Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.
Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.

*For all 2-coloring of the edges of K_6 there is a mono K_3.

Let's Party Like It's January of 2019
Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.

*For all 2-coloring of the edges of K_6 there is a mono K_3.**

Question What if we color the edges of K_5?
Coloring of K_5 with no Mono K_3

This graph is not arbitrary.

$SQ_5 = \{x^2 \mod 5 : 0 \leq x \leq 4\} = \{0, 1, 4\}$.

- If $i - j \in SQ_5$ then RED.
- If $i - j \notin SQ_5$ then BLUE.
Asymmetric Ramsey Numbers

Definition $R(a,b)$ is least n such that for all 2-colorings of K_n there is either a red K_a or a blue K_b.

1. $R(a,b) = R(b,a)$.
2. $R(2,b) = b$
3. $R(a,2) = a$
Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$

Proof
Let $n = R(a - 1, b) + R(a, b - 1)$. $COL : ([n]) \rightarrow [2]$.

Case 1 ($\exists v)[\deg_R(v) \geq R(a - 1, b)]$. Look at the $R(a - 1, b)$ vertices that are RED to v. By Definition of $R(a - 1, b)$ either
- There is a RED K_{a-1}. Combine with v to get RED K_a.
- There is a BLUE K_b.
\[R(a, b) \leq R(a - 1, b) + R(a, b - 1) \]

Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)

Proof

Let \(n = R(a - 1, b) + R(a, b - 1) \). COL : \(\binom{[n]}{2} \rightarrow [2] \).

Case 1 \(\exists v \) \(\deg_R(v) \geq R(a - 1, b) \). Look at the \(R(a - 1, b) \) vertices that are RED to \(v \). By Definition of \(R(a - 1, b) \) either

- There is a RED \(K_{a-1} \). Combine with \(v \) to get RED \(K_a \).
- There is a BLUE \(K_b \).

Case 2 \(\exists v \) \(\deg_B(v) \geq R(a, b - 1) \). Similar to Case 1.
\[R(a, b) \leq R(a - 1, b) + R(a, b - 1) \]

Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)

Proof

Let \(n = R(a - 1, b) + R(a, b - 1) \). \(\text{COL} : ([n]) \rightarrow [2] \).

Case 1 \((\exists v) \left[\text{deg}_R(v) \geq R(a - 1, b) \right] \). Look at the \(R(a - 1, b) \) vertices that are RED to \(v \). By Definition of \(R(a - 1, b) \) either

- There is a RED \(K_{a-1} \). Combine with \(v \) to get RED \(K_a \).
- There is a BLUE \(K_b \).

Case 2 \((\exists v) \left[\text{deg}_B(v) \geq R(a, b - 1) \right] \). Similar to Case 1.

Case 3

\((\forall v) \left[\text{deg}_R(v) \leq R(a - 1, b) - 1 \wedge \text{deg}_B(v) \leq R(a, b - 1) - 1 \right] \)

\((\forall v) \left[\text{deg}(v) \leq R(a - 1, b) + R(a, b - 1) - 2 = n - 2 \right] \)

Not possible since every vertex of \(K_n \) has degree \(n - 1 \).
Let's Compute Bounds on $R(a, b)$

- $R(3, 3) \leq R(2, 3) + R(3, 2) \leq 3 + 3 = 6$
- $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 = 10$
- $R(3, 5) \leq R(2, 5) + R(3, 4) \leq 5 + 10 = 15$
- $R(3, 6) \leq R(2, 6) + R(3, 5) \leq 6 + 15 = 21$
- $R(3, 7) \leq R(2, 7) + R(3, 6) \leq 7 + 21 = 28$
Let's Compute Bounds on $R(a, b)$

- $R(3, 3) \leq R(2, 3) + R(3, 2) \leq 3 + 3 = 6$
- $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 = 10$
- $R(3, 5) \leq R(2, 5) + R(3, 4) \leq 5 + 10 = 15$
- $R(3, 6) \leq R(2, 6) + R(3, 5) \leq 6 + 15 = 21$
- $R(3, 7) \leq R(2, 7) + R(3, 6) \leq 7 + 21 = 28$

Can we make some improvements to this?
Let's Compute Bounds on $R(a, b)$

- $R(3, 3) \leq R(2, 3) + R(3, 2) \leq 3 + 3 = 6$
- $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 = 10$
- $R(3, 5) \leq R(2, 5) + R(3, 4) \leq 5 + 10 = 15$
- $R(3, 6) \leq R(2, 6) + R(3, 5) \leq 6 + 15 = 21$
- $R(3, 7) \leq R(2, 7) + R(3, 6) \leq 7 + 21 = 28$

Can we make some improvements to this? YES!
Theorem $R(3, 4) \leq 9$.

