The Yao Cell Probe Model
Definition: An \(f(n, u) \) probe Data Structure for Membership consists of two things:

- A function \(PUT : \binom{u}{n} \rightarrow S_n \). We think of this as putting the \(n \) elements into an array of length \(n \). Call this array \(A \)
- A non-adaptive algorithm that will, given \(x \in [u] \), make \(\leq f(u, n) \) probes to the array \(A[1 \ldots n] \) and outputs YES if \(x \) is in the array, and NO if not.
Examples

Standard Example: Store the items in sorted order and use binary search. In this case \(f(n, u) = \lceil \log_2(n) \rceil \). Works for any \(n \leq u \).

Stupid Example: \(u = n \). Put the element in in sorted order (doesn’t matter). Always answer YES. \(f(n, u) = 0 \).

Slightly Less Stupid Example: \(u = n + 1 \). There is exactly one element, \(x \), NOT in array. Put \(x + 1 \ (\text{mod} \ u) \) into \(A[1] \). Put other elements in sorted (doesn’t matter). One query to \(A[1] \) tells you what all MEM question.

NOTE- in last example, answer MEM question, but NOT where in the table it is. That’s okay!
How well can you do with One Probe?

DO IN CLASS:

1. Can you do 1-probe if $u = n + 2$? $u = n + 3$?
2. Find some function q such that if $u = q(n)$ then you CANNOT do in 1-probe.
We find a function $q(n)$ such that if $u \geq q(n)$ then REQUIRES $\lceil \lg n \rceil$ probes.

Need Lemma. Leave proof to you. Uses induction and Adversary arg.

Lemma: Assume $u \geq 2n - 1$.

1. If the PUT function always outputs INCREASING (so elts are put in table in inc order) any probe algorithm must take $\geq \lceil \lg(n) \rceil$.

2. If the PUT function is CONSTANT then any probe algorithm must take $\geq \lceil \lg(n) \rceil$.
Theorem: There is a function \(q(n) \) (TBD) such that if \(u \geq q(n) \) then \(\lceil \lg n \rceil \) probes are REQUIRED.

Proof
Take the function PUT. From it, create the following coloring:
\(\text{COL} : \binom{[u]}{n} \rightarrow [n!] : \) Map \(A \) to the perm its mapped to.

Is there some theorem we can use here?
Theorem: There is a function \(q(n) \) (TBD) such that if \(u \geq q(n) \) then \(\lceil \lg n \rceil \) probes are REQUIRED.

Proof

Take the function PUT. From it, create the following coloring:

\(\text{COL} : \left(\binom{u}{n} \right) \rightarrow [n!] : \text{Map } A \text{ to the perm its mapped to.} \)

Is there some theorem we can use here?

RAMSEY’S THEOREM!

What parameters: \(n \)-ary, \(n! \) colors, homog set of size \(2n - 1 \). So need \(u \geq R_n^{n!}(2n - 1) \).

Let \(H \) be that homog set. PUT restricted to \(\binom{H}{n} \) is constant so by lemma takes \(\lceil \lg n \rceil \) probes.