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Brief History of Early Ramsey Theory I

1) 1894: Hilbert proves Hilbert Cube Lemma (HCL).

App: The Hilbert Irred. Thm.

Hilbert viewed HCL as a means to an end so he
did not launch what is now called Ramsey Theory :-(

2) 1926: Schur proves Schur’s Theorem (ST):
(∀) finite cols of Z (∃x , y , z) mono, x + y = z .

App: (∀n)(∀∞p)(∃x , y , z 6≡ 0(p))[xn + yn ≡ zn(p)],
Hence showed that FLT cannot be solved modularly.

Schur viewed ST as a means to an end so he
did not launch what is now called Ramsey Theory :-(



Brief History of Early Ramsey Theory II

3) 1927: Van der Waerden proves Van der Waerden’s theorem
(VDW) to resolve conjecture of Baudet and Schur.

App None.

Van der Waerden viewed VDW as an isolated problem so he
did not launch what is now called Ramsey Theory :-(



Brief History of Early Ramsey Theory III

4) 1930: Ramsey proves Ramsey’s theorem (RT).

App: Given a first order sent. about hypergraphs of the form

φ = (∃~x)(∀~y)[ψ(~x , ~y)]

can determine all n (set finite or cofinite) such that there is a
hypergraph on n vertices that satisfies φ.

Ramsey died in 1930 so he
did not launch what is now called Ramsey Theory :-(

He likely viewed RT as a means to an end so I suspect he
would not have launched what is now called Ramsey Theory :-(

(Irony?)



Brief History of Early Ramsey Theory IV

5) 1935: Erdos-Szekeres rediscover RT.

App: (∀n)(∃KLEIN(n)) such that (∀) sets of KLEIN(n)
points in the plane in general position (∃n) points that form a
convex n-gone.

Erdos viewed RT as important so he
did launch what is now called Ramsey Theory :-)

Yeah!



We Fill a Gap in the Literature

The theorems and-or applications of Schur, Van der Waerden,
Erdos-Szekeres are well known, well documented, and available in
English in modern language.

The theorems and applications of Ramsey has not been written up
in modern language but is in English and isn’t that hard. (I may
have a writeup of that for RATLOCC 2020!)

The theorems and application of Hilbert are (until now) only
available in German and not written up in modern language.
We rectify that!



Hilbert’s Irreducibility Theorem (HIT)

Notation: Throughout this talk t0 and t range over N.
Theorem: Let f (x , y) ∈ Z[x , y ]− Z[x ]. Assume

(∃t0)(∀t ≥ t0)[f (x , t) is reducible in Z[x ]].

Then f (x , y) is reducible in Q[x , y ].

Hilbert proved this in 1894.
He proved and used The Hilbert Cube Lemma (HCL)

HCL is retrospectively the first Ramseyian Theorem
HIT is retrospectively the first app of a Ramseyian Theorem



Applications of HIT

Theorem 1: Let f (x) ∈ Z[x ]. If (∃∞t)[f (t) ∈ SQ] then there exists
g(x) ∈ Z[x ] such that f (x) = g(x)2.

Theorem 2: For all n ∈ N there are an infinite number of
f (x) ∈ Z[x ] that have Galois group Sn (and hence are not solvable
by radicals).

Note: Galois groups were Hilbert’s motivation for HIT.
Question: Is is an application of transitive?
HIT is an application of HCL.
Theorem 1 is an application of HIT

SO, is
Theorem 1 an application of HCL?



Puiseux’s Theorem

Theorem: Let f (x , y) ∈ C[x , y ]. Assume that x has degree d .
Then there exists r1(y), . . . , rd(y) such that:
1) For all t ∈ C the roots of f (x , t) are r1(t), . . . , rd(t).
2) There exists n, k such that the ri (y)’s are all of the form:

Any
n/k + An−1y

(n−1)/k + · · ·+ A1y
1/k + A0 +

B1

y1/k
+

B2

y2/k
+ · · ·

These are called Puiseux Series (P-Series)
The degree of a P-series is the degree of y1/k in the poly part. The
above P-series has degree n.
Note: If deg(x) in f (x , y) is n and deg(y) in f (x , y) is m then n, k
are bounded by . . . have not been able to find out! If you know
then please tell me!



