
CMSC 858M: Algorithmic Lower Bounds: Fun

with Hardness Proofs

Fall 2020

Instructor: Mohammad T. Hajiaghayi
Scribe: Kiarash Banihashem

1 Overview

Previous parts of the book have focused on computational lower bounds that
showed, assuming P 6=NP, certain problems cannot be solved in polynomial time.
While these methods work for a large class of problems, it is often the case that
a problem actually can be solved in polynomial time, however the polynomial
is of a large degree, e.g, O(n3) or O(n4). Since the input size of many modern
problems can be very large, the practicality of these algorithms is limited. As
such, for many of these problems, there have been many attempts to improve
the running time of these polynomials to obtain better bounds, with most of
these attempts leading to little success. A natural question therefore is whether
such improvements are actually possible or are there fundamental limits to the
best complexity obtainable for these problems, even if they are all solavable in
polynomial time.
This chapter shows that this is indeed the case. Taking a similiar approach as
the NP-hardness results, it first introduces the 3SUM problem and conjectures
that it cannot be solved in truely sub-quadratic time. Next, it shows that
for a large class of problems admite sub-quadratic reductions from the 3SUM
problem. Assuming the 3SUM hardness conjecture is true, this implies that
these problems cannot be solved in truely sub-quadratic time either.

2 The 3SUM Problem

This section formulates the 3SUM problem and provides an algorithm that can
deterministicly solve this problem in quadratic time by successive refinements
of a simple O(n3) algorithm.

DEFINITION
Given a set of n integers, the 3SUM problem asks whether any 3 of these

integers sum to zero.

1

Scribe: Kiarash Banihashem
Chapter 17 2 THE 3SUM PROBLEM

END OF DEFINITION
THEOREMTheorem 17.2.1
The 3SUM problem can be solved in O(n2) time.
END THEOREM
PROOF
Let A be the original input of n integers. First, we consider a simple

O(n2 log(n)) algorithm. We observe that three integers Ai, Aj, Ak sum to zero,
if and only if Ai+Aj = −Ak. We therefore compute all pairwise sums of A, i.e,
all possible Ai +Aj and sort them into an array B. Since there are O(n2) such
pairs, this takes O(n2 log(n2)) = O(n2 log(n)) time. Next, for each integer Ak,
we check whether −Ak is in B. Since B is sorted, this takes O(n log(n)) time
for each Ak, leading to an O(n2 log(n)) time for checking the entire set A.
To obtain an improved O(n2) version, we modify the algorithm such that check-
ing whether −Ak equals Ai + Aj for some i, j takes O(n) time. To do this, we
first sort the array A in O(n log(n)) time. For each Ak, we initalize two pointers
i, j on the first and last element of the array respectively. If Ai+Aj < −Ak, we
increase the counter i and if Ai+Aj > −Ak, we decrease the counter j. We keep
doing this until either the pointers corss each other or we find Ai +Aj = −Ak.
In the latter case, we output YES while in the former case, we proceed to test
the next Ak. If no suitable Ak is found, we output NO.

END PROOF
The book then states some improved running times that can be obtained for

the problem, both in general and with extra assumptions, which we list below.

1. If the integers are restricted to the interval [−u, u], then the problem can
be solced in O(n+ u log(n)) time.

2. In the word-RAM model where O(log(n))-bit words can be manipulated in
constat time, there is a random algorithm for 3SUM with time complexity

O

((
n log log(n)

log(n)

)2)

3. There is a randomized algorithm that takes O(n
2 log log(n)
log(n)) time and a

deterministic algorithm that takes O(n
2(log log(n))

2
3

(log(n))
2
3

time.

4. There is a deterministic algorithm that runs in O(n
2(log log(n))O(1)

log2(n)
) time.

5. There exists a decision tree algorithm that can solve 3SUM in O(n1.5 log(n))
time though there are no known algorithms for constructing such a deci-
sion tree in subquadratic time.

None of the above algorithms are much better than the O(n2) time algorithm
More formally, the book defines the class of subquadratic time algorithms as
follows.