Let COL be a 2-coloring of the edges of K_9.

Case 1 ($\exists v)[\deg_R(v) \geq 4]$. v_1, \ldots, v_4 are RED to v.
\[R(3, 4) \leq 9 \]

Theorem \(R(3, 4) \leq 9. \)

Let \(\text{COL} \) be a 2-coloring of the edges of \(K_9 \).

Case 1 \((\exists v)[\deg_R(v) \geq 4]\). \(v_1, \ldots, v_4 \) are RED to \(v \).

If any of \(v_i, v_j \) is RED, then \(v, v_i, v_j \) are RED \(K_3 \).

Case 2 \((\exists v)[\deg_B(v) \geq 6]\). \(v_1, \ldots, v_6 \) are BLUE to \(v \).

Either:
1. a RED \(K_3 \), or
2. a BLUE \(K_3 \), which together with \(v \) is a BLUE \(K_4 \).

NOTE Can't have any \(\deg_R(v) \leq 2 \).

Case 3 \((\forall v)[\deg_R(v) = 3]\). The RED subgraph has 9 nodes each of degree 3. Impossible!
\textbf{Theorem} \(R(3, 4) \leq 9 \).

Let \(\text{COL} \) be a 2-coloring of the edges of \(K_9 \).

\textbf{Case 1} \((\exists v)[\deg_R(v) \geq 4]\). \(v_1,\ldots,v_4 \) are RED to \(v \).

If any of \(v_i, v_j \) is RED, then \(v, v_i, v_j \) are RED \(K_3 \).

If not then \(v_1, v_2, v_3, v_4 \) is BLUE \(K_4 \).
Theorem $R(3, 4) \leq 9$.

Let COL be a 2-coloring of the edges of K_9.

Case 1 ($\exists v$)[deg$_R(v) \geq 4$]. v_1, \ldots, v_4 are RED to v.
If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3.
If not then v_1, v_2, v_3, v_4 is BLUE K_4.

Case 2 ($\exists v$)[deg$_B(v) \geq 6$]. v_1, \ldots, v_6 are BLUE to v. Either:
(1) a RED K_3, or
(2) a BLUE K_3, which together with v is a BLUE K_4.

NOTE Can't have any deg$_R(v) \leq 2$.
Theorem $R(3, 4) \leq 9$.
Let COL be a 2-coloring of the edges of K_9.

Case 1 $(\exists v)[\deg_R(v) \geq 4]$. v_1, \ldots, v_4 are RED to v.
If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3.
If not then v_1, v_2, v_3, v_4 is BLUE K_4.

Case 2 $(\exists v)[\deg_B(v) \geq 6]$. v_1, \ldots, v_6 are BLUE to v.
Either:
(1) a RED K_3, or
(2) a BLUE K_3, which together with v is a BLUE K_4.

NOTE Can't have any $\deg_R(v) \leq 2$.

Case 3 $(\forall v)[\deg_R(v) = 3]$. The RED subgraph has 9 nodes each of degree 3. Impossible!
Lemma Let $G = (V, E)$ be a graph.

\[V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \} \]
\[V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \} \]

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.
Lemma Let $G = (V, E)$ be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$
$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Recall that for any graph $G = (V, E)$:

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$
Lemma Let $G = (V, E)$ be a graph.

$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$

$V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Recall that for any graph $G = (V, E)$:

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$
Lemma Let $G = (V, E)$ be a graph.

\[V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \} \]
\[V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \} \]

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Recall that for any graph $G = (V, E)$:

\[
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
\]

\[
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
\]

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work?
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work?
We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work?
We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$

Key: $R(2, 4)$ and $R(3, 3)$ were both even!
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work?

We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$

Key: $R(2, 4)$ and $R(3, 3)$ were both even!

