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We survey several problems related to approximation algorithms and the
hardness of approximation which are not currently in the book. There are
personal biases in these problem choices since they are problems which the
author has read about or worked on, but they should be interesting nonetheless.
In particular, they will overly represent facility location-type problems. We also
include some other topics related to hardness of approximation, which Bill and
Mohammad can choose to add to the chapters if they think they are interesting.
Throughout the sections, we will also mention what directions are open with
regards to the mentioned problems.

1 Inapproximability

In the current sections on hardness of approximation, several classes of problems
are identified: APX-Complete, LOG-APX-Complete, POLY-APX-Complete,
and EXP-APX-Complete. One class of problems which weren’t mentioned were
the inapproximable problems (I don’t know if there’s an official name). That is,
the book doesn’t mention those problems where it is NP-Hard to obtain a non-
infinite approximation factor. Usually, this is obtained when it is NP-Complete
to determine whether or not the optimal solution is exactly 0.

bProblem 1: (Scheduling Jobs With Deadlines [1]) We are given n
jobs which need to be scheduled on a single machine, which can process one job
at a time. For each job j, the job takes time pj , may begin no earlier than the
release time rj , and is due at time dj . Suppose we finish processing job j at
time Cj ; then the lateness is defined as Lj = Cj − dj . We want to schedule the
n jobs such that the maximum lateness Lmax = maxj∈[n] Lj is minimized.

• Deciding if there is a schedule such that Lmax ≤ 0 is NP-Hard (i.e., no
approximation algorithm exists)

• If we assume all due dates are negative, there exists a 2-approximation
algorithm.

Problem 2: (Dynamic k-Supplier [2]) We are given a metric space (X, d).
An instance of Dynamic k-Supplier consists of T ≥ 2 timesteps, a set of clients
Ct ⊆ X for time t ∈ [T ], a set of candidate facility locations Ft ⊆ X for time
t ∈ [T ], a budget on the number of facilities to place k ∈ N , and a budget on the
movement cost B. We are asked to compute a sequence of multi-sets of facilities
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{At}Tt=1, with At ⊆ Ft and |At| = k, minimizing the maximum service cost of
any client maxt∈[T ] maxj∈Ct d(j, At) subject to the constraint that there must
exist a perfect matching between At and At+1 (for all t) such that the distance
between each matched pair is at most B.

• For T = 2, there exists a 3-approximation algorithm and this is best
possible unless P=NP.

• For T ≥ 3, there can be no approximation algorithm for this problem
unless P=NP.

Problem 3a: (γ-Colorful k-Center [3]) We are given a metric space
(X, d), γ colors, and a budget k. We are also given labels X` ⊆ X and covering
requirement m` ∈ N ∪ {0} for each ` ∈ [γ]. We want to find the smallest radius
r ∈ R≥0 together with centers C ⊆ X such that |C| ≤ k and |B(C, r)∩X`| ≥ m`

for each ` ∈ [γ], where B(C, r) is the open ball of radius R centered at elements
in C.

• When γ is viewed as a constant, there exists constant factor approximation
algorithms.

• When γ is viewed as input, there can be no approximation algorithm for
the problem unless P=NP.

In addition to the ones here, [11] also gives a problem which is polynomial-
time inapproximable. This was found after I had written 10 problems already,
so I have not included it in the writeup.

2 Bicriteria Inapproximability

Often, when there are strong hardness results or technical difficulties in de-
veloping approximation algorithms, one may turn to bicriteria approximation
algorithms. For an optimization with a constraint k (think of this as a bud-
get) and an objective, an (α, β)-approximation algorithm is one which outputs
a solution with objective at most α times optimal and violates the budget k
by at most β. One can also obtain hardness of approximation results of this
form: even if we violate the objective by a factor of β, there cannot exist any
algorithm which outputs a solution within an α factor of the optimal solution.
We mention some examples here which the authors have seen, including one
problem for which bicriteria approximation algorithms are the only constant
factor approximation algorithms known for the problem:

Problem 3b: (γ-Colorful k-Center [3]) We are given a metric space
(X, d), γ colors, and a budget k. We are also given labels X` ⊆ X and covering
requirement m` ∈ N ∪ {0} for each ` ∈ [γ]. We want to find the smallest radius
r ∈ R≥0 together with centers C ⊆ X such that |C| ≤ k and |B(C, r)∩X`| ≥ m`

for each ` ∈ [γ], where B(C, r) is the open ball of radius R centered at elements
in C.
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• When γ is viewed as input, there can be no approximation algorithm for
the problem even when violating the budget constraint by O(log n), unless
P=NP.