2

Scribe: Kiarash Banihashem
Chapter 17 4 VARIANTS OF 3SUM

DEFINITION
An algorithm is called subquadratic if there exists ε > 0 such that it runs

in O(n2−ε) time.
END OF DEFINITION

3 Definition of 3SUM-Hardness

This section formally states the 3SUM-hardness conjecture and defines the no-
tion of subquadratic reductions. These tools will later be used to show hardness
results for a variety of problems.

CONJECTURE
There is no subquadraic algorithm for 3SUM.
END OF CONJECTURE
DEFINITION
Let A,B be two sets or functions. We will write A ≤sq B if any subquadraic

algorithm for B can be turned into a subquadratic algorithm for A and write
A ≡sq B if A ≤sq B and B ≤sq A.

END OF DEFINITION
DEFINITION
A problem A is 3SUM-hard if 3SUM≤sq A.
END OF DEFINITION
While the notions of 3SUM-hard and NP-hard are similar, the book notes

two important differences. Firstly, there is no notion of 3SUM-complete as there
is no natural class like NP for 3SUM. Secondly, there is no analogous result to
the Cook-Levin Theorem. In other words, the 3SUM problem is assumed to be
hard and used as such.

4 Variants of 3SUM

This section of the book introduces three variants of the 3SUM problem and
shows that they are 3SUM-hard.

The first result shows that the hardness of the 3SUM problem does not stem
from the fact that it allows very large integers and the problem remains hard
with restrictions on the size of its input.

THEOREM
The 3SUM problem restricted to inputs in [−n3, n3] is 3SUM-hard.
END THEOREM
Next, a variant of 3SUM that effectively restricts the choice of i, j, k is con-

sidered
THEOREM
Given a set of integers a1, . . . , an, it is 3SUm-hard to determine whether

there is an i 6= j such that ai+j = ai + aj.
END THEOREM

3

Scribe: Kiarash Banihashem
Chapter 175 3SUM-HARD PROBLEMS IN COMPUTATIONAL GEOMETRY

Another variant is the 3SUM’ problem in which ai, aj, ak are chosen from
three different arrays of integers.

DEFINITION
Given three sets of n integers A,B,C, the 3SUM’ problem asks whether there

are a ∈ A, b ∈ B, c ∈ C such that a+ b = c.
END OF DEFINITION
THEOREM
3SUM’≡sq3SUM
END OF THEOREM

5 3SUM-hard Problems in Computational Ge-
ometry

This section introduces some 3SUM-hard problems from computational geome-
try.

DEFINITION[GEOMBASE] Given n points in Z2 with y coordinates in
{0, 1, 2}, determine if there exists a non-horizontal line hitting 3 points of the
set. END DEFINITION

DEFINITION[GEOMBASE’] Given n points in Z2 with y coordinates in
{0, 1, 2} and a parameter ε, View the points as holes in the y = 0, 1, 2 lines
and enlarge them to be ε-long, determine if there is a non-horizontal line going
through three of these holes. END DEFINITION

DEFINITION[COLLINEAR] Given n points in Z2, determine if any three
are colinear. END DEFINITION

DEFINITION[CONCURRENT] Given n lines, determine if there is a point
on three of these lines. END DEFINITION

THEOREM

1. 3SUM ′ ≡sq GEOMBASE ≤sq GEOMBASE ′

2. 3SUM ≤sq COLLINEAR ≡sq CONCURRENT

END THEOREM
The book also considers many other problems, some of which we list below.
DEFINITION[Cover Box problem (STRIPS)]
Given a set of n strips and an axis-aligned rectangle, determine if a union

of the strips covers the rectangle.
END DEFINITION
DEFINITION[Cover trinangle (TCT)]
Given a set of n triangles, determine if the set of triangles covers the target

triangle.
END DEFINITION
DEFINITION[Hole in Uinion (HIU)]
Given a set of n trinangles on the plane which may overlap, does this set

have a hole, i.e, a closed region within the union that is not covered by any of
the traingles?

4

Scribe: Kiarash Banihashem
Chapter 17 8 EXTRA PROBLEMS

END DEFINITION
THEOREM
GEOMBASE ≤sq STRIPS ≤sq TCT ≤sq HIU
END THEOREM

6 Other lower bounds

There are also some graph problems that are 3SUM-hard, as shown by the
following two theorems.

