Rado's Theorem

Exposition by William Gasarch

June 19, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

VDW and Extended VDW

Recall VDW's Theorem

VDW's Theorem For all k, c there exists W = W(k, c) such that for every *c*-coloring of [W] there exists a, d such that

$$a, a+d, a+2d, \ldots, a+(k-1)d$$

are all the same color.

VDW and Extended VDW

Recall VDW's Theorem

VDW's Theorem For all k, c there exists W = W(k, c) such that for every *c*-coloring of [W] there exists a, d such that

$$a, a+d, a+2d, \ldots, a+(k-1)d$$

ション ふゆ アメリア メリア しょうくしゃ

are all the same color.

What about *d* itself? Can it be the same colors as a, a + d, ..., a + (k - 1)d?

VDW and Extended VDW

Recall VDW's Theorem

VDW's Theorem For all k, c there exists W = W(k, c) such that for every *c*-coloring of [W] there exists a, d such that

$$a, a+d, a+2d, \ldots, a+(k-1)d$$

are all the same color.

What about *d* itself? Can it be the same colors as $a, a + d, \ldots, a + (k - 1)d$?

Extended VDW's Theorem **EVDW Theorem** For all k, c there exists E = E(k, c) such that for every *c*-coloring of [*E*] there exists *a*, *d* such that

$$a, a+d, a+2d, \ldots, a+(k-1)d, d$$

ション ふゆ アメリア メリア しょうくしゃ

are all the same color.

EVDW Theorem For all k, c there exists E = E(k, c) such that for every *c*-coloring of [*E*] there exists *a*, *d* such that

$$a, a+d, a+2d, \ldots, a+(k-1)d, d$$

are all the same color.

EVDW Theorem For all k, c there exists E = E(k, c) such that for every *c*-coloring of [*E*] there exists *a*, *d* such that

$$a, a+d, a+2d, \ldots, a+(k-1)d, d$$

are all the same color.

Pf. Induction on c. E(k, 1) = k. We show $E(k, c) \le W(X+1, c)$, X LARGE.

ション ふゆ アメリア メリア しょうくしゃ

EVDW Theorem For all k, c there exists E = E(k, c) such that for every *c*-coloring of [*E*] there exists *a*, *d* such that

$$a, a+d, a+2d, \ldots, a+(k-1)d, d$$

are all the same color.

Pf. Induction on *c*. E(k, 1) = k. We show $E(k, c) \le W(X + 1, c)$, *X* LARGE. *COL*: $[W(X + 1, c)] \rightarrow [c]$. By VDW there exists *A*, *D A*, *A* + *D*,..., *A* + *XD* is color *CCC*.

ション ふぼう メリン メリン しょうくしゃ

EVDW Theorem For all k, c there exists E = E(k, c) such that for every *c*-coloring of [*E*] there exists *a*, *d* such that

$$a, a+d, a+2d, \ldots, a+(k-1)d, d$$

are all the same color.

Pf. Induction on *c*. E(k, 1) = k. We show $E(k, c) \le W(X + 1, c)$, *X* LARGE. *COL*: $[W(X + 1, c)] \rightarrow [c]$. By VDW there exists *A*, *D A*, *A* + *D*,..., *A* + *XD* is color *CCC*. *A*, *A* + *D*,..., *A* + (k - 1)D are color *CCC*. So *COL*(*D*) \ne *CCC*. *A*, *A* + 2*D*,..., *A* + 2(k - 1)D are *CCC*. So *COL*(2*D*) \ne *CCC*. : *A*, *A* + $\frac{XD}{k-1}$, *A* + $\frac{2XD}{k-1}$, ..., *A* + $\frac{(k-1)XD}{k-1}$. So *COL*($\frac{XD}{k-1}$) \ne *CCC*.

EVDW Theorem For all k, c there exists E = E(k, c) such that for every *c*-coloring of [*E*] there exists *a*, *d* such that

$$a, a+d, a+2d, \ldots, a+(k-1)d, d$$

are all the same color.

