The Distinct Volumes Problem

David Conlon- Cambridge (Prof)
Jacob Fox-MIT (Prof)
William Gasarch-U of MD (Prof)
David Harris- U of MD (Grad Student)
Douglas Ulrich- U of MD (Ugrad Student)
Sam Zbarsky- Mont. Blair. (High School Student- now CMU)
1. **Infinite Ramsey Theorem:** For any 2-coloring of the edges of K_ω there exists an infinite *monochromatic* K_ω.

2. **Infinite Canonical Ramsey Theorem:** For any ω-coloring of the edges of K_ω there exists an infinite *monochromatic* K_ω OR an infinite *rainbow* K_ω OR OTHER STUFF

3. **Want an “application”**. Give an infinite set of points in the plane, color pairs by the distance between.

Result: For any infinite set of points in the plane there is an infinite subset where all distances are distinct. (Already known by Erdős via diff proof.)

Next Step: Finite version: For every set of n points in the plane there is a subset of size $\Omega(\log n)$ where all distances are distinct. (Much better is known.)
1. Dumped Ramsey approach! Added co-authors! Got new results!

2. What about **Area**? If there are n points in \mathbb{R}^2 want large subset so that all areas are distinct.

3. More general question: n points in \mathbb{R}^d and looking for all a-volumes to be different. (This question seems to be new.)
The following is an **EXAMPLE** of the kind of theorems we will be talking about.

*If there are *n* points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/3})$ with all distances between points **DIFF**.*
EXAMPLES with AREAS

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas DIFF.
EXAMPLES with AREAS

If there are n *points in* \mathbb{R}^2 *then there is a subset of size* $\Omega(n^{1/5})$ *with all triangle areas DIFF.*

FALSE: Take n points on a LINE. All triangle areas are 0.
If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas DIFF.

FALSE: Take n points on a LINE. All triangle areas are 0.

Two ways to modify:

1. *If there are n points in \mathbb{R}^2, no three collinear, then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas DIFF.*

2. *If there are n points in \mathbb{R}^2, then there is a subset of size $\Omega(n^{1/5})$ with all nonzero triangle areas DIFF.*

We state theorems in **no three collinear** form.
Maximal Rainbow Sets

Definition: A (2)-Rainbow Set is a set of points in \(\mathbb{R}^d \) where all of the distances are distinct. Also called a dist-rainbow.

Definition: A 3-Rainbow Set is a set of points in \(\mathbb{R}^d \) where all nonzero areas of triangles are distinct. Also called an area-rainbow.

Definition: An \(a \)-Rainbow Set is a set of points in \(\mathbb{R}^d \) where all nonzero \(a \)-volumes are distinct. An \(a \)-volume is the volume enclosed by \(a \) points. Also called a vol-rainbow.

Definition: Let \(X \subseteq \mathbb{R}^d \). A Maximal Rainbow Set is a rainbow set \(Y \subseteq X \) such that if any more points of \(X \) are added then it STOPS being a rainbow set.

Definition: Let \(X \subseteq \mathbb{R}^d \). An \(a \)-Maximal Rainbow Set is a \(a \)-rainbow set \(Y \subseteq X \) such that if any more points of \(X \) are added then it STOPS being an \(a \)-rainbow set.
Lemma If there is a MAP from X to Y that is $\leq c$-to-1 then $|Y| \geq |X|/c$.
We will call this LEMMA.
The $d = 1$ Case

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$?
The $d = 1$ Case

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? It’s ≤ 1 POINT.
The $d = 1$ Case

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let M be a MAXIMAL DIST-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}({x_1, x_2})$? It’s ≤ 1 POINT.
What is $f^{-1}(x_1, \{x_2, x_3\})$?
The $d = 1$ Case

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to reason $x \notin M$. $f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? It’s ≤ 1 POINT.

What is $f^{-1}(x_1, \{x_2, x_3\})$? It’s ≤ 2 POINTS.
The $d = 1$ Case

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \to \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? It’s ≤ 1 POINT.

