TESTING SOME CITATIONS
Ajtai [1]
Boas [8]
Brightwell \& Winkler [2]
Micciancio [7]
Haviv \& Regev [6]
Downey et al. [5]

1 Further Results

1.1 Graph Problems

The Feedback Vertex Set Problem: Given a graph G, find a set of k vertices whose removal leaves a graph without cycles. k is the parameter. It was open to determine if this problem is FPT. Chen [3] showed this problem is FPT .

1.2 Restrictions on Graphs

Some graph problems are in FPT if the graphs are restricted. Courcelle [4],

References

[1] Miklós Ajtai. The shortest vector problem in L_{2} is $N P$-hard for randomized reductions (extended abstract). In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 10-19. ACM, 1998.
https://doi.org/10.1145/276698.276705.
[2] Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8:225-242, 1991.
https://link.springer.com/content/pdf/10.1007/BF00383444. pdf.
[3] Jianer Chen, Yang Liu, Songjian Lu, Barry O'Sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem.
J. $A C M, 55(5): 21: 1-21: 19,2008$.
http://doi.org/10.1145/1411509.1411511.
[4] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 193-242. Elsevier and MIT Press, 1990.
https://doi.org/10.1016/b978-0-444-88074-1.50010-x.
[5] Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Parameterized circuit complexity and the W hierarchy. Theoretical Computer Science, 191(1-2):97-115, 1998.
https://doi.org/10.1016/S0304-3975(96)00317-9.
[6] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. Theory of Computing, 8(1):513-531, 2012.
https://doi.org/10.4086/toc.2012.v008a023.
[7] Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic reduction. Theory of Computing, 8(1):487-512, 2012.
https://doi.org/10.4086/toc.2012.v008a022.
[8] Pter van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Tech Report 8104, University of Amsterdam, Dept of Mathematics, Neverthlands, 1981.

