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1 Introduction

In online problems we consider problems where input arrives over time, and
we must continuously make decisions as information arrives. Due to the
incomplete information it is generally impossible to make optimal decisions.
For instance, consider the following example.

Example 1. Consider a multiple queue problems were agents a; arrive one
at a time and must be irrevocably assigned to a queue q; upon arrival. Fur-
ther, helping each agent takes time t; and our goal is to minimize the time
at which the last queue finishes.

This queueing problem is simply load balancing problem, which is known
to be NP-hard. Solving this problem optimally can be done (with enough
time), however finding the optimal solution in the online setting is not pos-
sible without knowing the information of agents prior to their arrivals.

This motivates the definition for measuring the performance of online
algorithms where we compare the performance of an algorithm relative to
that of the optimal solution.

Definition 1 (Competitive ratio). Suppose we have a sequence of inputs o.
Knowing all of o a priori we can solve the problem optimally for OPT(c ).
Now we will obtain the competitive ratio by optimally. Then ALG is said to
have a competitive ratio of « if the underlying problem is a

1. mazimization problem, and Vo, ALG(c) > o - OPT (o), or

2. minimization problem, and Vo, ALG(c) < 1. OPT (o).
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Moreover, ALG is said to be a-competitive.

With this definition we have a € (0,1] such that larger « values are
indicative of better worst-case online algorithms. It follows easily that a = 1
indicates that ALG = OPT.

Note that there is some inconsistency with the definition of competitive
ratio in the literature. Sometimes it is defined as

2 Yao’s lemma

Yao’s lemma is a powerful tool for proving results in the performance of
randomized algorithms. Let ¢(a,x) be the cost incurrecd by algorithm a on
input . Then Yao’s lemma is as follows.

Lemma 1 (Yao’s lemma). max,cy E[c(a, )] > minge 4 E[c(a, x)].

Thus the first expectation is taken over the choice of algorithm a and
the second expectation is taken over the choice of input x. Intuitively, Yao’s
lemma states that the performance on the worst input (averaged over all
algorithms), is worse than the performance of the best algorithm (averaged
over all inputs).

3 Online matching

The study of online matching began with the seminal paper of [KVV90]
which studied online bipartite matching with vertex arrivals and gave an
optimal (1 — %)—competitive algorithm. Subsequently, [BMO8] resolves a
slight error in a proof from [KVV90] and re-proves the problem in an intuitive
manner.

An alternate definition of competitive ratio has been used in other online
matching problems such as [BSSX16]. This definition considers peformance
in expectation and is especially helpful when we consider stochastic graphs
where edges or vertices are realized with some probability. Contrast this
with the previous definition which considers the worst case performace of
ALG thus it considers adversarial (worst case) arrivals.

Definition 2 (Competitive ratio; alternate definition). Define the compet-

ttive ratio o as
_ E[ALG(0)]

o = = 7\7)]
E[OPT(0)]
where the expectation is taken over the inputs o and any internal randomness

of ALG.
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Additional online matching settings studied include permutations of (1)
vertex and edge arrival models, (2) weighted and unweighted settings, (3)
known i.i.d. An interested reader may refer to [BSSX16].

4 Further results

1.

[GKM™19] Under the adversarial edge arrival setting, randomization
does not help beat the trivial % competitive ratio.

[AM17] Role-matchmaking is a problem where we have players with
skills levels as well as preferences over specific roles they would like
to play (e.g., in soccer we have roles of goalkeeper, defender, midfield,
or forward). This problem has immediate applications to many pop-
ular online videogames such as League of Legends and Dota 2. Then,
assuming the 3SUM conjecture, role-matchmaking is intractable.

[CK18] Consider the problem of finding a popular matching in a graph
G with n vertices. The problem is NP-complete for even n, but effi-
ciently solvable for odd n. A matching M is considered popular if
it does not lose against any matching M’ in a head-to-head election
where each vertex gets to vote.

[HualO] A super stable matching is a matching that disallows blocking
triples of degrees 1, 2, or 3. Moreover a blocking triple is an anal-
ogous extension of blocking pairs from the well known Gale-Shapley
algorithm for the stable matching problem. A blocking tri Deciding
whether a super stable matching exists in a circular stable matching
problem with ties in the preferences is NP-complete. This is true even
if all ties are of size at most 3 and they are at the front of the preference
lists.

5 Chapter suggestions

1.

p330 Theorem 18.4.3 uses a different definition of competitive ratio
than what is given at the beginning of the chapter. I believe these
are reciprocals of each other. A suggestion would be to stick with
the convention being used in the Theorem since it seems to be most
commonly used in current research.
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2. p327:

Under Yao’s Lemma. The second enumerated item has max,ca

but it should read z € X. Same thing below in the lemma environ-

ment.

(a) backwards quote right under the Lemma at the top of p328.

Should have a “the worst input in ....

(b) Suggested edit for the intuition of Yao’s Lemma: cost under the

worst input in p > cost of the best deterministic algorithm w.r.t.
p. Note the case used for the distribution p. Also, the brief
explanation should mention we are comparing costs. Otherwise
it isn’t clear if the < means less cost or better.
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