
Computability Theory and Ramsey Theory

An Exposition by William Gasarch

All of the results in this document are due to Jockusch [2]. For more results in computable

combinatorics see the survey by Gasarch [1].

1 A Crash Course in Computability Theory

Notation 1.1

1. M1,M2, . . . is a standard list of Turing Machines (TMs). You can think of them as all Java

programs.

2. We assume that from e we can extract the code for Me.

3. Me,s(x) means that we run Me for s steps.

4. M(x) ↓= a means that M(x) halts and outputs a.

5. M(x) = a means that M(x) halts and outputs a (we use the ↓ when we want to emphasize

that M(x) halts).

6. M(x) ↑= a means that M(x) does not halt.

7. A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1

x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

8. If M is a TM such that on every input x, M(x) ↓∈ {0, 1} (so M computes some set) then

L(M) = {x |M(x) = 1} (so L(M) is the set that M computes).

1

9. A set A is computably enumerable (c.e.) if there is a TM M such that

x ∈ A =⇒ M(x) ↓

x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of computably enumerable

(c.e.).)

10. We is the domain of Me, that is, We = {x | (∃s)[Me,s(x) ↓].

11. We,s = {x |Me,s(x) ↓}.

12. A functionf is computable if there is a TM M such that, for all x, M(x) ↓= f(x). (Older

books use the term recursive instead of computable.)

Sets are classified in the Arithmetic hierarchy.

Notation 1.2

1. A ∈ Σ0 if A is computable.

2. A ∈ Π0 if A is computable.

3. A ∈ Σ1 is there exists B ∈ Π0 such that A = {x | (∃y)[(x, y) ∈ B]}.

4. A ∈ Π1 is there exists B ∈ Σ0 such that A = {x | (∀y)[(x, y) ∈ B]}.

5. Alternative definition: A ∈ Π1 if A ∈ Σ1.

6. For i ≥ 1 A ∈ Σi is there exists B ∈ Πi−1 such that A = {x | (∃y)[(x, y) ∈ B]}

7. For i ≥ 1 A ∈ Πi is there exists B ∈ Σi−1 such that A = {x | (∀y)[(x, y) ∈ B]}

8. Alternative definition: A ∈ Πi if A ∈ Σi.

2

Examples and Facts

1. HALT = {(e, x) | (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

2. W0,W1, . . . is a list of all Σ1 sets.

3. FIN is the set of all e such that We is finite.

FIN = {e | (∃x)(∀y, s)[y > x =⇒ y /∈ We,s} ∈ Σ2 − Π2.

(The proof that FIN /∈ Π2 is not easy.)

4. INF is the set of all e such that We is infinite. INF ∈ Π2−Σ2. (The proof that INF /∈ Σ2

is not easy.)

5. COF is the set of all e such that We is co-finite. We leave it to you to show that COF ∈ Σ3.

(The proof that COF /∈ Π3 is not easy.)

6. Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .

7. Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .

8. For all i ≥ 1, Σi and Πi are incomparable.

Theorem 1.3 Every infinite Σ1 set has an infinite computable subset.

Proof: Let A = {x | (∃y)[(x, y) ∈ B]} where B is computable. Assume A is infinite. Let

M be the TM that decides B. We first write a program for a function that outputs a subset of the

elements of A in increasing order. Since we have a program, f is computable.

Algorithms for function f .

1. Input(i)

3

2. If i = 0 then compute M(0, 0), M(0, 1), M(1, 0) . . . (go through all pairs until it stops) until

you find an (x, y) with M(x, y) = 1. Output x.

3. If i ≥ 1 then compute Z = {f(0), . . . , f(i− 1)}. Let m be the max element of Z.

4. Compute M(0, 0), M(0, 1), M(1, 0) . . . (go through all pairs until it stops) until you find an

(x, y) with M(x, y) = 1. AND x > m. Output x.

Since A is infinite, for all f , f(i) is defined. Note that the image of f is an infinite subset of A.