Hilbert Irreducibility Theorem

Theorem: Let f (x , y) ∈ Z[x , y ]− Z[x ]. Assume

(∃t0)(∀t ≥ t0)[f (x , t) is reducible in Z[x ]].

Then f (x , y) is reducible in Q[x , y ].
Proof:
r1(y), . . . , rn(y) are the P-series for f (x , y).

Simplifying assumptions for this talk:
1) f (x , y) is monic.
2) P-series have k = 1. Hence the ri (y)’s are of the form

Any
n + An−1y

n−1 + · · ·+ A1y + A0 +
B1

y
+

B2

y2
+ · · ·



Even More Simplifying Assumptions for This Talk

We assume:

1. Degree of x in f (x , y) is 7.

2. r1, . . . , r7 each have degree ≤ 24.

3. Note for later: Let S(z1, z2, z3) be any of

S(z1, z2, z3) = z1 + z2 + z3

S(z1, z2, z3) = z1z2 + z1z2 + z2z3

S(z1, z2, z3) = z1z2z3

Then S(r1(y), r2(y), r3(y)) (or any other 3 ri ’s) is a P-series
of degree ≤ 3× 24 = 72. We will denote 72 by n.



We Color all t ≥ t0

Let t ≥ t0. f (x , t) is reducible over Z so
f (x , t) = gt(x)ht(x) where gt(x), ht(x) ∈ Z[x ]

gt(x) has roots r1(t), r3(t), r4(t).

Color t with whichever of (1, 3, 4) or (2, 5, 6, 7) is shorter, so
(1, 3, 4).



Symmetric Functions of the ri are in Z

f (x , t) = gt(x)ht(x) where gt(x), ht(x) ∈ Z[x ]

gt(x) has roots r1(t), r3(t), r4(t).

Since gt(x) has roots r1(t), r3(t), r4(t) the coefficients of gt(x) are
symmetric functions in r1(t), r3(t), r4(t).



Some Color Appears Infinitely Often!

Some color appears infinitely often.
Simplifying Assumption For This Talk: That color is (1, 3, 4)
So

1. (∃∞t)[f (x , t) = gt(x)ht(x)]

2. (∃∞t)[gt(x) = (x − r1(t))(x − r3(t))(x − r4(t)) ∈ Z[x ]]

Let S1,S2,S3 be the elementary Symmetric Functions. Then
(x − r1(y))(x − r3(y))(x − r4(y)) =

x3 − S1(r1(y), r3(y), r4(y))x2 + S2(r1(y), r3(y), r4(y))x

−S3(r1(y), r3(y), r4(y))

Hence for i = 1, 2, 3:

(∃∞t)[Si (r1(t), r3(t), r4(t)) ∈ Z]



Si(r1(y), r2(y), r3(y))

Let S1,S2, S3 be the elementary Symmetric Functions. Then
(x − r1(y))(x − r3(y))(x − r4(y)) =

x3 − S1(r1(y), r3(y), r4(y))x2 + S2(r1(y), r3(y), r4(y))x

−S3(r1(y), r3(y), r4(y))

Hence for i = 1, 2, 3:

(∃∞t)[Si (r1(t), r3(t), r4(t)) ∈ Z]

Key: Si (r1(y), r3(y), r4(y)) is a P-series of degree ≤ n = 72.
Want: If S is a P-series and (∃∞t)[P(t) ∈ Z] then S is a
polynomial.



IF Si(r1(y), r2(y), r3(y) ∈ C[y ]

Assume for i = 1, 2, 3 Si (r1(y), r2(y), r3(y) ∈ C[y ]
For i = 1, 2, 3 let Ti (y) = Si (r1(y), r2(y), r3(y).

f (x , y) = gy (x)hy (x) = (x3 + T1(y)x2 + T2(y)x + T3(y))hy (x)

Can show that hy (x) ∈ C[x , y ].

f (x , y) = gy (x)hy (x) = (x3 + T1(y)x2 + T2(y)x + T3(y))hy (x)

Since (∃∞t)[Ti (t) ∈ Z] interpolation shows gy (x), hy (x) ∈ Z[x , y ].