Pf. Induction on c. E(k, 1) = k. We show $E(k, c) \le W(X + 1, c)$, X LARGE. COL: $[W(X + 1, c)] \rightarrow [c]$. By VDW there exists A, D A, A + D, ..., A + XD is color CCC. A, A + D, ..., A + (k - 1)D are color CCC. So $COL(D) \ne CCC$. A, A + 2D, ..., A + 2(k - 1)D are CCC. So $COL(2D) \ne CCC$. : A, A + $\frac{XD}{k-1}$, A + $\frac{2XD}{k-1}$, ..., A + $\frac{(k-1)XD}{k-1}$. So $COL(\frac{XD}{k-1}) \ne CCC$. D, 2D, ..., $\frac{X}{k-1}D$ not colored CCC, only use c - 1 colors.

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c - 1 colors. Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c - 1 colors. Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c - 1)D$ only use c - 1 colors (not CCC).

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c - 1 colors. Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c - 1)D$ only use c - 1 colors (not CCC). Define COL'(i) = COL(iD), a (c - 1)-coloring, so there exists a', d'

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c - 1 colors. Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c - 1)D$ only use c - 1 colors (not CCC). Define COL'(i) = COL(iD), a (c - 1)-coloring, so there exists a', d' $a', a' + d', \ldots, a' + (k - 1)d', d'$ same COL' color.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c - 1 colors. Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c - 1)D$ only use c - 1 colors (not CCC). Define COL'(i) = COL(iD), a (c - 1)-coloring, so there exists a', d' $a', a' + d', \ldots, a' + (k - 1)d', d'$ same *COL'* color. $a'D, (a' + d')D, \ldots, (a' + (k - 1)d')D, d'D$ same *COL* color.

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors. Set X = E(k, c-1)(k-1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC). Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a', d' $a', a' + d', \ldots, a' + (k-1)d', d'$ same COL' color. $a'D, (a' + d')D, \ldots, (a' + (k-1)d')D, d'D$ same *COL* color. $a'D, a'D + d'D, \ldots, a'D + (k-1)d'D, d'D$ same *COL* color.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目・ 少へ⊙

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors. Set X = E(k, c-1)(k-1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC). Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a', d' $a', a' + d', \dots, a' + (k-1)d', d'$ same *COL'* color. $a'D, (a'+d')D, \ldots, (a'+(k-1)d')D, d'D$ same COL color. $a'D, a'D + d'D, \ldots, a'D + (k-1)d'D, d'D$ same COL color. a = a'D, d = d'D

(ロ)、

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors. Set X = E(k, c-1)(k-1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC). Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a', d' $a', a' + d', \ldots, a' + (k-1)d', d'$ same COL' color. $a'D, (a'+d')D, \dots, (a'+(k-1)d')D, d'D$ same COL color. $a'D, a'D + d'D, \ldots, a'D + (k-1)d'D, d'D$ same COL color. a = a'D, d = d'D $a, a + d, \ldots, a + (k - 1)d, d$ same COL color.

What I presented above is NOT the EVDW. This is: **EVDW Theorem** For all k, c, e there exists E = E(k, e, c) such that for every *c*-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

are all the same color.

What I presented above is NOT the EVDW. This is: **EVDW Theorem** For all k, c, e there exists E = E(k, e, c) such that for every *c*-coloring of [E] there exists *a*, *d* such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

ション ふゆ アメリア メリア しょうくしゃ

are all the same color.

This is an exercise. It might be on a HW or the Final.

Notation

For this talk

$$\mathbb{N}=\{1,2,3,\ldots,\}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Mono Solutions To x + y = z

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists x, y, z \mod c$) with x + y = z.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Mono Solutions To x + y = z

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ ($\exists x, y, z \mod b$) with x + y = z. Pf S = EVDW(2, 1, c). By EVDW, for COL: $[S] \rightarrow [c] (\exists a, d)$ a, a + d, d the same color.

