Rado's Theorem

Exposition by William Gasarch

June 19, 2020

VDW and Extended VDW

Recall VDW's Theorem
VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for every c-coloring of $[W]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d
$$

are all the same color.

VDW and Extended VDW

Recall VDW's Theorem
VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for every c-coloring of $[W]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d
$$

are all the same color.
What about d itself? Can it be the same colors as
$a, a+d, \ldots, a+(k-1) d ?$

VDW and Extended VDW

Recall VDW's Theorem
VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for every c-coloring of $[W]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d
$$

are all the same color.
What about d itself? Can it be the same colors as
$a, a+d, \ldots, a+(k-1) d ?$
Extended VDW's Theorem
EVDW Theorem For all k, c there exists $E=E(k, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d
$$

are all the same color.

Proof of Extended VDW Theorem

EVDW Theorem For all k, c there exists $E=E(k, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d
$$

are all the same color.

Proof of Extended VDW Theorem

EVDW Theorem For all k, c there exists $E=E(k, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d
$$

are all the same color.
Pf. Induction on $c . E(k, 1)=k$. We show $E(k, c) \leq W(X+1, c)$, X LARGE.

Proof of Extended VDW Theorem

EVDW Theorem For all k, c there exists $E=E(k, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d
$$

are all the same color.
Pf. Induction on $c . E(k, 1)=k$. We show $E(k, c) \leq W(X+1, c)$, X LARGE. COL: $[W(X+1, c)] \rightarrow[c]$. By VDW there exists A, D $A, A+D, \ldots, A+X D$ is color $C C C$.

Proof of Extended VDW Theorem

EVDW Theorem For all k, c there exists $E=E(k, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d
$$

are all the same color.
Pf. Induction on c. $E(k, 1)=k$. We show $E(k, c) \leq W(X+1, c)$, X LARGE. COL: $[W(X+1, c)] \rightarrow[c]$. By VDW there exists A, D
$A, A+D, \ldots, A+X D$ is color $C C C$.
$A, A+D, \ldots, A+(k-1) D$ are color CCC. So $\operatorname{COL}(D) \neq C C C$. $A, A+2 D, \ldots, A+2(k-1) D$ are CCC. So $\operatorname{COL}(2 D) \neq C C C$.

$$
A, A+\frac{X D}{k-1}, A+\frac{2 X D}{k-1}, \ldots, A+\frac{(k-1) X D}{k-1} \text {. So } \operatorname{COL}\left(\frac{X D}{k-1}\right) \neq C C C \text {. }
$$

Proof of Extended VDW Theorem

EVDW Theorem For all k, c there exists $E=E(k, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d
$$

are all the same color.
Pf. Induction on $c . E(k, 1)=k$. We show $E(k, c) \leq W(X+1, c)$, X LARGE. COL: $[W(X+1, c)] \rightarrow[c]$. By VDW there exists A, D
$A, A+D, \ldots, A+X D$ is color $C C C$.
$A, A+D, \ldots, A+(k-1) D$ are color CCC. So $\operatorname{COL}(D) \neq C C C$. $A, A+2 D, \ldots, A+2(k-1) D$ are CCC. So $\operatorname{COL}(2 D) \neq C C C$.
$A, A+\frac{X D}{k-1}, A+\frac{2 X D}{k-1}, \ldots, A+\frac{(k-1) X D}{k-1}$. So $\operatorname{COL}\left(\frac{X D}{k-1}\right) \neq C C C$.
$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{x}{k-1} D$ not colored CCC, only use $c-1$ colors.

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).
Define $C O L^{\prime}(i)=\operatorname{COL}(i D)$, a $(c-1)$-coloring, so there exists a^{\prime}, d^{\prime}

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).
Define $C O L^{\prime}(i)=\operatorname{COL}(i D)$, a $(c-1)$-coloring, so there exists a^{\prime}, d^{\prime}
$a^{\prime}, a^{\prime}+d^{\prime}, \ldots, a^{\prime}+(k-1) d^{\prime}, d^{\prime}$ same COL' color.

