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1 Overview

This chapter considers straming algorithms which are very similar to online al-
gorithms. In both cases, the algorithm needs to make decisions before it sees
all the data. Unlike online algorithms however, the streaming algorithm can
defer making its decisions and it the focus of designing streaming algorithms is
maintaining low memoery.
The book first introduces the tool of communication complexity. The most im-
portant problem in this tool is the INDEX problem. In this problem, there
are two agents Alice and Bob. Alice has access to an array of binary values
X = [X1, . . . , Xn] and Bob has an index i ∈ {1, . . . , n}. The array is only known
to Alice and the index is only known to Bob. Alice wants to send some infor-
mation to Bob such that Bob can determine Xi.
A naive way to do this is to send the entire array X. As the chapter shows,
there is really no smarter way to solver the problem, in other words, any com-
munication protocol for solving this problem requires O(n) bits to be sent by
Alice.

As we will see, this simple problem allows us to prove lower bounds for a
wide class of streaming algorithms. The main idea in the proofs is that in many
streaming problems, the input seen until some point may be both insufficient to
solve the problem and have enough information such that the problem cannot
be solved with a compressed version of it. This allows us to build reductions
from the INDEX problem such that the partially seen input encodes the array
X and the unseen part of the input determines the index i.

2 Introduction to streaming algorithms

This section formally defines streaming algorithms.
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Definition 1 Streaming Algorithms are algorithms for processing data streams
in which the input is presented as a sequence of items and can be examined in
only a few passes (typically just one) by using relatively little memory (much less
than the input size), and also limited processing time per item. Often produce
approximate answers based on a summary or “sketch” of the data stream in
memory. A common technique for creating a “sketch” is sampling at random.

As an example, assume that the input is going to be all of the integers in the
set {1, . . . , n} except for one integer that will not appear in the input sequence.
We want to design a streaming algorithm that outputs this number. A simple
algorithm that needs only O(log(n)) space is to keep the running sum s of the

items seen so far. The output can then be calculated via n(n+1)
2

− s. This is a
large improvement over the O(n) space naive algorithms that keep track of the
numbers seen so far via a binary array or hashset.

The book lists four important streaming problems. In all of these problems,
the goal is often to solve them approximately. An algorithm is said to be (ε, δ)-
accurate if it achieves an error less than ε with probability at least 1 − δ. The
mentioned problems are as follows.

1. For a given value of k, evaluate the kth frequency moment: Fk(a) =∑n
i=1 a

k
i where ai denotes the number of times an element has appeared.

2. Find heavy hitters, that is elementes that appear with frequency ai > T .

3. Counte the number of distinct elements.

4. Calculate the entropy E(a) =
∑n
i=1

ai
m

log(ai
m
) where m =

∑
ai.

3 Streaming for Graph Algorithms

For graph algorithms, there are two main versions of streaming considered.

1. Insertion only. In this version, the edges are added to the graph over
time.

2. Dynamic. In this version, the edges are added to the grapph but can
also be deleted.

4 Maximum matching

This section provides semi-streaming algorithms for maximum matching.

Definition 2 Maximum Matching (MM) Let G = (V, E) be a graph. Th maxi-
mum matching problem is finding the largest set of disjoint edges in G.
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Theorem 1 There is a semi-streaming algorithm for MM that (a) decides
whether or not an edge e is in the matching as soon as e is added to the graph
,(b) only requires one pass over the data, (c) uses at most Õ(n) space and (d)
has approximation gaurantee 1

2
.

The proof of the above theorem is provided in the proof. The algorithm they
consider adds a new edge e to the matching if and only if none of its endpoints
are already present in an edge of the running matching. To keep track of these
vertices, it is sufficient to keep an array of vertices and mark the endpoints of
each edge whenver it is addded to the matching.

Several improved results are known for this problem.

1. There is a one-pass semi-streaming algorithm for MM in bipartite graphs
that uses Õ(n) space and has approximation factor 0.6.

2. There is a one-pass semi-streaming algorithm for MM in general graphs
that requires Õ(n) space and has approximation factor 0.545.

5 Communication complexity

This section introduces the notion of communication complexity which will be
used to prove lower bounds for streaming. In the problems considered in the
section, there are two agents Alice and Bob that wish to work together to solve
a problem instance. The difficulty in doing so however is that each of them has
access to only a part of the input and as such, the need to communicated with
each other to obtain a solution. To do so, they are free to design a communi-
cation protocol which specifies what information each party should send and in
what manner. Often, we will restrict these protocols and e.g, require them to
be one-way from Alice to Bob, i.e, only Alice can send information to Bob and
not the other way round.
The section introduces the following important problems and provides lower
bounds on their communication complexity, that is, the maximum number of
bits any protocol may need in the worst case.

Definition 3 (INDEX) Alice has a string x ∈ {0, 1}n and bob has a natural
number i ∈ [n]. Alice can communicate to Bob in a one-way model so that Bob
can find xi.

Definition 4 (INDEXSAME) Alice has a string x ∈ {0, 1}n and bob has a
natural number i ∈ [n− 1]. Alice can communicate to Bob in a one-way model
so that Bob can determine whether xi = xi+1.

Definition 5 (DISJ) Alice has a string x ∈ {0, 1}n and bob has a string y ∈
{0, 1}n. They want to know if the sets represented by x, y are disjoint, i.e,
if ¬xi ∨ ¬yi holds for all i. The communication is 2-way and there are no
restrictions on the number of communication rounds.
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The next theorem proves lower bounds for these problems which will be useful
for showing hardness results for streaming algorithms.

