
Deriving the Finite Ramsey Theorem from the Infinite Ramsey
Theorem

Exposition by William Gasarch

1 Finite Ramsey from Infinite Ramsey

Having proved the infinite Ramsey Theorem, we then want to prove the
finite Ramsey Theorem. Can we prove the finite Ramsey Theorem from the
infinite Ramsey Theorem? Yes, we can!

Def 1.1 R(m) is the smallest n such that, for all 2-colorings of Kn, there is
a homog set of size m. (Ramsey’s Theorem is that R(m) exists.)

Theorem 1.2 For every m ≥ 2, R(m) exists.

Proof: Suppose, by way of contradiction, that there is some m ≥ 2 such
that R(m) does not exist. Then, for every n ≥ m, there is some way to
color Kn so that there is no monochromatic Km (we have called this before
homogenous set of size m). Hence there exist the following:

1. COL1, a 2-coloring of Km that has no monochromatic Km

2. COL2, a 2-coloring of Km+1 that has no monochromatic Km

3. COL3, a 2-coloring of Km+2 that has no monochromatic Km

...

j. COLj, a 2-coloring of Km+j−1 that has no monochromatic Km

...

We will use these 2-colorings to form a 2-coloring COL of KN that has
no monochromatic Km.

Let e1, e2, e3, . . . be a list of all unordered pairs of elements of N such that
every unordered pair appears exactly once. We will color e1, then e2, etc.

How should we color e1? We will color it the way an infinite number of
the COLi’s color it. Call that color c1. Then how to color e2? Well, first
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consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:
J0 = N

COL(e1) =

{
RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite

BLUE otherwise
(1)

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}
Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,

furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,

COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =

{
RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite

BLUE otherwise
(2)

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}.
One can show by induction that, for every i, Ji is infinite. Hence this

process never stops.

Claim: If KN is 2-colored with COL, then there is no monochromatic Km.

Proof of Claim:
Suppose, by way of contradiction, that there is a monochromatic Km.

Let the edges between vertices in that monochromatic Km be

ei1 , . . . , eiM ,

where i1 < i2 < · · · < iM and M =
(
m
2

)
. For every j ∈ JiM , COLj and COL

agree on the colors of those edges. Choose j ∈ JiM so that all the vertices
of the monochromatic Km are elements of the vertex set of Km+j−1. Then
COLj is a 2-coloring of the edges of Km+j−1 that has a monochromatic Km,
in contradiction to the definition of COLj.
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End of Proof of Claim
Hence we have produced a 2-coloring of KN that has no monochro-

matic Km. This contradicts The Infinite Ramsey Theorem. Therefore, our
initial supposition—that R(m) does not exist—is false.

Note that this proof does not give an upper bounds on R(m).
Think about: Is there a proof that gives an upper bound on R(m)?

2 Proof of Large Ramsey Theorem

In all of the theorems presented in the course so far, the labels on the vertices
did not matter. In this section, the labels do matter.

Def 2.1 A finite set F ⊆ N is called large if the size of F is at least as large
as the smallest element of F .

Example 2.2

1. The set {1, 2, 10} is large: It has 3 elements, the smallest element is 1,
and 3 ≥ 1.

2. The set {5, 10, 12, 17, 20} is large: It has 5 elements, the smallest ele-
ment is 5, and 5 ≥ 5.

3. The set {20, 30, 40, 50, 60, 70, 80, 90, 100} is not large: It has 9 elements,
the smallest element is 20, and 9 < 20.

4. The set {5, 30, 40, 50, 60, 70, 80, 90, 100} is large: It has 9 elements, the
smallest element is 5, and 9 ≥ 5.

5. The set {101, . . . , 190} is not large: It has 90 elements, the smallest
element is 101, and 90 < 101.

We will be considering monochromatic Km’s where the underlying set of
vertices is a large set. We need a definition to identify the underlying set.

Def 2.3 Let COL be a 2-coloring of Kn. A set A of vertices is homogeneous if
there exists a color c such that, for all x, y ∈ A with x 6= y, COL({x, y}) = c.
In other words, all of the edges between elements of A are the same color.
One could also say that there is a monochromatic K|A|.
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Let COL be a 2-coloring of Kn. Recall that the vertex set of Kn is
{1, 2, . . . , n}. Consider the set {1, 2}. It is clearly both homogeneous and
large (using our definition of large). Hence the statement

“for every n ≥ 2, every 2-coloring of Kn has a large homogeneous set”

is true but trivial.
What if we used V = {m,m + 1, . . . ,m + n} as our vertex set? Then a

large homogeneous set would have to have size at least m.