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).
Define $C O L^{\prime}(i)=\operatorname{COL}(i D)$, a $(c-1)$-coloring, so there exists a^{\prime}, d^{\prime}
$a^{\prime}, a^{\prime}+d^{\prime}, \ldots, a^{\prime}+(k-1) d^{\prime}, d^{\prime}$ same COL' color.
$a^{\prime} D,\left(a^{\prime}+d^{\prime}\right) D, \ldots,\left(a^{\prime}+(k-1) d^{\prime}\right) D, d^{\prime} D$ same $C O L$ color.

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).
Define $C O L^{\prime}(i)=\operatorname{COL}(i D)$, a $(c-1)$-coloring, so there exists a^{\prime}, d^{\prime}
$a^{\prime}, a^{\prime}+d^{\prime}, \ldots, a^{\prime}+(k-1) d^{\prime}, d^{\prime}$ same COL' color.
$a^{\prime} D,\left(a^{\prime}+d^{\prime}\right) D, \ldots,\left(a^{\prime}+(k-1) d^{\prime}\right) D, d^{\prime} D$ same $C O L$ color.
$a^{\prime} D, a^{\prime} D+d^{\prime} D, \ldots, a^{\prime} D+(k-1) d^{\prime} D, d^{\prime} D$ same COL color.

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).
Define $C O L^{\prime}(i)=\operatorname{COL}(i D)$, a $(c-1)$-coloring, so there exists a^{\prime}, d^{\prime}
$a^{\prime}, a^{\prime}+d^{\prime}, \ldots, a^{\prime}+(k-1) d^{\prime}, d^{\prime}$ same COL' color.
$a^{\prime} D,\left(a^{\prime}+d^{\prime}\right) D, \ldots,\left(a^{\prime}+(k-1) d^{\prime}\right) D, d^{\prime} D$ same $C O L$ color.
$a^{\prime} D, a^{\prime} D+d^{\prime} D, \ldots, a^{\prime} D+(k-1) d^{\prime} D, d^{\prime} D$ same $C O L$ color.
$a=a^{\prime} D, d=d^{\prime} D$

Proof of Extended VDW Theorem, II

$D, 2 D, \ldots, \frac{X}{k-1} D$ not colored CCC, only use $c-1$ colors.
Set $X=E(k, c-1)(k-1)$. This is where we use Ind. Hyp.
$D, 2 D, \ldots, E(k, c-1) D$ only use $c-1$ colors (not CCC).
Define $C O L^{\prime}(i)=\operatorname{COL}(i D)$, a $(c-1)$-coloring, so there exists a^{\prime}, d^{\prime}
$a^{\prime}, a^{\prime}+d^{\prime}, \ldots, a^{\prime}+(k-1) d^{\prime}, d^{\prime}$ same COL' color.
$a^{\prime} D,\left(a^{\prime}+d^{\prime}\right) D, \ldots,\left(a^{\prime}+(k-1) d^{\prime}\right) D, d^{\prime} D$ same $C O L$ color.
$a^{\prime} D, a^{\prime} D+d^{\prime} D, \ldots, a^{\prime} D+(k-1) d^{\prime} D, d^{\prime} D$ same COL color.
$a=a^{\prime} D, d=d^{\prime} D$
$a, a+d, \ldots, a+(k-1) d, d$ same COL color.

Real EVDW

What I presented above is NOT the EVDW. This is:
EVDW Theorem For all k, c, e there exists $E=E(k, e, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d e
$$

are all the same color.

Real EVDW

What I presented above is NOT the EVDW. This is:
EVDW Theorem For all k, c, e there exists $E=E(k, e, c)$ such that for every c-coloring of $[E]$ there exists a, d such that

$$
a, a+d, a+2 d, \ldots, a+(k-1) d, d e
$$

are all the same color.
This is an exercise. It might be on a HW or the Final.

Notation

For this talk

$$
\mathbb{N}=\{1,2,3, \ldots,\}
$$

Mono Solutions To $x+y=z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists x, y, z$ mono) with $x+y=z$.

Mono Solutions To $x+y=z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists x, y, z$ mono) with $x+y=z$.
Pf $S=E V D W(2,1, c)$. By EVDW, for COL: $[S] \rightarrow[c](\exists a, d)$ $a, a+d, d$ the same color.