We now show that the image of f is computable.

Algorithm that computes C, an infinite subset of A.

1. Input x

2. Compute f(0), f(1), . . . until one of the following occurs.

• You find an i such that f(i) = x. Then output 1 and halt.

• You find an i such that f(i) < x < f(i + 1). Then output 0 and halt.

Clearly C is computable and is the image of f , hence an infinite subset of A.

We now allow our TMs to have access to an oracle. That is, they an ask questions to some set

X . We can define Oracle TM (OTM) independent of the oracle, like writing a Java Program that

calls a not-yet-defined-procedure.

Notation 1.4 X is a set throughout this definition.

1. M
()
1 ,M

()
2 , . . . is a standard list of OTM. You can think of them as all Java programs with a

call to a non-yet-written subroutine that returns YES or NOT.

2. We assume that from e we can extract the code for M ()
e .

3. MX
e,s(x) means that we run MX

e for s steps.

4

4. MX(x) ↓= a means that MX(x) halts and outputs a.

5. MX(x) = a means that M(x) halts and outputs a (we use the ↓ when we want to emphasize

that MX(x) halts).

6. MX(x) ↑= a means that MX(x) does not halt.

7. A set A is computable-in-X if there is an OTM M () such that

x ∈ A =⇒ MX(x) ↓= 1

x /∈ A =⇒ MX(x) ↓= 0

We also denote this by A ≤T X . This is a very important definition. (Older books use the

term recursive-in-X instead of computable-in-X .)

8. If M ()
i is a OTM such that on every input x, MX(x) ↓∈ {0, 1} (so MX computes some set)

then L(MX) = {x |MX(x) = 1} (so L(MX) is the set that MX computes).

9. A set A is computably enumerable-in-X (c.e.-in-X) if there is a OTM M () such that

x ∈ A =⇒ MX(x) ↓

x /∈ A =⇒ MX(x) ↑

10. WX
e is the domain of MX

e , that is, WX
e = {x | (∃s)[MX

e,s(x) ↓].

11. WX
e,s = {x |MX

e,s(x) ↓}.

12. A functionf is computable-in-X if there is a OTM M () such that, for all x, MX(x) ↓= f(x).

(Older books use the term recursive-in-X instead of computable-in-X .)

Examples and Facts

1. HALTX = {(e, x) | (∃s)[MX
e,s(x) ↓} ∈ ΣX

1 − ΣX
0

5

2. WX
0 ,WX

1 , . . . is a list of all ΣX
1 sets.

3. FINX is the set of all e such that WX
e is finite.

FINX = {e | (∃x)(∀y, s)[y > x =⇒ y /∈ WX
e,s} ∈ ΣX

2 − ΠX
2 .

(The proof that FIN /∈ ΠX
2 is identical to the proof that FIN /∈ Pi2.)

4. INFX is the set of all e such that WX
e is infinite. INFX ∈ ΠX

2 − ΣX
2 . (The proof that

INFX /∈ ΣX
2 is identical to the proof that INF /∈ Σ2.) (Proving that INFX /∈ Σ2 is not

easy.)

5. COFX is the set of all e such that WX
e is co-finite. We leave it to you to show that COFX ∈

ΣX
3 . (The proof that COFX /∈ ΠX

3 is identical to the proof that COF /∈ Π3.)

6. ΣX
0 ⊂ ΣX

1 ⊂ ΣX
2 ⊂ · · · .

7. ΠX
0 ⊂ ΠX

1 ⊂ ΠX
2 ⊂ · · · .

8. For all i ≥ 1, ΣX
i and ΠX

i are incomparable.

Lemma 1.5 If A ∈ Σ1 or A ∈ Π1 then A ≤T HALT . The OTM is very simple in that in asks

HALT only one question. (We use this in the following form: HALT can be used to answer a any

question of the form (∃z)[z ∈ B] or (∀z)[z ∈ B].)

Proof: Let A = {x | (∃y)[(x, y) ∈ B]} where B is computable. Let B be computed by TM M .

