HW 07, Problem 4,
Solution

May 10, 2020



The Language of < 3 — ary Colored Hypergraphs

Our language has the following predicates
1. R(x), B(x). Implicity that every vertex is R or B or NEITHER.

2. RR(x,y), BB(x,y), GG(x,y). Implicity that every edges is
RR or BB or GG or NEITHER.

3. RRR(x,y,z), BBB(x,y,z). Implicity that every 3-edges is
RRR or BBB or NEITHER.

We call this object a JAMIE.



Conventions

1. Symmetric. So RR(x, y) really means RR(x,y) A RR(y, x).
Similar for BB, GG, RRR, BBB.

2. No self loops, so R(x, x) is always false. Simlar for...
3. (3x1) - - - (3xn) means they are DISTINCT.
4. (Vx1)---(¥xn) means they are DISTINCT.



Main Theorem

Theorem The following function is computable: Given ¢, an E*A*
sentence in the theory of JAMIE, output spec(¢). (spec(¢) will be
a finite or cofinite set; hence it will have an easy description.)



Main Theorem

Theorem The following function is computable: Given ¢, an E*A*
sentence in the theory of JAMIE, output spec(¢). (spec(¢) will be
a finite or cofinite set; hence it will have an easy description.)

We will take ¢ to be

(3x1) -+ (3xa)(Vy1) - - (Vym) [ (xas - X, y15- - Yim)]



Claim 1

Let G |= ¢ with witnesses vy, ..., v,. Let H be an induced
subgraph of G that contains vq,...,v,. Then H = ¢.
Proof similar to the one from class.



Claim 2, The Main Claim

If (3N > QQQ)[N € spec(¢)] then
{n+m,...,QQQ,...} Cspec(e).

We will derive what QQQ has to be later.

Proof of Claim 2

Since N € spec(¢) there exists G, a JAMIE on N vertices such
that G = ¢. Let vi,..., v, be such that:

(Vy1) - (Yym)[¥(va, oo Vi i, ym)]-

(Proof continued on next slide)



Proof of Claim 2 Continued

(v.yl) T (Vym)[w(vh crty Vn7y17 s :)/m)]-
Let X = {v1,...,vp} and U=V — X. Note that |U| > QQQ — n.
We color U by how it relates to all of the elements in X:
1. Forall 1 <i<n RR(u,v;)BB(u,v;)GG(u,v;) (< 8 options).
There are n of them, so 8" = 23" options.
2. Forall 1 <i<j<nRRR(u,vi,vj)BBB(u,vi,vj). (<4
options)
There are ('2’) of them, so < 4m*/2 — or*.

. 2 2
The number of colors is 237 x 2n° = pn"+3n



Proof of Claim 2 Continued

We want LOTS of elements to be the SAME color. So we want
Q=1 t5 he LARGE (and to be a natural number). So we let

2n2+3n

QQQ = (L + n)2™+31 where L will be determined later.

Every u € U is mapped to a description of how it relates to every
element in X. Since |U| > 2737 there exists L vertices that map

to the same color. Denote the L elements of U that map to the

same color U'.

We denote the color they all map to as THECOLOR.



Proof of Claim 2 Continued

We thin out U’ on this and the next two slides.

Some of the u € U have R(u) true, some have B(u) true, and
some have neither.

At least L/3 of the U’ have the same. We'll say its R.
Let U” be al the u € U such that R(u) holds.

We assume U” = L/3, or L =3U".



Proof of Claim 2 Continued

(Erika says to apply Ramsey Theory here).
(%) is 4-colored by RR, BB, GG, NEITHER.
Let U"” be the homog set. Assume its NEITHER

We assume U” big enough to yield a homog set of size U"”" where
we will figure out U later.

So U" = Ry(U",4),s0o L=3R,(U",4).



Proof of Claim 2 Continued

(%) is 3-colored by RRR, BBB. NEITHER.
Let U"" be the homog set. Assume its GGG.

We assume U big enough to yield a homog set of size U"”" where
we will figure out U later.

So U" = R3(U"",3), so L =3Rx(R3(U",3),4).
We will need U"" = m so
L = 3Ry(Rs(m, 3),4).

QQQ = (L + n)2" 13" = (3R,(R5(m, 3),4) + n)2"3"

Let U ={u1,...,um}.



Proof of Claim 2 Continued

Let Hy be G restricted to X U {u1,...,um}. By Claim 1 Hy = ¢.
For every p > 1 we form a JAMIE H, on n+ m 4 p vertices such
that H, [= ¢:

Informally add m + p vertices that are just like the u;’s.
Formally Next Slide.



Proof of Claim 2 Continued, Formal H, = (V,, E,)

Vo =XU{u1,...,Um, Unt1, ..., Unip} Where umi1,. .., Unyp are
new vertices.
We have to define how the new u;'s relate to X, to the other u;s
(both old and new).
> The new u;'s relate to the elements of X the same way the
{u1,...,um} did, which follows THECOLOR.

> Foralm+1<i<m+p, R(uj))=T, B(u;) =F.

» Forall1 <i<j<m+ p, NONE of RR(uj, uj) are true.

> Forall1<i<j<k<m+p, GGG(uj,uj,uc)=T.
X sees all of the uy,..., unyp as the same. Hence any subset of
the {u1,..., Um4p} Of size m looks the same to X and to the other
ui's. Hence H, = ¢, so n+ m+ p € spec(¢).
End of Proof of Claim 2



THE REST OF THE PROOF

The rest of the proof is identical to what | did in class except that
| replace n+ R(m) with QQQ.

Even so, its in the next slides.



Claim 3

¢ =(3x1) - (Fxn)(Yy1) - (Vym)[W (X1, oo Xny Va5 - -5 Ym)]-
No = QRQ.

No ¢ spec(¢) = spec(¢) C{0,...,No —1}.

Proof of Claim 3

By Claim 2

{No, ...} Nspec(p) #0D = {n+m,..., Ny,...} C spec(q).
We take the contrapositive with a weaker premise.

No ¢ spec(¢) = {No,...} Nspec(¢p) =0

— spec(¢) C{0,...,No — 1}.
End of Proof of Claim 3



Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to
recap what we know.

Let Np = QQQ.
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Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to
recap what we know.

Let Np = QRQ.
Claim 2

If No € spec(¢) then {n+m,... } Cspec(e).

Claim 3
If No ¢ spec(¢) then spec(¢) C {0,...,No — 1}.



Algorithm for Finding spec(¢)

1. Input

¢ = (HXl) o (Ean)(\V/yl) o (V)’m)[w(xl, sy Xny Y1,-0- aym)]‘
2. Let Np = QQRQ. Determine if Ny € spec(o).
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1. Input

¢ = (HXl) o (Ean)(\V/yl) o (V)’m)W(Xl, sy Xny Y1,-0- aym)]‘
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For 0 <i<n+m—1testif i €spec(¢). You now know
spec(¢) which is co-finite. Output it.



Algorithm for Finding spec(¢)

1. Input

¢ = (3x) - (Fxa)(Vy1) - (Vym)[W(x, - s Xy y1s o ym)]-

2. Let Np = QRQ. Determine if Ny € spec().

2.1 If YES then by Claim 2 {n+ m, ...} C spec(¢).
For 0 <i<n+m—1testif i €spec(¢). You now know
spec(¢) which is co-finite. Output it.

2.2 If NO then, by Claim 3 spec(¢) C {0,..., Nog — 1}.
For 0 < < Np — 1 test if i € spec(¢). You now know spec(¢)
which is finite set. Output it.

End of Proof of Main Theorem