Mono Solutions To x + y = z

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ ($\exists x, y, z \mod b$) with x + y = z. Pf S = EVDW(2, 1, c). By EVDW, for COL: $[S] \rightarrow [c] (\exists a, d)$ a, a + d, d the same color.

Take x = a, y = d, z = a + d.

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z \mod b$) with w + 2x + 3y = 5z. **Pf** We plan to use the EVDW. CLASS WORK ON IT IN GROUPS

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z \mod b$) with w + 2x + 3y = 5z. Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS $w = a_1 + k_1d$ $x = a_2 + k_2d$ $y = a_3 + k_3d$ $z = a_4 + k_4d$ $a_1, a_2, a_3, a_4 \in \{0, a\}$. Can't have $a_i = k_i = 0$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z \mod b$) with w + 2x + 3y = 5z. Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS $w = a_1 + k_1d$ $x = a_2 + k_2d$ $y = a_3 + k_3d$ $z = a_4 + k_4d$ $a_1, a_2, a_3, a_4 \in \{0, a\}$. Can't have $a_i = k_i = 0$.

 $a_1 + 2a_2 + 3a_3 + k_1d + 2k_2d + 3k_3d = 5a_4 + 5k_4d$

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ $(\exists w, x, y, z \text{ mono})$ with w + 2x + 3y = 5z. Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS $w = a_1 + k_1 d$ $x = a_2 + k_2 d$ $y = a_3 + k_3 d$ $z = a_{4} + k_{4}d$ $a_1, a_2, a_3, a_4 \in \{0, a\}$. Can't have $a_i = k_i = 0$. $a_1 + 2a_2 + 3a_3 + k_1d + 2k_2d + 3k_3d = 5a_4 + 5k_4d$

For d: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 5$, $k_2 = k_3 = 1$, $k_4 = 2$.

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ $(\exists w, x, y, z \text{ mono})$ with w + 2x + 3y = 5z. Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS $w = a_1 + k_1 d$ $x = a_2 + k_2 d$ $y = a_3 + k_3 d$ $z = a_{4} + k_{4}d$ $a_1, a_2, a_3, a_4 \in \{0, a\}$. Can't have $a_i = k_i = 0$. $a_1 + 2a_2 + 3a_3 + k_1d + 2k_2d + 3k_3d = 5a_4 + 5k_4d$ For d: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 5$, $k_2 = k_3 = 1$, $k_4 = 2$.

For a: $a_1 + 2a_2 + 3a_3 = 5a_4$. Take $a_1 = 0$, $a_2 = a_3 = a_4 = a$.

Thm For all c there exists S such that for all COL: $[S] \rightarrow [c]$ $(\exists w, x, y, z \text{ mono})$ with w + 2x + 3y = 5z. Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS $w = a_1 + k_1 d$ $x = a_2 + k_2 d$ $y = a_3 + k_3 d$ $z = a_{4} + k_{4}d$ $a_1, a_2, a_3, a_4 \in \{0, a\}$. Can't have $a_i = k_i = 0$. $a_1 + 2a_2 + 3a_3 + k_1d + 2k_2d + 3k_3d = 5a_4 + 5k_4d$ For d: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 5$, $k_2 = k_3 = 1$, $k_4 = 2$. For a: $a_1 + 2a_2 + 3a_3 = 5a_4$. Take $a_1 = 0$, $a_2 = a_3 = a_4 = a_5$. w = 5dx = a + dy = a + dz = a + 2dSo E = EVDW(3, 5, c).

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z$ mono and distinct) with w + 2x + 3y = 5z.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z$ mono and distinct) with w + 2x + 3y = 5z.

For d: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 1$, $k_2 = 3$, $k_3 = 6$, $k_4 = 5$

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z$ mono and distinct) with w + 2x + 3y = 5z.

For d: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 1$, $k_2 = 3$, $k_3 = 6$, $k_4 = 5$ For a: $a_1 + 2a_2 + 3a_3 = 5a_4$. Take $a_1 = 0$, $a_2 = a_3 = a_4 = a$.