What we Want, What we Really Really Want

Want

Theorem Let S(y) be a P-series.
If (∃∞t)[S(t) ∈ Z] then S(y) ∈ C[y ].

Sounds Reasonable.

Prob not true. Neither Hilbert nor I could prove it.

Go back to the coloring.
The condition (∃∞t)[COL(t) = (1, 3, 4)] not strong enough.
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Our Will is Strong, Our Premise is Weak

The premise:

(∃∞t)[S(t) ∈ Z]

too weak. The t could be anything. No pattern. Need a more
structured set of naturals where S(t) ∈ Z .



Definition of an n-Cube

Definition: Let n ∈ N. Let µ1, . . . , µn ∈ N. An n-cube on
{µ1, . . . , µn} is a set of the form:

{t + b1µ1 + · · ·+ bnµn : b1, . . . , bn ∈ {0, 1}}.

where t ∈ N.
Example: A 3-cube on {µ1, µ2, µ3} is a set of the form

{t}
⋃

{t + µ1, t + µ2, t + µ3}
⋃

{t + µ1 + µ2, t + µ1 + µ3, t + µ2 + µ3}
⋃

{t + µ1 + µ2 + µ3}



Hilbert Cube Lemma

HCL: Let n ∈ N. Let COL be a finite colorings of N. There exist
µ1, . . . , µn ∈ N and a color c such that there are an infinite
number of n-cubes where every number in them is colored c.

1. Today can prove from VDW’s theorem.

2. Hilbert proved from scratch.

3. Hilbert’s proof is, in retrospect, a typical Ramsey-Theoretic
Argument.

4. How typical?
Prove HCL without using VDW’s Theorem

was on take home final of my Graduate Ramsey Theory
course. 20 out of 22 students got it right.



Back to Our Coloring

We color all t ≥ t0 as before.
Apply HCL with n + 1 (one more than highest deg(Si )) to get
There exists µ1, . . . , µn+1 such that, for i = 1, 2, 3,

(∃∞t)[Ti (t + b1µ1 + · · ·+ bn+1µn+1) ∈ Z]

(bi ∈ {0, 1})
Ti is coefficient of gy (x). Ti is a P-series.



New Goal

Let T0(y) be a P-series of degree n. Assume there exists
µ1, . . . , µn+1 such that

(∃∞t)[T0(t + b1µ1 + · · ·+ bn+1µn+1) ∈ Z]

(bi ∈ {0, 1})

then T0 ∈ C [y ].



You’re an Integer! And You’re An Integer!

T0(y) = Any
n + An−1y

n−1 + · · ·+ A1y + A0 +
B1

y
+

B2

y2
+ · · ·

Assume, BWOC that (∃i)[Bi 6= 0]. For this talk B1 6= 0.

(∃∞t)[T0(t) ∈ Z ∧ T0(t + µ1) ∈ Z]

T1(y) = T0(y + µ1)− T0(y)

(∃∞t)[T1(t) ∈ Z]

T2(y) = T1(y)− T1(y + µ2)

(∃∞t)[T2(t) ∈ Z]

Etc down to Tn.
What happens to the poly part? The non-poly part?



The Poly Part

T0(y) = Any
n + An−1y

n−1 + · · ·+ A1y + A0 +
B1

y
+

B2

y2
+ · · ·

T0(y) = L0(y) +
B1

y
+

B2

y2
+ · · · deg(L0) = n

T1(y) = T0(y+µ1)−T0(y) = L1(y)+ non poly stuff, deg(L1) = n − 1

T2(y) = T1(y+µ2)−T0(y) = L2(y)+ non poly stuff, deg(L2) = n − 2

etc.

