
1 ADD to the section on Recursive

DONE
Early work in complexity theory drew on analagies to computable theory.

P is analogous to Decidable. NP is analgous to computably enumerable
which we now define.

Def 1.1 We give three definitions of computably enumerable (c.e.) We will
leave it as an exercise to show they are equivalent.

• A set A is c.e. if there exists a Turing machine M such that

A = {x : (∃y)[M(x) ↓= x].

(So A is the range of a computable function. Note that M might not
halt on some inputs.)

• A set A is c.e. if either A = ∅ or there exists a Turing machine M that
halts on all inputs such that

A = {x : (∃y)[M(x) ↓= x].

(So A is empty or the range of a total computable function.)

• A set A is c.e. if there exists a Turing machine M such that

A = {x : [M(x) ↓].

• (So A is the range of a computable function.)

• A set A is c.e. if there exists a B ∈ R such that

A = {x : (∃y)[B(x, y) = 1].

Note 1.2 What we call computably enumerable (c.e.) is also called recur-
sively enumerable (r.e.). Soare [25] has tried to get the community to change
to c.e. and gives good arguments for the change.
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Exercise 1.3 Show that all four definitions of c.e. in Definition 1.1 are
equivalent.

The fourth definition of c.e. in Definition 1.1 looks like NP which is
identical to Σ1. The next exercise asks you to define Π1, Σ2, Π2 in the
context of decidability.

Exercise 1.4

1. In the Section ?? on the Polynomial Hiearchy we defined Σi and Πi

by adding alternating poly-bounded quantifiers to P. Define similar
classes by adding alternating unbounded quantifiers to R. Call them
Σi and Πi also (they will only be used within this problem so there
should be no confusion). We call this the Arithmetic Hiearchy. The
Arithmetic Hierarchy was defined by Kleene [15].

2. Let M0,M1, . . . , be a list of all Turing Machines. Assume that there
For each of the following sets find which Σi or Πi it is in. Try to make
i as low as possible.

FIN = {e : Pe halts on an infinite number of inputs }

TOT = {e : Pe halts on all inputs }

2 Another Solution

DONE
Given a Boolean formula φ and a satisfying assignment ~b, is there another

one? This is an example of the class Another Solution Problem (ASP). This
problem turns out to be NP-complete. This is not obviious: there are some
NP-complete problems for which the ASP version is in P.

Yato [27] and Yato & Seta [28] studied this notion and showed that for
several problems in NP, the ASP version is also NP-complete. We state one
of them: Sudoko. More precisely: given a Soduku instance, and an answer
for it, does it have another solutions? is NP-complete.

We study this notion in Section ??.
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3 Exercise

DONE

Exercise 3.1 For each of the following statements either prove it, disprove,
or state that it is unknown to science.

1. If A,B ∈ P then A ∪B ∈ P .

2. If A,B ∈ P then A ∩B ∈ P .

3. If A,B ∈ P then A ·B ∈ P .

4. If A then A ∈ P .

5. If A then A∗ ∈ P .

6. If A,B ∈ NP then A ∪B ∈ NP .

7. If A,B ∈ NP then A ∩B ∈ NP .

8. If A,B ∈ NP then A ·B ∈ NP .

9. If A then A ∈ NP .

10. If A then A∗ ∈ NP .

We need the next definition for the next problem.

Problem 3.2 MINFML INSTANCE: A formula φ(x1, . . . , xn) and a num-
ber L. QUESTION: Is there a formula ψ(x1, . . . , xn) of length ≤ L that is
equivalent to φ?

Exercise 3.3

1. Show that if P = NP then MINFML ∈ P.

2. Vary the notion of length in various ways (e.g., number of ∧ number
of ¬) and determine if P = NP implies that this variant of MINFML
is in P.
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4 The Complexity of Puzzles

Many puzzles have been studied with respect to complexity theory. We will
pursue this direction throughout the book; however, for now we give a few
examples. The following problems are from a survey by Kendall, et al. [14].

• Helmert [11] studied the complexity of solitaire games. There re-
sults were complicated so we do not state them here. Later Paul and
Helmert [18] looked at actual algorithms for solitaire games.

