
An Application of the Infinite Canonical Ramsey Theory to Geometry

1 Introduction

Let X ⊆ R2 be infinite. Is there an infinite Y ⊆ X such that all pairs of points in Y have
distinct distances? We will show YES using the Infinite Can Ramsey Theorem! We will
then move onto Rd where some issues will arise.

Our proofs have two ingredients: (1) the canonical Ramsey numbers, and (2) geometric
lemmas about points in Rd.

Definition: Let COL :
(
N
2

)
→ ω. Let V ⊆ N.

• V is homogenous if COL(a, b) = COL(c, d) iff TRUE.

• V is min-homogenous if COL(a, b) = COL(c, d) iff a = c.

• V is max-homogenous if COL(a, b) = COL(c, d) iff b = d.

• V is rainbow if COL(a, b) = COL(c, d) iff a = c and b = d.

Recall the Infinite Canonical Ramsey Theorem:

Theorem 1.1 Let COL :
(
N
2

)
V → ω. Then one of the following occurs.

• There exists an infinite homog set.

• There exists an infinite min-homog set.

• There exists an infinite max-homog set.

• There exists an infinite rainbow set.

2 Points in R2 and Distance

Theorem 2.1 If X ⊆ R2 is an infinite set then there exists infinite Y ⊆ R2 such that all
the distances between points of Y are distinct.

Proof: Let X = {p1, p2, p3, . . .}. Let COL :
(
N
2

)
→ ω be defined as

COL(i, j) = |pi − pj|.

Apply the infinite canonical Ramsey Theorem to this coloring.
If there is an infinite rainbow set we are done. We show that none of the other cases can

occur.
If there is an infinite homogenous set then there exists an infinite set of points such that

all the distances between them are distinct. Let this set be
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{q1, q2, q3, q4, q5 . . .}.

(There are many ways to show this is a contradiction. We do one of them.) The points
q1, q2, q3 form an equilateral triangle. q4 has no place to go.

If there is an infinite min-homogenous set then there exists an infinite set of points such
that all the distances between them all depend on the the lower indexed point. Let this set
be

{q1, q2, q3, q4, q5 . . .}.

The points q3, q4, . . . are all on a circle centered at q1.
The points q3, q4, . . . are all on a circle centered at q2.
Both of these circles have q4, q5, q6, . . . on them. If two circles intersect in ≥ 3 points then

they are the same circle, hence these two circles are the same. Hence their centers agree so
q1 = q2.

If there is an infinite max-homogenous set then there exists an infinite set of points such
that all the distances between them all depend on the the higher indexed point. Let this set
be

{q1, q2, q3, q4, q5 . . .}.

The points q1, q2, q3, . . . are all on a circle centered at q4.
The points q1, q2, q3, . . . are all on a circle centered at q5.
If two circles intersect in ≥ 3 points then they are the same circle, hence these two circles

are the same. Hence their centers agree so q4 = q5.
If there is an infinite max-homogenous set then there exists an infinite set of points

3 Points in R3 and Distance

We will try to prove the following theorem but hit a roadblock.

Theorem 3.1 If X ⊆ R3 is an infinite set then there exists infinite Y ⊆ R3 such that all
the distances between points of Y are distinct.

Proof: Let X = {p1, p2, p3, . . .}. Let COL :
(
N
2

)
→ ω be defined as

COL(i, j) = |pi − pj|.

Apply the infinite canonical Ramsey Theorem to this coloring.
If there is an infinite rainbow set we are done. We show that none of the other cases can

occur.
If there is an infinite homogenous set then there exists an infinite set of points such that

all the distances between them are distinct. Let this set be
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{q1, q2, q3, q4, q5 . . .}.

(There are many ways to show this is a contradiction. We do one of them.) The points
q1, q2, q3, q4 form an equilateral tetrahedron. q5 has no place to go.

If there is an infinite min-homogenous set then there exists an infinite set of points such
that all the distances between them all depend on the the lower indexed point. Let this set
be

{q1, q2, q3, q4, q5 . . .}.

The points q3, q4, . . . are all on a sphere centered at q1. Now what? We need the theorem
for the sphere and for the plane. Lets start over again

We need an induction on Rd and Sd.

