These corrections are from
steven.brown.math@gmail.com.

1. Page 15; Lemma 6.3.

 \[s + 2b + 1 \leq n \] is a typo. Should be
 \[s + 2b + 1 < w \]
 I think. That can’t be true therefore
 \[s + 2b + 1 \geq w. \]

 I MADE ALL OF THE CORRECTIONS. BUT THEN PROBLEM: I
 REWROTE THE PROOF TO MAKE IT CLEARER BUT THEN AN
 ODD THING HAPPENED. ITS LOOKS LIKE I CAN GET \(w \leq s+2b \).
 PLEASE TAKE A LOOK AND SEE WHAT YOU THINK. I DONT
 THINK THIS IS POSSIBLE.

2. Page 17, end of proof Theorem 6.5.

 (a) So \(W(p(x); 3) \leq \ldots \)
 I am guessing that lemma 6.3 is used here
 if this is the case that should be said; and all conditions of its
 application should be checked. That said, shouldn’t it be
 \[W(p(x); 3) \leq p(db) + 2 \times 2(p(x_0) + p(y_0)) + 1? \]
 (application of lemma 6.3) and then
 \[p(db) + 2 \times 2(p(x_0) + p(y_0)) + 1 = O(a^5b^2) \]
 doesn’t change the conclusion. (also to add the argument that if
 you have a one-sided boundary condition then you obviously have
 a two sided boundary condition) * if this is not the case; the actual
 argument should be given

3. Page 19,

 (a) Why not give the linear combinations here? That would help the
 reader, especially in light of (12) otherwise the reader may doubt
 the accuracy of the results. I believe that is all correct but maybe
 requires more evidence.
 For example \(gcd(2a + 1, a + 1) = 1 \) because \(2(a + 1) - (2a + 1) = 1 \)
 and Theorem de Bachet Bezout.
 (b) By the claim: for all \(a, bin Z, gcd(\ldots) \leq 6 \) brackets are missing