1 PUT IN INAPPROX

1.1 Lower Bounds on Approximate Nearest Neighbor

A useful problem in data structures is to store a set of points A (in some space) so that, given a point x (not in A), you can determine the point in A that is closest to x. You may be allowed to prepossess the points.

Problem 1.1 Online Nearest Neighbor (OnNN_p and γ-OnNN_p):

INSTANCE : (To Preprocess) A set of points A in \mathbb{R}^d. We will assume there are n points.

INSTANCE : A query point x.

QUESTION : (OnNN_p) Which point $y \in A$ is closest to x in the p-norm?

QUESTION : (γ-OnNN_p where $\gamma > 1$) We will call the distance to the closest point OPT. Obtain a $y \in A$ such that $||x - y||_p \leq \gamma \text{OPT}$. (We will also allow distances other than p-norms such as edit distance and Hamming distance.)

1. If you do no preprocessing and, given x, compute its distance to every point in A, this takes $O(n)$ time (assuming that distances takes $O(1)$ time). This is considered a lot of time for data structures since (1) n is large and (2) computing a distance is costly even if it $O(1)$.

2. Assume you knew ahead of time the set of query points. You could, in the preprocessing stage, determine for each query point which point of A it is closest to. This would yield query time $O(1)$ but an absurd (1) time for preprocessing, and (2) and space for the data structure.

Is there a way to get both quick preprocessing and quick query times? What if you settle for an approximation? Assuming SETH the answer is no:

Theorem 1.2

1. (Rubinstein [3]) Let $p \in \{1,2\}$ Assume SETH. Let $\delta, c > 0$. There exists $\epsilon = \epsilon(\delta, c)$ such that no algorithm for OnNN_p has (1) preprocessing time $O(n^c)$, (2) query ties $O(n^{1-\delta})$ and solves $(1 + \epsilon)$-OnNN. (The result also holds for edit-distance and Hamming-distance.)

2. (Ko & Song [2]) Assume SETH. Let $\delta, c > 0$. There exists $\epsilon \in [0,1)$ such that no algorithm for OnNN_p has (1) preprocessing time polynomial in n, (2) query time $O(n^{1-\delta})$ and solves $(1 + \epsilon)$-OnNN_p.
We have stated that DOM is $W[2]$-complete and hence unlikely to be in FPT. However, using ETH and SETH, one can obtain sharper bounds on the parameterized complexity of DOM.

Let $k \in \mathbb{N}$. Let DOM_k be the problem of, given a graph G, is there a Dominating set of size k. Clearly this problem is in time $O(n^{k+1})$. Eisenbrand and Grandoni [1] have obtaines slightly better algorithms. We state two known lower bounds. They are probably folklore since our only source is a workshop on fine-grained complexity held by the Max Plank Institute in 2019:

Theorem 2.1

1. Assume ETH. There exists $\delta > 0$ such that, for large k, DOM_k requires time $\Omega(n^{\delta k})$.

2. Assume SETH. Let $k \geq 3$ and $\epsilon > 0$. DOM_k requires time $\Omega(n^{k-\epsilon})$.

Those same notes leave the following as an exercise:

Exercise 2.2 Assume ETH. Show that SUBSETSUM cannot be solved in time $2^{o(n)}$.

References

https://doi.org/10.1016/j.tcs.2004.05.009.