What is $f^{-1}(x_1, \{x_2, x_3\})$? It’s ≤ 2 POINTS.

$f : X - M \to \binom{M}{2} \cup M \times \binom{M}{2}$ is ≤ 2-to-1.
The $d = 1$ Case- Cont

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$ is \leq 2-to-1.

Case 1: $|M| \geq n^{1/3}$ DONE!

Case 2: $|M| \leq n^{1/3}$. So $|X - M| = \Theta(|X|)$. By LEMMA

\[
\left| \binom{M}{2} + M \times \binom{M}{2} \right| \geq 0.5|X - M| = \Omega(|X|) = \Omega(n)
\]

$M \geq \Omega(n^{1/3})$
Theorem: For all $X \subseteq S^1$ (the circle) of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Use MAXIMAL DIST-RAINBOW SET. Similar Proof.
Better is known: In 1975 Komlos, Sulyok, Szemeredi showed:

Theorem: For all $X \subseteq S^1$ or \mathbb{R}^1 of size n there exists a dist-rainbow subset of size $\Omega(n^{1/2})$.

This is optimal in S^1 and \mathbb{R}^1

Theorem: If $X = \{1, \ldots, n\}$ then the largest dist-rainbow subset is of size $\leq (1 + o(1))n^{1/2}$.
The $d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \to \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}({x_1, x_2})$?
The $d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

1. $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
2. $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE.
The $d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? Lies on **LINE**.

What is $f^{-1}(x_1, \{x_2, x_3\})$?
The $d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE.
What is $f^{-1}(x_1, \{x_2, x_3\})$? Lies on CIRCLE.
The $d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let M be a **MAXIMAL DIST-RAINBOW SET**.
Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|]$.
- $(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|]$.

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\{x_1, x_2\})$? Lies on LINE.

What is $f^{-1}(x_1, \{x_2, x_3\})$? Lies on CIRCLE.

All INVERSE IMG’s lie on LINES or CIRCLES.
The $d = 2$ Case - Cont

$f : X - M \rightarrow (\binom{M}{2}) \cup M \times (\binom{M}{2})$
All INVERSE IMG’s lie on LINES or CIRCLES. δ TBD.
Cases 1 and 2 induct into line and circle case.

Case 1: $(\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\})| \geq n^\delta]$
$\geq n^\delta$ points on a line, so rainbow set size $\geq \Omega(n^{\delta/3})$.

Case 2: $(\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, x_2, x_3\})| \geq n^\delta]$
$\geq n^\delta$ points on a circle, so rainbow set size $\geq \Omega(n^{\delta/3})$.

Case 3: $|M| \geq n^{1/6}$ DONE!

Case 4: Map is $\leq n^\delta$-to-1 AND $|X - M| = \Theta(|X|)$. By LEMMA

$|\binom{M}{2} \cup M \times \binom{M}{2}| \geq \frac{n}{n^\delta} = n^{1-\delta}$
$|M| \geq \Omega(n^{(1-\delta)/3})$

Set $\delta/3 = (1 - \delta)/3$. $\delta = 1/2$. Get $\Omega(n^{1/6})$.
On Sphere

Theorem: For all $X \subseteq S^2$ (surface of sphere) of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Use **MAXIMAL DIST-RAINBOW SET**. Similar Proof.

Note: Better is known: Charalambides showed $\Omega(n^{1/3})$.
General d Case

Theorem:
For all $X \subseteq \mathbb{R}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$.
For all $X \subseteq \mathbb{S}^d$ of size $n \exists$ dist-rainbow subset of size $\Omega(n^{1/3d})$.

Proof: Use **MAXIMAL DIST-RAINBOW SET** and induction.
Need result on \mathbb{S}^d and \mathbb{R}^d to get result for \mathbb{S}^{d+1} and \mathbb{R}^{d+1}.