Theorem $R(a, b) \leq$

1. $R(a, b - 1) + R(a - 1, b)$ always.
2. $R(a, b - 1) + R(a - 1, b) - 1$ if
 $R(a, b - 1) \equiv R(a - 1, b) \equiv 0 \pmod{2}$
Some Better Upper Bounds

- $R(3, 3) \leq R(2, 3) + R(3, 2) \leq 3 + 3 = 6.$
- $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 - 1 = 9.$
- $R(3, 5) \leq R(2, 5) + R(3, 4) \leq 5 + 9 = 14.$
- $R(3, 6) \leq R(2, 6) + R(3, 5) \leq 6 + 14 - 1 = 19.$
- $R(3, 7) \leq R(2, 7) + R(3, 6) \leq 7 + 19 = 26.$
- $R(4, 4) \leq R(3, 4) + R(4, 3) \leq 9 + 9 = 18.$
- $R(4, 5) \leq R(3, 5) + R(4, 4) \leq 14 + 18 - 1 = 31.$
- $R(5, 5) \leq R(4, 5) + R(5, 4) = 62.$

Are these tight?
$R(3, 3) \geq 6$

$R(3, 3) \geq 6$: Need coloring of K_5 w/o mono K_3.

Note $-1 = 2^2 \pmod{5}$. Hence $a - b \in \text{SQ}$ iff $b - a \in \text{SQ}$. So the coloring is well defined.
$R(3, 3) \geq 6$

$R(3, 3) \geq 6$: Need coloring of K_5 w/o mono K_3.

Vertices are $\{0, 1, 2, 3, 4\}$.
\[R(3, 3) \geq 6 \]

\[R(3, 3) \geq 6: \text{ Need coloring of } K_5 \text{ w/o mono } K_3. \]

Vertices are \(\{0, 1, 2, 3, 4\} \).

\[\text{COL}(a, b) = \text{ RED if } a - b \equiv SQ \pmod{5}, \text{ BLUE OW.} \]
$R(3, 3) \geq 6$

$R(3, 3) \geq 6$: Need coloring of K_5 w/o mono K_3.

Vertices are \{0, 1, 2, 3, 4\}.

$COL(a, b) = \text{RED if } a - b \equiv SQ \pmod{5}, \text{ BLUE OW.}$

Note $-1 = 2^2 \pmod{5}$. Hence $a - b \in SQ$ iff $b - a \in SQ$. So the coloring is well defined.
\(R(3, 3) \geq 6 \)

\[COL(a, b) = \text{RED if } a - b \equiv SQ \pmod{5}, \text{BLUE otherwise.} \]

- Squares mod 5: 1, 4.
- If there is a RED triangle then \(a - b, b - c, c - a \) all SQ’s. SUM is 0. So

\[x^2 + y^2 + z^2 \equiv 0 \pmod{5} \text{ Can show impossible} \]

- If there is a BLUE triangle then \(a - b, b - c, c - a \) all non-SQ’s. Product of nonsq’s is a sq. So

\[2(a - b), 2(b - c), 2(c - a) \] all squares. SUM to zero- same proof.

UPSHOT \(R(3, 3) = 6 \) and the coloring used math of interest!
$R(4, 4) = 18$

$R(4, 4) \geq 18$: Need coloring of K_{17} w/o mono K_4.
\(R(4, 4) = 18 \)

\(R(4, 4) \geq 18 \): Need coloring of \(K_{17} \) w/o mono \(K_4 \).

Vertices are \(\{0, \ldots, 16\} \).

Use \\
\(\text{COL}(a, b) = \text{RED if } a - b \equiv SQ \pmod{17}, \text{BLUE OW.} \)
$R(4, 4) = 18$

$R(4, 4) \geq 18$: Need coloring of K_{17} w/o mono K_4.

Vertices are $\{0, \ldots, 16\}$.

Use
\[COL(a, b) = \text{RED if } a - b \equiv SQ \pmod{17}, \text{BLUE OW}. \]

Same idea as above for K_5, but more cases.

UPSHOT $R(4, 4) = 18$ and the coloring used math of interest!
\(R(3, 5) = 14 \)

\[R(3, 5) \geq 14: \text{Need coloring of } K_{13} \text{ w/o RED } K_3 \text{ or BLUE } K_5. \]
$R(3, 5) = 14$

$R(3, 5) \geq 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5.

Vertices are $\{0, \ldots, 13\}$.

Use

$COL(a, b) = \text{RED}$ if $a - b \equiv \text{CUBE} \pmod{17}$, BLUE OW.
\[R(3, 5) = 14 \]

\[R(3, 5) \geq 14: \text{ Need coloring of } K_{13} \text{ w/o RED } K_3 \text{ or BLUE } K_5. \]

Vertices are \{0, \ldots, 13\}.

Use
\[\text{COL}(a, b) = \text{RED if } a - b \equiv \text{CUBE (mod 17)}, \text{ BLUE OW.} \]

Same idea as above for \(K_5 \), but more cases.
$R(3, 5) = 14$

$R(3, 5) \geq 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5.