• Friedman [8] looked at the complexity of Corral Puzzles. A Corral
puzzle is defined as follows: (1) The input is a grid where some of the
spaces have natural numbers; (2) the goal is to find a loop that contains
all of the spaces with numbers such that, thinking of the border of the
loop as a wall, if a square has number n then there are exactly n squares
visible from that square. The decision problem, is there a loop?, is NP-
complete.

• Robertson and Munro [20] looked at the following problem: Given n
cubes where each face has a color chosen from a set of n colors, can the
cubes be stacked so that each color appears exactly one time on each of
the four sized of the tower? They showed this problem is NP-complete.

• Stuckman and Zhang [26] looked at the classic boardgame Mastermind.
Given a set of guesses and the answers that the mastermind gave, is
there a solution? They showed this problem is NP-complete. There has
been a lot of work done on Mastermind where they try to optimize the
number of queries needed in either the worst or average case. See Doerr
et al. [7] for results with close-to-matching upper and lower bounds, and
also many references to the past literature.

• Kaye [13] and A. Scott et al. [21] studied Minesweeper. (We assume
the reader knows how to play minesweeper.) Consider the following
decision problem: Given a board and an assignment of numbers to
each square, can the mines be placed so that all of the numbers make
sense? Kaye had a proof that this problem was NP-complete; however,
his proof was incorrect. Later A. Scott et al. showed that it was co-NP-
complete.
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5 Complexity Classes that use Randomiza-

tion

In this section we informally describe two randomized classes for, pardon the
pun, completeness. Actually, there is an irony here since the in that these
classes do not have complete problems.

5.1 Randomized Polynomial Time (RP)

Def 5.1 A set A is in Randomized Polynomial Time (RP) if there is a
Turing Machine that flips coins such that

• If x ∈ A then the probablility that M(x) = 1 is ≥ 1
2
.

• If x /∈ A then the probablility that M(x) = 0 is 1.

Some facts about RP

1. Miller [17] obtained a poly time algorithm for PRIMES that depending
on the Extended Riemann Hypothesis being true. Rabin [19] modified
the algorithm to be in RP. For many years it was open as to whether
PRIMES is in P until Agrawak et ak, [1] showed PRIMES ∈ P.

2. There are very few problems that are in RP that are not known to be
in P. We state one: given a polynomial f(x1, . . . , xn) and a prime p, is
the polynomial identically zero of Zp.

3. There are reasons to think that P = RP. Google H ardness versus
Randomness to see the reason.

Exercise 5.2

1. Let 0 < α < 1
2
. In the definition of RP replace 1

2
with α and call the

class RPα. Show that RP1/2 = RPα.

2. Let α(n) be a decreasing function from N to (0, 1
2
) In the definition of

RP replace 1
2

with α(|x|) and call the class RPα(n). Is RP 1
n2

= RP? Is

RP 1
2n

= RP?
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5.2 Bounded Probabilisitc Polynomial Time (BPP)

Def 5.3 A set A is in Bounded Probabilisitc Polynomial Time (BPP) if
there is a Turing Machine that flips coins such that

• If x ∈ A then the probablility that M(x) = 1 is ≥ 3
4
.

• If x /∈ A then the probablility that M(x) = 0 is ≥ 3
4
.

Some facts about BPP

1. There are no natural problems that are known to be in BPP but not
known to be in RP. There aren’t even any unnatural problems.

2. There are reasons to think that P = BPP. Google H ardness versus
Randomness to see the reason.

3. It is not know if BPP ⊆ NP.

4. Lautemann [16] and Sipser [24] proved that BPP ⊆ Σ2 ∩ Π2. Laute-
mann’s proof is simpler; however, Sipser’s paper started the field of
time-bounded Kolmogorov complexity.

Exercise 5.4

1. Let 1
2
< α < 1. In the definition of BPP replace 3

4
with α and call the

class BPPα. Show that BPP3/4 = BPPα.

2. Let α(n) be a decreasing function from N to (0, 1
2
) In the definition of

RP replace 1
2

with α(|x|) and call the class RPα(n). Is BPP 1
n2

= BPP?

Is BPP 1
2n

= BPP?

