versions of Ramsey’s theorem: Avoiding the cone above 0’.
Journal of Symbolic Logic, 59(4):682–687, 1994. http://www.jstor.org/action/

showPublication?journalCode=jsymboliclogic.

[24] C. Jockusch. Ramsey’s theorem and recursion theory. Journal of Symbolic Logic, 37:268–
280, 1972. http://www/jstor.org/pss/2272972.

[25] S. Kleene. Hierahies of number theoretic predicates. Bulletin of the American Mathemat-
ical Society, 61:193–213, 1955. http://www.ams.org/journals/bull/1955-61-03/

home.html.

[26] S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand, Princeton, 1952.

[27] D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger. Loopfrog. http:

//www.verify.inf.unisi.ch/loopfrog/termination.

[28] B. Landman and A. Robertson. Ramsey Theory on the integers. AMS, 2004.

[29] C. S. Lee. Ranking functions for size-change termination. ACM Transactions on Pro-
gramming Languages and Systems, 31(3), Apr. 2009. http://doi.acm.org/10.1145/

1498926.1498928.

34



[30] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proceedings of the 28nd Symposiusm on Principles of Programming
Languages, 2001. http://dl.acm.org/citation.cfm?doid=360204.360210.

[31] N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of Prolog programs.
In L. Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 64–77, Leuven, Belgium, Jul 1997. MIT Press.

[32] J.-Y. Moyen. Resource control graphs. In Transactions on Computational Logic, 2009.
http://www-lipn.univ-paris13.fr/~moyen/publications.html.

[33] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking
functions. In Proceedings of the 5th International Conference on Verification, Model
Checking, and Abstract, 2004. http://www7.in.tum.de/~rybal/papers/.

[34] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of the Nineteenth
Annual IEEE Symposium on Logic in Computer Science, Turku, Finland, 2004. http:
//www7.in.tum.de/~rybal/papers/.

[35] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termination.
In Proceedings of the 32nd Symposiusm on Principles of Programming Languages, 2005.
http://www7.in.tum.de/~rybal/papers/.

[36] A. Podelski and A. Rybalchenko. Transition invariants and transition predicate ab-
straction for program termination. In P. A. Abdulla and K. R. M. Leino, editors,
TACAS, volume 6605 of Lecture Notes in Computer Science, pages 3–10. Springer,
2011. http://www7.in.tum.de/~rybal/papers/ or http://dx.doi.org/10.1007/

978-3-642-19835-9_2.

[37] S. Radziszowski. Small Ramsey numbers. The electronic journal of combinatorics, 2011.
www.combinatorics.org. A dynamic survey so year is last update.

[38] F. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, 30:264–286, 1930. Series 2. Also in the book Classic Papers in Combinatorics
edited by Gessel and Rota. Also http://www.cs.umd.edu/~gasarch/ramsey/ramsey.

html.

[39] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967.

[40] A. Rybalchenko. ARMC (abstraction refinement-based model checker. http://www7.

in.tum.de/~rybal/papers/.

[41] D. Seetapun and T. A. Slaman. On the strength of Ramsey’s Theorem. Notre
Dame Journal of Formal Logic, 36:570–581, 1995. http://projecteuclid.org/DPubS?
service=UI&version=1.0&verb=Display&hand%le=euclid.ndjfl/1040136917.

35



[42] S. G. Simpson. Subsystems of Second Order Arithmetic. Springer-Verlag, 2009. Per-
spectives in mathematical logic series.

[43] J. Steele. Variations on the monotone subsequence theme of Erdős and Szekeres. In
D. A. et al, editor, Discrete probability and algorithms, pages 111–131, 1995. http:

//www-stat.wharton.upenn.edu/~steele/Publications/.

[44] A. Tiwari. Termination of linear programs. In Proceedings of the 16th Annual Inter-
national Conference on Computer Aided Verification Boston MA, LNCS 3114, volume
3115 of Lecture Notes in Computer Science. Springer, 2004. http://www.csl.sri.com/
users/tiwari/html/cav04.html.

36