• There exists a (1, O(log γ))-bicriteria approximation algorithm for the
problem.

Problem 4: (Capacitated k-Center [4]) We are given a metric space
(X, d), a budget k, and a capacity constraint L. We want to find a subset
S ⊆ X of size at most k such that maxi∈X minj∈S d(i, j) is minimized subject
to the constraint at most L clients are assigned to each center in S.

• A 6-approximation algorithm is known for the problem.

• Let c = x+1
x for any x ≥ 1. When violating budget by 2

c and capacity by
c, we can achieve a 2-approximation algorithm.

• No 2− ε approximation algorithm exists, even when violating the budget
and capacity constraints by any constant factor.

Problem 5: (Capacitated k-Median [5]) We are given a metric space
(X, d), a budget k, and a capacity constraint L. We want to find a subset
S ⊆ X of size at most k such that

∑
i∈X minj∈S d(i, j) is minimized subject to

the constraint at most L clients are assigned to each center in S.

• The problem is NP-Hard.

• There exists (O
(

1
ε2 log(1/ε)

)
, 1 + ε)-bicriteria approximation algorithms

for the problem.

• It is open whether or not there is a non-bicriteria constant factor approx-
imation algorithm.

3 Open Problems

Problem 6: (Spectral Radius Minimization [6]) We are given an undirected
graph G = (V,E) and a target T . We want to pick a subset S ⊆ of vertices such
that the spectral radius (defined as the maximum eigenvalue of the adjacency
matrix) is at most T and the number of remaining vertices |V −S| is maximized.

• It is known that the problem is NP-Hard.

• There exists O(log n)-approximation algorithms for the problem based on
semi-definite programming.

• Whether or not a polynomial-time approximation scheme exists is open
(i.e., is it APX-Hard?).
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Problem 7: (Minimum Size Bounded-Capacity Cut [7]) We are
given an undirected graph G = (V,E), edge capacities ce, a budget k,
a source vertex s, and a sink vertex t. We want to find an s − t cut
(S, Sc) with s ∈ S of capacity at most k such that |S| is minimized.

• The problem is NP-Hard.

• There exists a ( 1
λ ,

1
1−λ )-bicriteria approximation algorithm, for

any λ ∈ (0, 1).

• To the best of my knowledge, it is not known whether it is APX-
Hard.

4 Other Problems

In this final section, we will state some problems related to hardness
of approximation which we have reduced from or for which the proof
was quite cool/elegant. The final problem can be included as an
example in the POLY-APX-Complete section of the book.

Problem 8: (Densest k-Subgraph [8]) We are given a graph G =
(V,E) and an integer k ∈ N . For a subgraph S = (ES , VS) of G, define

the density to be d(S) = |ES |
|VS | . We want to find a subgraph S = (ES , VS)

with |VS | = k such that the density d(S) is maximized.

• For all ε > 0, there exists an n1/4+ε-approximation algorithm.

• Unless the exponential time hypothesis fails, there is no n1/(log log logn)g(n)-
approximation algorithm for the problem..

• Unless NP ⊆
⋂
ε>0BPTIME(2n

ε

), no polynomial-time approxi-
mation scheme exists for the problem.

Problem 9: Bin-packing Problem [9]) We are given n items with
sizes 1 > a1 ≥ a2 ≥ . . . ≥ an > 0. We wish to pack the items into the
fewest bins possible, where each bin can hold any subset of pieces of
total size at most 1.

• There can not exist an α-approximation algorithm for α < 3
2 .

• There exists an algorithm which outputs a solution using OPT+1
bins (this is already in the book).

Problem 10: Edge-Disjoint Paths Problem [10]) We are given a
directed graph G = (V,A) and k source-sink pairs si, ti ∈ V . The goal
of the problem is to find edge-disjoint paths so that the number of
source-sink which have a path from si to ti is maximized.

• A simple greedy algorithm obtains an Ω(1/`)-approximation al-
gorithm for the problem, where ` = max{

√
m, diam(G)}.

• For any ε > 0, there is no Ω(m−1/2+ε)-approximation algorithm
for the problem unless P = NP .
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