Tn(y) = Tn−1(y+µn)−Tn−1(y) = Ln(y)+ non poly stuff, deg(Ln) = 0

Continued on next page



The Poly Part

Tn(y) = Tn−1(y+µn)−Tn−1(y) = Ln(y)+ non poly stuff, deg(Ln) = 0

So Ln(y) is a constant which we call c .

Tn+1(y) = Tn(y + µn+1)− Tn(y) = non poly stuff,

Upshot: Tn+1 only has non-poly stuff.
Recall:

(∃∞t)[Tn+1(t) ∈ Z]

(We use later.)



The Non-Poly Part

T0(y) = Any
n + An−1y

n−1 + · · ·+ A1y + A0 +
B1

y
+

B2

y2
+ · · ·

T0(y) = L0(y) +
B1

y
+ O

(
1

y2

)
For now ignore terms of order < the first term of nonpoly part.

T1(y) = T0(y + µ1)− T0(y) = L1(y) + M1(y)

M1(y) = B1

(
1

y + µ1
− 1

y

)
= B1µ1

1

y(y + µ1)



The Non-Poly Part

T2(y) = T1(y + µ2)− T1(y) = L2(y) + M2(y)

M2(y) = B1µ1

(
1

(y + µ2)(y + µ1 + µ2)
− 1

y(y + µ1)

)

= B1µ1µ2

(
2y + µ1 + µ2

(y + µ2)(y + µ1 + µ2)(y(y + µ1))

)
· · ·

Mn+1(y) = B1µ1 · · ·µn+1
p(y)

q(y)
, deg(q(y)) < deg(p(y))

Since Mn+1(y) only has non-poly part, Ln+1(y) = Mn+1, so

(∃∞t)[B1µ1 · · ·µn+1
p(t)

q(t)
∈ Z]



The Non-Poly Part

Mn+1(y) = B1µ1 · · ·µn+1
p(y)

q(y)
, deg(q(y)) > deg(p(y))

Lets restore those other terms:

Mn+1(y) = B1µ1 · · ·µn+1
p(y)

q(y)
+Θ

(
1

ya

)
(a > deg(q(y))− deg(p(y)))

(∃∞t)[B1µ1 · · ·µn+1
p(t)

q(t)
+ Θ

(
1

ta

)
∈ Z]

Hence B1 = 0. Contradiction. DONE!



HIT 1890’s

HIT: Hilbert’s Version

Intuition: If there are LOTS of t with f (x , t) reducible then f (x , y)
is reducible. LOTS means Infinite.

Theorem: Let f (x , y) ∈ Z[x , y ]− Z[x ]. Assume

(∃t0)(∀t ≥ t0)[f (x , t) is reducible in Z[x ]].

Then f (x , y) is reducible in Q[x , y ].



HIT 1990’s

HIT: Modern Quantitative Version

Intuition: If there are LOTS of t with f (x , t) reducible then f (x , y)
is reducible. LOTS means a large subset of {−N, . . . ,N}.

Definition: |f | is the max abs val of coefficient.
Theorem: There exists a function c(d) such that the following
holds: Let f (x , y) ∈ Z[x , y ]− Z[x ] be of degree d and let
N � |f |c(d). If

|{t : t ∈ {−N, . . . ,N}, f (x , t) is reducible}|

≥ |f |c(d)
√
N logN

then f (x , y) is reducible in Q[x , y ].
Note: Sharper quant. versions depend on the Galois Group of f .



That was Then, This is Now: HCL

Definition H(n, c) is the least H such that for any c-coloring of N
there is a mono n-cube.
Bounds on H(n, c) then and now:
Hilbert’s Bound:

H(n, c) ≤ TOWO(c)(O(n))

Gunderson and Rodl:

cΩ(2n/n) ≤ H(n, c) ≤ (2c)2n−1

Application: Szemeredi used better bounds on HCL (and he may
have ind derived them) to prove:
A ⊆ [N] is of upper positive density then A has arb long AP’s



Coda

Too bad Hilbert didn’t pursue Theorems about coloring.

He could have been famous!
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