6 Add these to list of NPC problems

1. HAM CYCLE ∈ NP: Given a graph, does it have a Hamiltonian
cycle (A cycle that visits every vertex exactly once.)

2. TSP ∈ NP: Given a weighted graph and a number k, is there a Hamil-
tonian cycle of weight ≤ k. TSP stands for Travelings Salesperson’s
Problem. This problem is often stated as trying to f ind the optimal
Hamiltonian cycle. Since NP is a set of sets, we look at the set-version
of the find-problem.
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3. 0 − 1 − P ∈ NP.: Given a matrix M of of integers and a vector ~b or
integers, is there a vector of 0’s and 1’s, ~x such that M~x ≤ ~b? The
problem where instead of 0− 1 any integer vector is allowed is also in
NP but this is harder to show since the entires could be large. (The P
in 0− 1− P stand for Programming.)

4. COL ∈ NP: Given a graph and a number k, is the graph k-colorable?
This means, is there a way to assign vertices to elements of {1, . . . , k}
such that no two adjacent vertices have the same color. 3− COL is the
same problem but with k = 3.

5. IS ∈ NP: Given a graph G = (V,E) and a number k, is there a set
I ⊆ V such that (∀x, y ∈ I)[(x, y) /∈ E] of size k. (Such a set is called
an Independent Set.

6. VC ∈ NP: Given a graph G = (V,E) and a number k, is there a set
C ⊆ V such that (∀x, y ∈ C[(x, y) ∈ C]. (Such a set is called a C lique.

7. VC ∈ NP: Given a graph G = (V,E) and a number k, is there a set
C ⊆ V such that (∀(x, y) ∈ E][x ∈ C ∨ y ∈ C]. (Such a set is called a
V ertex Cover.

7 Add this to the sectiong on Strong NPC

The following problems are strongly NP-complete.

1. IS, VC, CLIQ. Garey and Johnson [9] showed that IS is strongly NP-
complete. There are very easy reductions of IS to CLIQ and to VC
hence they are also NP-complete.

2. 3 -Partition Problem: Given a list of integers, can they be partitioned
into three groups with identical sums? This was originally shown to
be NP-complete by Garey and Johnson using a reduction from 3-
dimensional matching [10]. The 3-partition problem is used in many
reductions to show problems on strongly NP-hard. We will study this
more in Section ??.

3. B in Packing Problem: Given a set of items (positive rationals ≤ 1) and
k bins of volume 1, can the items fit in the k bins? This problem can
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be shown to be NP-complete using a reduction from the 3-partition
problem. Bin packing has many interesting approximate algorithms,
as surveyed by Coffman et al. [6].

8 Add to the Intermediary Problems

DONE

1. DL (Discrete Logarithm). We describe this as a function and leave it to
the reader to give the set-version. We will use DL for both the function
and set version.

DL: Given prime p, generator g, and a ∈ Zp, find x such that gx ≡ a
(mod p).

Much like factoring (1) DL is important since, it if was easy to solve, the
Diffie-Helman key exchange protocol in cryptography would be cracked,
(2) DL is not known to be in P, (3) DL is not known to be NP-complete,
(4) there are algorithms for DL that are better than the naive one,
though still exponential (see the Wikipedia page on Discrete Log), (5)
there has not been a better algorithm since 1998, (6) Shor [22, 23] has
shown there is a quantum polynomial time algorithm for it, and (7)
If DL is NP-complete then NP = co-NP; hence DL is unlikely to be
NPC.

2. Minimum Circuit Size Problem (MCSP) Given the truth table of a
boolean function f and an integer s, does f have a circuit with at most
s logic gates?

MCSP is not known to be in P, nor has it been proven to be NP-
complete. Papers by Kabanets & Cai [12] and Allender & Hirahara [3]
have provided arguments for why the problem is intermediary. Also see
Allender [2] for a survey.

9 Add to Undecidable Problem Example

DONE

1. Mortal Matrix Problem Given a set of m n × n matrices over Z, de-
termine whether they can be multiplied in some order (with repetition
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allowed) to obtain the all-zero matrix. Cassaigne et al. [5] have shown
the problem is undecidable for: (1) 6 3× 3 matrices, (2) 4 5× 5 matri-
ces, (3) 3 9× 9 matrices, (4) 2 15× 15 matrices. Bournez & Branicky
have shown the problem is decidable for 2 2× 2 matrices the problem
is decidable. Bell et al. [4] have shown that the problem for arbitrary
large 2 × 2 matrices is NP-hard. Note that even the case of 2 3 × 3
matrices is open.
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