Def 3.2 The sphere Sd of radius r is: Sd = {x ∈ Rn+1 : |x| = r}.

Theorem 3.3 For all d ≥ 1 the following hold:

1. If X ⊆ Rd is infinite then there exists infinite Y ⊆ X such that all distances between
points of Y are distinct.

2. If X ⊆ Sd is infinite then there exists infinite Y ⊆ X such that all distances between
points of Y are distinct. (We measure the distance in Rd+1. For example when looking
at S1 we look at chords of the circle.)

Proof: We prove this by induction on d.
For d = 1:
Assume true for d− 1.
Let X ⊆ Rd be infinite. Let X = {p1, p2, . . .}. We will use this ordering when applying

Can Ramsey. Define the coloring COL(i, j) = |pi − pj|. Apply the Can Ramsey Theorem.
We show that there cannot be an infinite homog, min-homog, or max-homog set.

Assume by way of contradiction that X be an infinite homog set. So all of the points in
X are equidistant from each other. One CAN show that X must be finite with geometry,
however I’ll just use the ind hyp. Let p ∈ X. Then all of the other points are equidistant
from p. They are on an Sd−1 sphere. Apply the induction hypothesis to Sd−1 to get the
desired infinite set.

Let X be a min-homog set. By renumbering Let X = {p1, p2, . . .}. We know that
|p1 − p2| = |p1 − p3| = · · · . Then all of the other points are equidistant from p. They form
an Sd−1 sphere. Apply the induction hypothesis to Sd−1 to get the desired infinite set.

Let X be a max-homog set. By renumbering Let X = {p1, p2, . . .}. We know that
|p1 − p3| = |p2 − p3| and |p1 − p4| = |p2 − p4| etc. Hence the points {p3, p4, . . .} are all
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equidistance between p1 and p2. So {p3, p4, . . .} are all on (with renaming) Rd−1. Then all of
the other points are equidistant from p. They are on a space equivalent to an Rd−1 sphere.
Apply the induction hypothesis to Sd−1 to get the desired infinite set.

4 Lets have distinct Areas

We want to prove a theorem along these lines:
If X ⊆ R2 is infinite then there exists infinite Y ⊆ X such that all areas between 3-sets

of points are distinct.
but this is false: just take the set of points on a line. Hence we look at points with no

three colinear, often called in general position
First we need the 3-ary Can Ramsey theorem.

Def 4.1 Let COL :
(
N
3

)
→ ω. Let I ⊆ {1, 2, 3}. A set is I-homog if, for all x1 < x2 < x3,

y1 < y2 < y3.

COL(x1, x2, x3) = COL(y1, y2, y3) iff (∀i ∈ I)[xi = yi].

Theorem 4.2 For all COL :
(
N
3

)
→ ω there exists I ⊆ [3] and infinite H ⊆ N such that H

is I-homog.

We will assume it.

Theorem 4.3 If X ⊆ R2 is infinite and in general position then there exists infinite Y ⊆ X
such that all the areas of 3-sets are different.

Proof:
Let X = {p1, p2, . . .} and we use this ordering for Can Ramsey. Let

COL(pi, pj, pk) be the area of the triangle pi, pj, pk.
Apply the 3-ary Can Ramsey. We show that of the 8 different kinds of homog, only

rainbow (that is when I = {1, 2, 3}) is possible.
By renumbering let H = {p1, p2, . . .} for whichever type of homog it is
Let Y be ∅-homog. Then any of the cases below will show that there are three points

colinear.
Let Y be ∅-homog OR 1-homog OR 2-homog OR 12-homog Then AREA(p1, p2, pk) is

always the same. Hence pk lies on one of TWO lines parallel to p1p2. So of p3, p4, p5, p6, p7
three of them will be on the same line.

Let Y be 3-homog OR 23-homog Then AREA(pi, p6, p7) with 1 ≤ i ≤ 5 is always the
same. Hence 1 ≤ i ≤ 5 all lie on one of two lines parallel to p6, p7. Hence there must be
three on a line.
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Let Y be 13-homog. Then AREA(p1, pj, p7) with 2 ≤ j ≤ 6 is always the same. Hence
2 ≤ i ≤ 6 all lie on one of two lines parallel to p1, p7. Hence there must be three on a line.
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