THEOREM
Given a weighted graph and a number x, we want to determine if some

traingle has weight x.

1. There is an O(|E|
3
2) algorithm for this problem.

2. If there is an O(|E|
3
2 − ε) algorithm for this problem, then there is an

O(n2−δ) algorithm for 3SUM.

END THEOREM

7 DSUM

This section considers a simple generalization of 3SUM called dSUM.
DEFINITION[dSUM]
Given a set of n integers, are there any d of these integers that sum to 0?
END DEFINITION
The next result shows that given some assumptions, assuming the ETH

conjecture is true, then dSUM can not be solved in O(no(d)).
THEOREM
Let d ≤ n0.99. If dSUM with numbers of O(d log(n)) bits can be solved in

no(d) time, then 3SAT can be solved in 2o(n) time.
END THEOREM

8 Extra problems

1. [?] show that the 3SUM problem can be reduced to an online version of set
disjointness (the multiphase problem) and show that the problem requires
nΩ(1) update time. The problem can be reduced to many other dynamic
problems.

2. [?] show that assuming the 3SUM-hardness conjecture is true, then st-Sub
eonnectivity, st-Reach and bipartite perfect matching problem cannot have
algorithms with preprocessing time O(m4/3−ε), amortized update time
O(mα−ε) and amortized query time O(m2/3−α−ε).

5

Scribe: Kiarash Banihashem
Chapter 17 REFERENCES

3. [?] consider a weaker conjecture that at least one of 3SUM-hardness, APSP
and CNF-SAT holds and obtain

(a) n3−o(1) lower bounds for the amortized update and query times of
dynamic algorithms for single-source reachability, strongly connected
components, and MaxFlow.

(b) an n1.5−o(1) lower bound for computing a set of n st-maximum-flow

value s in a directed graph with n nodes and Õ(n) edges

4. [?] consider the local alignmant problem where given two input strings and
a scoring function on pairs of letters, one is asked to find the substrings
of the two input strings that are most similar under the scoring function.
They show that assuming 3SUM-hardness is true, there is no algorithm
for this problem with running time O(n2−ε).

5. [?] consider a variant of monochromatic triangle that can be solved in
O(n1.5) time is fine-grained equivalent to 3SUM which further implies
that there are no strong improvements possible assuming 3SUM-hardness
holds. This result is particularly interseting as it gives fine-grained equiv-
alence between natural problems of different running times.

6. [?] show that assuming 3SUM-hardness is true, any static data struc-
ture for SetDisjointness that answers queries in constant time must spend
Ω(N2−o(1)) time in preprocessing, where N is the size of the set system.

7. [?] study the problem of finding the “deepest” point in an arrangement of
disks, where the depth of a point denotes the number of disks that contain
it. They show this problem is 3SUM-hard.

References

[1] A. Abboud and V. V. Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 434–443. IEEE, 2014.

[2] A. Abboud, V. V. Williams, and O. Weimann. Consequences of faster align-
ment of sequences. In International Colloquium on Automata, Languages,
and Programming, pages 39–51. Springer, 2014.

[3] A. Abboud, V. V. Williams, and H. Yu. Matching triangles and basing
hardness on an extremely popular conjecture. SIAM Journal on Computing,
47(3):1098–1122, 2018.

[4] B. Aronov and S. Har-Peled. On approximating the depth and related prob-
lems. SIAM Journal on Computing, 38(3):899–921, 2008.

[5] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the
3sum conjecture. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pages 1272–1287. SIAM, 2016.

6

Scribe: Kiarash Banihashem
Chapter 17 REFERENCES

[6] A. Lincoln, A. Polak, and V. V. Williams. Monochromatic triangles, interme-
diate matrix products, and convolutions. arXiv preprint arXiv:2009.14479,
2020.

[7] M. Patrascu. Towards polynomial lower bounds for dynamic problems. In
Proceedings of the forty-second ACM symposium on Theory of computing,
pages 603–610, 2010.

7