The following OTM with oracle HALT decides A

1. Input(x)

2. CREATE (but DO NOT RUN) a TM that does the following

6

• For y = 0, 1, . . . until you find a z such that M(x, y) = 1 (if this never happens then

the program will diverge)

3. Let e be such that the program above is Me.

4. ASK e ∈ HALT . If YES then output 1, if NO then output 0.

Since Π1 sets are the complements of Σ1 sets, one can easily get that Π1 sets are ≤T HALT .

Theorem 1.6 Every infinite Σ2 set has an infinite subset X ≤T HALT . (There is a statement

about every Σi set has an infinite subset with some properties but it is not needed here and would

take us too far afield.)

Proof: Let A = {x | (∃y)(∀z)[(x, y, z) ∈ B]} where B is computable. Assume A is infinite.

Let M be the TM that decides B. We first write a program using oracle HALT for a function that

outputs a subset of the elements of A in increasing order. Since we have an oracle-program with

oracle HALT , f ≤T HALT .

Algorithms using oracle HALT for function f .

1. Input(i)

2. If i = 0 then

using the oracle HALT ask the questions (using Lemma 1.5).

(∀z)[M(0, 0, z)]

(∀z)[M(0, 1, z)]

(∀z)[M(1, 0, z)]

(∀z)[M(1, 1, z)]

7

(go through all pairs until you stop) until you find an (x, y) such that the answer is YES.

Output x.

3. If i ≥ 1 then compute Z = {f(0), . . . , f(i− 1)}. Let m be the max element of Z.

4. using the oracle HALT ask the questions (using Lemma 1.5)

(∀z)[M(0, 0, z)]

(∀z)[M(0, 1, z)]

(∀z)[M(1, 0, z)]

(∀z)[M(1, 1, z)]

(go through all pairs until you stop) until you find an (x, y) such that the answer is YES

AND x > m. Output x.

Since A is infinite, for all f , f(i) is defined. Note that the image of f is an infinite subset of A.

We now show that the image of f is computable.

Algorithm with oracle HALT that computes C, an infinite subset of A.

1. Input x

2. Compute f(0), f(1), . . . until one of the following occurs.

• You find an i such that f(i) = x. Then output 1 and halt.

• You find an i such that f(i) < x < f(i + 1). Then output 0 and halt.

Clearly C ≤T HALT and is the image of f , hence an infinite subset of A.

Theorem 1.7 A ∈ Σ2 iff A is c.e.-in-HALT .

8

Proof:

1) A ∈ Σ2 implies A is c.e.-in-HALT :

If A ∈ Σ2 then there exists a TM M that always converges such that

A = {x | (∃y)(∀z)[M(x, y, z) = 1]}.

Let MHALT be the TM that does the following:

1. Input(x, y).

2. Ask HALT (∀z)[M(x, y, z) = 1]. (Can rephrase as (∃z)[M(x, y, z) = 0].)

3. If YES answer YES, if NO then answer NO.

A = {x | (∃y)[MHALT (x, y) = 1]}.

Hence A is c.e.-in-HALT .

2) A c.e.-in-HALT implies A ∈ Σ2.

A is c.e.-in-HALT . So

A = WHALT
e = {x | (∃s)(∀t)[t ≥ s =⇒ x ∈ WHALTt

e,t]}.

So A is Σ2.

2 A Computable Coloring With No Infinite Σ2 Homog Set

Def 2.1

1. HALTs = {(e, x) | 0 ≤ e, s ≤ s∧Me,s(x) ↓} Note that HALTs is a finite set which can be

determined given s.

9

2. Let MHALTs
e,s (x): compute HALTs, then use it as an oracle in the M ()

e,s calculation. If it halts

normally, GREAT output what it outputs. If not then DIVERGE.

We first show there is a computable coloring with no homog set X ≤T HALT .

Theorem 2.2 There exists a computable COL :
(
N
2

)
→ [2] such that there is no infinite homog set

X with X ≤T HALT .

