I forgot to say that it is very interesting and the puzzles are addictive! Seems like I found a way to "prove" FORCE-5 with a bit more work. But I may be wrong!

1. (A) Say COL(x) = R and COL($x + 9$) = B (they must be different)

2. (A) IMPLIES COL($x + 1$) and COL($x + 4$) are in \{B, G\}

3. (A) IMPLIES COL($x + 5$) and COL($x + 8$) are in \{R, G\}

4. by FORCE-7, (A) IMPLIES COL($x + 7$) = R and COL($x + 2$) = B

5. Now, COL($x + 1$) in \{B, G\} and COL($x + 2$) = B implies

 $\text{COL}(x + 1) = G$ (since they must be different).

6. Now, COL($x + 8$) in \{R, G\} and COL($x + 7$) = R implies

 $\text{COL}(x + 8) = G$ (idem).

7. COL($x + 1$) = G and COL($x + 5$) in \{R, G\} implies

 $\text{COL}(x + 5) = R = \text{COL}(x)$ (since they must be different).

8. COL($x + 8$) = G and COL($x + 4$) in \{B, G\} implies

 $\text{COL}(x + 4) = B = \text{COL}(x + 9)$ (idem).

So we have FORCE-5 as a consequence of FORCE-7. It is interesting from a logical perspective! That kind of reasoning used a decomposition $p(x) = p(y) + p(z) + p(t)$, here a square as a sum of three squares. That may be interesting to see what we get from that kind of decomposition.