Note: Better is known. In 1995 Thiele showed $\Omega(n^{1/(3d-2)})$. But WE improved that!
General d Case - Much Better

Theorem: For all $d \geq 2$, for all $X \subseteq \mathbb{R}^d$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/(3d-3)}(\log n)^{1/3 - 2/(3d-3)})$.

Proof: Use **VARIANT ON MAX DIST-RAINBOW SET**

<table>
<thead>
<tr>
<th>d</th>
<th>$n^{1/3d}$</th>
<th>$n^{1/(3d-3)}(\log n)^{1/3 - 2/(3d-3)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$n^{1/3}$</td>
<td>$-$</td>
</tr>
<tr>
<td>2</td>
<td>$n^{1/6}$</td>
<td>$n^{1/3}(\log n)^{-1/3}$</td>
</tr>
<tr>
<td>3</td>
<td>$n^{1/9}$</td>
<td>$n^{1/6}(\log n)^0$</td>
</tr>
<tr>
<td>4</td>
<td>$n^{1/12}$</td>
<td>$n^{1/9}(\log n)^{1/12}$</td>
</tr>
<tr>
<td>5</td>
<td>$n^{1/15}$</td>
<td>$n^{1/12}(\log n)^{1/6}$</td>
</tr>
<tr>
<td>6</td>
<td>$n^{1/18}$</td>
<td>$n^{1/15}(\log n)^{1/5}$</td>
</tr>
</tbody>
</table>

Can we do better? Best we can hope for is roughly $n^{1/d}$.
Area-$d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

$\Rightarrow (\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]$.

$\Rightarrow (\exists x_1, x_2, x_3, x_4 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]$.

$\Rightarrow (\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that

What is $f^{-1}([\{x_1, x_2\}, \{x_1, x_3\}]$? SEE NEXT SLIDE FOR GEOM LEMMA.
Lemma: Let L_1 and L_2 be lines in \mathbb{R}^2.

\[\{ p : \text{AREA}(L_1, p) = \text{AREA}(L_2, p) \} \]

is a line.

Sketch: $\text{AREA}(L_1, p) = \text{AREA}(L_2, p)$ iff

\[|L_1| \times |L_1 - p| = |L_2| \times |L_2 - p| \text{ iff } \frac{|L_1 - p|}{|L_2 - p|} = \frac{|L_1|}{|L_2|}. \]

This is a line.
(Reboot) Area-\(d = 2\) Case

Theorem: For all \(X \subseteq \mathbb{R}^2\) of size \(n\), no three colinear, \(\exists\) area-rainbow set of size \(\Omega(n^{1/5})\).

Proof: Let \(M\) be a **MAXIMAL AREA-RAINBOW SET**.

Let \(x \in X - M\). WHY IS \(x\) NOT IN \(M\)!? Either

1. \((\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]\).
2. \((\exists x_1, x_2, x_3, x_4 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]\).
3. \((\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]\).

\(f\) maps an element of \(X - M\) to **reason** \(x \notin M\).

\(f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}\). Recall that
Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

1. $(\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]$.
2. $(\exists x_1, x_2, x_3, x_4 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]$.
3. $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]$.

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that

What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$?
(Reboot) Area-\(d=2\) Case

Theorem: For all \(X \subseteq \mathbb{R}^2\) of size \(n\), no three colinear, \(\exists\) area-rainbow set of size \(\Omega(n^{1/5})\).

Proof: Let \(M\) be a **MAXIMAL AREA-RAINBOW SET**.

Let \(x \in X - M\). Why is \(x\) NOT IN \(M\)? Either

- \((\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]\).
- \((\exists x_1, x_2, x_3, x_4 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]\).
- \((\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]\).

\(f\) maps an element of \(X - M\) to reason \(x \notin M\).

\(f : X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}\). Recall that

What is \(f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})\)? By Lemma all points on it are on a line- so \(\leq 2\) points. **FINITE.**
(Reboot) Area-\(d = 2\) Case

Theorem: For all \(X \subseteq \mathbb{R}^2\) of size \(n\), no three colinear, \(\exists\) area-rainbow set of size \(\Omega(n^{1/5})\).

