
1 Further results

1.1 Graph Problems

For all of the problems listed the model is streaming with edge arrivals and
n is the number of vertices.

1. For the Maximal Matching Problem Esfandiari et al. [6] gives
an algorithm that, with high probability, approximates the size of a
maximum matching within a constant factor using Õ(n2/3) space.

2. For the Weighted Maximal Matching Problem Crouch & Stubbs [4]
gives a (4+ε) approximation algorithm which applies in semistreaming,
sliding window, and MapReduce models. Chen et al. [2] studied this
problem in the 1-pass model.

3. The Parameterized Vertex Cover with parameter k was stud-
ied by Chitnis et al. [3]. They proved a tight lower bound on the space
of Ω(k2) for randomized streaming algorithm.

4. Minimum Spanning Tree estimation: Given a weighted undi-
rected graph and ε, find a spanning tree that has weight ≤ (1 + ε)OPT
where OPT is the weight of the minimal spanning tree. Assadi & N [1]
proved that any algorithm that use no(1) space requires Ω(1/ε) passes.
The result still holds if the weights are constant.

5. ε-Connectivity: If at least ε · n edges need to be inserted into G to
make it connected, G is said to be ε-far from being connected. Assadi
& N [1] proved that any algorithm that use no(1) space requires Ω(1/ε)
passes.

6. Cycle-freeness: If at least ε · n edges need to be deleted from G to
remove all its cycles, then G is said to be ε-far from being cycle-free.
The problem is to determine if a graph is cycle-free or ε-far from being
cycle-free. Assadi & N [1] proved that any algorithm that use no(1)

space requires Ω(1/ε) passes.

1.2 Non-Graph Problems

1. The Longest Increasing Subsequence: Given an ordered sequence
of numbers ~x = (x1, ..., xn), find an increasing subsequence that is of
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maximal length. This is a streaming problem if, as the xi’s arrive,
you decide if they will be in the increasing subsequence or not. Saks
& Seshadhri [8] showed that, for all δ > 0, a deterministic, single-
pass streaming algorithm for additively approximating this problem to
within an additive δn requires O(log2 n/δ) space. They also considered
the Longest Common Subsequence problem (Given ~x and ~y find
a maximal sequence that is a subsequence of both strings.) and gave
an analogous result for that one as well.

2. Maximum Coverage: Given n, k and a set of m sets Si ⊆ {1, . . . , n},
find the k subsets that maximize the size of their union. There is a
straightforward greedy (1− e−1)-approximation algorithm that runs in
polynomial time. McGregor & Tu [7] give two single-pass streaming
algorithms and one multi-pass streaming algorithm for approximations
to this problem. For the multi-pass case they also have a lower bound.

(a) They have a single-pass streaming algorithm that for a (1−e−1−ε)-
approximation that takes Õ(ε−2m) space.

(b) They have a single-pass streaming algorithm that for a (1 − ε)-
approximation that takes Õ(ε−2mmin(k, ε−1)) space.

(c) They have an algorithm that for a (1 − e−1 − ε)-approximation
that takes O(ε−1) passes and Õ(ε−2k) space. They show that any
O(1) pass streaming algorithm for an (1 − (1 − (1/k)k) ∼ 1 − 1

e

requires Ω(m) space.

3. Basic Counting: Given a stream of bits, maintain a count of the
number of 1’s in the last N elements seen from the stream. Datar et
al. [5] showed this problem requires Ω(ε−1 log2N) space for any ran-
domized algorithms.

4. Sum: Given a stream of integers in {1, . . . , R}, maintain the sum of the
last N integers. Data et al. [5] showed that any streaming algorithm for
this problem requires space Ω(ε−1(logN + logR logN)). This and the
previous problem relate to computing the LP norm with an underlying
vector that has a single dimension.

5. Sorting by reversal on signed permutations: Given a data
stream of a permutation S on {1, . . . , n}, a reversal r(i, j) will transfer
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x = (x1, . . . , xn) to (x1, . . . , xi−1,−xj, . . . ,−xi, xj+1, . . . xn). Find the
minimum number of reversals needed to sort S. Verbin & Yu [9] showed
that this problem requires space Ω((n/8)1−1/t) for approximation factor
1 + 1/(4t− 2).
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