Mono Solutions To $x+y=z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists x, y, z$ mono) with $x+y=z$.
Pf $S=E V D W(2,1, c)$. By EVDW, for COL: $[S] \rightarrow[c](\exists a, d)$ $a, a+d, d$ the same color.

Take $x=a, y=d, z=a+d$.

Mono Solutions To $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$
($\exists w, x, y, z$ mono) with $w+2 x+3 y=5 z$.
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS

Mono Solutions To $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$
($\exists w, x, y, z$ mono) with $w+2 x+3 y=5 z$.
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS
$w=a_{1}+k_{1} d$
$x=a_{2}+k_{2} d$
$y=a_{3}+k_{3} d$
$z=a_{4}+k_{4} d$
$a_{1}, a_{2}, a_{3}, a_{4} \in\{0, a\}$. Can't have $a_{i}=k_{i}=0$.

Mono Solutions To $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono) with $w+2 x+3 y=5 z$.
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS

$$
\begin{aligned}
& w=a_{1}+k_{1} d \\
& x=a_{2}+k_{2} d \\
& y=a_{3}+k_{3} d \\
& z=a_{4}+k_{4} d \\
& a_{1}, a_{2}, a_{3}, a_{4} \in\{0, a\} . \text { Can't have } a_{i}=k_{i}=0 .
\end{aligned}
$$

$$
a_{1}+2 a_{2}+3 a_{3}+k_{1} d+2 k_{2} d+3 k_{3} d=5 a_{4}+5 k_{4} d
$$

Mono Solutions To $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono) with $w+2 x+3 y=5 z$.
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS
$w=a_{1}+k_{1} d$
$x=a_{2}+k_{2} d$
$y=a_{3}+k_{3} d$
$z=a_{4}+k_{4} d$
$a_{1}, a_{2}, a_{3}, a_{4} \in\{0, a\}$. Can't have $a_{i}=k_{i}=0$.

$$
a_{1}+2 a_{2}+3 a_{3}+k_{1} d+2 k_{2} d+3 k_{3} d=5 a_{4}+5 k_{4} d
$$

For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=5, k_{2}=k_{3}=1, k_{4}=2$.

Mono Solutions To $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono) with $w+2 x+3 y=5 z$.
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS
$w=a_{1}+k_{1} d$
$x=a_{2}+k_{2} d$
$y=a_{3}+k_{3} d$
$z=a_{4}+k_{4} d$
$a_{1}, a_{2}, a_{3}, a_{4} \in\{0, a\}$. Can't have $a_{i}=k_{i}=0$.

$$
a_{1}+2 a_{2}+3 a_{3}+k_{1} d+2 k_{2} d+3 k_{3} d=5 a_{4}+5 k_{4} d
$$

For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=5, k_{2}=k_{3}=1, k_{4}=2$.
For $a: a_{1}+2 a_{2}+3 a_{3}=5 a_{4}$. Take $a_{1}=0, a_{2}=a_{3}=a_{4}=a$.

Mono Solutions To $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$
($\exists w, x, y, z$ mono) with $w+2 x+3 y=5 z$.
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS
$w=a_{1}+k_{1} d$
$x=a_{2}+k_{2} d$
$y=a_{3}+k_{3} d$
$z=a_{4}+k_{4} d$
$a_{1}, a_{2}, a_{3}, a_{4} \in\{0, a\}$. Can't have $a_{i}=k_{i}=0$.

$$
a_{1}+2 a_{2}+3 a_{3}+k_{1} d+2 k_{2} d+3 k_{3} d=5 a_{4}+5 k_{4} d
$$

For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=5, k_{2}=k_{3}=1, k_{4}=2$.
For $a: a_{1}+2 a_{2}+3 a_{3}=5 a_{4}$. Take $a_{1}=0, a_{2}=a_{3}=a_{4}=a$.

$$
\begin{aligned}
& w=5 d \\
& x=a+d \\
& y=a+d \\
& z=a+2 d \\
& \text { So } E=E V D W(3,5, c)
\end{aligned}
$$

Mono Distinct Solution to $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ $(\exists w, x, y, z$ mono and distinct) with $w+2 x+3 y=5 z$.