Notation 2.4 Km
n is the graph with vertex set {m,m + 1, . . . ,m + n} and

edge set consisting of all unordered pairs of vertices. The superscript (m)
indicates that we are labeling our vertices starting with m, and the sub-
script (n) is one less than the number of vertices.

Note 2.5 The vertex set of Km
n (namely, {m,m + 1, . . . ,m + n}) has n +

1 elements. Hence if Km
n has a large homogeneous set, then n + 1 ≥ m

(equivalently, n ≥ m − 1). We could have chosen to use Km
n to denote the

graph with vertex set {m+1, . . . ,m+n}, so that the smallest vertex is m+1
and the number of vertices is n, but the set we have designated as Km

n will
better serve our purposes.

Notation 2.6 LR(m) is the least n, if it exists, such that every 2-coloring
of Km

n has a large homogeneous set.

We first prove a theorem about infinite graphs and large homogeneous
sets.

Theorem 2.7 If COL is any 2-coloring of KN, then, for every m ≥ 2, there
is a large homogeneous set whose smallest element is at least as large as m.

Proof: Let COL be any 2-coloring of KN. By The Infinite Ramsey The-
orem there exist an infinite set of vertices,

v1 < v2 < v3 < · · · ,

and a color c such that, for all i, j, COL({vi, vj}) = c. (This could be called
an infinite homogeneous set.) Let i be such that vi ≥ m. The set

{vi, . . . , vi+vi−1}

is a homogeneous set that contains vi elements and whose smallest element
is vi. Since vi ≥ vi, it is a large set; hence it is a large homogeneous set.
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Theorem 2.8 For every m ≥ 2, LR(m) exists.

Proof: This proof is similar to our proof of the finite Ramsey Theorem
from the infinite Ramsey Theorem.

Suppose, by way of contradiction, that there is some m ≥ 2 such that
LR(m) does not exist. Then, for every n ≥ m − 1, there is some way to
color Km

n so that there is no large homogeneous set. Hence there exist the
following:

1. COL1, a 2-coloring of Km
m−1 that has no large homogeneous set

2. COL2, a 2-coloring of Km
m that has no large homogeneous set

3. COL3, a 2-coloring of Km
m+1 that has no large homogeneous set

...

j. COLj, a 2-coloring of Km
m+j−2 that has no large homogeneous set

...

We will use these 2-colorings to form a 2-coloring COL of KN that has
no large homogeneous set whose smallest element is at least as large as m.

Let e1, e2, e3, . . . be a list of all unordered pairs of elements of N such that
every unordered pair appears exactly once. We will color e1, then e2, etc.

How should we color e1? We will color it the way an infinite number of
the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:
J0 = N

COL(e1) =

{
RED if |{j inJ0 midCOLj(e1) = RED}| is infinite

BLUE otherwise
(3)

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}
Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,

furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,
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COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =

{
RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite

BLUE otherwise
(4)

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}
One can show by induction that, for every i, Ji is infinite. Hence this

process never stops.

Claim: If KN is 2-colored with COL, then there is no large homogeneous set
whose smallest element is at least as large as m.

Proof of Claim:
Suppose, by way of contradiction, that there is a large homogeneous set

whose smallest element is at least as large as m. Without loss of generality, we
can assume that the size of the large homogeneous set is equal to its smallest
element. Let the vertices of that large homogeneous set be v1, v2, . . . vv1 ,
where m ≤ v1 < v2 < · · · < vv1 , and let the edges between those vertices be

ei1 , . . . , eiM ,

where i1 < i2 < · · · < iM and M =
(
v1
2

)
. For every j ∈ JiM , COLj and COL

agree on the colors of those edges. Choose j ∈ JiM so that all the vertices of
the large homogeneous set are elements of the vertex set of Km

m+j−2. Then
COLj is a 2-coloring of the edges of Km

m+j−2 that has a large homogeneous
set, in contradiction to the definition of COLj.
End of Proof of Claim

Hence we have produced a 2-coloring of KN that has no large homogeneous
set whose smallest element is at least as large as m. This contradicts The
Infinite Ramsey Theorem. Therefore, our initial supposition—that LR(m)
does not exist—is false.

Note that this proof does not give an upper bounds on LR(m).
Think about: Is there a proof that gives an upper bound on LR(m)?
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