Proof: Let \(M\) be a **MAXIMAL AREA-RAINBOW SET**.

Let \(x \in X - M\). WHY IS \(x\) NOT IN \(M\)!?

Either

- \((\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]\).
- \((\exists x_1, x_2, x_3, x_4 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]\).
- \((\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]\).

\(f\) maps an element of \(X - M\) to **reason** \(x \notin M\).

\(f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}\). Recall that

What is \(f^{-1}({\{x_1, x_2}\}, {\{x_1, x_3}\}})\)? By Lemma all points on it are on a line- so \(\leq 2\) points. **FINITE**.

What is \(f^{-1}({\{x_1, x_2}\}, {\{x_3, x_4}\}})\)?
(Reboot) Area-\(d = 2\) Case

Theorem: For all \(X \subseteq \mathbb{R}^2\) of size \(n\), no three colinear, \(\exists\) area-rainbow set of size \(\Omega(n^{1/5})\).

Proof: Let \(M\) be a **MAXIMAL AREA-RAINBOW SET**. Let \(x \in X - M\). WHY IS \(x\) NOT IN \(M\)!? Either

- \((\exists x_1, x_2, x_3 \in M)[\text{\text{AREA}}(x, x_1, x_2) = \text{\text{AREA}}(x, x_1, x_3)]\).
- \((\exists x_1, x_2, x_3, x_4 \in M)[\text{\text{AREA}}(x, x_1, x_2) = \text{\text{AREA}}(x, x_3, x_4)]\).
- \((\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{\text{AREA}}(x, x_1, x_2) = \text{\text{AREA}}(x_3, x_4, x_5)]\).

\(f\) maps an element of \(X - M\) to reason \(x \notin M\).

\(f : X - M \to (\binom{M}{2}) \times (\binom{M}{2}) \cup (\binom{M}{2}) \times (\binom{M}{3}).\) Recall that

What is \(f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})\)? By Lemma all points on it are on a line- so \(\leq 2\) points. FINITE.

What is \(f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})\)? By Lemma all points on it are on a line- so \(\leq 2\) points. FINITE.
(Reboot) Area-\(d = 2\) Case

Theorem: For all \(X \subseteq \mathbb{R}^2\) of size \(n\), no three colinear, \(\exists\) area-rainbow set of size \(\Omega(n^{1/5})\).

Proof: Let \(M\) be a **MAXIMAL AREA-RAINBOW SET**. Let \(x \in X - M\). WHY IS \(x\) NOT IN \(M\)? Either

\[\begin{align*}
&\text{\(\exists x_1, x_2, x_3 \in M\)} [\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]. \\
&\text{\(\exists x_1, x_2, x_3, x_4 \in M\)} [\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]. \\
&\text{\(\exists x_1, x_2, x_3, x_4, x_5 \in M\)} [\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)].
\end{align*}\]

\(f\) maps an element of \(X - M\) to reason \(x \notin M\).

\[f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3} .\]

Recall that

What is \(f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})\)? By Lemma all points on it are on a line- so \(\leq 2\) points. **FINITE.**

What is \(f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})\)? By Lemma all points on it are on a line- so \(\leq 2\) points. **FINITE.**

What is \(f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})\)?
(Reboot) Area-$d = 2$ Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]$.
- $(\exists x_1, x_2, x_3, x_4 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]$.
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]$.

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that

What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. **FINITE**.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? By Lemma all points on it are on a line- so ≤ 2 points. **FINITE**.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$? By Lemma all points on it are on a line- so ≤ 2 points. **FINITE**.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$ **FINITE-to-1**.
Area $d = 2$ Case- Cont

$f : X - M \rightarrow (M \binom{2}{2}) \times (M \binom{2}{2}) \cup (M \binom{2}{2}) \times (M \binom{3}{3})$ is FINITE-to-1.

Case 1: $|M| \geq n^{1/5}$ DONE!