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z$ mono and distinct) with w + 2x + 3y = 5z. For *d*: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 1$, $k_2 = 3$, $k_3 = 6$, $k_4 = 5$ For *a*: $a_1 + 2a_2 + 3a_3 = 5a_4$. Take $a_1 = 0$, $a_2 = a_3 = a_4 = a$. w = dx = a + 3dy = a + 6dz = a + 5d

Thm For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ ($\exists w, x, y, z \mod and distinct$) with w + 2x + 3y = 5z. For *d*: $k_1 + 2k_2 + 3k_3 = 5k_4$. Take $k_1 = 1$, $k_2 = 3$, $k_3 = 6$, $k_4 = 5$ For *a*: $a_1 + 2a_2 + 3a_3 = 5a_4$. Take $a_1 = 0$, $a_2 = a_3 = a_4 = a$. w = dx = a + 3dy = a + 6dz = a + 5d

So E = EVDW(6, 1, c).

Does This work for All Equation?

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n .

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \mod)$ with $E(a_1, \ldots, a_n) = 0$.

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \text{ mono})$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \text{ mono})$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

FALSE but for a dumb reason.

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \text{ mono})$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

FALSE but for a dumb reason.

x + y + z = 0 has no solution

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \mod)$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

FALSE but for a dumb reason.

x + y + z = 0 has no solution

Thm Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$ have a solution in \mathbb{N} . For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ $(\exists a_1, \ldots, a_n \text{ mono})$ with $E(a_1, \ldots, a_n) = 0$.

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \mod)$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

FALSE but for a dumb reason.

x + y + z = 0 has no solution

Thm Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$ have a solution in \mathbb{N} . For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c]$ $(\exists a_1, \ldots, a_n \mod)$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

Def $\mathbb{Z}_d[x_1, \ldots, x_n]$ is the set of degree-*d* polynomials with coefficients in \mathbb{Z} and variables x_1, \ldots, x_n . **Thm** Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$. For all *c* there exists *S* such that for all COL: $[S] \rightarrow [c] (\exists a_1, \ldots, a_n \mod)$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

FALSE but for a dumb reason.

x + y + z = 0 has no solution

Thm Let $E(x_1, \ldots, x_n) \in \mathbb{Z}_1[x_1, \ldots, x_n]$ have a solution in \mathbb{N} . For all c there exists S such that for all COL: $[S] \rightarrow [c]$ $(\exists a_1, \ldots, a_n \mod)$ with $E(a_1, \ldots, a_n) = 0$.

Vote TRUE or FALSE (this is known to science)

FALSE but for an interesting reason.

We define $\mathrm{COL}\colon\mathbb{N}{\rightarrow}\{1,2,3,4\}$ such that

x + 2y = 4z has no mono solution.

We define $\operatorname{COL}: \mathbb{N} \rightarrow \{1, 2, 3, 4\}$ such that

x + 2y = 4z has no mono solution.

 $\operatorname{COL}(5^a b) = b \mod 5$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

We define $\text{COL} \colon \mathbb{N} \rightarrow \{1, 2, 3, 4\}$ such that

x + 2y = 4z has no mono solution.

 $\operatorname{COL}(5^a b) = b \mod 5$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If a_1, a_2, a_3 is a mono solution, say color is b.

We define $\operatorname{COL}: \mathbb{N} \rightarrow \{1, 2, 3, 4\}$ such that

x + 2y = 4z has no mono solution.

 $\operatorname{COL}(5^a b) = b \mod 5$

If a_1, a_2, a_3 is a mono solution, say color is b.

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We define $\text{COL} \colon \mathbb{N} \rightarrow \{1, 2, 3, 4\}$ such that

x + 2y = 4z has no mono solution.