Vertices are $\{0, \ldots, 13\}$.

Use
$COL(a, b) = \text{RED}$ if $a - b \equiv \text{CUBE} \pmod{17}$, BLUE OW.

Same idea as above for K_5, but more cases.

UPSHOT $R(3, 5) = 14$ and the coloring used math of interest!
$R(3, 4) = 9$

This is a subgraph of the $R(3, 5)$ graph
$R(3, 4) = 9$

This is a subgraph of the $R(3, 5)$ graph

UPSHOT $R(3, 4) = 9$ and the coloring used math of interest!
Can we extend these Patterns?

Good news $R(4, 5) = 25$.

Bad news THAT’S IT. No other $R(a, b)$ are known using NICE methods. $R(5, 5)$—More on that later.
Can we extend these Patterns?

Good news \(R(4, 5) = 25. \)

Bad news
Can we extend these Patterns?

Good news $R(4, 5) = 25$.

Bad news

THATS IT.
Can we extend these Patterns?

Good news \(R(4, 5) = 25. \)

Bad news

THATS IT.

No other \(R(a, b) \) are known using NICE methods.
Can we extend these Patterns?

Good news \(R(4, 5) = 25. \)

Bad news

THATS IT.

No other \(R(a, b) \) are known using NICE methods.

\(R(5, 5) \)—More on that later.
Revisit those Numbers

- $R(3, 3) \leq 6$. TIGHT. Int
- $R(3, 4) \leq 9$. TIGHT. Int
- $R(3, 5) \leq 14$. TIGHT. Int
- $R(3, 6) \leq 19$. KNOWN: 18. Upper Bd Bor, Lower Bd Int
- $R(3, 7) \leq 26$. KNOWN: 23. Upper Bd Bor, Lower Bd Int
- $R(4, 4) \leq 18$. TIGHT. Int
- $R(4, 5) \leq 31$. KNOWN: 25. Both bd Bor
- $R(5, 5) \leq 62$. KNOWN: Between 43 and 49. Both Bor.
Moral of the Story (Due Tuesday?)

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.

[Joel Spencer] The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.
1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
Moral of the Story (Due Tuesday?)

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) *The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.*

2. Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.
1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5, 5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.
When Will We Know $R(5,5)$

1. (Quote from Joel Spencer): *Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6,6)$. In that case, he believes, we should attempt to destroy the aliens.*

2. I asked Stanislaw Radziszowski, the world’s leading authority on Small Ramsey Numbers, what $R(5,5)$ is and when we would know it. He said its 43 and we will *never* know it.
We Already Know $R(5, 5)!$

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a breakthrough: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in
We Already Know $R(5, 5)!$

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in **History**.
We Already Know $R(5, 5)$!

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in **History**.

1. You should read the blog post (its very short).
We Already Know $R(5,5)$!

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5,5)$ is now known! The breakthrough came via interdisciplinary research in **History**.

1. You should read the blog post (its very short).

2. You could read the 10-page paper on this topic:
We Already Know $R(5, 5)!$

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in **History**.

1. You should read the blog post (its very short).
2. You could read the 10-page paper on this topic:
3. The paper is, of course, bogus! I gave it to my Ramsey Class 7 years ago as though it was a real paper. About half fell for it.
We Already Know $R(5, 5)$!

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in **History**.

1. You should read the blog post (its very short).
2. You could read the 10-page paper on this topic:
3. The paper is, of course, bogus! I gave it to my Ramsey Class 7 years ago as though it was a real paper. About half fell for it.
4. Why did I not do that this semester? Because
We Already Know $R(5, 5)$!

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in **History**.

1. You should read the blog post (its very short).

2. You could read the 10-page paper on this topic:

3. The paper is, of course, bogus! I gave it to my Ramsey Class 7 years ago as though it was a real paper. About half fell for it.

4. Why did I not do that this semester? Because

 Jamie would ask me to do the square.
We Already Know $R(5, 5)!$

On April 1, 2013 I had a Blog post

A Nice Case of Interdisciplinary Research

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

Blog claimed a **breakthrough**: $R(5, 5)$ is now known! The breakthrough came via interdisciplinary research in History.

1. You should read the blog post (its very short).
2. You could read the 10-page paper on this topic:
3. The paper is, of course, bogus! I gave it to my Ramsey Class 7 years ago as though it was a real paper. About half fell for it.
4. Why did I not do that this semester? Because
 Jamie would ask me to do the square.
5. Some people have fallen for it. Will tell stories in class.