Case 2: $|M| \leq n^{1/5}$. Then $|X - M| = \Theta(|X|)$. Since MAP is finite-to-1, by LEMMA

$$| (M \binom{2}{2}) \times (M \binom{2}{2}) \cup (M \binom{2}{2}) \times (M \binom{3}{3})| \geq \Omega(|X - M|) = \Omega(|X|) = \Omega(n)$$

$$|M| \geq \Omega(n^{1/5})$$
Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no four on a plane, there exists Vol-rainbow set of size $\Omega(n^\delta)$. (δ TBD)
Similar. Left for the reader.
KEY to These Proofs

1. Used **MAXIMAL a-RAINBOW SET** M.
2. Used Map f from $x \in X - M$ to the reason x is NOT in M.
3. Looked at **INVERSE IMAGES** of that map.
4. Either:
 - All INVERSE IMG’s are small, so use LEMMA.
 - OR
 - Some INVERSE IMG’s are large subsets of \mathbb{R}^d or S^d, so induct.
Area-$d = 3$ Case

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. (δ TBD)

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET**.
Let $x \in X - M$. WHY IS x NOT IN M!? Either

1. $(\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]$.
2. $(\exists x_1, x_2, x_3, x_4 \in M)[\text{A}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]$.
3. $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]$.

f maps an element of $X - M$ to **reason** $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$.

What is $f^{-1}(\{{\{x_1, x_2}\}, \{x_1, x_3\}})$?
Area-\(d = 3 \) Case

Theorem: For all \(X \subseteq \mathbb{R}^3 \) of size \(n \), no three colinear, there exists Area-rainbow set of size \(\Omega(n^\delta) \). (\(\delta \) TBD)

Proof: Let \(M \) be a **MAXIMAL AREA-RAINBOW SET**. Let \(x \in X - M \). WHY IS \(x \) NOT IN \(M \)!? Either

- (\(\exists x_1, x_2, x_3 \in M \))[\(\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3) \)].
- (\(\exists x_1, x_2, x_3, x_4 \in M \))[\(\text{A}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4) \)].
- (\(\exists x_1, x_2, x_3, x_4, x_5 \in M \))[\(\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5) \)].

\(f \) maps an element of \(X - M \) to reason \(x \notin M \).

\(f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3} \).

What is \(f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}\}) \)? THIS IS HARD!
Area-\(d = 3\) Case

Theorem: For all \(X \subseteq \mathbb{R}^3\) of size \(n\), no three colinear, there exists Area-rainbow set of size \(\Omega(n^\delta)\). (\(\delta\) TBD)

Proof: Let \(M\) be a **MAXIMAL AREA-RAINBOW SET**.

Let \(x \in X - M\). WHY IS \(x\) NOT IN \(M\)? Either

- \((\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]\).
- \((\exists x_1, x_2, x_3, x_4 \in M)[\text{A}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]\).
- \((\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]\).

\(f\) maps an element of \(X - M\) to reason \(x \notin M\).

\(f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}\).

What is \(f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}\})\)? THIS IS HARD!

What is \(f^{-1}(\{x_1, x_2\}, \{x_3, x_4\}\)?
Theorem: For all \(X \subseteq \mathbb{R}^3 \) of size \(n \), no three colinear, there exists an area-rainbow set of size \(\Omega(n^\delta) \). (\(\delta \) TBD)

Proof: Let \(M \) be a **MAXIMAL AREA-RAINBOW SET**.

Let \(x \in X - M \). Why is \(x \) not in \(M \)? Either

- \((\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]\).
- \((\exists x_1, x_2, x_3, x_4 \in M)[\text{A}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]\).
- \((\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]\).

\(f \) maps an element of \(X - M \) to reason \(x \notin M \).

\(f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3} \).

What is \(f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}\}) \)? THIS IS HARD!

What is \(f^{-1}(\{x_1, x_2\}, \{x_3, x_4\}) \)? THIS IS HARD!
Area-$d = 3$ Case

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. (δ TBD)

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET.** Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_1, x_3)]$.
- $(\exists x_1, x_2, x_3, x_4 \in M)[\text{A}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4)]$.
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{AREA}(x, x_1, x_2) = \text{AREA}(x_3, x_4, x_5)]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$.