Mono Distinct Solution to $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono and distinct) with $w+2 x+3 y=5 z$.
For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=1, k_{2}=3, k_{3}=6, k_{4}=5$

Mono Distinct Solution to $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono and distinct) with $w+2 x+3 y=5 z$.
For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=1, k_{2}=3, k_{3}=6, k_{4}=5$
For $a: a_{1}+2 a_{2}+3 a_{3}=5 a_{4}$. Take $a_{1}=0, a_{2}=a_{3}=a_{4}=a$.

Mono Distinct Solution to $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono and distinct) with $w+2 x+3 y=5 z$.

For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=1, k_{2}=3, k_{3}=6, k_{4}=5$
For $a: a_{1}+2 a_{2}+3 a_{3}=5 a_{4}$. Take $a_{1}=0, a_{2}=a_{3}=a_{4}=a$.
$w=d$
$x=a+3 d$
$y=a+6 d$
$z=a+5 d$

Mono Distinct Solution to $w+2 x+3 y=5 z$

Thm For all c there exists S such that for all COL: $[S] \rightarrow[c]$ ($\exists w, x, y, z$ mono and distinct) with $w+2 x+3 y=5 z$.

For $d: k_{1}+2 k_{2}+3 k_{3}=5 k_{4}$. Take $k_{1}=1, k_{2}=3, k_{3}=6, k_{4}=5$
For $a: a_{1}+2 a_{2}+3 a_{3}=5 a_{4}$. Take $a_{1}=0, a_{2}=a_{3}=a_{4}=a$.
$w=d$
$x=a+3 d$
$y=a+6 d$
$z=a+5 d$
So $E=E V D W(6,1, c)$.

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree-d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}. Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.
Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.
Vote TRUE or FALSE (this is known to science)

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.
Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.
Vote TRUE or FALSE (this is known to science)
FALSE but for a dumb reason.

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.
Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Vote TRUE or FALSE (this is known to science)
FALSE but for a dumb reason.

$$
x+y+z=0 \text { has no solution }
$$

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.
Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Vote TRUE or FALSE (this is known to science)
FALSE but for a dumb reason.

$$
x+y+z=0 \text { has no solution }
$$

Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$ have a solution in \mathbb{N}. For all c there exists S such that for all COL: $[S] \rightarrow[c]$
$\left(\exists a_{1}, \ldots, a_{n}\right.$ mono $)$ with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.
Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Vote TRUE or FALSE (this is known to science)
FALSE but for a dumb reason.

$$
x+y+z=0 \text { has no solution }
$$

Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$ have a solution in \mathbb{N}. For all c there exists S such that for all COL: $[S] \rightarrow[c]$ $\left(\exists a_{1}, \ldots, a_{n}\right.$ mono $)$ with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Vote TRUE or FALSE (this is known to science)

Does This work for All Equation?

Def $\mathbb{Z}_{d}\left[x_{1}, \ldots, x_{n}\right]$ is the set of degree- d polynomials with coefficients in \mathbb{Z} and variables x_{1}, \ldots, x_{n}.
Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$. For all c there exists S such that for all COL: $[S] \rightarrow[c]\left(\exists a_{1}, \ldots, a_{n}\right.$ mono) with $E\left(a_{1}, \ldots, a_{n}\right)=0$.

Vote TRUE or FALSE (this is known to science)
FALSE but for a dumb reason.

$$
x+y+z=0 \text { has no solution }
$$

Thm Let $E\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{1}\left[x_{1}, \ldots, x_{n}\right]$ have a solution in \mathbb{N}. For all c there exists S such that for all COL: $[S] \rightarrow[c]$
$\left(\exists a_{1}, \ldots, a_{n}\right.$ mono $)$ with $E\left(a_{1}, \ldots, a_{n}\right)=0$.
Vote TRUE or FALSE (this is known to science)
FALSE but for an interesting reason.