Theorem 2

INDEX requires Ω(n) bits. The lower bound holds even for randomized algo-
rithms that have the correct output with probability ≥ 2

3
.

INDEXSAME requires Ω(n) bits. The lower bound holds even for randomized
algorithms that have the correct output with probability ≥ 2

3
.

DISJ requires Ω(n) bits both in the deterministic and randomized cases with
success probability ≥ 2

3
. It also holds when input is gauranteed to satisfy

∑
xi =∑

yi =
⌊
n
4

⌋
.

6 Lower Bounds on Graph Streaming Problems

In this section, the book provides lower bounds on several graph streaming
problems which we describe below.

Definition 6 Max-Conn-comp(k) Given a forest G = (V, E), we want to deter-
mine whether there is a fully connected component of size ≥ k. Note that k is
not part of the input; rather, it is a parameter that specifes the problem.

Theorem 3 For k ≥ 3, any single pass algorithm for Max-Conn-comp(k) re-
quires Ω(n) space.

Definition 7 Is-Tree Given a graph G = (V, E), we want to determine whether
the graph is a tree.

Theorem 4 Any single pass algorithm for Is-Tree requires Ω(n) space.

Definition 8 Perfect-Matching Given a graph G = (V, E), we want to deter-
mine whether the graph has a perfect matching, i.e, a disjoint set of edges that
covers the graph.

Theorem 5 Any single pass algorithm for Perfect-Matching requires Ω(m) =
Ω(n2) space.

Definition 9 Shorest-path Given an unweighted graph G = (V, E) and two ver-
tices v,w, what is the length of the shortest path from v to w?

Theorem 6 Any single pass algorithm that approximates Shorest-Path with a
factor better than

In adition, the book provides a lower bound for the Frequency Moments problem
outlined below.
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Definition 10 Given a data stream of numbers y1, . . . , yn ∈ [m], define the
frequency of each k ∈ [m] as xk = |{j : yj = k}| and define the frequency vector
as x = (x1, . . . , xm). For p ∈ N ∪ {∞}, define the pth frequency moment as

Fp =

{∑
xpi ifp ∈ N

maxi xi ifp =∞
Theorem 7 Let p > 2.

1. There exist a randomized streeaming algorithm which approximates Fp with
a factor of 1+ ε and requires O(m1−2/p) space.

2. Any randomized streaming algorithm that 1 + ε approximates Fp requires
at least Ω(m1−2/p) space.

7 Extra problems

1. [9] show consider the problem of monotone submodular maximization un-
der a cardinality constraint. In this problem, there is a ground set V and
a function f : 2V → R+ such that it is monotone, i.e, f(A) ≥ f(B) for all
B ⊆ A and submodular, i.e, f(A ∪ {x}) − f(A) ≤ f(B ∪ {x}) − f(B) for all
B ⊆ A and x /∈ A.
They show that any algorithm that has an approximation factor α > 0.5
for this problem in the streaming setting requires Ω(n/k) memory.

2. [4] consider the problem of dynamic submodular maximization where the
goal is to maintain a solution to the optimization problem subject to
both insertions and deletions. They show that for any ε ≥ 0, a 1

2
+ ε

approximation algorithm requires at least nΩ̃(ε)/k3 amorotized queries
to the submodular oracle in expectation.

3. [10] study low rank approximation in the streaming model in which the
rows of an n × d matrix A are presented one at a time in an arbitrary
order. In the end the algorithm needs to output a k×d matrix R satisfying
||A − AR†R||2F ≤ (1 + ε)||A − Ak||

2
F. They show a space lower bound of

Ω(dk/ε) bits for the problem.

4. [5] consider a variety of Numerical Linear Algebra problems in the Stream-
ing Model. They provide upper and lower boudns on the space complexity
of one-pass algorithms. In what follows, A is an n × d matrix, B is an
n× d ′ matrix and c = d + d ′ and the input is assumed to be integers of
O(log(nc)) bits or O(log(nd)) bits.

(a) For outputing a matrix C such that ||ATB − C|| ≤ ε||A|| · ||B||, they
show that Θ(cε−2 log(nc)) space is needed.

(b) For d ′ = 1, i.e, when B is a vector b, finding an x such that ||Ax−b|| ≤
(1+ ε)minx ′∈Rd ||Ax

′ − b|| requires Θ(d2ε−1 log(nd)) space.
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5. [2] consider the gap cycle counting problem in the streaming model. The
edges of a 2-regular n-vertex graph G are arriving one-by-one and it
is guaranteed that G is a disjoint union of either k-cycles or 2k-cycles
for some small k. The goal is to determine which of these two cases
has happend. They show that any p-pass streaming algorithm requires

n1−1/k
Ω1/p

space.

6. [3] show that two-pass graph streaming algorithm for the s-t reachabil-
ity problem in n-vertex directed graphs requires near-quadratic space of
n2−o(1) bits.

7. [6] consider the The approximate null vector problem where given x1, . . . xd−1
vectors in Rd, the goal is to output a vector that is approximately orthog-
onal to all of them. They show that the problem has an Ω(d2) lower
bound.

8. [7] consider the maximum matching problem. They show that any single
pass algorithm cannot achieve better than 2/3 approximation. There have
been improvements to the bound since this work and most recently, [8]
showed a 1

1+ln2 bound.

9. [1] consider approximating the maximum matching problem for two pass
algorithms and show that any such algorithm has approximation ratio at

least 1 −Ω( logRS(n)logn ) where RS(n) denotes maximum number of disjoint

induced matchings of size θ(n) in any n-vertex graph.
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