What is $f^{-1}({\{x_1, x_2\}, \{x_1, x_3\}})$? THIS IS HARD!

What is $f^{-1}({\{x_1, x_2\}, \{x_3, x_4\}})$? THIS IS HARD!

What is $f^{-1}({\{x_1, x_2\}, \{x_3, x_4, x_5\}})$?
Area-$d = 3$ Case

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists an area-rainbow set of size $\Omega(n^\delta)$. (δ TBD)

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET**.
Let $x \in X - M$. WHY IS x NOT IN M!? Either

1. $(\exists x_1, x_2, x_3 \in M)[\text{Area}(x, x_1, x_2) = \text{Area}(x, x_1, x_3)]$.
2. $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = \text{Area}(x, x_3, x_4)]$.
3. $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[\text{Area}(x, x_1, x_2) = \text{Area}(x_3, x_4, x_5)]$.

f maps an element of $X - M$ to reason $x \notin M$.

$f : X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$.

What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$? THIS IS HARD!

What to do?
WHAT CHANGED?

Why is this proof harder?

KEY statement about prior proof:

1. If INVERSE IMG’s are all finite so M is large.
2. If INVERSE IMG’s are subsets of \mathbb{R}^d or S^d then induct.

KEY: We cared about $X \subseteq \mathbb{R}^d$ but had to work with S^d as well. NOW we will have to work with more complicated objects.
What Do Inverse Images Look Like?

\[
\{ x : \text{AREA}(x, x_1, x_2) = \text{AREA}(x, x_3, x_4) \} = \\
\{ x : |\text{DET}(x, x_1, x_2)| = |\text{DET}(x, x_3, x_4)| \}.
\]

Definition: (Informally) An **Algebraic Variety in** \(\mathbb{R}^d \) **is a set of points in** \(\mathbb{R}^d \) **that satisfy a polynomial equation in** \(d \) **variables.**
General Theorem

Theorem Let \(2 \leq a \leq d + 1\). Let \(r \in \mathbb{N}\). For all varieties \(V\) of dim \(d\) and degree \(r\) for all sets of \(n\) points on \(V\) there exists an \(a\)-rainbow set of size \(\Omega(n^{1/(2a-1)d})\).

Corollary Let \(2 \leq a \leq d + 1\). For all \(X \subseteq \mathbb{R}^d\) of size \(n\) there exists an \(a\)-rainbow set of size \(\Omega(n^{1/(2a-1)d})\).

Corollary For all \(X \subseteq \mathbb{R}^d\) of size \(n\) there exists a 2-rainbow set (dist. distances) of size \(\Omega(n^{1/3d})\).

Corollary For all \(X \subseteq \mathbb{R}^d\) of size \(n\) there is a 3-rainbow set (dist. areas) of size \(\Omega(n^{1/5d})\).

Corollary For all \(X \subseteq \mathbb{R}^d\) of size \(n\) there is a 4-rainbow set (dist. volumes) of size \(\Omega(n^{1/7d})\).

Comments on the Proof

1. Proof uses Algebraic Geometry in Proj Space over \(\mathbb{C}\).
2. Proof uses Maximal subsets in same way as easier proofs.
3. Proof is by induction on \(d\).
Open Questions

1. Better Particular Results: e.g., want
 for all $X \subseteq \mathbb{R}^2$ of size n, there exists a rainbow set of size
 $\Omega(n^{1/2})$.

2. General Better Results: e.g., want
 Let $1 \leq a \leq d + 1$. For all $X \subseteq \mathbb{R}^d$ of size n there exists a
 rainbow set of size $\Omega(n^{1/ad})$.

3. Get easier proofs of general theorem.

4. Find any nontrivial limits on what we can do. (Trivial: $n^{1/d}$).

5. Algorithmic aspects.