1 Further results

1. We looked at online matching for bipartite graphs where the vertices arrive. We found that (a) deterministic algorithms always have competitive ratio ≤ 2, (b) there is a randomized algorithms with competitive ratio $\frac{e-1}{e}$, and (c) $\frac{e-1}{e}$ is the best one can do. What about general graphs? What if edges arrive? Gamlash et al. [?] showed that (a) for vertex arrivals in general graphs there is a randomized algorithm with competitive ratio $(\frac{1}{2} + \Omega(1))$, and (b) for edge arrivals randomization does not help.

2. Role-matchmaking is a problem where players of different skills levels arrive and must be assigned to a team as soon as they arrive. The goal is to have the teams be balanced so that no team dominates. This can get very complicated since different skills is not 1-dimensional. For example, in soccer a team may need a good Goalkeeper more than a great midfielder. This problem has immediate applications to many popular online videogames where such as League of Legends and Dota 2. Alman & McKay [?] view this as a dynamic data structers problem. The show (a) assuming the 3SUM conjecture, any data structure for this problem requires $n^{1-o(1)}$ time per insertion or $n^{2-o(1)}$ time per query, and (b) there is an approximation algorithm that takes $O(\log n)$ per operation.

2 Chapter suggestions

1. p330 Theorem 18.4.3 uses a different definition of competitive ratio than what is given at the beginning of the chapter. I believe these are reciprocals of each other. A suggestion would be to stick with the convention being used in the Theorem since it seems to be most commonly used in current research.

2. p327: Under Yao’s Lemma. The second enumerated item has $\max_{x \in A}$ but it should read $x \in X$. Same thing below in the lemma environment.

 (a) backwards quote right under the Lemma at the top of p328. Should have a “the worst input in

 (b) Suggested edit for the intuition of Yao’s Lemma: cost under the worst input in $p \geq$ cost of the best deterministic algorithm w.r.t.
p. Note the case used for the distribution p. Also, the brief explanation should mention we are comparing costs. Otherwise it isn’t clear if the \leq means less cost or better.