No Mono Solution For $x+2 y=4 z$

We define COL: $\mathbb{N} \rightarrow\{1,2,3,4\}$ such that

$$
x+2 y=4 z \text { has no mono solution. }
$$

No Mono Solution For $x+2 y=4 z$

We define COL: $\mathbb{N} \rightarrow\{1,2,3,4\}$ such that

$$
x+2 y=4 z \text { has no mono solution. }
$$

$$
\operatorname{COL}\left(5^{a} b\right)=b \bmod 5
$$

No Mono Solution For $x+2 y=4 z$

We define COL: $\mathbb{N} \rightarrow\{1,2,3,4\}$ such that

$$
x+2 y=4 z \text { has no mono solution. }
$$

$$
\operatorname{COL}\left(5^{a} b\right)=b \bmod 5
$$

If a_{1}, a_{2}, a_{3} is a mono solution, say color is b.

No Mono Solution For $x+2 y=4 z$

We define COL: $\mathbb{N} \rightarrow\{1,2,3,4\}$ such that

$$
x+2 y=4 z \text { has no mono solution. }
$$

$$
\operatorname{COL}\left(5^{a} b\right)=b \bmod 5
$$

If a_{1}, a_{2}, a_{3} is a mono solution, say color is b.

$$
a_{1}=5^{e_{1}} b_{1} \quad a_{2}=5^{e_{2}} b_{2} \quad a_{3}=5^{e_{3}} b_{3}
$$

No Mono Solution For $x+2 y=4 z$

We define COL: $\mathbb{N} \rightarrow\{1,2,3,4\}$ such that

$$
x+2 y=4 z \text { has no mono solution. }
$$

$$
\operatorname{COL}\left(5^{a} b\right)=b \bmod 5
$$

If a_{1}, a_{2}, a_{3} is a mono solution, say color is b.

$$
a_{1}=5^{e_{1}} b_{1} \quad a_{2}=5^{e_{2}} b_{2} \quad a_{3}=5^{e_{3}} b_{3}
$$

$$
b_{1} \equiv b_{2} \equiv b_{3} \equiv b(\bmod 5)
$$

Case $e_{1}<e_{2}, e_{3}$

$$
\begin{gathered}
a_{1}=5^{e_{1}} b_{1} \quad a_{2}=5^{e_{2}} b_{2} \quad a_{3}=5^{e_{3}} b_{3} \\
b_{1} \equiv b_{2} \equiv b_{3} \equiv b(\bmod 5) \\
a_{1}+2 a_{2}=4 a_{3} \\
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3} \\
b_{1}+2 \times 5^{e_{2}-e_{1}} b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3}
\end{gathered}
$$

Take this mod 5

$$
b \equiv 0 \quad(\bmod 5) \text { contradiction }
$$

Case $e_{2}<e_{1}, e_{3}$, Case $e_{3}<e_{1}, e_{2}$

Both cases similar to $e_{1}<e_{2}, e_{3}$ case.

Case $e_{2}<e_{1}, e_{3}$, Case $e_{3}<e_{1}, e_{2}$

Both cases similar to $e_{1}<e_{2}, e_{3}$ case.
$e_{2}<e_{1}, e_{3}: 5^{e_{1}-e_{2}} b_{1}+2 b_{2}=4 \times 5^{e_{3}-e_{2}}$, so $2 b_{2} \equiv 0(\bmod 5)$.

Case $e_{2}<e_{1}, e_{3}$, Case $e_{3}<e_{1}, e_{2}$

Both cases similar to $e_{1}<e_{2}, e_{3}$ case.

$$
\begin{aligned}
& e_{2}<e_{1}, e_{3}: 5^{e_{1}-e_{2}} b_{1}+2 b_{2}=4 \times 5^{e_{3}-e_{2}}, \text { so } 2 b_{2} \equiv 0(\bmod 5) \\
& e_{3}<e_{1}, e_{2}: 5^{e_{1}-e_{3}} b_{1}+2 \times 5^{e_{2}=e_{3}} b_{2}=4 b_{3}, \text { so } 4 b_{3} \equiv 0(\bmod 5) .
\end{aligned}
$$

Case $e_{2}<e_{1}, e_{3}$, Case $e_{3}<e_{1}, e_{2}$

Both cases similar to $e_{1}<e_{2}, e_{3}$ case.
$e_{2}<e_{1}, e_{3}: 5^{e_{1}-e_{2}} b_{1}+2 b_{2}=4 \times 5^{e_{3}-e_{2}}$, so $2 b_{2} \equiv 0(\bmod 5)$.
$e_{3}<e_{1}, e_{2}: 5^{e_{1}-e_{3}} b_{1}+2 \times 5^{e_{2}=e_{3}} b_{2}=4 b_{3}$, so $4 b_{3} \equiv 0(\bmod 5)$.