Proof: We use that L(MHALT
0), L(MHALT

1), . . . is a list that contains all sets X ≤T HALT .

We construct computable COL :
(
N
2

)
→ [2] to satisfy the following requirements (NOTE-

requirements is the most important word in computability theory.)

Re : L(MHALT
e) infinite =⇒ L(MH

e ALT) NOT a homog set .

CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything.

Stage s: We define COL(0, s), . . . , COL(s− 1, s). For e = 0, 1, . . . , s:

If this occurs: (∃x < y ≤ s− 1) such that

• COL(x, s) and COL(y, s) have not been colored (note that they may have been colored by

some Ri with i < e).

• x ∈ L(MHALTs
e,s (x)).

• y ∈ L(MHALTs
e,s (y)).

then take the LEAST two x, y for which this is the case and do the following:

• COL(x, s) = RED

• COL(y, s) = BLUE.

10

(Note that IF MHALT
e = 1 (which we do not know at this time) then Re would be satisfied.)

After you go through all of the 0 ≤ e ≤ s define all other COL(x, y) where 0 ≤ x < y ≤ s

that have not been defined by COL(x, y) = RED. This is arbitrary. The important things is that

ALL COL(x, s) where 0 ≤ x ≤ s − 1 are now defined. This is why COL is computable— at

stage s we have defined all COL(x, y) with 0 ≤ x < y ≤ s.

END OF CONSTRUCTION

We show that, for all e, Re is satisfied.

If L(MHALT
e)) is finite then Re is satisfied.

We assume L(MHALT
e)) is infinite. Let

x1 < x2 < · · · < x2e+2

be the first 2e + 2 elements of L(MHALT
e)). Let s0 be such that for all t ≥ s0, for 1 ≤ j ≤ 2e + 2,

the computation MHALTt
e,t (xj) is legit. Let s1 ≥ t be such that s1 ∈ L(MHALT

e)) (note that s1 is

much bigger than x2e+2). Note that at state s1 it is not known that s1 ∈ L(MHALT
e)).

Lets look at stage s1. KEY: requirements R0, . . . , Re−1 will color at most 2e of the edges

COL(x1, s1), COL(x2, s1), . . ., COL(x2e+2, s1). So when Re gets to act there will be an xij1 <

xj2 such that COL(xj1 , s1) and COL(xj2 , s1) have not been colored. So COL(xj1 , s1) = RED

and COL(xj2 , s1) = BLUE. Since s1 ∈ L(MHALT
e)) (though that is not known yet). Re will be

satisfied.

Theorem 2.3 There exists a computable COL :
(
N
2

)
→ [2] such that there is no infinite homog set

X with X a Σ2 set.

Proof: Let COL be the coloring from Theorem 2.2. If there was an infinite Σ2-homog set

X then, by Theorem 1.6 there would be an infinite Y ⊆ X such that Y ≤T HALT . But by

Theorem 2.2 this is impossible.

11

3 Every Computable Coloring has an Infinite Π2 Homog set

Take the standard proof of the infinite 2-ary Ramsey Theorem. Let COL be the given coloring of(
N
2

)
. Assume COL is computable.

The function COL′ from N to {R,B} can be computed by asking Π2 questions. Hence we say

informally COL′ ≤T Π2. One can show that using this all three sets: R, B, and DEAD are Σ3.

We now have a subtle point. If all we want to know is the complexity of a homog set we can

say that ONE OF R or B is infinite, hence there IS a Σ3-homog set. And this is the answer we

will give. But notice that we do not know which of R or B is the homog set. That would require a

Σ4-question.

Can we do better? YES! See the next section.

4 Every Computable Coloring has an Infinite Π2 Homog set

We obtain this with a modification of the usual proof of Ramsey’s theorem. the key is that we don’t

really toss things out- we guess on what the colors are and change our mind.