 $\operatorname{COL}(5^a b) = b \mod 5$

If a_1, a_2, a_3 is a mono solution, say color is b.

 b_1

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$
 $\equiv b_2 \equiv b_3 \equiv b \pmod{5}$

Case $e_1 < e_2, e_3$

$$a_1 = 5^{e_1}b_1$$
 $a_2 = 5^{e_2}b_2$ $a_3 = 5^{e_3}b_3$
 $b_1 \equiv b_2 \equiv b_3 \equiv b \pmod{5}$

$$a_1 + 2a_2 = 4a_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$b_1 + 2 \times 5^{e_2 - e_1} b_2 = 4 \times 5^{e_3 - e_1} b_3$$

Take this mod 5

$$b \equiv 0 \pmod{5}$$
 contradiction

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Both cases similar to $e_1 < e_2, e_3$ case.

Both cases similar to $e_1 < e_2, e_3$ case.

 $e_2 < e_1, e_3$: $5^{e_1-e_2}b_1 + 2b_2 = 4 \times 5^{e_3-e_2}$, so $2b_2 \equiv 0 \pmod{5}$.

Both cases similar to $e_1 < e_2, e_3$ case.

 $e_2 < e_1, e_3$: $5^{e_1-e_2}b_1 + 2b_2 = 4 \times 5^{e_3-e_2}$, so $2b_2 \equiv 0 \pmod{5}$. $e_3 < e_1, e_2$: $5^{e_1-e_3}b_1 + 2 \times 5^{e_2=e_3}b_2 = 4b_3$, so $4b_3 \equiv 0 \pmod{5}$.

Both cases similar to $e_1 < e_2, e_3$ case.

 $e_2 < e_1, e_3$: $5^{e_1-e_2}b_1 + 2b_2 = 4 \times 5^{e_3-e_2}$, so $2b_2 \equiv 0 \pmod{5}$.

 $e_3 < e_1, e_2$: $5^{e_1-e_3}b_1 + 2 \times 5^{e_2=e_3}b_2 = 4b_3$, so $4b_3 \equiv 0 \pmod{5}$.

- ▶ 5 primes, so can go from $2b_2 \equiv 0 \pmod{5}$ to $b_2 \equiv 0 \pmod{5}$.
- For $e_1 < e_2, e_3$ used that coeff of b_1 was $1 \neq 0$.
- For $e_2 < e_1, e_3$ used that coeff of b_2 was $2 \neq 0$.
- For $e_3 < e_1, e_2$ used that coeff of b_3 was $4 \neq 0$.

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$5^{e_1-e_1}b_1 + 2 \times 5^{e_2-e_2}b_2 = 4 \times 5^{e_3-e_1}b_3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$5^{e_1-e_1}b_1 + 2 \times 5^{e_2-e_2}b_2 = 4 \times 5^{e_3-e_1}b_3$$

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

Then mod 5

$$b+2b\equiv 0\pmod{5}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$5^{e_1-e_1}b_1 + 2 \times 5^{e_2-e_2}b_2 = 4 \times 5^{e_3-e_1}b_3$$

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

Then mod 5

$$b+2b\equiv 0\pmod{5}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $3b \equiv 0 \pmod{5}$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$5^{e_1-e_1}b_1 + 2 \times 5^{e_2-e_2}b_2 = 4 \times 5^{e_3-e_1}b_3$$

$$b_1 + 2b_2 = 4 \times 5^{e_3 - e_1} b_3$$

Then mod 5

$$b+2b\equiv 0\pmod{5}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $3b \equiv 0 \pmod{5}$

 $b \equiv 0 \pmod{5}$

Could not have used the prime 3 instead of 5.

• Used that sum of coeff of b_1 and b_2 was $3 \neq 0$.