- 5 primes, so can go from $2 b_{2} \equiv 0(\bmod 5)$ to $b_{2} \equiv 0$ $(\bmod 5)$.
- For $e_{1}<e_{2}, e_{3}$ used that coeff of b_{1} was $1 \neq 0$.
- For $e_{2}<e_{1}, e_{3}$ used that coeff of b_{2} was $2 \neq 0$.
- For $e_{3}<e_{1}, e_{2}$ used that coeff of b_{3} was $4 \neq 0$.

Case $e_{1}=e_{2}<e_{3}$

$$
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3}
$$

Case $e_{1}=e_{2}<e_{3}$

$$
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3}
$$

$$
5^{e_{1}-e_{1}} b_{1}+2 \times 5^{e_{2}-e_{2}} b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3}
$$

Case $e_{1}=e_{2}<e_{3}$

$$
\begin{gathered}
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3} \\
5^{e_{1}-e_{1}} b_{1}+2 \times 5^{e_{2}-e_{2}} b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3} \\
b_{1}+2 b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3}
\end{gathered}
$$

Then $\bmod 5$

$$
b+2 b \equiv 0 \quad(\bmod 5)
$$

Case $e_{1}=e_{2}<e_{3}$

$$
\begin{gathered}
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3} \\
5^{e_{1}-e_{1}} b_{1}+2 \times 5^{e_{2}-e_{2}} b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3} \\
b_{1}+2 b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3}
\end{gathered}
$$

Then $\bmod 5$

$$
b+2 b \equiv 0 \quad(\bmod 5)
$$

$3 b \equiv 0(\bmod 5)$

Case $e_{1}=e_{2}<e_{3}$

$$
\begin{gathered}
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3} \\
5^{e_{1}-e_{1}} b_{1}+2 \times 5^{e_{2}-e_{2}} b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3} \\
b_{1}+2 b_{2}=4 \times 5^{e_{3}-e_{1}} b_{3}
\end{gathered}
$$

Then $\bmod 5$

$$
b+2 b \equiv 0 \quad(\bmod 5)
$$

$3 b \equiv 0(\bmod 5)$
$b \equiv 0(\bmod 5)$

- Could not have used the prime 3 instead of 5 .
- Used that sum of coeff of b_{1} and b_{2} was $3 \neq 0$.

Case $e_{1}=e_{3}<e_{2}, e_{2}=e_{3}<e_{1}$

$$
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3}
$$

Case $e_{1}=e_{3}<e_{2}, e_{2}=e_{3}<e_{1}$

$$
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3}
$$

$$
\begin{aligned}
& e_{1}=e_{3}<e_{2}: b_{1}+2 \times 5^{e_{2}-e_{1}} b_{2}=4 b_{3} \\
& b \equiv 4 b(\bmod 5), b \equiv 0
\end{aligned}
$$

Case $e_{1}=e_{3}<e_{2}, e_{2}=e_{3}<e_{1}$

$$
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3}
$$

$$
e_{1}=e_{3}<e_{2}: b_{1}+2 \times 5^{e_{2}-e_{1}} b_{2}=4 b_{3}
$$

$$
b \equiv 4 b(\bmod 5), b \equiv 0
$$

$$
e_{2}=e_{3}<e_{1}: 5^{e_{1}-e_{2}} b_{1}+2 b_{2}=4 b_{3}
$$

$$
2 b \equiv 4 b \equiv 5, b \equiv 0
$$

Case $e_{1}=e_{2}=e_{3}$

$$
5^{e_{1}} b_{1}+2 \times 5^{e_{2}} b_{2}=4 \times 5^{e_{3}} b_{3}
$$

$$
b_{1}+2 b_{2}=4 b_{3}
$$

$$
b+2 b \equiv 4 b \quad(\bmod 5)
$$

$$
b \equiv 0 \quad(\bmod 5)
$$

Rado's Theorem

Thm Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. TFAE

- Some subset of the a_{i} 's sums to 0 .
- For all c, for all COL: $\mathbb{N} \rightarrow[c]$ there exists mono solution to