Theorem 4.1 For every computable coloring COL :
(
N
2

)
→ [2] there is an infinite Π2 homog set.

Proof:

We are given computable COL :
(
N
2

)
→ [2].

CONSTRUCTION of x1, x2, . . . and c1, c2,

NOTE: at the end of stage s we might have x1, . . . , xi defined where i < s. We will not try to

keep track of how big i is. Also, we may have at stage (say) 1000 a sequence of length 50, and

then at stage 1001 have a sequence of length only 25. The sequence will grow eventually but do

so in fits and starts.

12

x1 = 1

c1 = RED We are guessing. We might change our mind later

Let s ≥ 2, and assume that x1, . . . , xs−1 and c1, . . . , cs−1 are defined.

1. Ask HALT Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 1, COL(xi, x) = ci)?

2. If YES then (using that COL is computable) find the least such x.

xi = x

ci = RED We are guessing. We might change our mind later

We have implicitly tossed out all of the numbers between xi−1 and xi.

3. If NO then we ask HALT how far back we can go. More rigorously we ask the following

sequence of questions until we get a YES.

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 2, COL(xi, x) = ci)?

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 3, COL(xi, x) = ci)?

•
...

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ 2, COL(xi, x) = ci)?

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ 1, COL(xi, x) = ci)?

(One of these must be a YES since (1) if c1 = RED and there are NO red edges coming out

of x1 then there must be an infinite number of BLUE edges, and (2) if c1=BLUE its because

there are only a finite number of RED edges coming out of x1 so there are an infinite number

13

of BLUE edges. Let i0 be such that There exists x ≥ xs−1 such that, for all 1 ≤ i ≤ i0,

COL(xi, x) = ci) Do the following:

(a) Change the color of ci+1. (We will later see that this change must have been from RED

to BLUE.

(b) Wipe out xi+2, . . . , xs−1.

(c) Search for the x ≥ xs−1 that the question asked says exist.

(d) xi+2 is now x.

(e) ci+2 is now RED.

END OF CONSTRUCTION of x1, x2 . . . and c1, c2,

We need to show that there is a Π2 homog set.

Let X be the set of xi that are put on the board and stay on the board.

Let R be the set of xi ∈ X whose final color is RED.

Claim 1: Once a number turns from RED to BLUE it can’t go back to RED again.

Proof:

If a number is turned BLUE its because there are only a finite number of RED edges coming

out of it. Hence there must be an infinite number of BLUE edges coming out of it. Hence it will

never change color (though it may be tossed out).

End of Proof

Claim 1: X,R ∈ Π2.

Proof:

We show that X ∈ Σ2. In order to NOT be in X you must have, at some point in the construc-

tion, been tossed out.

X = {x | (∃x)[at stage s of the construction x was tossed out]}.

14

Note that the condition is computable-in-HALT . Hence X is c.e.-in-HALT . By Theorem 1.7

X ∈ Σ2.

We show that R ∈ Σ2. In order to NOT be in R you must have to either NOT be in X or have

been turned blue. Note that once you turn at some point in the construction, been tossed out.

R = X ∪ {x | (∃x)[at stage s of the construction x was turned BLUE]}.

Note that the condition is computable-in-HALT . Hence R is c.e.-in-HALT . By Theorem 1.7

R ∈ Σ2.

End of Proof

We have shown X,R are Π2 but have not shown that B is- and in fact B might not be. But we

show that B is Π2 when we need it to be.

There are two cases:

1. If R is infinite then R is an infinite homog set that is Π2.

2. If R is finite then B is X minus a finite number of elements. Since X is Π2, B is Π2.

References

[1] W. Gasarch. A survey of recursive combinatorics. In Ershov, Goncharov, Nerode, and Remmel,

editors, Handbook of Recursive Algebra, pages 1041–1171. North Holland, 1997. http:

//www.cs.umd.edu/~gasarch/papers/papers.html.

[2] C. Jockusch. Ramsey’s theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–

280, 1972. http://www/jstor.org/pss/2272972.

15