Case $e_1 = e_3 < e_2, e_2 = e_3 < e_1$

$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$

Case $e_1 = e_3 < e_2, e_2 = e_3 < e_1$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

 $e_1 = e_3 < e_2$: $b_1 + 2 \times 5^{e_2 - e_1}b_2 = 4b_3$
 $b \equiv 4b \pmod{5}, \ b \equiv 0.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Case $e_1 = e_3 < e_2, e_2 = e_3 < e_1$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$e_1 = e_3 < e_2: \ b_1 + 2 \times 5^{e_2 - e_1}b_2 = 4b_3$$

$$b \equiv 4b \pmod{5}, \ b \equiv 0.$$

$$e_2 = e_3 < e_1: \ 5^{e_1 - e_2}b_1 + 2b_2 = 4b_3$$

$$2b = 4b = 5, \ b = 0$$

$$5^{e_1}b_1 + 2 \times 5^{e_2}b_2 = 4 \times 5^{e_3}b_3$$

$$b_1 + 2b_2 = 4b_3$$

$$b+2b\equiv 4b\pmod{5}$$

$$b \equiv 0 \pmod{5}$$

シックシード エル・ボット 中国・エロッ

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$. TFAE

Some subset of the a_i 's sums to 0.

▶ For all *c*, for all COL: $\mathbb{N} \rightarrow [c]$ there exists mono solution to

$$a_1x_1+\cdots+a_kx_k=0.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thm Let a₁,..., a_k ∈ Z. TFAE
Some subset of the a_i's sums to 0.
For all c, for all COL: N→[c] there exists mono solution to

$$a_1x_1+\cdots+a_kx_k=0.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We will not prove this.

Thm Let a₁,..., a_k ∈ Z. TFAE
Some subset of the a_i's sums to 0.
For all c, for all COL: N→[c] there exists mono solution to

$$a_1x_1+\cdots+a_kx_k=0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We will not prove this.

From what I did above:

Thm Let $a_1, \ldots, a_k \in \mathbb{Z}$. TFAE

Some subset of the a_i 's sums to 0.

For all c, for all COL: $\mathbb{N} \rightarrow [c]$ there exists mono solution to

$$a_1x_1+\cdots+a_kx_k=0.$$

We will not prove this.

From what I did above:

- ► Given any particular (a₁,..., a_k) ∈ Z with some subset summing to 0 you should be able to show that any finite coloring of N has a mono solution.
- ► Given any particular (a₁,..., a_k) ∈ Z with NO subset sums to 0 you should be able to define a finite coloring of N with no mono solution.

Other Equations

- 1. There is a matrix form of Rado that I don't care about.
- Folkman's Thm For all k, c there exists N = N(k, c) such that for all COL: [N]→[c] there exists a₁,..., a_k such that ALL non-empty sums of the a_i's are the same color.
- For all c there exists N = N(c) such that for any COL: [N]→[c] there is a mono solution to 16x² + 9y² = z². (This equation has certain properties that make it work, so there is really a more general theorem here.) http: //fourier.math.uoc.gr/~ergodic/Slides/Host.pdf

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Do we know what N is? We actually do!

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

ション ふゆ アメビア メロア しょうくり

Do we know what N is? We actually do!

▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

- ▶ \exists 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.
- ▶ \forall 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

(1) We actually know N. What else is unusual?

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

ション ふゆ アメビア メロア しょうくり

Do we know what N is? We actually do!

▶
$$\exists$$
 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.

▶
$$\forall$$
 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

(1) We actually know N. What else is unusual?(2) we only proved it for 2 colors. For 3 it is unknown.

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

▶
$$\exists$$
 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.

▶
$$\forall$$
 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

(1) We actually know N. What else is unusual?(2) we only proved it for 2 colors. For 3 it is unknown.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Theorem There exists N such that for any COL: $[N] \rightarrow [2]$ there is a mono solution to $x^2 + y^2 = z^2$.

Do we know what N is? We actually do!

▶
$$\exists$$
 2-col of [7824] w/o mono sol to $x^2 + y^2 = z^2$.

▶
$$\forall$$
 2-col of [7825] \exists mono sol to $x^2 + y^2 = z^2$.

(1) We actually know N. What else is unusual?(2) we only proved it for 2 colors. For 3 it is unknown.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Obtain a human-readable proof with perhaps a much bigger N, but which can be generalized to c = 3 and beyond.