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}=0
$$

Rado's Theorem

Thm Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. TFAE

- Some subset of the a_{i} 's sums to 0 .
- For all c, for all COL: $\mathbb{N} \rightarrow[c]$ there exists mono solution to

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}=0
$$

We will not prove this.

Rado's Theorem

Thm Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. TFAE

- Some subset of the a_{i} 's sums to 0 .
- For all c, for all COL: $\mathbb{N} \rightarrow[c]$ there exists mono solution to

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}=0 .
$$

We will not prove this.
From what I did above:

Rado's Theorem

Thm Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. TFAE

- Some subset of the a_{i} 's sums to 0 .
- For all c, for all COL: $\mathbb{N} \rightarrow[c]$ there exists mono solution to

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}=0
$$

We will not prove this.
From what I did above:

- Given any particular $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}$ with some subset summing to 0 you should be able to show that any finite coloring of \mathbb{N} has a mono solution.
- Given any particular $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}$ with NO subset sums to 0 you should be able to define a finite coloring of \mathbb{N} with no mono solution.

Other Equations

1. There is a matrix form of Rado that I don't care about.
2. Folkman's Thm For all k, c there exists $N=N(k, c)$ such that for all COL: $[N] \rightarrow[c]$ there exists a_{1}, \ldots, a_{k} such that ALL non-empty sums of the a_{i} 's are the same color.
3. For all c there exists $N=N(c)$ such that for any COL: $[N] \rightarrow[c]$ there is a mono solution to $16 x^{2}+9 y^{2}=z^{2}$. (This equation has certain properties that make it work, so there is really a more general theorem here.) http:
//fourier.math.uoc.gr/~ergodic/Slides/Host.pdf

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

- \exists 2-col of [7824] w/o mono sol to $x^{2}+y^{2}=z^{2}$.

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

- $\exists 2$-col of [7824] w / o mono sol to $x^{2}+y^{2}=z^{2}$.
- \forall 2-col of [7825] \exists mono sol to $x^{2}+y^{2}=z^{2}$.

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

- \exists 2-col of [7824] w / o mono sol to $x^{2}+y^{2}=z^{2}$.
- $\forall 2$-col of [7825] \exists mono sol to $x^{2}+y^{2}=z^{2}$.
(1) We actually know N. What else is unusual?

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

- $\exists 2$-col of [7824] w / o mono sol to $x^{2}+y^{2}=z^{2}$.
- \forall 2-col of [7825] \exists mono sol to $x^{2}+y^{2}=z^{2}$.
(1) We actually know N. What else is unusual?
(2) we only proved it for 2 colors. For 3 it is unknown.

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

- $\exists 2$-col of [7824] w / o mono sol to $x^{2}+y^{2}=z^{2}$.
$-\forall 2$-col of [7825] \exists mono sol to $x^{2}+y^{2}=z^{2}$.
(1) We actually know N. What else is unusual?
(2) we only proved it for 2 colors. For 3 it is unknown.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

$x^{2}+y^{2}=z^{2}$ Result by Heule\&Kullmann

Theorem There exists N such that for any COL: $[N] \rightarrow[2]$ there is a mono solution to $x^{2}+y^{2}=z^{2}$.

Do we know what N is? We actually do!

- $\exists 2$-col of [7824] w / o mono sol to $x^{2}+y^{2}=z^{2}$.
$-\forall 2$-col of [7825] \exists mono sol to $x^{2}+y^{2}=z^{2}$.
(1) We actually know N. What else is unusual?
(2) we only proved it for 2 colors. For 3 it is unknown.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.
Research Obtain a human-readable proof with perhaps a much bigger N, but which can be generalized to $c=3$ and beyond.

